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Manifold dimension of a causal set: Tests in conformally flat spacetimes
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This paper describes an approach that uses flat-spacetime estimators to estimate the manifold dimension of
causal sets that can be faithfully embedded into curved spacetimes. The approach is invariant under coarse-
graining and can be implemented independently of any specific curved spacetime. Results are given based on
causal sets generated by random sprinklings into conformally flat spacetimes in 2, 3, and 4 dimensions, as well
as one generated by a percolation dynamics.
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[. INTRODUCTION set might be uniformly embedded.
The most useful methods for estimating the dimension of
Since the time of Einstein, the prospect that spacetimé causal set are the Myrheim-Meyer dimendi8/#] and the
might be discrete on microscopic scales has been considerggidpoint-scaling dimensio5]. By design, both of these
as one possible avenue to help solve the problem of quantumethods work best in Minkowski space. The approach used
gravity. The causal set program proposes one approach to derive the Myrheim-Meyer dimension has been extended
discrete quantum gravitj1,2]. A causal set is a se€ of to curved spacetimefst], but implementation of this more
elementsx; e C, and an order relatior<, such that the set generalHausdorff dimensionis specific to the particular
C={x;,<} obeys properties which make it a good discretespacetime against which the causal set is being checked.

counterpart for continuum spacetime. These properties argince there are infinitely many curved spacetimes, this
that (a) the set is transitivex;<X;<x=x;<xy; (b) it is method is less useful in more generic cases. Therefore, there

noncircularx;<x; andx;<x;=x;=X;; (c) it is locally finite is a continuing need to find ways to estimatg the dimension
such that the number of elements between any two ordere@f a causal set for curved spacetimes tlaxare independent
elements;<x; is finite, i.e.,|[x ,xj]|<oo; and(d) it is re-  Of thu_:—: specific properties of the curve(_j spacetifbe do not
flexive, x;<x; Vxe C. The action of the order relation is to require very large causal sets to achieve useful results, and
mimic the causal ordering of events in macroscopic spacelC) are invariant under coarse-graining of the causal set. This
time. Since all events in spacetime are not causally relatedast requirement is desired because, on the microscopic scale,
then not all pairs of elements in the set are ordered by théhe causal sets that might describe quantum gravity will not
order relation. Hence a causal set is a partially ordered setdisplay manifold-like properties in the sense described
If the microscopic structure of spacetime is that of aabove. Only in the macroscopic limit, after an appropriate
causal set, then in appropriate macroscopic limits, causal sefange-of-scale, do we expect to see such properties; this
must be consistent with the properties of general relativitychange-of-scale is called coarse-graining.
which describes spacetime as a Lorentzian manifold. There- In what follows, I first present the background theory and
fore, it must be established that causal sets can possel@minology needed to understand the dimension estimation
manifold-like properties. A necessaflyut not sufficientre-  methods described in this paper; then, the different ap-
quirement for a causal set to be like a manifold is that it carProaches to dimension estimation are described. The extent
be embedded into a manifold uniformly with respect to theto which the methods work is illustrated using causal sets
metric. Finding ways to embed a causal set has proven to b@generated by uniform sprinklings into flat and conformally
very difficult thus far. However, the properties of a causal seflat spacetimes. | then illustrate the present method using a
can be compared to the properties that a uniformly embedde¢Rusal set generated by a percolation dynamics.
causal set is expected to have. The kinds of tests that can
check for manifold-like behavior generally require knowl-
edge of the dimension of the manifold into which the causal
set might embed. In fact, consistency between different ways As alluded to previously, in the causal set program we are
to estimate the dimension of the manifold is itself a stringeninterested in those causal sets that can be uniformly embed-
test of manifold-like behavior. It is worth noting that within ded into a manifold. An embedding of a causal set is a map-
the mathematics of partial orders there are several types @fing of the set onto points in a Lorentzian manifold such that
dimensions. However, the dimensions traditionally studiedhe lightcone structure of the manifold preserves the ordering
by mathematicians do not correspond to what is meant heref the set. With high probability, an embedding will be uni-
Therefore, everywhere in this paper the phrase “dimensiofiorm if the mapping corresponds to selecting points in the
of a causal set” refers to thmanifold dimensioni.e., the  manifold via a Poisson procesgas described below Two
dimension of the Lorentzian manifold into which the causalimportant results for understanding the dimension estimators
to be discussed arn@) the correspondence between the vol-
ume of a region in a manifold and the number of causal set
*Email address: phy_reid@online.emich.edu elements, and(b) the correspondence between geodesic
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length and the number of links in a chain of causal set ele<x,<---<x,_1<X, is a chain fromx, to x,. A maximal
ments. These topics are discussed in the next two subsechain is a chain consisting only of links, such ag=<x,
tions. < =X, <X,
As explained by Myrhein{3], the length of the longest
A. Random sprinklings maximal chain between two related elements in a causal set
is the most natural analog for the geodesic length between

. i
One way to generate a causal set that can be uniforml . . ) .
y g wo causally connected events in spacetiidyrheim did

embedded into a manifold is to perform a random sprinkling ) . .
of points in a manifold. If the seX consists of pointgx;} not use the term _causal set” which was co!ned by Rafael
randomly distributedsprinkled in a manifold M of finite Sor_km and used i1].) The Iength _Of a maxm_1a| cham 1S
volumeV,, , we can define a discrete random variajeon defined to be the number of links in 'Fhat chain. Brightwell
a regionA of M such thaty(x;)=1 if x;e A and 0 other- and co-workers hgve proven that thIS. corresppndence be-
wise. In terms of the random variabje, we can define an- tween the geodesic length in a Lorentzian manifold and the
other discrete random variabl, that counts the number of number of links in the longest maximal chain is, in fact, valid

x; € A up to a possible numberequal to the size ok, where in Minkowski space[7]. Therefore, Myrheim’s expectation
N,=3!="yA(x). Random variables such a¥, are de- that this correspondence should be valid in the general case
n— <=1 i/- n

; ; 1 A edribg i : seems well founded. In this work, | shall assume the validity
Egl\,t\),ﬁ?tebg ;z[i]blnomlal distribution which, for our case, “@Nof what | will refer to as theMyrheim length conjecture_et
C={x;,<} be a causal set that can be faithfully embedded,
VK V| "k with density p, into a Lorentzian manifoldM by a map
(V ) ( _W) : (1)  g:C—M. Then, in the limitp—x, the expected length of
the longest maximal chain between any ordered pair
(xi,x;) € C is directly proportional to the geodesic length
between their imagegy(x;),g(x;)] e M.

n
k

Fi(Np)=

whereF, is the probability of outcomé.

If we define the density of the sprinkled points as
=n/V),, the expectation value &, in regionA is given by
(Ny)=pV,. To generalize this description to manifolds of

infinite volume, we take the limit of Eq1) asVy—« while A dimension estimator for a causal set is a method that
holding the density of the sprinkling uniform=const. This  only uses properties of the set to determine the dimension of
procedure is a standard approach for deriving the Poissofhe manifold into which the causal set might be faithfully
distribution[6] embeddable. Ideally, we hope to have a scheme for estimat-
v ing the dimension of a causal set tha works well for
o _ v curved spacetime manifoldgb) is invariant under coarse-
Pk(N“)_VI'Tka(N“)__e o 2) grainings of the causal set, arfd) does not require very
pi"const large causal sets in order to see useful results. As alluded to
previously, one difficulty in finding a useful dimension esti-
where the equivalencé, /V\y,=pV,/n has been used. From mator for curved spacetimes is that implementation of the
this distribution, we find that the average value of the num-estimators tends to depend on the properties of the particular
ber of points sprinkled into regions of volurvg is given by ~ spacetime against which the causal set is being compared.
This circumstance is problematic for causal sets generated by
(N a=pVa. ®) a process that does not directly suggest a class of candidate
spacetimes.
While it is customary to scale the sprinkling to unit density, ~However, one property that all physical spacetimes share
p=1, this scaling is not done in the present cases. Thus, w§ that locally, they are approximately Minkowskian. From
see that a random sprinkling of points in a manifold at uni-the standpoint of causal sets, this implies that if a causal set
form density is described by a Poisson distribution. ThereC, of sizeN, is faithfully embeddable into d-dimensional
fore, the interesting causal sets are from among those th&tirved manifoldM¢, then there ought to be subsets €,
will admit an embedding consistent with a Poisson sprin-Of sizen;<N that are faithfully embeddabl@pproximately
Kling into a manifold (perhaps only after coarse-grainjng into d-dimensional Minkowski spacél®. Studying how
Such an embedding is referred to afa#hful embedding these subsets behave under dimension estimators that work
reliably for MY should allow us to identify which, if any,
d-dimensional Minkowski space is most closely approxi-
mated by these subsets. | will refer to dimensions found in
Recall that the length of the geodesic between two caushe above manner as thecal Minkowski dimensiowf the
ally related events corresponds to the longest proper timeausal set. An approach similar to this was independently
between those events. To see what the most natural analogs$aggested by Sorkifs].
geodesic length is for causal sets, we must first define a few The dimension estimators that will be used to determine
terms. Alink, <, in a causal set is an irreducible relation; so, the local Minkowski dimension in curved spacetimes are the
xi <Xy iff AX;3 X <X;<X. Achainin a causal setis a set of Myrheim-Meyer dimension and the midpoint-scaling dimen-
elements for which each pair is related; for examplg, sion mentioned in the Introduction and described below.

IIl. DIMENSION ESTIMATORS

B. Geodesic length
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Both of these dimension estimators are defined in terms dflinkowski tensor. The sprinklings were performed by two

causal set intervals. A causal set interval between two relatedifferent methods. The more efficient approach for sprinkling

elementsl[y,z] is the inclusive subsel[y,z]={x;|y<x; N points into an interval of volumeV was to divide the

<z}. Taking< as a causal ordeliy,z] is the intersection of interval into several little regions of volume . The number

the future ofy with the past ofz. of points sprinkled into a region; was determined by the
The Myrheim-Meyer dimension is based on the fact thatratio n;/N=v,/V. The coordinates for the; points were

for a causal set faithfully embeddable into an intervalf  then determined randomly within the region of volume

MY, the expected number of chains that consistk @le-  The less efficient approach, which was much easier to imple-

ments,k-chains §,), is given by[4] ment, used a(double rejection method similiar to the
method described if®]. In this second approach, the interval
(pVDKT (ST (26)T(26+ 1)KL was enclosed in a box and spacetime coordinates were ran-
(S0= kI (kST (k+1)5) (4) domly selected within this box; if the selected point was

outside the interval it was rejected, otherwise, it was kept—

whered=(d+1)/2. The easiest chains to count are 2-chaindNiS was the first rejection. In Minkowski space, this first
which count the relations between elements. Specializing t§eiection provides a uniform distribution of points.

2-chains, Eq(4) becomes In curved spacetimes, points that fell within the interval
faced a second rejection designed to ensure that the points
(S;) T(d+1)I'(d/2) were distributed uniformly with respect to the volume form
fld)=-—= AT(3d2) (5) Q9 Each point in the interval was associated with a random
(N) numberw selected within the range<0w<Qd where

max?

where | have used Eq3) to relate number and volume. Qﬂmx is the maximum value of the volume form within the
Therefore, for a given causal set, we can divide the numbeftervall. If wwas greater than the value of the volume form
of relations S,~(S,) by the square of the number of ele- evaluated at the point in question, the point was rejected;
mentsN~(N) to approximate the value df(d) for the in- otherwise, it was kept. This process continued uxtpoints

terval. This function is monotonically decreasing wittand ~ Were sprinkled into the interval. The sprinklings if-1 di-
can be numerically inverted to give a value for the dimen-Mensions used the first method; all others used the rejection

sion. method. In a few cases the two methods were compared, and
The midpoint-scaling dimension relies on the Corresponproduced completely consistent results. Tha.t these methpds

dence between number and volume, and on the relationshiyoduced causal sets that correspond to Poisson sprinklings

between the volume of an interval ' and the length of the Was verified, in %1 dimensions, by chi-squared tests. In all

geodesicr between its defining evens], sprinklings, random numbers were generated using the sub-
routine “ran2” from [9].
(=112 Since the main result of this work comes from comparing
Vi=5 74 (6)  the behavior of small sub-intervals between flat and curved
257 5d(d-1)I'[(d—1)/2] spacetimes, we must determine the pertinent range of sub-

) ) o ) interval sizes. This range can be determined from sprinklings
An interval I[y,z] of sizeN can be divided into two sub- 14 Minkowski space. Figure 1 shows the results for random
intervals1;[y,x] andl;[x,z] of sizesN; and N, respec-  gprinkiings of points into intervals of 2-, 3-, and
tively. Let Ngma be the smaller ofN, and N, then the 4 gimensional Minkowski space. Both the Myrheim-Meyer
elem_entx is _the midpoint ofl when Ngp,4) IS as large as (dyv) and midpoint-scalingd,,;g) dimensions were calcu-
possible. This process corresponds to a rescaling of lengthigieq for every closed sub-interval of sigg=3. The average
by a factor of 1/2; thereforec,j in the manifold 7sma=2,  value ofd was calculated for sub-intervals of a given size. To
which implies thatV/Vspa=2". For the causal set interval, gecrease the statistical fluctuations, each curve in the figure
assuming tr(}e Myrheim length conjecture, this translates tPepresents an average of 15 different sprinklings.
N/Ngmai~2" so that While there are a number of interesting features in this
d~I N/N - figure, two things are most relevant to this study. First, we
0G( small) @) can see that for the midpoint-scaling dimension the three
different Minkowski spaces are effectively indistinguishable
for sub-intervals smaller than;=10. Therefore, since all
three Minkowski results agree within this size region, any
curved spacetime that behaves like one of these three should

The dimension estimators were applied to causal set indlso be in agreement in this region. This fact sets the lower
tervals generated by random sprinklings into flat and conforlimit for the pertinent range of comparison with curved

estimates the dimension.

IV. RESULTS

mally flat spacetimes given by the metric spacetimes at;=3. Second, the general trends displayed by
these curves are typical for all of the results. The curves for
ds?=0%n,zdx*dx?, (8)  bothdyy anddq rise steeply producing a “shoulder” be-

yond which the curves level off. The locations of the shoul-
where()? is the conformal factofa smooth, strictly positive der are clearly different for the three different spacetimes;
function of the spacetime coordinateand 7,5 is the therefore, the degree to which the analogous results for the
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FIG. 1. The average value of the Myrheim-Meyer and midpoint . . o .
dimensions for sub-intervals of a given size in(1)-, (2+1)-, FIG. 2. A uniform sprlnk_llng of _512 p(_)lnts into an interval of a
and (3+1)-dimensional Minkowski space. The sprinklings in 1 con_formally fI_at spa(?etlme int1 dimensions. The conformal fac-
+1 and 2+ 1 dimensions are of 512 points, while, for better statis- tor is shown in the figure.
tics, the 3+1 sprinklings were of 1024 points. Each curve is an
average of 15 different sprinklings. To clearly see the behavior oSO have the following resultsy3 ;=0.823, x3,=1.62,
the small sub-intervals, results for sub-intervals containing oqly X§,4:2-191 X421,2: 5.51, )(5’4: 0.459, and)(fm: 0.588. For
<200 are shown here. Far;>200 the results for the Myrheim- both dimension estimators, the bésmallest result comes
Meyer and midpoint dimensions, for the+2 and 3+1 sprin-  from the comparison of three-dimensional Minkowski space
klings, also merge to the appropriate interger values. against 4-dimensional Minkowski space. Therefore, these

values will be used to determine the relative goodness-of-fit

curved spacetimes match these flat-spacetime results arousflthe results for curved spacetimes, 0.365 for the Myrheim-
this shoulder will be used to determine the local MinkowskiMeyer calculations and 0.459 for the midpoint calculations.
dimension. The broadest shoulder occursder4 for which
a value ofn;=100 is sufficient to incorporate. Therefore, a
good size range for seeking local Minkowski behavior for
the curved spacetimes studied here $sr8=<100. | will call Figure 2 shows a uniform sprinkling of 512 points into an
this size range thocal Minkowski region interval of a conformally flat spacetime in+1l dimensions

The quantitative measure of how well the results for awith conformal factorQ?=(xt)2. Both the midpoint and
curved spacetime match those of a particular flat spacetime Myrheim-Meyer dimension estimators fail for the full inter-
a relative goodness-of-fit test using a chi-squared statistigal giving values of 2.77 and 2.65, respectively. The confor-
that compares values dffor sub-intervals of the same size mal factor for this spacetime causes the points to be more
within the local Minkowski region. This relative measure spread out in space which is consistent with the overesti-
requires knowledge of how well the different flat-spacetimemates of the dimension. Figure 3 shows a plot of the average
results fit each other according to this method. The statistic inidpoint dimension for sub-intervals of different size aver-

A. 141 dimensions

calculated as aged over 15 sprinklings of the spacetime shown in Fig. 2.
This curve is compared against the results for Minkowski
1 B (01— Ejp)? space. Despite the fact that the full interval values of the
Xg,bZE 21 # (99  dimension estimators are closer to 3, the behavior for small
= i

sub-intervals clearly follows that of two-dimensional
Minkowki space suggesting a local Minkowski dimension of
where the subscript ab) means thata-dimensional 2. \What appears to be happening here is that the small sub-
Minkowski space is being compared agaibstimensional intervals are, in fact, behaving like causal sets that are em-
Minkowski space. The quantiti is the number of bins into  peddable in two-dimensional Minkowski space; then, as you
which the data were divide(either 22 or 3@ this number  |ook at sub-intervals of larger size the effects of curvature
depends on the bin siz@ither 4 or 3 which was chosen pecome more important and the flat-spacetime dimension es-
such that each “expected” valug;, was greater than 5. The timators become less reliabl€éA similar plot using the
Oj, are the “observed” values. The results of these Ca|CU|a-|\/|yrheim-Meyer dimension shows identical featuyes.

tions for the Myrheim-Meyer dimension are the following:  To quantify this result, a goodness-of-fit test is made, us-
x§,3=0.662, X§,2=1.25, X§,4=1-77- )(if 4.20, x§,4 ing an equation very similar to E¢9), which compares the
=0.365, andxiv3=0.457. For the midpoint dimension we average dimension of sub-intervals in the curved spacetime
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FIG. 3. Comparison of the average value of the midpoint-
scaling dimension for sub-intervals of a given size for the set of FIG. 4. A uniform sprinkling of 512 points into an interval of a
points shown in Fig. 22D curved against the similar results for 2-, conformally flat spacetime in21 dimensions with conformal fac-
3-, and 4-dimensional Minkowski space. The results for small subtor Q2= (x*+y*)/t%. The figure also shows projections of the
intervals suggest a local Minkowski dimension of 2. points onto thex-t, y-t, andx-y planes.

with those in each dimension of Minkowski space within theseveral (1 1)-dimensional spacetimes studied. In all cases,
local Minkowski region. The curved spacetime values arethe results are similiar to those given here.
taken as the observed and Minkowski space values as the
expected. These results are then compared to the best chi-
squared results from the mutual comparisons of the different . o S
dimensions of Minkowski space. For the curved spacetime Figure 4 shows a uniform sprinkling of 512 points into an
shown in Fig. 2, we obtain relative goodness-of-fit valuesintérval of a conformally flat spacetime int2l dimensions
2.2/, 2 of with conformal factorQ?=(x2+y?)/t®. This example was
X=X X34 chosen because it produced the worst full interval results for
~2 _ ~2 _ all of the (2+ 1)-dimensional spacetimes studied. It is easier
Xap,mum=0-00181,  xzp mig=0.00119, to see what this interval is like from the projections. The
plane shows that more points are located at larger values of
}%D‘MM =1.88, }}%D’mid: 1.84, (10)  they coordinate and smaller values pfthe x-t plane shows
similar behavior. The projection onto they plane shows
that the points are more crowded in the middle of the inter-
val. This crowding is due to the preference for smallhere
the spatial extent of the region is centralized.
where the notatiory3, v Means that the curved spacetime  Figure 5 shows a plot of the average Myrheim-Meyer
result was compared against two-dimensional Minkowskidimension for sub-intervals of different size averaged over
space using the average Myrheim-Meyer dimension value$5 sprinklings of the spacetime shown in Fig. 4. This curve
relative to the value of3 , for the Myrheim-Meyer dimen- 1S compared against the results for Minkowski space. For this
sion; and correspondingly for the values labeled with theSPacetime, the effects of the curvature become apparent
subscript “mid.” As defined, this statistic means that valuesaroundn;=40. Nevertheless, the result for the curved space-
of x?=1 represent a poor fit signifying that the two data setst'me maintains a gqod approximation to Fhe flat spacetime
being compared could certainly be Minkowski spaces differ—re“:'mt W'th'r.] the deslgpated _Iocally ﬂ‘."‘t region. To verify that
o2 i ~ the local Minkowski dimension of this spacetime should be
ing in dimension by at least 1, whereas Va'“?SXS"%l taken to be 3, the relative goodness-of-fit results are
indicate a good fit with the spacetime in question. Clearly,
the results displayed in Ed10) show that the small sub- X0 mm=3-03, X3p mia=3.15,
intervals offer an excellent fit to those of two-dimensional
Minkowski space. Furthermore, the fits with three- and four-
dimensional Minkowski space are no better, or much worse, X35 um=0.00807, X2 miq=0.00697, (11)
than what can be expected between Minkowski spaces of ’ ’
different dimensions. The conformally flat spacetime for ~ ~
which the above results are given represents only one of Xapmm =115, Xap mig=1.14.

B. 2+1 dimensions

}Ale,MM =4.95, ;(LZID,mid:4-84,
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FIG. 7. Comparison of the average value of the midpoint-
scaling dimension for sub-intervals of the set represented in Fig. 6
I(4D curved against similar results for Minkowski space. The re-
sults for small sub-intervals suggest a local Minkowski dimension
of 4.

FIG. 5. Comparison of the average value of the Myrheim-Meyer
dimension for sub-intervals of the set shown in Fig3® curved
against similar results for Minkowski space. The results for smal
sub-intervals suggest a local Minkowski dimension of 3.

Here we see clearly that in the locally flat region this spPaceyimension per size of the sub-interval. As with the other

time provides results that give an excellent fit to the resultgases the figure clearly shows that within the locally flat
for three-dimensional Minkowski space. Several other space;

) ) . ) : = - ‘egion the curved spacetime result gives a much better fit to
times in 2+ 1 dimensions were studied giving similar results. 1o Minkowski space having the same dimension. The rela-

tive goodness-of-fit results for this case are

C. 3+1 dimensions

~2 T2
=9.62, iq=10.4,
Figure 6 shows projections of a uniform sprinkling of 512 X2p.mMm X2D mid

points into an interval of a conformally flat spacetime in 3 _ _
+1 dimensions with conformal factorQ?=(x*+y* X530 um=0.825, X3p mig=0.919, (12)
+2z%/t®. Figure 7 is the corresponding plot for the average

}lle,MM = 003821 ’;(lle,mid: 0.0252.

(2 o)
- N ’ " ’ Several other spacetimes irt3 dimensions were studied
giving similar results.
g :: ‘1....::‘ :.,‘: .g : " . '.. f-‘.“bﬂ D. A causal set generated by transitive percolation
R v '"W So far, all of the causal sets used were guaranteed to be
o ’ o ’ faithful because they were generated by sprinklings into
. I mtm I ° R ,m::...a I known manifolds. Having established the approach, it is in-
] © . = @ . structive to apply this method to a causal set generated by
S some other means. Ultimately, there will be a quantum dy-
o] ] o ; . namics for generating causal sets, and it will be these causal
L8 LI £l T sets (or coarse-grained versions of themvhose manifold
gm. 3 wf“"..:‘ "-".':}." 3] dimensions we would like to estimate. Although a quantum
T R T al o dynamics for causal sets does not yet exist, there is a classi-
R ' v .y cal dynamics, due to Rideout and Sorkir®], which is prov-
A A A ing to be very useful in helping to determine the extent to
zcoordinate x coordinalo

which causal sets can encode physical information. So, this
FIG. 6. Projections of a uniform sprinkling of 512 points into an classical dynamics provides an excellent avenue to illustrate

interval of a conformally flat spacetime in+3L dimensions with ~Now the suggestions presented here might be used in a more

conformal factor)2= (x*+y*+z*)/t°. Panel(a) shows the projec- general case when we cannot be sure that the causal set is

tion onto thex-t plane, panel(b) shows the projection onto thet  faithfully embeddable.

plane, panelc) shows the projection onto thet plane, and panel Perhaps the simplest model within the class of models

(d) shows the projection onto they plane. proposed by Rideout and Sorkin is the one that they have

024034-6



MANIFOLD DIMENSION OF A CAUSAL SET: TEST. .. PHYSICAL REVIEW D 67, 024034 (2003

— r - T T T T T While these results confirm that the percolation curve is a
better fit to the three-dimensional Minkowski result, we can

also see that the3, value is nearly two orders-of-magnitude
worse than what would be expected based on our study of
the random sprinklings. This fact gives some quantitative
weight to the conclusion reached by studying Fig. 8.

4D Minkowski

3D Minkowski

----------

"t H V. CONCLUSIONS
R el YT

Wt |

average dimension

In this paper, | have suggested a method for estimating the
sty manifold dimension of a causal set that can be faithfully

2D Minkowski embedded into curved spacetimes and tested this method for
| several conformally flat spacetimes. The method uses flat-
* spacetime dimension estimators to search for local
] T T Minkowski behavior within the causal set. This approach can

0 50 100 150 200 250 300 be applied to any causal set, and works independent of the
sub-interval size specific properties of a particular curved spacetime. Very

large causal sets are not required. Furthermore, this approach

FIG. 8. Comparison of the average value of the Myrheim-Meyeris invariant under coarse-graining since both the Myrheim-
dimension for the largest sub-interval of a 512-element causal SEN’Ieyer and midpoint-scaling dimensions are invariant under
generated by transitive percolation. The _results for small SUbCoarse-graining.
mtervalsf do not metch any of the three Mlnk_owskl space results Implementation of this procedure can be summarized as
suggestlng that this pereolated eausal set is not faithfully eMzollows: (a) form an interval of sizeN of the causal set,
beddable into any spacetime manifold. larger intervals give better statistics, but they do not need to

be extremely large(b) average the Myrheim-Meyefor
called transitive percolation. The procedure followed here fomidpoint-scaling dimension for sub-intervals of a given
generating a random causal sefNbélements via percolation size;(c) perform ramdom sprinklings of sizg or greater in
is as follows:(a) assign labels to thdl elementsfb) impose  2-, 3-, and 4-dimensional Minkowski space and determine
the partial ordering relatior< onto each pair of elements average dimension values for their sub-intervai;a com-
with probability p, that is, ifi<k, the probability that ele- parision of the results for the causal set being checked
menti<elementk is p; and (c) enforce the transitivity re- against the results for the three Minkowski sprinklings for
quirement on the set. It has been shown that despite th&mall sub-intervals, 8n;<<100, should reveal whether or
labeling, causal sets generated in this way are label invariamot the causal set in question displays the local Minkowski
in that the probability of getting a particular causal set isbehavior that would be required of causal sets that are faith-
independent of how the elements were initially labdled].  fully embeddable into physically relevant spacetimes.

For this example, a causal set witi=512 and p It is worth noting that instead of calculating the dimension
=0.0261 was generated; these values produce a causal s@ues for closed sub-intervals, open sub-intervals can also
that has a Myrheim-Meyer dimension of 2.0 when applied tdbe used. However, the statistical fluctuations are greater for
the full causal sefl11]. This causal set, however, is not a open sub-intervals and this fact becomes somewhat problem-
causal set interval. Therefore, the largest sub-interval of thigtic in 2+ 1 and especially in 3 1 dimensions. What now
512-element causal set was used; this sub-interval containgémains is to apply this method to generically curved space-
298 elements. Figure 8 is a plot of the average Myrheimiimes. The basic principle behind the local Minkowski di-
Meyer dimensions for the sub-intervals of the 298-elemenmension certainly applies in the generic case, but the extent
causal set interval taken from the causal set generated W9 which this behavior can be extracted from the causal sets
transitive percolation, compared against 298-element causi yet unknown. If this approach proves useful in that case as
sets generated by random sprinklings in Minkowski spacewell, it would be an important step toward the goal of a more
What stands out in this figure is that the percolation curvecomprehensive manifold test for causal sets.
does not closely follow any of the Minkowski curves in the
!ocal Minkowsk? region. Therefore, not even the .small subl- ACKNOWLEDGMENTS
intervals of this causal set behave as sub-intervals in
Minkowski space do. This suggests that the percolated causal | would like to acknowledge Jason Ruiz for writing the
set should not be embeddable into dfigt or curved space- computer code to conduct the chi-squared tests used to test
time. the faithfulness of some of the sprinklings. | also wish to
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to the other curves. The relative goodness-of-fit test yields problems in causal set quantum gravity. This work benefited
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