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Spontaneous symmetry breaking and reflectionless scattering data
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We consider the question of which potentials in the action dfl-a1) dimensional scalar field theory
allowing for spontaneous symmetry breaking have quantum fluctuations corresponding to reflectionless scat-
tering data. The general problem of restoration from known scattering data is formulated and a number of
explicit examples are given. Only certain sets of reflectionless scattering data correspond to symmetry breaking
and all restored potentials are similar either to dhtmodel or to the sine-Gordon model.

DOI: 10.1103/PhysRevD.67.025003 PACS nuniderll.15.Kc, 02.30.Zz, 03.65.Sq, 11.15.Ex

[. INTRODUCTION tering problem related t&(x) and calculates the energies
Eass@ndEg. In Ref.[4] the inverse approach was proposed.
Quantum corrections to classical solutions such as kink®©ne starts from the solution of the scattering problem given
[1,2] and spontaneous symmetry breaking are a field of inin terms of the so called scattering détgk),8; , x;} known
tensive study and have applications in many branches of thesince[5] to be in a one-to-one correspondence with the po-
oretical physics ranging from the standard model to solidential V(x) (for a representation of these questions [<ge
state. Recent interest appeared from some subtleties coand references therginHere r (k) is the reflection coeffi-
nected with supersymmetf@]. A number of models are usu- cient, «; are the bound state energies, ghdare numbers
ally considered in this connection. The most popular ones areonnected with the normalization of the bound state wave
the ®* model and the sine-Gordon model. They result in afunctions. As shown if4] the ground state energy can be
scattering problem for the quantum fluctuations with reflec-expressed in a simple way in terms of the scattering data,
tionless potentials. As a result calculations of quantum coreven including the necessary ultraviolet renormalizafizee
rections to the mass become very explicit. In the presenEq. (10) below]. In order to find the classical energy one has
paper we investigate the question of which models result in & restore the potential(x) from the scattering data. This is
reflectionless scattering potential. The surprising result is thathe so called inverse scattering problem which was solved in

all of them are very similar to those mentioned above. terms of certain integral equatiorisee, again|6]). In this
The setup of the problem is as follows. We consider away, by solving the inverse scattering problem the classical
scalar field®(x,t) in (1+1) dimensions with the action energy can be calculated from the scattering datd4]rit
1 was shown how this procedure works on the simplest ex-
Pl=— ®)2+U(D)2]. 1 ample of reflectionlespr (k) =0] scattering data containing
SLP] ZJ dxd{(d,®)"+U ()] @ only one bound state.

In the present paper we use this inverse approach to de-
If the squared potentia) >(®)? has two(or more minima of  scribe all potentialsJ(®) corresponding to reflectionless
equal depth, spontaneous symmetry breaking occurs and tgcattering data and having topologically nontrivial solutions,
pological nontrivial kink solutionsb,(x) exist. In order to  allowing in this way for spontaneous symmetry breaking. It
calculate the quantum fluctuationgx,t) in the background  turns out that not all scattering data correspond to such po-
of the kink one has to solve the scattering problem for theentialsU(®) but only certain classes. So we can formulate
potential V(x) which appears from the second derivative the reconstruction problem as finding the mapping between
8% @]/ sDE(x) of the action(see Eq(7) below. In simple  scattering data and potentidl{®) allowing for spontane-
models such as those mentioned above this potevitial is ous symmetry breaking.
reflectionless. The so called rational scattering data deserve special con-
In the present paper we try to describe all potentialssideration. Here the reflection coefficier(k) is a rational
U(®) in Eq. (1) that correspond to a reflectionless scatteringfunction of k and thus given by a finite number of param-
potential V(x) and calculate the corresponding classical eneters. For a rational(k) the inverse scattering problem is
ergy Egassand the quantum enerdy, which is the ground known to have an explicit algebraic solutigim a similar
state energy of the fielg in the background of(x). way as in the reflectionless casand the classical energy can
In calculating these quantities it is usually assumed thathen be obtained by integration. In addition, the rational scat-
the potentiall () is given. After that one solves the scat- tering data form a dense subset in the set of all scattering
data. In this way, the inverse approach may provide an ap-
proximation scheme for the general case.
*Email addres: Michael.Bordag@itp.uni-leipzig.de It should be mentioned that quantum corrections to soliton
"Email address: artyom.yurov@mail.ru solutions have been extensively studied in the past. Special
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attention had been paid to models allowing for a solution offor the fluctuations where the potentM(x) results from
the equations for the quantum fluctuations in terms of known

special functions and especially for explicit solutions. Also, a1 §°U%(®)
reconstruction problem was considered earlier. Thyg Jrit 2 sp2

was shown that models whose quantum fluctuations can be P=>y
expressed in terms of hypergeometric functions are ex- (7)
hausted by thé* and the sine-Gordon models. Higher order Here . is defined from demanding(x—o)=0 and has the
polynomial interactions result in differential equations with meaning of being the mass of the fluctuating figik,t).

more than two regular singularities_. A particularly interesting The one loop quantum corrections to the energy are given
paper is[8] where the reconstruction problem was consid-y,; 5 fnctional determinant. For a static background they can
ered from the group theoretical point of view and potentialsyg tomulated equivalently in terms of the ground state en-

are reconstrugted star.tmg from zero modes. ' ergy E, of 7(x,t) in the background of the kink,
The paper is organized as follows. In the next section we

consider soliton potentials providing completely explicit for- 1

mulas. In the third section we consider scattering data given Eo:§ % €(n) > ®)

by two bound states. In the fourth section we show how this

can be generalized to the general reflectionless case. Conchghere thee(, are the one particle energies of the fluctua-
sions are given in the last section. We use units withc tions. They are eigenvalues of the corresponding Sthger
=1. equation

=[U"(®)]?+U(P)U" (D)= pu’+ V(x).

_ 92 2 _ 2
Il. FORMULATION OF THE RECONSTRUCTION [ = 5t w=+ V) 170 (X) = €y 7 (X).- ©
PROBLEM Here, the indexn) denotes the spectrum of the operator in

We consider a scalar fielt with actionS[®], Eq. (1), in the left-hand side of Eq9). In fact, Eq.(8) definesE, only

1+1 dimensions. Static solution®(x) are subject to the symbolically. One has to subtract the Minkowski space con-
equation of motiond”(x)=U(d)U’ (d) where the prime tribution and perform the ultraviolet renormalization. These

denotes differentiation with respect to the argument. We agerocedures are by now well known. We follow here the treat-

sume thatU%(®) has at least two minima of equal depth and ment in[4]. For a discussion of the relations to different

we are free to denote two neighboring ones hyb.,.. renormalization schemes we refer[& where, for instance,

These fields®(x) = = ® are the vacuum SOlUtiO\IflaSC in the equivalence of the subtraction scheme based on the heat
’ - vac: "

case d ,,+0 there exist topological nontrivial solutions kernel expansion and the mass renormalization with the “no

d,(x) called kink solutions which interpolate between thet""dlpole Cond';'ct’r?" Wasttshpwna ta th lized d
vacuum solutions by means & (x— =»)=*®d, ... These n terms ot the scatléring data the renormalized groun

solutions obey the Bogomol'nyi equations state energy can be written in the fo{tto)]
— 0 2 2
DY) = U (D)) I | |
4o JuP+q* “pt+a*-q T1-r(q)?

N
1 Kj
= .21 ( K= p2— i arcsin;' : (10)

Here, thek; are the binding energies of the bound states in

and have the classical energy

1 o0
By | OB+ 00 @)

— o

which by means of Eq2) can be written in the form the potentiaV(x),
. [ = 05+ V)] 7i() = = & 7i(X), (11)
_ 2
Eciass f_oodxu (@00). @ where they;(x) are the corresponding eigenfunctions. These

are bound state wave functions and they are normalizable,
In order to have a finite energy of the kink we must assume . dxz?(x) <oc. The functionr (k) is the reflection coeffi-

that the potential (®) is zero in its minima. cient and bothx; andr (k) belong to the scattering data. It
The quantization of the scalar field in the background ofshould be underlined that i&,, Eq. (10), the ultraviolet
the kink solution by means of the shift divergences are subtracted. This results in this quite simple
form because the heat kernel coefficients can be expressed in
D(x,t) =D (x)+ n(x,t) (5)  terms of the scattering data nice consequence that can be
read off from this formula is that the ground state energy is
delivers in the Gaussian approximation the action always negative.

IThis is related to the fact that here the heat kernel coefficients are
(6) just the conservation laws of the Korteweg—de Vries equation.

1
Suel 7= 5 | @XtyOLE -+ w24 V00T (1,0
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As mentioned in the Introduction, the problem of calcu-obtain as a solution of the inverse scattering problem is de-
lating quantum corrections can be inverted. One starts froneermined up to a multiplicative factor, which has the meaning
the scttering data and by means of E#0) the quantum of the normalization ofy(x) only. So we are free to multiply
corrections can be obtained by simple integration. The pricghe functionn(x) by a constanty(x)— an(x). After that
one has to pay is a more complicated procedure to obtain thge can assumey(x) to be normalizedf” .. dxn(x)=1. In
classical energy. One has to solve the inverse scattering probloing so we expresa from Eq. (14) as
lem, i.e., one has to reconstruct the potentigk) from the
scattering data. This problem was intensively studied in con- a=2® 4.
nection with the solution of nonlinear evolution equations in , ) L )
the 1970s. The last step in this procedure is then to restor@ this way the freedom in the normalization g{x) is ex-
the potentialU(®) from V(x) using Eq.(7) and finally to pressed in terms obYaC. After this rescaling we rewrite Egs.
calculate the classical energy from Hd). (15 and(16) in the final form

In following this general procedure we make use of Eq. M
(7) and the Bogomol'nyi equatiof?). Differentiating Eq.(2) D (X)=—D ot 2q>vacf dé n(é) (17
twice with respect tox we obtain -

O"(x)={[U' (0P+UOU" ()} (x). (12 and
By means of Eq(7) and with the notationy(x) :=®'(x) we U(Py(x))=2Pyae 7(X). (18)

rewrite this equation in the form Using Eq.(18) we obtain from Eq(4) the classical energy

[—0)2(+V(x)]77(x)= — u2p(x). (13) which is the quantity we are interested in,

This equation shows that the derivative of the kink is a Eclass:4¢)\2/acf dxn?(x). (19
bound state solution of the scattering problem associated —

with the potentiaM(x) and that the masg of the fluctuating
field #(x,t) in Eq. (6) is the corresponding binding energy,
i.e., one of thex;’s in the scattering data. Note tha(x) in

By the pair of equation$10) and (19), we obtain the final
expressions relating the complete energy

Eqg. (13) cannot be a scattering solution because in that case E=E st Eo (20)
w? would be negative. The decreasem(x) for x— = is class
by means of to the scattering data.

q However, it should be noticed that this is merely a formal
” I _ _ ) — solution. We restored () for a restricted range b only.
fﬁxdxn(x) a ffmdxdxq)k(x) = D) = D~ ) =2 We have to construct a continuation to all valuesboivhich
(149 must deliver a single valued functidm(®) having the nec-
) o ) essary extrema in order to allow for spontaneous symmetry
connected with a finite vacuum solution. breaking. The investigation of this property is the main dif-
In this way, if we knowz(x), the field®(x) is given by ficulty in the restoration problem.
. We conclude this section with a discussion of the free
(Dk(x):_(Dvac+J dén(é) (15)  Parameters. First of all there are the scattering data which
— constitute a set of independent parameters. Second, we have
the vacuum solutiod,,., which is in fact the condensate of
and we restored(x) from 5(x). The potentialU(®) can  the field ®. As seen from the above formulas there is no

be restored simply as further freedom in the restoration process. Together with the
_ uniqueness of the restoration af(x) from the scattering
U (P (x))= n(X). (16 gata the above mentioned parameters are the only indepen-

dent ones. As for the dimensions we note g}, is dimen-
sionless(we work in 1+1 dimensions and that the bound
tate levelsk; have the dimension of a mass. For reflection-
ess scattering data these are the only dimensional parameters
and a rescaling;— \ «; results inE—AE. In the rest of this
paper we put the mass scale equal to 1.

Note that the potentidl(d) can be restored only from the
ground state wave function of the scattering potentigt)
because it is only this function which does not have zeros. |
7(X) vanishes for some finitg, the functionU (®(x)) will

do so, in contradiction with our assumption that two neigh-
boring zeros correspond t0— =+ .

In this way, by means of Eq§15) and(16) we obtained a
parametric representation of the potentig®) in terms of
the ground state wave functiop(x). We note that this rep- In this section we consider the case of reflectionless scat-
resentation covers the region withe [ — P y,c, Pyacl. HOW  tering data[r (k) =0] given by N bound states with energy
to go beyond this we consider in the following sections. |evels

There is a freedom in the parametric representation Eqgs.

(15),(16). The ground state wave function(x) which we k=i (i=12,...N). (21

Ill. RECONSTRUCTION FROM SOLITON POTENTIALS
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/

N=14

FIG. 1. The squared potential
U?(®) reconstructed from a soli-
ton potential with an even number
of bound statetN=2,6,10,14 and

Pyac=1.

-2 -1.5 -1 -0.5

Here the ground state is that with numberN. The poten-
tial V(x) belonging to these scattering data is well known,

~N(N+1)

Vo= costx

(22

The solutionsz(x) of Eq. (11) are well known too. The
ground state wave function reads

1/‘)/N
cosH'x

7(X)= (23

and the corresponding eigenvaluexig= N. The normaliza-
tion factor yy is defined fromf” _dx»(x)=1 and will be
calculated later in Eq29). We call theseV(x) soliton po-

tentials because they are related to the soliton solutions of

the Korteweg—de Vries equation.

Now, in order to solve the restoration problem we first

U(®(t))= %““(1—#)’“’2. (26)

N

Now we observe that fote[ —1,1], or equivalently forx

€ (—9,), we restored just the kink solutich,(t) and the
potential U(®,(t)) in a parametric representation. In this
way we knowU(®) for ® e[ — D, P o] However, the
parametrizatior{24) together with the explicit formula&5)
and(26) allow us to go beyond the regidre[ — 1,1]. Sim-
ply, we have to consider Eqé25) and (26) for |t|>1. For
that t, the variablex becomes complex butb(t) and
U(®(t)) remain real. We have to ensure thaf (—o,»)
covers the whole rang® e (—,%) and that the resulting
U(®) is a single valued function. For this end we consider
the derivative

dD(t) 20 4

__t+23\N/2—-1
i AN,

consider everN. Here it is useful to change the variable in It may change its sign at==*1. If it changes it sign the

Eq. (17) according to
X=arctanh. (29

We introduce the notatiofp (t) = & (x(t)). After that the in-

tegral overé in Eq. (17) can be calculated easily and we +1) (s=1.2,.

arrive at
Z(I)Vacft dr
P (t)=— Dot 1—7%)N2
( ) vac yN 1 1_7_2( )
——d 2cI)vac N/i—l N/2—1 (_1)i
~ " Pract e A b T
X (t2T14+1), (25)

function ®(t) is not monotonic and, as a consequence,
U(®) is not single valued. If, on the contrary, there is no
change in the signg(t) is monotonic. Finally, from the
remark that®(t) is a polynomial int the coverage of the
whole region ford follows. This is the case foN=2(2s

.. )2 From Eq.(26) it is seen that) (®) is in
that case a function with two minima as in t#é model. For
large ®, the asymptotic behavior is

U(®) ~ oNIN-1),
[N

°Note that these are not all evéh For instance, foN=4, we
have from Eq.(25) ®(t)=®,,{7/6+t—t33) which is clearly not
monotonic, hence the correspondidg®) is not single valued.
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Some examples fdd (P) are shown in Fig. 1. Now we turn to oddN. Here it is useful to change the
For N=2 we reobtain theb* model. Here the explicit variablex to # according to
formulas read
1

coshx

D(t)=Dd, =cosé. (27
U(q)(t)):q)vac (1_t2):
We obtain again an explicit parametric representation,
which can be trivially resolved,

®2\2 @(0)_q)vac( N-1 ) 0 2D, 5¢
The next example idl=6. Here the parametric representa- ND? 1 (N-1)sinN-1-2k)6
tion reads x Eo o2k-1\ kK N—1-2k
1 2 4
(1) = £ Dyad(15- 102+ 3%, D
U(®(0))= S cod'e. (28)
N

15
_= _12\3
V(@)= 8 Prac (1717 The regionx e (—,®) corresponds t@ e[ — 7/2,7/2] and

Eq. (28) gives for that # the kink solution ®(6)
which for te(—,») defines the complete dependence=®,(x(6)). Again, we obtain from this explicit parametric
U(®). However, as can be seen, there is no explicit expresepresentation allb by going beyond this region tdd|
sion for U(®). Only the inverse function can be given ex- >x/2. From Eqs.(28) and (28) it is obvious thatU(®)
plicitly, defined in this way is a single valued function. It has neigh-
boring zeros located ab=*+®,,.. It is a periodic function
with period 2b,,.. So we see that for each oditithe resto-

D(U)=d(t : : . o ,
()= t= /1= (8U/15D, )13 ration delivers a periodic potentibl(®). ForN=1 we note
! that
where the branches have to be chosen accorditigéypara-
metric representation is much simpler 2P, 4c
In this example we see explicitly how the continuation e(0)=——40,

beyond the initial region works. The reason that it works at

all is that we assumed the potentid{®d) to be a function of

& and not a more general object like, for instance, a func- _ 2Py
tional. U(@(0)=—

cosé,

2
U@)

N=7

FIG. 2. The squared potential
U?(®) reconstructed from a soli-
ton potential with an odd number
of bound statesN=1,3,5,7 and

D =1.
N:3 vac

=1

2
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E
10} . ua
» e a -
a
a a
s . [
a a
a
. . . . N
5 10 15 20 g 25 30 FIG. 3. The complete energy
for soliton potentials with N
sl bound states; the value of the con-
B . densate isb,,.=1.5.
a
~10 } [
a
-15
a
a
which can be resolved toU(®d)=(2®,,./7)cos@E@d/ Yon
2®,,,9, which is the sine-Gordon model. Fdbr=3 we ob- Eglass 4(1)2\,aC 5 (30
tain (vn)
and
d(0)= :°[2a+sin(20)],
N .
1 i
E0=—;2 i—\/Nz—izarcsirN . (31)
40 =
U(®(6))= ancco§0.

Again, there is an explicit expression fdr(U) but not for
U(®). Examples for some of the first odd are given in
Fig. 2.

As mentioned in[10], the renormalized vacuum energy is
always negative in +1 dimensions, which can be checked
for Eq. (31) easily. The classical energy is of course positive
so that these two contributions to the complete energy com-

It remains to calculate the corresponding energies. Th@€te. For any finité\, which prevails depends ohy,c. For
normalization factoryy, in Eq. (23) can be calculated explic- 1arge ®yac, Which corresponds to a weak coupling, we have

itly,

. f:dx 1 VAT (N/2) 29

costix T(N+1)/2)°

The asymptotics for larg@l is y,~+/7/(2N). Further, we
note that

f_ dxnz(x)= V2N -

In this way we obtain

positive complete energy, whereas for lafgdghe quantum
energy grows faster than the classical one. This is shown in
Fig. 3.

IV. RECONSTRUCTION FROM TWO BOUND STATES

In this section we consider reflectionless scattering data
consisting of two bound states,

K1:N1,

k,=N,, (ground statg

assumingN,>N;. The ground state wave function reads

2 costiN,x)

”(X):(NZ— N1)cosH (N, +N7)x]+ (N, +Ny)cosh (N, — Np)x]

(32
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E
it}
ir - . E ! :Ef Z
. HE . = 1 et s
N » , u : | | - N - ) | ] N u - N2
2 n 4 [} 6 [ ] 8 [ 10 ] 12 [] 14 L]
-1 " - n u -
-2} - . . []
-3r (a) n
4+ N2_1
FIG. 4. The complete energy
N, for potentials restored from two
E bound states, the value of the con-
densate ida), ®,,.=0.5 and(b),
. - . s s N -
A s 4 = & w 8 4 1P . 12 14 2 Pyae=0.45.
L] . - - - : : ! ! 1 %
. . . : » - ™ n : T3
- . . - a . s 4+ 5
1t . . . . n . .
-2} » " [ | - .
-3 - L] »
-4} "
) .
. L Ny-l
N
(up to the normalization factphrBy means of Eqs(17) and 1 1
(18) we restordJ (P (x)) and®,(x). In this way we obtain x=In| —— -1 =xim. (34
information onU (®) for ® e[ — ®,,, Py4d. To go beyond cosd cos 0

this region we used in the preceding section some specific

parametrization. In fact we made an analytic continuation tQere the signs of the imaginary parts depend on which side
complexx. Indeed, forit|>1 we note for the first parametri- \ve pypass the corresponding branch point. Led by these ex-
zation, Eq.(24), amples we considen(x+iy) (with realx andy). Now we
have to ensure that both and® are real. Becaus® con-
- tains an additional integration as comparedUowe need
*i, (33 n(x+iy) to be real for allx. Hence, only shifts parallel to
2 the real axis are allowed. From the structurenofEq. (32),
it is clear that this may happen onlyNf; andN, are integer
numbers and if we take the shift in multiples of/2. In
and for the second one, EQ7), for 6 e[ w/2,3w/2] (where  general, rational numbers are possible too. But the denomi-
€0s60<0) nators can be removed by a rescalingkpf.e., they can be
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TABLE I. Allowed (1) and forbidden(0) combinations of the In this way we arrive at the result that for each second
bound state levels for four bound states. This is independent of thevenN, by the first parametrization and for each adg by
ground state levelN,. the second parametrization a monotonic functidr(t)

X[D(0)] appears. It remains to check that the whole region

Ny Ny ® e (—,») is covered. For the second parametrization this

N 1 2 3 4 1 2 3 4 is indeed the case simply by periodicity. However, for the
(evenNy) (0dd N3) first one this turns out not to be the case for all eten To
2 1 1 check this we note that fdr—« the real part ok returns to
3 0 0 1 0 zero as follows from Eq(33). In 7(x), Eq. (32), after x

4 1 0 1 1 1 1 —>x'+iy, thg cosh functions in thg denominator turn into

5 0 0 0 0 1 0 1 0 +sinh functions of the corresponding arguments. As a con-

sequence, fokr—0 there may be a cancellation of the con-
tributions linear inx. It is just this cancellation that let$(x)

absorbed into the mass scale. In this way we see that the twigcrease. It can be checked that this cancellation happens just

parametrizations introduced in the preceding section providf" N2=2(2s+1), i.e., for the values we selected from the
just the required continuation. sign of the derivative, and not for the other e\én There is

As already mentioned we have to ensure that the paranfl© restriction orN;. As a result we obtain that the potential
etrizations provide monotonic functioms(t)[®(6)] which U (®P) is again similar to tgat in thé* model; its asymptotic
cover the whole rangab e (—,). First we check the bPehavior isU(®)~g . P*.

monotonicity. For that task we consider the derivativetof The classical energy can be calculated using @§).
with respect to the parameter. In the first parametrization wélowever there is no such simple explicit formula as in Sec.
note thatdx/dt=1/(1—t2) and obtain Ill. The results are shown in Fig. 4. As seen, it depends on
the value of the condensate which contribution prevails. For
dd(t)  7(x(t)) N, close toN,, for any fixed value of the condensate, the

B TR (350  energy becomes negative for sufficiently lafde

which must have a definite sign. A change in the sign may V. RECONSTRUCTION FROM A GENERAL
occur only in passing througt= 1, i.e., when going through REFLECTIONLESS POTENTIAL

X—. Using In this section we consider a general reflectionless poten-
U A Npx 36 tial. Is is given byM bound states with energie§s=N; (i
(x) ~ e (36) =1,2,...M). We assumeN;<N,<---<Ny. The wave
function of the ground statéts energy isN,,) can be ob-
and tained from the inverse scattering method or by Darboux
transformation. It is a quotient

P
t—1 n(x)zav

we obtain

whereP is a monomial in cogliN;=N,=*--- =Ny _4)x] and

Q is a monomial in cogiiN;=N,=*--- £Ny)x]. Q contains
~ (1-tN2 (37 the ground state energy,=N,, andP does not. Following
ot the discussion in the preceding section we conclude that all

This derivative is non-negative for>1 too only if N, N; must be integer. For the behaviorsat>e> from the ei-
—2(25+1) (5=0,1,2...). genvalue largest in modulus

dd(t)
dt

In the second parametrization we have to investigate the

— a—Npyx
behavior atd= /2. By means ofix/d#=1/cosé and 7(x) ~ & "

X— 00

X(6) ~ _|n<z_9) follows. Again, we conclude that folNy=2(2s+1)(s
0— (ml2) 2 =0,1,2...) using the first parametrization, E¢R4), we
) obtain a monotonic functiod(t) and that for odd\,, the
we obtain second parametrization does the job. Whereas the second
_ arametrization covers the whole regiondfby periodicity,
de(g) _Uxe) (Z_ 9)N2 ' (39) Fhe first does this only for cerfqain seépof nurr?bers
do cosf , ,\2 N;,N,, ... ,Ny_;. Here it seems too hard or even impos-

sible to give a general rule other than in special cases. So, for
which is positive for8> /2 for odd N,, N,=2s+1 (s example, for three bound statell £3) and a ground state
=0,1,2...). energyN3;=2(2s+1), the energy of the second levil,
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must be an odd number and that of the first leNiglan even  tion and the reflection coefficiem{k). So it would be inter-
number. This is a conjecture from consideriNg explicitly ~ esting to investigate the dependence £n Here a natural
up to 20. For four bound state#|(=4) some allowed com- conjecture is that there are no restrictions on these param-
binations are shown in Table I. eters. As the ground state energy is independent of3flse
The general behavior ¢f (®) is the same as seen before. [see Eq.(10)] no qualitative change in the results is to be
When the ground state energy is an even number, a potentiekpected. A quite different picture should appear if we allow
as in the®* model appears, and for an odd number it isfor nonvanishing reflection coefficient§k). Here the gen-
periodic. It seems that for reflectionless scattering data neral situation with no specific restrictions ai{d) must take

other behavior ofJ(®) is possible. place, for instancel (®) with three or more minima must
be possible. Taking (k) as a rational function and hence
VI. CONCLUSIONS given by a finite number of parameters is an interesting spe-
cial case.

We formulated the reconstruction problem for how to get  \ne wrote down the formulas for the classiggLantum
the potential U(®) allowing for spontaneous symmetry epergies in terms of the scattering ddtae ground state
breaking in the action, Eq(1), for a scalar field in #1  \ave functions In the considered examples it is seen that,
dimensions from the scattering data related to the quanturp, dependence on the free parameters the complete energy
fluctuation in the background of the corresponding kink SO'may take both signs. In general, by an increase of the bound
lution. We considered reflectionless scattering data andiate energies the quantum ener@lyis negative grows

solved the reconstruction problem explicitly for somefsster than the classical one and the complete energy be-
classes, for soliton potentials, and for two bound states. Weomes increasingly negative.

gave a conjecture for the general reflectionless case. It states
that U(®) reconstructed from reflectionless scattering data

can be only like ab* potential, i.e., with two minima, or ACKNOWLEDGMENTS
periodic as in the sine-Gordon model. It would be interesting
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