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Spontaneous symmetry breaking and reflectionless scattering data
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We consider the question of which potentials in the action of a~111! dimensional scalar field theory
allowing for spontaneous symmetry breaking have quantum fluctuations corresponding to reflectionless scat-
tering data. The general problem of restoration from known scattering data is formulated and a number of
explicit examples are given. Only certain sets of reflectionless scattering data correspond to symmetry breaking
and all restored potentials are similar either to theF4 model or to the sine-Gordon model.
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I. INTRODUCTION

Quantum corrections to classical solutions such as ki
@1,2# and spontaneous symmetry breaking are a field of
tensive study and have applications in many branches of
oretical physics ranging from the standard model to so
state. Recent interest appeared from some subtleties
nected with supersymmetry@3#. A number of models are usu
ally considered in this connection. The most popular ones
the F4 model and the sine-Gordon model. They result in
scattering problem for the quantum fluctuations with refl
tionless potentials. As a result calculations of quantum c
rections to the mass become very explicit. In the pres
paper we investigate the question of which models result
reflectionless scattering potential. The surprising result is
all of them are very similar to those mentioned above.

The setup of the problem is as follows. We conside
scalar fieldF(x,t) in ~111! dimensions with the action

S@F#5
1

2E dxdt@~]mF!21U~F!2#. ~1!

If the squared potentialU2(F)2 has two~or more! minima of
equal depth, spontaneous symmetry breaking occurs an
pological nontrivial kink solutionsFk(x) exist. In order to
calculate the quantum fluctuationsh(x,t) in the background
of the kink one has to solve the scattering problem for
potential V(x) which appears from the second derivati
d2S@Fk#/dFk

2(x) of the action@see Eq.~7! below#. In simple
models such as those mentioned above this potentialV(x) is
reflectionless.

In the present paper we try to describe all potenti
U(F) in Eq. ~1! that correspond to a reflectionless scatter
potentialV(x) and calculate the corresponding classical
ergy Eclass and the quantum energyE0 which is the ground
state energy of the fieldh in the background ofFk(x).

In calculating these quantities it is usually assumed t
the potentialU(F) is given. After that one solves the sca
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tering problem related toV(x) and calculates the energie
EclassandE0. In Ref. @4# the inverse approach was propose
One starts from the solution of the scattering problem giv
in terms of the so called scattering data$r (k),b i ,k i% known
since@5# to be in a one-to-one correspondence with the
tential V(x) ~for a representation of these questions see@6#
and references therein!. Here r (k) is the reflection coeffi-
cient, k i are the bound state energies, andb i are numbers
connected with the normalization of the bound state wa
functions. As shown in@4# the ground state energy can b
expressed in a simple way in terms of the scattering d
even including the necessary ultraviolet renormalization@see
Eq. ~10! below#. In order to find the classical energy one h
to restore the potentialV(x) from the scattering data. This i
the so called inverse scattering problem which was solve
terms of certain integral equations~see, again,@6#!. In this
way, by solving the inverse scattering problem the class
energy can be calculated from the scattering data. In@4# it
was shown how this procedure works on the simplest
ample of reflectionless@r (k)50# scattering data containing
only one bound state.

In the present paper we use this inverse approach to
scribe all potentialsU(F) corresponding to reflectionles
scattering data and having topologically nontrivial solution
allowing in this way for spontaneous symmetry breaking
turns out that not all scattering data correspond to such
tentialsU(F) but only certain classes. So we can formula
the reconstruction problem as finding the mapping betw
scattering data and potentialsU(F) allowing for spontane-
ous symmetry breaking.

The so called rational scattering data deserve special
sideration. Here the reflection coefficientr (k) is a rational
function of k and thus given by a finite number of param
eters. For a rationalr (k) the inverse scattering problem
known to have an explicit algebraic solution~in a similar
way as in the reflectionless case! and the classical energy ca
then be obtained by integration. In addition, the rational sc
tering data form a dense subset in the set of all scatte
data. In this way, the inverse approach may provide an
proximation scheme for the general case.

It should be mentioned that quantum corrections to soli
solutions have been extensively studied in the past. Spe
©2003 The American Physical Society03-1
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attention had been paid to models allowing for a solution
the equations for the quantum fluctuations in terms of kno
special functions and especially for explicit solutions. Also
reconstruction problem was considered earlier. Thus in@7# it
was shown that models whose quantum fluctuations can
expressed in terms of hypergeometric functions are
hausted by theF4 and the sine-Gordon models. Higher ord
polynomial interactions result in differential equations w
more than two regular singularities. A particularly interesti
paper is@8# where the reconstruction problem was cons
ered from the group theoretical point of view and potenti
are reconstructed starting from zero modes.

The paper is organized as follows. In the next section
consider soliton potentials providing completely explicit fo
mulas. In the third section we consider scattering data gi
by two bound states. In the fourth section we show how t
can be generalized to the general reflectionless case. Co
sions are given in the last section. We use units with\5c
51.

II. FORMULATION OF THE RECONSTRUCTION
PROBLEM

We consider a scalar fieldF with actionS@F#, Eq.~1!, in
111 dimensions. Static solutionsF(x) are subject to the
equation of motionF9(x)5U(F)U8(F) where the prime
denotes differentiation with respect to the argument. We
sume thatU2(F) has at least two minima of equal depth a
we are free to denote two neighboring ones by6Fvac.
These fields,F(x)56Fvac, are the vacuum solutions. I
case F vac5” 0 there exist topological nontrivial solution
Fk(x) called kink solutions which interpolate between t
vacuum solutions by means ofFk(x→6`)56Fvac. These
solutions obey the Bogomol’nyi equations

Fk8~x!5U„Fk~x!… ~2!

and have the classical energy

Eclass5
1

2E2`

`

dx$@Fk8~x!#21U2
„Fk~x!…% ~3!

which by means of Eq.~2! can be written in the form

Eclass5E
2`

`

dxU2
„Fk~x!…. ~4!

In order to have a finite energy of the kink we must assu
that the potentialU(F) is zero in its minima.

The quantization of the scalar field in the background
the kink solution by means of the shift

F~x,t !5Fk~x!1h~x,t ! ~5!

delivers in the Gaussian approximation the action

Sfluct@h#5
1

2E dxdth~x,t !@] t
22]x

21m21V~x!#h~x,t !

~6!
02500
f
n

be
x-
r

-
s

e

n
is
lu-

s-

e

f

for the fluctuations where the potentialV(x) results from

1

2

d2U2~F!

dF2 U
F5Fk

5@U8~F!#21U~F!U9~F![m21V~x!.

~7!

Herem is defined from demandingV(x→`)50 and has the
meaning of being the mass of the fluctuating fieldh(x,t).

The one loop quantum corrections to the energy are gi
by a functional determinant. For a static background they
be formulated equivalently in terms of the ground state
ergy E0 of h(x,t) in the background of the kink,

E05
1

2 (
(n)

e (n) , ~8!

where thee (n) are the one particle energies of the fluctu
tions. They are eigenvalues of the corresponding Schro¨dinger
equation

@2]x
21m21V~x!#h (n)~x!5e (n)

2 h (n)~x!. ~9!

Here, the index~n! denotes the spectrum of the operator
the left-hand side of Eq.~9!. In fact, Eq.~8! definesE0 only
symbolically. One has to subtract the Minkowski space c
tribution and perform the ultraviolet renormalization. The
procedures are by now well known. We follow here the tre
ment in @4#. For a discussion of the relations to differe
renormalization schemes we refer to@9# where, for instance,
the equivalence of the subtraction scheme based on the
kernel expansion and the mass renormalization with the
tadpole condition’’ was shown.

In terms of the scattering data the renormalized grou
state energy can be written in the form@10#

E05
21

4p2E0

` dqq

Am21q2
log

q1Am21q2

Am21q22q
log

1

12r ~q!2

2
1

p (
i 51

N S k i2Am22k i
2 arcsin

k i

m D . ~10!

Here, thek i are the binding energies of the bound states
the potentialV(x),

@2]x
21V~x!#h i~x!52k i

2h i~x!, ~11!

where theh i(x) are the corresponding eigenfunctions. The
are bound state wave functions and they are normaliza
*2`

` dxh i
2(x),`. The functionr (k) is the reflection coeffi-

cient and bothk i and r (k) belong to the scattering data.
should be underlined that inE0, Eq. ~10!, the ultraviolet
divergences are subtracted. This results in this quite sim
form because the heat kernel coefficients can be express
terms of the scattering data.1 A nice consequence that can b
read off from this formula is that the ground state energy
always negative.

1This is related to the fact that here the heat kernel coefficients
just the conservation laws of the Korteweg–de Vries equation.
3-2
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As mentioned in the Introduction, the problem of calc
lating quantum corrections can be inverted. One starts f
the scttering data and by means of Eq.~10! the quantum
corrections can be obtained by simple integration. The p
one has to pay is a more complicated procedure to obtain
classical energy. One has to solve the inverse scattering p
lem, i.e., one has to reconstruct the potentialV(x) from the
scattering data. This problem was intensively studied in c
nection with the solution of nonlinear evolution equations
the 1970s. The last step in this procedure is then to res
the potentialU(F) from V(x) using Eq.~7! and finally to
calculate the classical energy from Eq.~4!.

In following this general procedure we make use of E
~7! and the Bogomol’nyi equation~2!. Differentiating Eq.~2!
twice with respect tox we obtain

F-~x!5$@U8~x!#21U~x!U9~x!%F8~x!. ~12!

By means of Eq.~7! and with the notationh(x)ªF8(x) we
rewrite this equation in the form

@2]x
21V~x!#h~x!52m2h~x!. ~13!

This equation shows that the derivative of the kink is
bound state solution of the scattering problem associa
with the potentialV(x) and that the massm of the fluctuating
field h(x,t) in Eq. ~6! is the corresponding binding energ
i.e., one of thek i ’s in the scattering data. Note thath(x) in
Eq. ~13! cannot be a scattering solution because in that c
m2 would be negative. The decrease ofh(x) for x→6` is
by means of

E
2`

`

dxh~x!5E
2`

`

dx
d

dx
Fk~x!5Fk~`!2Fk~2`!52Fvac

~14!

connected with a finite vacuum solution.
In this way, if we knowh(x), the fieldF(x) is given by

Fk~x!52Fvac1E
2`

x

djh~j! ~15!

and we restoredFk(x) from h(x). The potentialU(F) can
be restored simply as

U„Fk~x!…5h~x!. ~16!

Note that the potentialU(F) can be restored only from th
ground state wave function of the scattering potentialV(x)
because it is only this function which does not have zeros
h(x) vanishes for some finitex, the functionU„Fk(x)… will
do so, in contradiction with our assumption that two neig
boring zeros correspond tox→6`.

In this way, by means of Eqs.~15! and~16! we obtained a
parametric representation of the potentialU(F) in terms of
the ground state wave functionh(x). We note that this rep-
resentation covers the region withFP@2Fvac,Fvac#. How
to go beyond this we consider in the following sections.

There is a freedom in the parametric representation E
~15!,~16!. The ground state wave functionh(x) which we
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obtain as a solution of the inverse scattering problem is
termined up to a multiplicative factor, which has the mean
of the normalization ofh(x) only. So we are free to multiply
the functionh(x) by a constant,h(x)→ah(x). After that
we can assumeh(x) to be normalized,*2`

` dxh(x)51. In
doing so we expressa from Eq. ~14! as

a52Fvac.

In this way the freedom in the normalization ofh(x) is ex-
pressed in terms ofFvac. After this rescaling we rewrite Eqs
~15! and ~16! in the final form

Fk~x!52Fvac12FvacE
2`

x

dj h~j! ~17!

and

U„Fk~x!…52Fvac h~x!. ~18!

Using Eq.~18! we obtain from Eq.~4! the classical energy
which is the quantity we are interested in,

Eclass54Fvac
2 E

2`

`

dxh2~x!. ~19!

By the pair of equations~10! and ~19!, we obtain the final
expressions relating the complete energy

E5Eclass1E0 ~20!

to the scattering data.
However, it should be noticed that this is merely a form

solution. We restoredU(F) for a restricted range ofF only.
We have to construct a continuation to all values ofF which
must deliver a single valued functionU(F) having the nec-
essary extrema in order to allow for spontaneous symm
breaking. The investigation of this property is the main d
ficulty in the restoration problem.

We conclude this section with a discussion of the fr
parameters. First of all there are the scattering data wh
constitute a set of independent parameters. Second, we
the vacuum solutionFvac, which is in fact the condensate o
the field F. As seen from the above formulas there is
further freedom in the restoration process. Together with
uniqueness of the restoration ofh(x) from the scattering
data the above mentioned parameters are the only inde
dent ones. As for the dimensions we note thatFvac is dimen-
sionless~we work in 111 dimensions! and that the bound
state levelsk i have the dimension of a mass. For reflectio
less scattering data these are the only dimensional param
and a rescalingk i→lk i results inE→lE. In the rest of this
paper we put the mass scale equal to 1.

III. RECONSTRUCTION FROM SOLITON POTENTIALS

In this section we consider the case of reflectionless s
tering data@r (k)50# given by N bound states with energ
levels

k i5 i ~ i 51,2, . . . ,N!. ~21!
3-3
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FIG. 1. The squared potentia
U2(F) reconstructed from a soli-
ton potential with an even numbe
of bound statesN52,6,10,14 and
Fvac51.
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Here the ground state is that with numberi 5N. The poten-
tial V(x) belonging to these scattering data is well known

V~x!5
2N~N11!

cosh2x
. ~22!

The solutionsh(x) of Eq. ~11! are well known too. The
ground state wave function reads

h~x!5
1/gN

coshNx
~23!

and the corresponding eigenvalue iskN5N. The normaliza-
tion factor gN is defined from*2`

` dxh(x)51 and will be
calculated later in Eq.~29!. We call theseV(x) soliton po-
tentials because they are related to the soliton solution
the Korteweg–de Vries equation.

Now, in order to solve the restoration problem we fi
consider evenN. Here it is useful to change the variable
Eq. ~17! according to

x5arctanht. ~24!

We introduce the notationF(t)5F„x(t)…. After that the in-
tegral overj in Eq. ~17! can be calculated easily and w
arrive at

F~ t !52Fvac1
2Fvac

gN
E

21

t dt

12t2
~12t2!N/2

52Fvac1
2Fvac

gN
(
i 50

N/221 S N/221

i D ~21! i

2i 11

3~ t2i 1111!, ~25!
02500
of

t

U„F~ t !…5
2Fvac

gN
~12t2!N/2. ~26!

Now we observe that fortP@21,1#, or equivalently forx
P(2`,`), we restored just the kink solutionFk(t) and the
potential U„Fk(t)… in a parametric representation. In th
way we knowU(F) for FP@2Fvac,Fvac#. However, the
parametrization~24! together with the explicit formulas~25!
and ~26! allow us to go beyond the regiontP@21,1#. Sim-
ply, we have to consider Eqs.~25! and ~26! for utu.1. For
that t, the variable x becomes complex butF(t) and
U„F(t)… remain real. We have to ensure thattP(2`,`)
covers the whole rangeFP(2`,`) and that the resulting
U(F) is a single valued function. For this end we consid
the derivative

dF~ t !

dt
5

2F vac

gN
~12t2!N/221.

It may change its sign att561. If it changes it sign the
function F(t) is not monotonic and, as a consequen
U(F) is not single valued. If, on the contrary, there is n
change in the sign,F(t) is monotonic. Finally, from the
remark thatF(t) is a polynomial int the coverage of the
whole region forF follows. This is the case forN52(2s
11) (s51,2, . . . ).2 From Eq.~26! it is seen thatU(F) is in
that case a function with two minima as in theF4 model. For
largeF, the asymptotic behavior is

U~F! ;
F→`

FN/(N21).

2Note that these are not all evenN. For instance, forN54, we
have from Eq.~25! F(t)5Fvac(7/61t2t3/3) which is clearly not
monotonic, hence the correspondingU(F) is not single valued.
3-4
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Some examples forU(F) are shown in Fig. 1.
For N52 we reobtain theF4 model. Here the explicit

formulas read

F~ t !5Fvact,

U„F~ t !…5Fvac ~12t2!,

which can be trivially resolved,

U~F!5FvacF12S F2

Fvac
D 2G .

The next example isN56. Here the parametric represent
tion reads

F~ t !5
1

8
Fvact~15210t213t4!,

U„F~ t !…5
15

8
Fvac ~12t2!3,

which for tP(2`,`) defines the complete dependen
U(F). However, as can be seen, there is no explicit exp
sion for U(F). Only the inverse function can be given e
plicitly,

F~U !5F~ t !U
t5A12(8U/15Fvac)

1/3
,

where the branches have to be chosen accordingly~the para-
metric representation is much simpler!.

In this example we see explicitly how the continuati
beyond the initial region works. The reason that it works
all is that we assumed the potentialU(F) to be a function of
F and not a more general object like, for instance, a fu
tional.
02500
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Now we turn to oddN. Here it is useful to change th
variablex to u according to

1

coshx
5cosu. ~27!

We obtain again an explicit parametric representation,

F~u!5
Fvac

gN
S N21

~N21!/2D u

2N21
1

2Fvac

gN

3 (
k50

(N23)/2
1

22k21 S N21

k D sin~N2122k!u

N2122k
,

U„F~u!…5
Fvac

gN
cosNu. ~28!

The regionxP(2`,`) corresponds touP@2p/2,p/2# and
Eq. ~28! gives for that u the kink solution Fk(u)
5Fk„x(u)…. Again, we obtain from this explicit parametri
representation allF by going beyond this region touuu
.p/2. From Eqs.~28! and ~28! it is obvious thatU(F)
defined in this way is a single valued function. It has neig
boring zeros located atF56Fvac. It is a periodic function
with period 2Fvac. So we see that for each oddN the resto-
ration delivers a periodic potentialU(F). For N51 we note
that

F~u!5
2Fvac

p
u,

U„F~u!…5
2Fvac

p
cosu,
l

r

FIG. 2. The squared potentia
U2(F) reconstructed from a soli-
ton potential with an odd numbe
of bound statesN51,3,5,7 and
F vac51.
3-5
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FIG. 3. The complete energy
for soliton potentials with N
bound states; the value of the con
densate isFvac51.5.
Th
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ve
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ata
which can be resolved toU(F)5(2Fvac/p)cos(pF/
2Fvac), which is the sine-Gordon model. ForN53 we ob-
tain

F~u!5
Fvac

p
@2u1sin~2u!#,

U~F~u!!5
4Fvac

p
cos3u.

Again, there is an explicit expression forF(U) but not for
U(F). Examples for some of the first oddN are given in
Fig. 2.

It remains to calculate the corresponding energies.
normalization factorgN in Eq. ~23! can be calculated explic
itly,

gN5E
2`

`

dx
1

coshNx
5

ApG~N/2!

G„~N11!/2…
. ~29!

The asymptotics for largeN is gn;Ap/(2N). Further, we
note that

E
2`

`

dxh2~x!5g2N .

In this way we obtain
02500
e

Eclass54F vac
2 g2N

~gN!2
~30!

and

E052
1

p (
i 51

N S i 2AN22 i 2 arcsin
i

ND . ~31!

As mentioned in@10#, the renormalized vacuum energy
always negative in 111 dimensions, which can be checke
for Eq. ~31! easily. The classical energy is of course positi
so that these two contributions to the complete energy c
pete. For any finiteN, which prevails depends onFvac. For
largeFvac, which corresponds to a weak coupling, we ha
positive complete energy, whereas for largeN the quantum
energy grows faster than the classical one. This is show
Fig. 3.

IV. RECONSTRUCTION FROM TWO BOUND STATES

In this section we consider reflectionless scattering d
consisting of two bound states,

k15N1 ,

k25N2 , ~ground state!,

assumingN2.N1. The ground state wave function reads
h~x!5
2 cosh~N1x!

~N22N1!cosh@~N21N1!x#1~N21N1!cosh@~N22N1!x# ~32!
3-6
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FIG. 4. The complete energy
for potentials restored from two
bound states, the value of the con
densate is~a!, Fvac50.5 and~b!,
Fvac50.45.
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~up to the normalization factor!. By means of Eqs.~17! and
~18! we restoreU„Fk(x)… andFk(x). In this way we obtain
information onU(F) for FP@2Fvac,Fvac#. To go beyond
this region we used in the preceding section some spe
parametrization. In fact we made an analytic continuation
complexx. Indeed, forutu.1 we note for the first parametri
zation, Eq.~24!,

x5
1

2
ln

111/t

121/t
6 i

p

2
, ~33!

and for the second one, Eq.~27!, for uP@p/2,3p/2# ~where
cosu,0)
02500
fic
o

x5 lnS 21

cosu
2A 1

cos2u
21D 6 ip. ~34!

Here the signs of the imaginary parts depend on which s
we bypass the corresponding branch point. Led by these
amples we considerh(x1 iy) ~with real x andy). Now we
have to ensure that bothU andF are real. BecauseF con-
tains an additional integration as compared toU we need
h(x1 iy) to be real for allx. Hence, only shifts parallel to
the real axis are allowed. From the structure ofh, Eq. ~32!,
it is clear that this may happen only ifN1 andN2 are integer
numbers and if we take the shift in multiples ofip/2. In
general, rational numbers are possible too. But the deno
nators can be removed by a rescaling ofx, i.e., they can be
3-7
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absorbed into the mass scale. In this way we see that the
parametrizations introduced in the preceding section prov
just the required continuation.

As already mentioned we have to ensure that the par
etrizations provide monotonic functionsF(t)@F(u)# which
cover the whole rangeFP(2`,`). First we check the
monotonicity. For that task we consider the derivative ofF
with respect to the parameter. In the first parametrization
note thatdx/dt51/(12t2) and obtain

dF~ t !

dt
5

h„x~ t !…

12t2
~35!

which must have a definite sign. A change in the sign m
occur only in passing throught51, i.e., when going through
x→`. Using

U~x! ;
x→`

e2N2x ~36!

and

x~ t ! ;
t→1

2
1

2
ln~12t !

we obtain

dF~ t !

dt
;

t→1
~12t !N2/221. ~37!

This derivative is non-negative fort.1 too only if N2
52(2s11) (s50,1,2, . . . ).

In the second parametrization we have to investigate
behavior atu5p/2. By means ofdx/du51/cosu and

x~u! ;
u→ ~p/2!

2 lnS p

2
2u D

we obtain

dF~u!

du
5

U„x~u!…

cosu
;

t→1
S p

2
2u D N221

~38!

which is positive foru.p/2 for odd N2 , N252s11 (s
50,1,2, . . . ).

TABLE I. Allowed ~1! and forbidden~0! combinations of the
bound state levels for four bound states. This is independent o
ground state level,N4.

N1 N1

N2 1 2 3 4 1 2 3 4
~evenN3) ~odd N3)

2 1 1
3 0 0 1 0
4 1 0 1 1 1 1
5 0 0 0 0 1 0 1 0
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In this way we arrive at the result that for each seco
evenN2 by the first parametrization and for each oddN2 by
the second parametrization a monotonic functionF(t)
3@F(u)# appears. It remains to check that the whole reg
FP(2`,`) is covered. For the second parametrization t
is indeed the case simply by periodicity. However, for t
first one this turns out not to be the case for all evenN2. To
check this we note that fort→` the real part ofx returns to
zero as follows from Eq.~33!. In h(x), Eq. ~32!, after x
→x1 iy , the cosh functions in the denominator turn in
6sinh functions of the corresponding arguments. As a c
sequence, forx→0 there may be a cancellation of the co
tributions linear inx. It is just this cancellation that letsU(x)
increase. It can be checked that this cancellation happens
for N252(2s11), i.e., for the values we selected from th
sign of the derivative, and not for the other evenN2. There is
no restriction onN1. As a result we obtain that the potenti
U(F) is again similar to that in theF4 model; its asymptotic
behavior isU(F);F→`F2.

The classical energy can be calculated using Eq.~19!.
However there is no such simple explicit formula as in S
III. The results are shown in Fig. 4. As seen, it depends
the value of the condensate which contribution prevails.
N1 close toN2, for any fixed value of the condensate, th
energy becomes negative for sufficiently largeN2.

V. RECONSTRUCTION FROM A GENERAL
REFLECTIONLESS POTENTIAL

In this section we consider a general reflectionless po
tial. Is is given byM bound states with energiesk i5Ni ( i
51,2, . . . ,M ). We assumeN1,N2,•••,NM . The wave
function of the ground state~its energy isNM) can be ob-
tained from the inverse scattering method or by Darbo
transformation. It is a quotient

h~x!5
P

Q
,

whereP is a monomial in cosh@(N16N26•••6NM21)x# and
Q is a monomial in cosh@(N16N26•••6NM)x#. Q contains
the ground state energykM5NM andP does not. Following
the discussion in the preceding section we conclude tha
Ni must be integer. For the behavior atx→` from the ei-
genvalue largest in modulus

h~x! ;
x→`

e2NMx

follows. Again, we conclude that forNM52(2s11)(s
50,1,2, . . . ) using the first parametrization, Eq.~24!, we
obtain a monotonic functionF(t) and that for oddNM the
second parametrization does the job. Whereas the se
parametrization covers the whole region ofF by periodicity,
the first does this only for certain sets of numbe
N1 ,N2 , . . . ,NM21. Here it seems too hard or even impo
sible to give a general rule other than in special cases. So
example, for three bound states (M53) and a ground state
energyN352(2s11), the energy of the second levelN2

he
3-8
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must be an odd number and that of the first levelN1 an even
number. This is a conjecture from consideringN3 explicitly
up to 20. For four bound states (M54) some allowed com-
binations are shown in Table I.

The general behavior ofU(F) is the same as seen befor
When the ground state energy is an even number, a pote
as in theF4 model appears, and for an odd number it
periodic. It seems that for reflectionless scattering data
other behavior ofU(F) is possible.

VI. CONCLUSIONS

We formulated the reconstruction problem for how to g
the potential U(F) allowing for spontaneous symmetr
breaking in the action, Eq.~1!, for a scalar field in 111
dimensions from the scattering data related to the quan
fluctuation in the background of the corresponding kink
lution. We considered reflectionless scattering data
solved the reconstruction problem explicitly for som
classes, for soliton potentials, and for two bound states.
gave a conjecture for the general reflectionless case. It s
that U(F) reconstructed from reflectionless scattering d
can be only like aF4 potential, i.e., with two minima, or
periodic as in the sine-Gordon model. It would be interest
to give a proof of this conjecture.

There are more questions left. The scattering data incl
for each bound state~with level k i) a constantb i which is
related to the normalization of the corresponding wave fu
en
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tion and the reflection coefficientr (k). So it would be inter-
esting to investigate the dependence onb i . Here a natural
conjecture is that there are no restrictions on these par
eters. As the ground state energy is independent of theb i ’s
@see Eq.~10!# no qualitative change in the results is to b
expected. A quite different picture should appear if we allo
for nonvanishing reflection coefficientsr (k). Here the gen-
eral situation with no specific restrictions onU(F) must take
place, for instance,U(F) with three or more minima mus
be possible. Takingr (k) as a rational function and henc
given by a finite number of parameters is an interesting s
cial case.

We wrote down the formulas for the classical~quantum!
energies in terms of the scattering data~the ground state
wave functions!. In the considered examples it is seen th
in dependence on the free parameters the complete en
may take both signs. In general, by an increase of the bo
state energies the quantum energy~it is negative! grows
faster than the classical one and the complete energy
comes increasingly negative.
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