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Black hole scalar hair in asymptotically anti—de Sitter spacetimes
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The unexpected discovery of hairy black hole solutions in theories with scalar fields simply by considering
asymptotically anti—de SittdAdS) space, rather than asymptotically flat boundary conditions is analyzed in a
way that exhibits in a clear manner the differences between the two situations. It is shown that the trivial
Schwarzschild—anti—de Sitter space becomes unstable in some of these situations, and the possible relevance
of this fact for the AdS conformal field theory conjecture is pointed out.
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[. INTRODUCTION solutions in theories in which the sign of the nonminimal
coupling constant is negati¢he only case not covered by
The falsehood of the no-hair conjecture for stationaryother theorems There it is shown that under certain suppo-
black holes is hardly even disputed these days as the list @fitions about the form of the energy-momentum flux, there
counterexamples has become ever larger: Einstein-Yangwe no nontrivial solutions. Ifi14] it is argued that these
Mills [1], Einstein-Skyrmd 2], Einstein-Yang-Mills-dilaton suppositions are not fully justifiable, and numerical evidence
[4], Einstein-Yang-Mills-Higgs [3], and Einstein—non- is given against the existence of such a black hole that does
Abelian-Proccd 3] fields. In some subcommunities the idea not rely on these assumptions.
seems to be holding out that a modified version that applies |t is therefore a rather unexpected development that hairy
only to stable black holes could remain valid despite the fachlack hole solutions have now been found in both theories
that for some of the examples above some claims of stablgith minimal[15] as well as nonminimdli6] coupled scalar
nontrivial solutions exist in the literature. fields simply by considering asymptotically anti—de Sitter
One place where it seemed for a while that there was hopgpace, rather than asymptotically flat boundary conditions.
for a restricted form of the conjecture was the scalar fieldyioreover, these papers have strong indications that, under
arena. Here we had the original no-hair theorems of Bekengertain conditions, the new solutions are stable.
stein[5] covering the case of minimally coupled scalar fields  The purpose of this paper is to analyze the situation re-
with convex potentials, other theorems dealing with the casgarding the asymptotically anti-de Sitter case, in light of
of minimally coupled fields with arbitrary potentials were existing results for the asymptotically flat case, discuss the
obtained in [6,7]. The so-called Bronikov-Melnikov- points where the differences are relevant and give a simple
Bocharova-Bekenstein black hole “solutiof8], which cor-  explanation of some of the features of the new solutions, and
responds to a spherical symmetric extremal black hole with §oint to some surprising conjectures that can be directly in-
scalar field conformally coupled to gravity, seemed to repreferred from this understanding. The method used in this part
sent a discrete example of scalar hair, as it was sh@¥n s a generalization of one that was successfully employed in
that there are no other static spherically symmetric blackjeriving a general characterization of hairy black holes in a
hole solutions in this theory. Later on, it was shown that thisyide range of theoriefl7].
configuration, which presents a divergence of the scalar field an added reason for interest in the asymptotically anti—de
at the horizon, cannot be considered as a regular black holgjtter (AdS) case, and one we briefly touch in this paper is
solution because the energy-momentum tensor is ill defineghe important place such spacetimes have acquired in view of
at the horizon[10]. Finally it has been shown that if one the AdS conformal field theor§CFT) conjecture. In fact, we
demands that the scalar field be bounded throughout thgj| argue that the results and conjectures that are pointed to
static region, then there are no solutions af 2. in this work indicate a difficulty for the notion that the AdS/

For more general cases of nonminimal coupling, there argrT jdea can have as general a validity as it is normally
results[12] showing that under the assumption that certaingeemed to have.
“conformal factors” does not vanish or blow up, there are no
nontrivial black hole solutions. Next, there is a resulf hg]
that does not rely on such an assumption, and which consid- Il SCALAR HAIR AND ASYMPTOTIC CONDITIONS
ers the existence of static, spherically symmetric black hole
We will restrict our consideration to the minimally
coupled case as the emergence of hair does not rely at all on
*Electronic address: sudarsky@nuclecu.unam.mx the more complicated nonminimal couplings. Thus we will

"Electronic address: cervera@nuclecu.unam.mx consider a theory given by the action
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1 Here we can review the reasons behind the fact that there is
1o, (R—2M0)— 12V ¢)*=V()|, no nontrivial scalar field in the exterior of such black holes in
(1) the asymptotically flat case with=0. First, the regularity
at the horizon requires that mixed componen(g)’, must
where ¢ is a scalar field and/ its potential,R is the scalar  be bounded at the horizon, since the scalgp),T(¢)”, is
curvature, and\ is the true cosmological constaffity which in this case a sum of non-negative terms. Next, we note that
we mean that the minimum of the scalar potential has beethe vanishing ofu at the horizon indicates that on the hori-
set to 0, and any nonzero part has been absorbedAifito  zon T(¢4)!=T(#);, which is negative definite as follows
Now we restrict attention to static spherically symmetricfrom the weak energy conditiqVEC), which is satisfied, in
regular black holes whose exterior we parametrize as particular, by minimally coupled scalar field@is fact, in our
25 2 142 2402 case we haveT(¢);=1/2u(¢')>~V and T(¢);=T(¢))
ds’=—e"*udt®+ p~ dri+rid0?, @ _T(g)s=—1/2u(¢')=V). Next, it follows from the
whereu andé are functions of. Note thaté can be thought WEC that (I'tt—Trr)<0, and from the fact that for the situ-
of as representing an additional redshift, beyond the one thaftion at hand the combinatiorT2¢) —3T(¢),—5T(¢)", is
could be inferred from the geometry of the static hypersur—3u(¢')? and thus nonpositive, that the left hand side of
faces(i.e., those that are normal to the Killing figldThe Eq. (7) is nonpositive, and thus that 5Trr(¢) is a decreas-
condition for the presence of a regular horizom@requires  jng function ofr. It is thus impossible for this function to
the vanishing ofu there. It is customary to parametrizeas  approach zero as would be required from asymptotic flatness,
2m(r) the boundary condition that is relevant in this case. The point
+Ar2, (3) is that if we consider now asymptotically anti—de Sitter
r boundary conditions and a negative cosmological constant,

. . two aspects of the above discussion remain unchanged:
where the asymptotic geometry is controlled by the param,, - 5T(4)" is negative definite at the horizon, and it is a de-
eter\ (i.e., A=0 for the asymptotically flat cas@,>0 for r 9 '

the asymptotically anti—de Sitter case, and 0 for the as- creasing function of. Thus the reason behind the possibility

ymptotically de Sitter cageEinstein’s equations give, in this of the scalar black hole hair in such a case is the fact that in
case ' the anti—de Sitter case one can alldp), to go to a finite

(and negativeconstant value at infinity, which results in an
. 1- Amr effective cosmological constant that differs from the true
n'=8mrTt+ - 8'=——(Tt=Tr), (4 cosmological constant of the theory. In fact we can now re-
K state the result of the above analysis for the asymptotically
where the prime stands for differentiation with respect.to anti—de Sitter case as follows. , ,
The scalar field equation can be written as Theorem There are no nontrivial static and spherically
symmetric black hole solutions in the asymptotically -acé
¢ . FAYS Sitter case in which the asymptotic behavior corresponds to
pd" +[(Lr)(u+1)+4ar(Tt+Tr)]¢'— %20- (5)  the anti-de Sitter spacetime with the true cosmological con-
stant

We must point out that the above formulas refer to the total In other words, the asymptotically anti—de Sitter region
energy-momentum tensdr,,, which is related to the en- corresponds to one where the effective cosmological con-
ergy momentum of the scalar field,(¢) as T,  stantis

=T,($)—9,,A(8).
The main tool of our analysis is simply the conservation Aeri=A+87V(.). (8)

of the r component of the total energy-momentum tensor_ ) )
T =0, which, through the use of Einstein’s equations, This is in essence the difference between the asymptotically
o il y Il

can be written a§17] flat A=0 case vs the asymptotically anti—de Sitter case,
#0 case, i.e., the fact that in the former case we must require
s st o, 1 ¢ ; t r V to go to 0 at infinity, while in the latter case any nonzero
e’(e °Tr) :m[(Tt_T N+wp(2T=3Tt=5Tr)], asymptotic value oV can be absorbed into the effective
(6)  cosmological constant. The theorem above in fact ensures
that such an asymptotic value is in fact nonzero and that such
whereT stands for the trace of the stress energy tensor.  absorption cannot be done without. Note that for a nontrivial
The energy-momentum tensor of the scalar field by itselblack hole, V(¢)>V(¢; )=0, thus Ag>A and the

S= f V—gd*x

m(r)y=1-

satisfies then asymptotic behavior of the spacetime in then less anti—de-
1 Sitter-like than would have been expected from the actual

ele” 5T(¢)rr]'=2_[{1+ r2(— AHT(H) Y —T(P)",} value of the true cosmological constant. _
mr Moreover, as one is interested in situations in which the

scalar field converges to a finite value at infinity, we can look
at the scalar field equations and note that a necessary condi-
(7)  tion for such behavior is that the field should go to an extre-

+u{2T(4)=3T(¢)—5T()' }].
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mum of the potential at infinity. Thus, our general result thatmeaningful answer to it, and thus no meaning to the ques-
T(¢); must be a decreasing function, together with the faction. The only way to go around this problem seems to be to
that in this regime it coincides witl, suggests that the ex- fix boundary conditions at infinity throughout the time of
tremum ofV must be approached from below at infinity, and evolution so as to obtain a well posed initial value problem.
thus, that such an extremum must be a maxima. In factThen the issue of stability relates to situations in which we
assuming that the scalar field converges to a finite lijpitat ~ consider small perturbations as in the previous discussion,
infinity, and that at this point the potential takes a finitehut keep among other things the value of the scalar field
value, we write the asymptotic solution @s=¢..+f(r),  fixed at infinity. It is in this regard that the new black hole
with f—0 at . The asymptotic form of the scalar field splutions could possibly be stable. We will assume from here

equation Is on that such stability is in fact verified for these solutions.
N 2y Now _Ie_t us ask ourselvgs wh_ether such s_tability is indeed

N2 AN - — | — | f=0. (9) surprising or not. The first thing we note is that, as men-

d . d . tioned before, at infinity the scalar field is sitting at a local

maximum of the potential, and thus, that the stability is inti-

From here we see that{/d¢)|, =0. The solution of this mately connected with the fact that we are dealing with a
equation that goes to zero at infinity is of the fofrs 1/r% problem of evplutl'o'n with fixed conditions at |nf|n|Fy, for
with 8>0. Substituting in Eq(9) one concludes that cherWlse our intuition tells us that under perturbations the
field would tend to roll down the potential.
What lies behind the stability of the new stable configu-
(10 rations ought to be, then, that they represent the configura-
b tions of “minimal mass”(see[21] and references therein for
a formal definition of mass in this context and comparison
On the other hand, from the Einstein equations we have thayith alternative onesamong those that have a given black
m’~r%f'2, so the convergence ah requires thatR(8)  hole ared and fixed value of the scalar field at infinity. As-
>3/2 and thus the type of oscillating behavior suggested iuming that this is the case, the following conjecture natu-
[15] cannot occur. rally follows: For such situations in which the nontrivial
If (¢?V19¢?)|,,>0 one of the roots in E10) makes¢  pjack hole is stable, the trivial solution with similar boundary
divergent, requiring a fine tuning to avoid this divergence.conditions, i.e., the standard Schwarzschild—anti-de Sitter
So, although it is not possible to rule out a solution in thissolution with the same boundary conditiofvgith the scalar
case, we are going to consider the cases in which the scaléield frozen at the top of the potential throughout spacetime
field goes to a local maximum at infinity, i.e., O should be unstable. In particular, we can consider the situa-
>(82V/a¢2)|¢,x> — %\, which are in fact the cases in which tion in which a fine tuning has made the effective cosmologi-
solutions have been found. cal constant equal to zero, and then, the plain old Schwarzs-

There are several interesting points that come out of thishild solution should be unstable. This situation is analogous
analysis: First we note that we can choose the cosmologic4p the case of the magnetically charged Reisner-Nostrom so-
constant to be such that the effective cosmological constafétion, which is stable within the Einstein-Maxwell theory,
vanishes, leading to scalar field hair for black holes in thebut is unstable within the Einstein-Yang-Mills thedrg].

asymptotically flat contexithe price paid for this possibility Finally, we note that inf15], stable as well as unstable
is the introduction of a fine-tuned Cosmo|ogica| ConStant nontrivial solutions were found. What lies behind the differ-

The next point concerns the issue of stability. This, as al€nce in these situations? It is natural to assume that it has to
ready mentioned, has been considered important, in the hop® With a change in the sign of the mass difference between
to salvage something of the no-hair conjecture. The point i$he two solutions with the same horizon area and asymptotic
that, in these theories, the Schwarzschild—anti-de Sitter blackalue of the scalar field. We note that in the situation at hand
holes are also trivial solutions, and thus, one could hope th&tuch a difference can have either sign depending on the de-
if, as indicated by the available eviden@ee[15]), the new, tails of the scalar potential. In fact let us compade(ry),
nontrivial black hole solutions are stable, there would seenthe mass of a nontrivial static black hole of radnys, with

be a clear violation of even the weakened verdiom., the ~ Ma(ry), the mass of the corresponding Schwarzschild—
version dealing solely with stable black holes the no-hair ~ anti—de Sitter black hole of the same radiiBy black hole
conjecture. The first issue that comes to mind is what is théadius, we meam,= JA/4m, whereA is the horizon area.
meaning of stability in the asymptotically anti—de Sitter con-And by mass we mean the Hamiltonian mass as defined in
text. Normally, what one means by stability, in principle, is [21], which in the present situation can be evaluated simply
the following: Given initial data corresponding to the con- by M=Ilim,_.m(r)].

figuration in question, are there small perturbations of these In the latter case the solution is just given by setting
that grow without bounds with evolution in time? The point = ¢.,, =0, andu(r)=1—2M,/r+xr? with M, the cor-

is that, as the anti—de Sitter spacetime is not globally hyperresponding mass of the black hole of radiys so

bolic (i.e., has no Cauchy hypersurfagédkere is, in prin-

ciple, no well posed initial value formulation that would al-

low one to investigate such a question, so there is no possible'we are assuming a generalization of the ideas presentedijn
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My ) The perturbations around the Schwarzschild—anti-de Sit-
Ma(rp) =5 (1+Ary). (11)  ter black hole with¢= ¢,. are described by
In the case of the nontrivial black hole, the mass is obtained ()= po(r)+emq(t,r),

from the equation fom' that follows from Eqs(4) and(3): S(tr)= edy(tr) (16)
)= 140,

r_ 2t 2_ (2
M’ =—47r°T+ (3I2Nr“=(r/2)[ (3N + A)+87V() SLT) = bo+ edaltr),
oV

+amu(e')?]. 12

First, we note that the requirement that—0 at implies 9b ep(t,r)a?,
that
where a?=—(?V/d¢?)|,  and uo(r)=1-2M/r+\r?,

AN=—(1J[A+87V(d.)]=—1/3A . 13 The first order perturbed equation for the scalar field is

Next, the vanishing of. at the horizon requires that(r )
=ry/2(1+ )\rﬁ) =Mj(ry), so we can write, using E@13), b1= o
the mass of the nontrivial black hole as

2
Mody+ FMO+M6 1+ a’e; (17)

- and the first order perturbed Einstein equations are identi-
M2=m(rH)+47rf rAV(¢)—V(p..)+ (12 u($')?]dr. cally satisfied bys;=0 andu,;=0.
h (14 Equation(17) can be written ash;=—Ad¢;, whereA=
—DaD,+V and D, is the covariant derivative associated
Thus the sign ofM,—M, depends on the integral, which With the auxiliary spatial metric
could have either sign depending on the details of the poten-

tial and the horizon radius. Note that this is in contrast with Pds?=dx*+1()%(d6+sir d?), (18
the situation that arises, say, in the Einstein-Yang-Mills, heare
theory and its hairy black holes in the asymptotically flat
context, where the mass of the nontrivial black hole is ; om -1
x(r)=f dr’(l——,+)\r’2) . (19
My r

Mzzm(rH)+4wf r2[(1r?)V(w)+(1/2) w(w’)?]dr,
TH Note that wherr —oo, x converges to a finite constant that
(15 . |
we denote byc. In this way we can write

wherew parametrizes the Yang-Mills fielgs in[1]) and the
term V(w)=(1/2)(1-w?)?, which arises from the self-
interaction of the non-Abelian fields, plays the role of an
effective—and non-negative—potential in this situation. It is
clear that in this case the mass of the hairy black hole ig\s mentioned if22], if ¢ is a vector of the Hilbert spade?
larger than that of the Schwarzschild solution with the samewith inner product
horizon area. In fact it should be possible to numerically test
whether the change in stability is associated with the change 2m [ (c .
in the sign of this integral, and we expect to do this in the (Wh1.92)= jo JO Lr Yaibsinbdxdode  (2D)
near future.

Finally, a note regarding the no-hair conjecture and thesuch that{y,A)<0, then the configuration is unstable.
nature of the counterexample obtained 13]. The standard If we choosey=P(x)/r(x)" with P(x) being any(finite

Understanding is that there are hairy black hOleS, |f, within Q)rde') p0|yn0mia| and];]_, we obtain a finite norm element
specific theory, the boundary conditions and charges at infingf | 2, |f we take, for instancen=1, then

ity are not sufficient to uniquely specify a stationary black
hole solution. If one were ténot advocated by the present c
authors, but apparently advocated by the author$l16f) (P, Apy=—4 f dxP(x)
only consider stable black holes in this context, then in order 0
to say that one has found hair, it is not enough to show that oM
o2
r

d®>  2ue(x) d
_ +Mo()_

ap ——
D™D, dx2  r(x) dx’

(20

d?P(x)
dx?

+ 1oP(X)

the new solutions are stable, one must also ensure that the %
trivial solution remains stable as well. In fact, using the re-

sult of the analysis 0f22], we can easily prove that, for

certain values of the parameters, the Schwarzschild—anti-dghus, if a2>2M/r,3_,+2)\, and we takeP to be any polyno-
Sitter solution will be unstable in this context, and thus themial on x which is positive definite and has a positive defi-
issue of the violation of the weakened version of the no-hainite second derivative in the interval €9, then (,Ay)
conjecture in the scalar field arena would be far from settled=0, showing that the configuration is unstable.

. (22
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I1l. CONCLUSION theory in the anti—de Sitter “boundary.” But, as the black

We have carefully analvzed the reasons behind the OSSh_oIe solution is unstable, so should be the corresponding
y y POSS ermal state, and it seems very difficult to envision what

bility of scalar hair in the asymptotically anti—de Sitter case, . id possibly be meant by a thermal stéig definition, an

comparing it with the situation in the asymptotically flat uilibrium state involving fluctuatiopsthat is unstable.

' . o e
case. W? have dlscuss_ed also_the_ issue of .Stab'“ty anq fOurﬁ%edless to say, such issues should be further investigated,
a very simple explanation, which in fact points to the insta-

. o . - and our point in mentioning them here is to note how the
bility within these theories and boundary conditions of thestudy of hairy black holes can have implications in other,

usual Schwarzschild—anti—de Sitter solution. This work has . .
dealt with the minimal coupled case; its extension to theapparently disconnected subjects.
nonminimal coupled case is trivial if we can perform a con-
formal transformatior{i.e., if the required conformal factor
can be shown to be nowhere vanishino the nontrivial D.S. wishes to thank A. Ashtekar, A. Sen, and U. Nuca-
cases it is hindered by the fact that in such a case the contratendi for helpful discussions. This work was in part sup-
provided by the WEC over the signs of the various terms inported by DGAPA-UNAM through Grant No. IN 112401
Eq. (7) is lost. We now briefly notg20] that, according to the and by CONACyT through grant 32272-E. J.A.G. acknowl-
conjecture of the AdS/CFT correspondence, theedges support by CONACYT through grant No. 149945. D.S.
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