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Black hole scalar hair in asymptotically anti–de Sitter spacetimes
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The unexpected discovery of hairy black hole solutions in theories with scalar fields simply by considering
asymptotically anti–de Sitter~AdS! space, rather than asymptotically flat boundary conditions is analyzed in a
way that exhibits in a clear manner the differences between the two situations. It is shown that the trivial
Schwarzschild–anti–de Sitter space becomes unstable in some of these situations, and the possible relevance
of this fact for the AdS conformal field theory conjecture is pointed out.
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I. INTRODUCTION

The falsehood of the no-hair conjecture for stationa
black holes is hardly even disputed these days as the lis
counterexamples has become ever larger: Einstein-Ya
Mills @1#, Einstein-Skyrme@2#, Einstein-Yang-Mills-dilaton
@4#, Einstein-Yang-Mills-Higgs @3#, and Einstein–non-
Abelian-Procca@3# fields. In some subcommunities the ide
seems to be holding out that a modified version that app
only to stable black holes could remain valid despite the f
that for some of the examples above some claims of st
nontrivial solutions exist in the literature.

One place where it seemed for a while that there was h
for a restricted form of the conjecture was the scalar fi
arena. Here we had the original no-hair theorems of Bek
stein@5# covering the case of minimally coupled scalar fiel
with convex potentials, other theorems dealing with the c
of minimally coupled fields with arbitrary potentials we
obtained in @6,7#. The so-called Bronikov-Melnikov-
Bocharova-Bekenstein black hole ‘‘solution’’@8#, which cor-
responds to a spherical symmetric extremal black hole wi
scalar field conformally coupled to gravity, seemed to rep
sent a discrete example of scalar hair, as it was shown@9#
that there are no other static spherically symmetric bl
hole solutions in this theory. Later on, it was shown that t
configuration, which presents a divergence of the scalar fi
at the horizon, cannot be considered as a regular black
solution because the energy-momentum tensor is ill defi
at the horizon@10#. Finally it has been shown that if on
demands that the scalar field be bounded throughout
static region, then there are no solutions at all@11#.

For more general cases of nonminimal coupling, there
results@12# showing that under the assumption that cert
‘‘conformal factors’’ does not vanish or blow up, there are
nontrivial black hole solutions. Next, there is a result by@13#
that does not rely on such an assumption, and which con
ers the existence of static, spherically symmetric black h
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solutions in theories in which the sign of the nonminim
coupling constant is negative~the only case not covered b
other theorems!. There it is shown that under certain supp
sitions about the form of the energy-momentum flux, the
are no nontrivial solutions. In@14# it is argued that these
suppositions are not fully justifiable, and numerical eviden
is given against the existence of such a black hole that d
not rely on these assumptions.

It is therefore a rather unexpected development that h
black hole solutions have now been found in both theor
with minimal @15# as well as nonminimal@16# coupled scalar
fields simply by considering asymptotically anti–de Sitt
space, rather than asymptotically flat boundary conditio
Moreover, these papers have strong indications that, un
certain conditions, the new solutions are stable.

The purpose of this paper is to analyze the situation
garding the asymptotically anti–de Sitter case, in light
existing results for the asymptotically flat case, discuss
points where the differences are relevant and give a sim
explanation of some of the features of the new solutions,
point to some surprising conjectures that can be directly
ferred from this understanding. The method used in this p
is a generalization of one that was successfully employe
deriving a general characterization of hairy black holes i
wide range of theories@17#.

An added reason for interest in the asymptotically anti–
Sitter ~AdS! case, and one we briefly touch in this paper
the important place such spacetimes have acquired in vie
the AdS conformal field theory~CFT! conjecture. In fact, we
will argue that the results and conjectures that are pointe
in this work indicate a difficulty for the notion that the AdS
CFT idea can have as general a validity as it is norma
deemed to have.

II. SCALAR HAIR AND ASYMPTOTIC CONDITIONS

We will restrict our consideration to the minimall
coupled case as the emergence of hair does not rely at a
the more complicated nonminimal couplings. Thus we w
consider a theory given by the action
©2003 The American Physical Society38-1
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S5E A2gd4xF 1

16p
~R22L!21/2~¹f!22V~f!G ,

~1!

wheref is a scalar field andV its potential,R is the scalar
curvature, andL is the true cosmological constant~by which
we mean that the minimum of the scalar potential has b
set to 0, and any nonzero part has been absorbed intoL).
Now we restrict attention to static spherically symmet
regular black holes whose exterior we parametrize as

ds252e22dmdt21m21dr21r 2dV2, ~2!

wherem andd are functions ofr. Note thatd can be thought
of as representing an additional redshift, beyond the one
could be inferred from the geometry of the static hypers
faces~i.e., those that are normal to the Killing field!. The
condition for the presence of a regular horizon atr H requires
the vanishing ofm there. It is customary to parametrizem as

m~r !512
2m~r !

r
1lr 2, ~3!

where the asymptotic geometry is controlled by the para
eter l ~i.e., l50 for the asymptotically flat case,l.0 for
the asymptotically anti–de Sitter case, andl,0 for the as-
ymptotically de Sitter case!. Einstein’s equations give, in thi
case,

m858prT
t
t1

12m

r
, d85

4pr

m
~T

t
t2T

r
r !, ~4!

where the prime stands for differentiation with respect tor.
The scalar field equation can be written as

mf91[ ~1/r !~m11!14pr ~T
t
t1T

r
r !]f82

]V

]f
50. ~5!

We must point out that the above formulas refer to the to
energy-momentum tensorTmn , which is related to the en
ergy momentum of the scalar fieldTmn(f) as Tmn

5Tmn(f)2gmnL/(8p).
The main tool of our analysis is simply the conservati

of the r component of the total energy-momentum ten
Tm

r ;m50, which, through the use of Einstein’s equation
can be written as@17#

ed~e2dT
r
r !85

1

2 mr
@~T

t
t2T

r
r !1m~2T23T

t
t25T

r
r !#,

~6!

whereT stands for the trace of the stress energy tensor.
The energy-momentum tensor of the scalar field by its

satisfies then

ed@e2dT~f!r
r #85

1

2mr
@$11r 2~2L!%$T~f! t

t2T~f!r
r%

1m$2T~f!23T~f! t
t25T~f!r

r%#.

~7!
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Here we can review the reasons behind the fact that the
no nontrivial scalar field in the exterior of such black holes
the asymptotically flat case withL50. First, the regularity
at the horizon requires that mixed componentsT(f)n

m must
be bounded at the horizon, since the scalarT(f)n

mT(f)n
m is

in this case a sum of non-negative terms. Next, we note
the vanishing ofm at the horizon indicates that on the hor
zon T(f) r

r5T(f) t
t , which is negative definite as follow

from the weak energy condition~WEC!, which is satisfied, in
particular, by minimally coupled scalar fields~in fact, in our
case we haveT(f) r

r51/2m(f8)22V and T(f) t
t5T(f)u

u

5T(f)w
w521/2m(f8)22V). Next, it follows from the

WEC that (T
t
t2T

r
r ),0, and from the fact that for the situ

ation at hand the combination 2T(f)23T(f) t
t25T(f) r

r is
23m(f8)2 and thus nonpositive, that the left hand side

Eq. ~7! is nonpositive, and thus thate2dT
r
r (f) is a decreas-

ing function of r. It is thus impossible for this function to
approach zero as would be required from asymptotic flatn
the boundary condition that is relevant in this case. The po
is that if we consider now asymptotically anti–de Sitt
boundary conditions and a negative cosmological const
two aspects of the above discussion remain unchan
e2dT(f) r

r is negative definite at the horizon, and it is a d
creasing function ofr. Thus the reason behind the possibili
of the scalar black hole hair in such a case is the fact tha
the anti–de Sitter case one can allowT(f) r

r to go to a finite
~and negative! constant value at infinity, which results in a
effective cosmological constant that differs from the tr
cosmological constant of the theory. In fact we can now
state the result of the above analysis for the asymptotic
anti–de Sitter case as follows.

Theorem. There are no nontrivial static and sphericall
symmetric black hole solutions in the asymptotically anti–de
Sitter case in which the asymptotic behavior corresponds
the anti–de Sitter spacetime with the true cosmological co
stant.

In other words, the asymptotically anti–de Sitter regi
corresponds to one where the effective cosmological c
stant is

Le f f5L18pV~f`!. ~8!

This is in essence the difference between the asymptotic
flat L50 case vs the asymptotically anti–de Sitter caseL
Þ0 case, i.e., the fact that in the former case we must req
V to go to 0 at infinity, while in the latter case any nonze
asymptotic value ofV can be absorbed into the effectiv
cosmological constant. The theorem above in fact ensu
that such an asymptotic value is in fact nonzero and that s
absorption cannot be done without. Note that for a nontriv
black hole, V(f`).V(f r H

)>0, thus Le f f.L and the
asymptotic behavior of the spacetime in then less anti–
Sitter-like than would have been expected from the act
value of the true cosmological constant.

Moreover, as one is interested in situations in which
scalar field converges to a finite value at infinity, we can lo
at the scalar field equations and note that a necessary co
tion for such behavior is that the field should go to an ext
8-2
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mum of the potential at infinity. Thus, our general result th
T(f) r

r must be a decreasing function, together with the f
that in this regime it coincides withV, suggests that the ex
tremum ofV must be approached from below at infinity, an
thus, that such an extremum must be a maxima. In f
assuming that the scalar field converges to a finite limitf` at
infinity, and that at this point the potential takes a fin
value, we write the asymptotic solution asf5f`1 f (r ),
with f→0 at `. The asymptotic form of the scalar fiel
equation is

lr 2f 914lr f 82
]V

]f U
f`

2
]2V

]f2U
f`

f 50. ~9!

From here we see that (]V/]f)uf`
50. The solution of this

equation that goes to zero at infinity is of the formf 51/r b

with b.0. Substituting in Eq.~9! one concludes that

b5
3

2
6A9

4
1

1

l

]2V

]f2 U
f`

. ~10!

On the other hand, from the Einstein equations we have
m8;r 4f 82, so the convergence ofm requires thatR(b)
.3/2 and thus the type of oscillating behavior suggested
@15# cannot occur.

If ( ]2V/]f2)uf`
.0 one of the roots in Eq.~10! makesf

divergent, requiring a fine tuning to avoid this divergen
So, although it is not possible to rule out a solution in th
case, we are going to consider the cases in which the sc
field goes to a local maximum at infinity, i.e.,
.(]2V/]f2)uf`

.2 9
4 l, which are in fact the cases in whic

solutions have been found.
There are several interesting points that come out of

analysis: First we note that we can choose the cosmolog
constant to be such that the effective cosmological cons
vanishes, leading to scalar field hair for black holes in
asymptotically flat context~the price paid for this possibility
is the introduction of a fine-tuned cosmological constan!.
The next point concerns the issue of stability. This, as
ready mentioned, has been considered important, in the h
to salvage something of the no-hair conjecture. The poin
that, in these theories, the Schwarzschild–anti-de Sitter b
holes are also trivial solutions, and thus, one could hope
if, as indicated by the available evidence~see@15#!, the new,
nontrivial black hole solutions are stable, there would se
be a clear violation of even the weakened version~i.e., the
version dealing solely with stable black holes! of the no-hair
conjecture. The first issue that comes to mind is what is
meaning of stability in the asymptotically anti–de Sitter co
text. Normally, what one means by stability, in principle,
the following: Given initial data corresponding to the co
figuration in question, are there small perturbations of th
that grow without bounds with evolution in time? The poi
is that, as the anti–de Sitter spacetime is not globally hyp
bolic ~i.e., has no Cauchy hypersurfaces! there is, in prin-
ciple, no well posed initial value formulation that would a
low one to investigate such a question, so there is no poss
02403
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meaningful answer to it, and thus no meaning to the qu
tion. The only way to go around this problem seems to be
fix boundary conditions at infinity throughout the time
evolution so as to obtain a well posed initial value proble
Then the issue of stability relates to situations in which
consider small perturbations as in the previous discuss
but keep among other things the value of the scalar fi
fixed at infinity. It is in this regard that the new black ho
solutions could possibly be stable. We will assume from h
on that such stability is in fact verified for these solution
Now let us ask ourselves whether such stability is inde
surprising or not. The first thing we note is that, as me
tioned before, at infinity the scalar field is sitting at a loc
maximum of the potential, and thus, that the stability is in
mately connected with the fact that we are dealing with
problem of evolution with fixed conditions at infinity, fo
otherwise our intuition tells us that under perturbations
field would tend to roll down the potential.

What lies behind the stability of the new stable config
rations ought to be, then, that they represent the config
tions of ‘‘minimal mass’’~see@21# and references therein fo
a formal definition of mass in this context and comparis
with alternative ones! among those that have a given bla
hole area1 and fixed value of the scalar field at infinity. As
suming that this is the case, the following conjecture na
rally follows: For such situations in which the nontrivia
black hole is stable, the trivial solution with similar bounda
conditions, i.e., the standard Schwarzschild–anti-de S
solution with the same boundary conditions~with the scalar
field frozen at the top of the potential throughout spacetim!
should be unstable. In particular, we can consider the si
tion in which a fine tuning has made the effective cosmolo
cal constant equal to zero, and then, the plain old Schwa
child solution should be unstable. This situation is analog
to the case of the magnetically charged Reisner-Nostrom
lution, which is stable within the Einstein-Maxwell theor
but is unstable within the Einstein-Yang-Mills theory@19#.

Finally, we note that in@15#, stable as well as unstabl
nontrivial solutions were found. What lies behind the diffe
ence in these situations? It is natural to assume that it ha
do with a change in the sign of the mass difference betw
the two solutions with the same horizon area and asympt
value of the scalar field. We note that in the situation at ha
such a difference can have either sign depending on the
tails of the scalar potential. In fact let us compareM2(r H),
the mass of a nontrivial static black hole of radiusr H , with
M1(r H), the mass of the corresponding Schwarzschil
anti–de Sitter black hole of the same radius.@By black hole
radius, we meanr H5AA/4p, whereA is the horizon area.
And by mass we mean the Hamiltonian mass as define
@21#, which in the present situation can be evaluated sim
by M5 limr→`m(r )].

In the latter case the solution is just given by settingf
[f` , d[0, andm(r )5122M1 /r 1lr 2 with M1 the cor-
responding mass of the black hole of radiusr H , so

1We are assuming a generalization of the ideas presented in@18#.
8-3
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M1~r H!5
r H

2
~11lr H

2 !. ~11!

In the case of the nontrivial black hole, the mass is obtai
from the equation form8 that follows from Eqs.~4! and~3!:

m8524pr 2Tt
t1~3/2!lr 25~r 2/2!@~3l1L!18pV~f!

14pm~f8!2#. ~12!

First, we note that the requirement thatm8→0 at ` implies
that

l52~1/3!@L18pV~f`!#521/3Le f f . ~13!

Next, the vanishing ofm at the horizon requires thatm(r H)
5r H /2(11lr H

2 )5M1(r H), so we can write, using Eq.~13!,
the mass of the nontrivial black hole as

M25m~r H!14pE
r H

`

r 2@V~f!2V~f`!1~1/2!m~f8!2#dr.

~14!

Thus the sign ofM22M1 depends on the integral, whic
could have either sign depending on the details of the po
tial and the horizon radius. Note that this is in contrast w
the situation that arises, say, in the Einstein-Yang-M
theory and its hairy black holes in the asymptotically fl
context, where the mass of the nontrivial black hole is

M25m~r H!14pE
r H

`

r 2@~1/r 2!V~w!1~1/2!m~w8!2#dr,

~15!

wherew parametrizes the Yang-Mills field~as in@1#! and the
term V(w)5(1/2)(12w2)2, which arises from the self
interaction of the non-Abelian fields, plays the role of
effective—and non-negative—potential in this situation. It
clear that in this case the mass of the hairy black hole
larger than that of the Schwarzschild solution with the sa
horizon area. In fact it should be possible to numerically t
whether the change in stability is associated with the cha
in the sign of this integral, and we expect to do this in t
near future.

Finally, a note regarding the no-hair conjecture and
nature of the counterexample obtained in@15#. The standard
understanding is that there are hairy black holes, if, withi
specific theory, the boundary conditions and charges at in
ity are not sufficient to uniquely specify a stationary bla
hole solution. If one were to~not advocated by the prese
authors, but apparently advocated by the authors of@15#!
only consider stable black holes in this context, then in or
to say that one has found hair, it is not enough to show
the new solutions are stable, one must also ensure tha
trivial solution remains stable as well. In fact, using the
sult of the analysis of@22#, we can easily prove that, fo
certain values of the parameters, the Schwarzschild–an
Sitter solution will be unstable in this context, and thus t
issue of the violation of the weakened version of the no-h
conjecture in the scalar field arena would be far from sett
02403
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The perturbations around the Schwarzschild–anti-de
ter black hole withf[f` are described by

m~ t,r !5m0~r !1em1~ t,r !,

d~ t,r !5ed1~ t,r !, ~16!

f~ t,r !5f`1ef1~ t,r !,

]V

]f
52ef1~ t,r !a2,

where a252(]2V/]f2)uf`
and m0(r )5122M /r 1lr 2.

The first order perturbed equation for the scalar field is

f̈15m0Fm0f191S 2

r
m01m08Df181a2f1G ~17!

and the first order perturbed Einstein equations are ide
cally satisfied byd150 andm150.

Equation~17! can be written asf̈152Af1, whereA5
2DaDa1V and Da is the covariant derivative associate
with the auxiliary spatial metric

(3)ds25dx21r ~x!2~du21sin2udw2!, ~18!

where

x~r !5E
r H

r

dr8S 12
2m

r 8
1lr 82D 21

. ~19!

Note that whenr→`, x converges to a finite constant th
we denote byc. In this way we can write

DaDa5
d2

dx2
1

2m0~x!

r ~x!

d

dx
. ~20!

As mentioned in@22#, if c is a vector of the Hilbert spaceL2

with inner product

^c1 ,c2&5E
0

2pE
0

pE
0

c

r 2c1c2sinudxdudw ~21!

such that̂ c,Ac&,0, then the configuration is unstable.
If we choosec5P(x)/r (x)n with P(x) being any~finite

order! polynomial andn>1, we obtain a finite norm elemen
of L2. If we take, for instance,n51, then

^c,Ac&524pE
0

c

dxP~x!Fd2P~x!

dx2
1m0P~x!

3S a22
2M

r 3
22l D G . ~22!

Thus, if a2.2M /r H
3 12l, and we takeP to be any polyno-

mial on x which is positive definite and has a positive de
nite second derivative in the interval (0,c), then ^c,Ac&
<0, showing that the configuration is unstable.
8-4
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III. CONCLUSION

We have carefully analyzed the reasons behind the po
bility of scalar hair in the asymptotically anti–de Sitter cas
comparing it with the situation in the asymptotically fl
case. We have discussed also the issue of stability and fo
a very simple explanation, which in fact points to the ins
bility within these theories and boundary conditions of t
usual Schwarzschild–anti–de Sitter solution. This work h
dealt with the minimal coupled case; its extension to
nonminimal coupled case is trivial if we can perform a co
formal transformation~i.e., if the required conformal facto
can be shown to be nowhere vanishing!; in the nontrivial
cases it is hindered by the fact that in such a case the co
provided by the WEC over the signs of the various terms
Eq. ~7! is lost. We now briefly note@20# that, according to the
conjecture of the AdS/CFT correspondence,
Schwarzschild–anti–de Sitter solution of the theory in
bulk should correspond to a thermal state of the confor
.,

02403
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theory in the anti–de Sitter ‘‘boundary.’’ But, as the blac
hole solution is unstable, so should be the correspond
thermal state, and it seems very difficult to envision wh
could possibly be meant by a thermal state~by definition, an
equilibrium state involving fluctuations! that is unstable.
Needless to say, such issues should be further investiga
and our point in mentioning them here is to note how t
study of hairy black holes can have implications in oth
apparently disconnected subjects.
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