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Manifold dimension of a causal set: Tests in conformally flat spacetimes
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This paper describes an approach that uses flat-spacetime estimators to estimate the manifold dimension of
causal sets that can be faithfully embedded into curved spacetimes. The approach is invariant under coarse-
graining and can be implemented independently of any specific curved spacetime. Results are given based on
causal sets generated by random sprinklings into conformally flat spacetimes in 2, 3, and 4 dimensions, as well
as one generated by a percolation dynamics.
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I. INTRODUCTION

Since the time of Einstein, the prospect that spacet
might be discrete on microscopic scales has been consid
as one possible avenue to help solve the problem of quan
gravity. The causal set program proposes one approac
discrete quantum gravity@1,2#. A causal set is a setC of
elementsxiPC, and an order relationa, such that the se
C5$xi ,a% obeys properties which make it a good discre
counterpart for continuum spacetime. These properties
that ~a! the set is transitive:xiaxjaxk⇒xiaxk ; ~b! it is
noncircular,xiaxj andxjaxi⇒xi5xj ; ~c! it is locally finite
such that the number of elements between any two ord
elementsxiaxj is finite, i.e.,u@xi ,xj #u,`; and ~d! it is re-
flexive, xiaxi ;xPC. The action of the order relation is t
mimic the causal ordering of events in macroscopic spa
time. Since all events in spacetime are not causally rela
then not all pairs of elements in the set are ordered by
order relation. Hence a causal set is a partially ordered s

If the microscopic structure of spacetime is that of
causal set, then in appropriate macroscopic limits, causal
must be consistent with the properties of general relativ
which describes spacetime as a Lorentzian manifold. Th
fore, it must be established that causal sets can pos
manifold-like properties. A necessary~but not sufficient! re-
quirement for a causal set to be like a manifold is that it c
be embedded into a manifold uniformly with respect to t
metric. Finding ways to embed a causal set has proven t
very difficult thus far. However, the properties of a causal
can be compared to the properties that a uniformly embed
causal set is expected to have. The kinds of tests that
check for manifold-like behavior generally require know
edge of the dimension of the manifold into which the cau
set might embed. In fact, consistency between different w
to estimate the dimension of the manifold is itself a string
test of manifold-like behavior. It is worth noting that withi
the mathematics of partial orders there are several type
dimensions. However, the dimensions traditionally stud
by mathematicians do not correspond to what is meant h
Therefore, everywhere in this paper the phrase ‘‘dimens
of a causal set’’ refers to themanifold dimension, i.e., the
dimension of the Lorentzian manifold into which the cau
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set might be uniformly embedded.
The most useful methods for estimating the dimension

a causal set are the Myrheim-Meyer dimension@3,4# and the
midpoint-scaling dimension@5#. By design, both of these
methods work best in Minkowski space. The approach u
to derive the Myrheim-Meyer dimension has been exten
to curved spacetimes@4#, but implementation of this more
general Hausdorff dimensionis specific to the particular
spacetime against which the causal set is being chec
Since there are infinitely many curved spacetimes, t
method is less useful in more generic cases. Therefore, t
is a continuing need to find ways to estimate the dimens
of a causal set for curved spacetimes that~a! are independen
of the specific properties of the curved spacetime,~b! do not
require very large causal sets to achieve useful results,
~c! are invariant under coarse-graining of the causal set. T
last requirement is desired because, on the microscopic s
the causal sets that might describe quantum gravity will
display manifold-like properties in the sense describ
above. Only in the macroscopic limit, after an appropria
change-of-scale, do we expect to see such properties;
change-of-scale is called coarse-graining.

In what follows, I first present the background theory a
terminology needed to understand the dimension estima
methods described in this paper; then, the different
proaches to dimension estimation are described. The ex
to which the methods work is illustrated using causal s
generated by uniform sprinklings into flat and conforma
flat spacetimes. I then illustrate the present method usin
causal set generated by a percolation dynamics.

II. THEORY

As alluded to previously, in the causal set program we
interested in those causal sets that can be uniformly em
ded into a manifold. An embedding of a causal set is a m
ping of the set onto points in a Lorentzian manifold such t
the lightcone structure of the manifold preserves the orde
of the set. With high probability, an embedding will be un
form if the mapping corresponds to selecting points in
manifold via a Poisson process~as described below!. Two
important results for understanding the dimension estima
to be discussed are~a! the correspondence between the v
ume of a region in a manifold and the number of causal
elements, and~b! the correspondence between geode
©2003 The American Physical Society34-1
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length and the number of links in a chain of causal set e
ments. These topics are discussed in the next two sub
tions.

A. Random sprinklings

One way to generate a causal set that can be unifor
embedded into a manifold is to perform a random sprinkl
of points in a manifold. If the setX consists of points$xi%
randomly distributed~sprinkled! in a manifold M of finite
volumeVM , we can define a discrete random variablexA on
a regionA of M such thatxA(xi)51 if xiPA and 0 other-
wise. In terms of the random variablexA we can define an-
other discrete random variableNn that counts the number o
xiPA up to a possible numbern equal to the size ofA, where
Nn5( i 51

i 5nxA(xi). Random variables such asNn are de-
scribed by the binomial distribution which, for our case, c
be written as@4#

Fk~Nn!5S n
kD S VA

VM
D kS 12

VA

VM
D n2k

, ~1!

whereFk is the probability of outcomek.
If we define the density of the sprinkled points asr

5n/VM , the expectation value ofNn in regionA is given by
^Nn&5rVA . To generalize this description to manifolds
infinite volume, we take the limit of Eq.~1! asVM→` while
holding the density of the sprinkling uniform,r5const. This
procedure is a standard approach for deriving the Pois
distribution @6#

Pk~Nn!5 lim
VM→`
r5const

Fk~Nn!5
rVA

k!
e2rVA, ~2!

where the equivalenceVA /VM5rVA /n has been used. From
this distribution, we find that the average value of the nu
ber of points sprinkled into regions of volumeVA is given by

^Nn&A5rVA . ~3!

While it is customary to scale the sprinkling to unit densi
r51, this scaling is not done in the present cases. Thus
see that a random sprinkling of points in a manifold at u
form density is described by a Poisson distribution. The
fore, the interesting causal sets are from among those
will admit an embedding consistent with a Poisson spr
kling into a manifold ~perhaps only after coarse-graining!.
Such an embedding is referred to as afaithful embedding.

B. Geodesic length

Recall that the length of the geodesic between two ca
ally related events corresponds to the longest proper t
between those events. To see what the most natural anal
geodesic length is for causal sets, we must first define a
terms. Alink, d, in a causal set is an irreducible relation; s
xidxk iff '” xj{xiaxjaxk . A chain in a causal set is a set o
elements for which each pair is related; for example,xa
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axba•••axz21axz is a chain fromxa to xz . A maximal
chain is a chain consisting only of links, such asxadxb

d•••dxz21dxz .
As explained by Myrheim@3#, the length of the longes

maximal chain between two related elements in a causa
is the most natural analog for the geodesic length betw
two causally connected events in spacetime.~Myrheim did
not use the term ‘‘causal set’’ which was coined by Rafa
Sorkin and used in@1#.! The length of a maximal chain is
defined to be the number of links in that chain. Brightw
and co-workers have proven that this correspondence
tween the geodesic length in a Lorentzian manifold and
number of links in the longest maximal chain is, in fact, va
in Minkowski space@7#. Therefore, Myrheim’s expectation
that this correspondence should be valid in the general c
seems well founded. In this work, I shall assume the valid
of what I will refer to as theMyrheim length conjecture: Let
C5$xi ,a% be a causal set that can be faithfully embedd
with density r, into a Lorentzian manifoldM by a map
g:C→M . Then, in the limitr→`, the expected length o
the longest maximal chain between any ordered p
(xi ,xj )PC is directly proportional to the geodesic leng
between their images@g(xi),g(xj )#PM .

III. DIMENSION ESTIMATORS

A dimension estimator for a causal set is a method t
only uses properties of the set to determine the dimensio
the manifold into which the causal set might be faithfu
embeddable. Ideally, we hope to have a scheme for estim
ing the dimension of a causal set that~a! works well for
curved spacetime manifolds,~b! is invariant under coarse
grainings of the causal set, and~c! does not require very
large causal sets in order to see useful results. As allude
previously, one difficulty in finding a useful dimension es
mator for curved spacetimes is that implementation of
estimators tends to depend on the properties of the partic
spacetime against which the causal set is being compa
This circumstance is problematic for causal sets generate
a process that does not directly suggest a class of cand
spacetimes.

However, one property that all physical spacetimes sh
is that locally, they are approximately Minkowskian. Fro
the standpoint of causal sets, this implies that if a causal
C, of sizeN, is faithfully embeddable into ad-dimensional
curved manifoldMd, then there ought to be subsets ci,C,
of sizeni,N that are faithfully embeddable~approximately!
into d-dimensional Minkowski spaceMd. Studying how
these subsets behave under dimension estimators that
reliably for Md should allow us to identify which, if any
d-dimensional Minkowski space is most closely appro
mated by these subsets. I will refer to dimensions found
the above manner as thelocal Minkowski dimensionof the
causal set. An approach similar to this was independe
suggested by Sorkin@8#.

The dimension estimators that will be used to determ
the local Minkowski dimension in curved spacetimes are
Myrheim-Meyer dimension and the midpoint-scaling dime
sion mentioned in the Introduction and described belo
4-2
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Both of these dimension estimators are defined in term
causal set intervals. A causal set interval between two rel
elementsI @y,z# is the inclusive subsetI @y,z#5$xi uyaxi
az%. Takinga as a causal order,I @y,z# is the intersection of
the future ofy with the past ofz.

The Myrheim-Meyer dimension is based on the fact t
for a causal set faithfully embeddable into an intervalI of
Md, the expected number of chains that consists ofk ele-
ments,k-chains (Sk), is given by@4#

^Sk&5
~rVI !

kG~d!G~2d!G~2d11!k21

2k21kG~kd!G„~k11!d…
, ~4!

whered[(d11)/2. The easiest chains to count are 2-cha
which count the relations between elements. Specializin
2-chains, Eq.~4! becomes

f ~d![
^S2&

^N&2
5

G~d11!G~d/2!

4G~3d/2!
, ~5!

where I have used Eq.~3! to relate number and volume
Therefore, for a given causal set, we can divide the num
of relationsS2'^S2& by the square of the number of ele
mentsN'^N& to approximate the value off (d) for the in-
terval. This function is monotonically decreasing withd and
can be numerically inverted to give a value for the dime
sion.

The midpoint-scaling dimension relies on the corresp
dence between number and volume, and on the relation
between the volume of an interval inMd and the length of the
geodesict between its defining events@5#,

VI5
p (d21)/2

2d22d~d21!G@~d21!/2#
t d. ~6!

An interval I @y,z# of size N can be divided into two sub
intervals I 1@y,x# and I 2@x,z# of sizesN1 and N2, respec-
tively. Let Nsmall be the smaller ofN1 and N2, then the
elementx is the midpoint ofI when Nsmall is as large as
possible. This process corresponds to a rescaling of len
by a factor of 1/2; therefore, in the manifoldt/tsmall52,
which implies thatV/Vsmall52d. For the causal set interva
assuming the Myrheim length conjecture, this translates
N/Nsmall'2d so that

d' log2~N/Nsmall! ~7!

estimates the dimension.

IV. RESULTS

The dimension estimators were applied to causal set
tervals generated by random sprinklings into flat and con
mally flat spacetimes given by the metric

ds25V2habdxadxb, ~8!

whereV2 is the conformal factor~a smooth, strictly positive
function of the spacetime coordinates! and hab is the
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Minkowski tensor. The sprinklings were performed by tw
different methods. The more efficient approach for sprinkli
N points into an intervalI of volume V was to divide the
interval into several little regions of volumev i . The number
of points sprinkled into a regionni was determined by the
ratio ni /N5v i /V. The coordinates for theni points were
then determined randomly within the region of volumev i .
The less efficient approach, which was much easier to im
ment, used a~double! rejection method similiar to the
method described in@9#. In this second approach, the interv
was enclosed in a box and spacetime coordinates were
domly selected within this box; if the selected point w
outside the interval it was rejected, otherwise, it was kep
this was the first rejection. In Minkowski space, this fir
rejection provides a uniform distribution of points.

In curved spacetimes, points that fell within the interv
faced a second rejection designed to ensure that the p
were distributed uniformly with respect to the volume for
Vd. Each point in the interval was associated with a rand
number w selected within the range 0,w,Vmax

d , where
Vmax

d is the maximum value of the volume form within th
interval I. If w was greater than the value of the volume for
evaluated at the point in question, the point was reject
otherwise, it was kept. This process continued untilN points
were sprinkled into the interval. The sprinklings in 111 di-
mensions used the first method; all others used the rejec
method. In a few cases the two methods were compared,
produced completely consistent results. That these meth
produced causal sets that correspond to Poisson sprink
was verified, in 111 dimensions, by chi-squared tests. In
sprinklings, random numbers were generated using the
routine ‘‘ran2’’ from @9#.

Since the main result of this work comes from compari
the behavior of small sub-intervals between flat and cur
spacetimes, we must determine the pertinent range of
interval sizes. This range can be determined from sprinkli
into Minkowski space. Figure 1 shows the results for rand
sprinklings of points into intervals of 2-, 3-, an
4-dimensional Minkowski space. Both the Myrheim-Mey
(dMM) and midpoint-scaling (dmid) dimensions were calcu
lated for every closed sub-interval of sizeni>3. The average
value ofd was calculated for sub-intervals of a given size.
decrease the statistical fluctuations, each curve in the fig
represents an average of 15 different sprinklings.

While there are a number of interesting features in t
figure, two things are most relevant to this study. First,
can see that for the midpoint-scaling dimension the th
different Minkowski spaces are effectively indistinguishab
for sub-intervals smaller thanni510. Therefore, since al
three Minkowski results agree within this size region, a
curved spacetime that behaves like one of these three sh
also be in agreement in this region. This fact sets the lo
limit for the pertinent range of comparison with curve
spacetimes atni53. Second, the general trends displayed
these curves are typical for all of the results. The curves
both dMM anddmid rise steeply producing a ‘‘shoulder’’ be
yond which the curves level off. The locations of the sho
der are clearly different for the three different spacetim
therefore, the degree to which the analogous results for
4-3
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curved spacetimes match these flat-spacetime results ar
this shoulder will be used to determine the local Minkows
dimension. The broadest shoulder occurs ford54 for which
a value ofni5100 is sufficient to incorporate. Therefore,
good size range for seeking local Minkowski behavior
the curved spacetimes studied here is 3<ni<100. I will call
this size range thelocal Minkowski region.

The quantitative measure of how well the results fo
curved spacetime match those of a particular flat spacetim
a relative goodness-of-fit test using a chi-squared stat
that compares values ofd for sub-intervals of the same siz
within the local Minkowski region. This relative measu
requires knowledge of how well the different flat-spacetim
results fit each other according to this method. The statist
calculated as

xa,b
2 5

1

B (
j 51

B
~Oja2Ejb!2

Ejb
, ~9!

where the subscript (a,b) means that a-dimensional
Minkowski space is being compared againstb-dimensional
Minkowski space. The quantityB is the number of bins into
which the data were divided~either 22 or 30!; this number
depends on the bin size~either 4 or 3! which was chosen
such that each ‘‘expected’’ valueEjb was greater than 5. Th
Oja are the ‘‘observed’’ values. The results of these calcu
tions for the Myrheim-Meyer dimension are the followin
x2,3

2 50.662, x3,2
2 51.25, x2,4

2 51.77, x4,2
2 54.20, x3,4

2

50.365, andx4,3
2 50.457. For the midpoint dimension w

FIG. 1. The average value of the Myrheim-Meyer and midpo
dimensions for sub-intervals of a given size in (111)-, (211)-,
and (311)-dimensional Minkowski space. The sprinklings in
11 and 211 dimensions are of 512 points, while, for better stat
tics, the 311 sprinklings were of 1024 points. Each curve is
average of 15 different sprinklings. To clearly see the behavio
the small sub-intervals, results for sub-intervals containing onlyni

<200 are shown here. Forni.200 the results for the Myrheim
Meyer and midpoint dimensions, for the 211 and 311 sprin-
klings, also merge to the appropriate interger values.
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also have the following results:x2,3
2 50.823, x3,2

2 51.62,
x2,4

2 52.19, x4,2
2 55.51, x3,4

2 50.459, andx4,3
2 50.588. For

both dimension estimators, the best~smallest! result comes
from the comparison of three-dimensional Minkowski spa
against 4-dimensional Minkowski space. Therefore, th
values will be used to determine the relative goodness-o
of the results for curved spacetimes, 0.365 for the Myrhe
Meyer calculations and 0.459 for the midpoint calculation

A. 1¿1 dimensions

Figure 2 shows a uniform sprinkling of 512 points into a
interval of a conformally flat spacetime in 111 dimensions
with conformal factorV25(xt)2. Both the midpoint and
Myrheim-Meyer dimension estimators fail for the full inte
val giving values of 2.77 and 2.65, respectively. The conf
mal factor for this spacetime causes the points to be m
spread out in space which is consistent with the overe
mates of the dimension. Figure 3 shows a plot of the aver
midpoint dimension for sub-intervals of different size ave
aged over 15 sprinklings of the spacetime shown in Fig
This curve is compared against the results for Minkow
space. Despite the fact that the full interval values of
dimension estimators are closer to 3, the behavior for sm
sub-intervals clearly follows that of two-dimension
Minkowki space suggesting a local Minkowski dimension
2. What appears to be happening here is that the small
intervals are, in fact, behaving like causal sets that are
beddable in two-dimensional Minkowski space; then, as y
look at sub-intervals of larger size the effects of curvatu
become more important and the flat-spacetime dimension
timators become less reliable.~A similar plot using the
Myrheim-Meyer dimension shows identical features.!

To quantify this result, a goodness-of-fit test is made,
ing an equation very similar to Eq.~9!, which compares the
average dimension of sub-intervals in the curved spacet

t

-

f

FIG. 2. A uniform sprinkling of 512 points into an interval of
conformally flat spacetime in 111 dimensions. The conformal fac
tor is shown in the figure.
4-4
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with those in each dimension of Minkowski space within t
local Minkowski region. The curved spacetime values
taken as the observed and Minkowski space values as
expected. These results are then compared to the best
squared results from the mutual comparisons of the diffe
dimensions of Minkowski space. For the curved spacet
shown in Fig. 2, we obtain relative goodness-of-fit valu
x̃2[x2/x3,4

2 of

x̃2D,MM
2 50.00181, x̃2D,mid

2 50.00119,

x̃3D,MM
2 51.88, x̃3D,mid

2 51.84, ~10!

x̃4D,MM
2 54.95, x̃4D,mid

2 54.84,

where the notationx̃2D,MM
2 means that the curved spacetim

result was compared against two-dimensional Minkow
space using the average Myrheim-Meyer dimension va
relative to the value ofx3,4

2 for the Myrheim-Meyer dimen-
sion; and correspondingly for the values labeled with
subscript ‘‘mid.’’ As defined, this statistic means that valu
of x̃2*1 represent a poor fit signifying that the two data s
being compared could certainly be Minkowski spaces diff
ing in dimension by at least 1, whereas values ofx̃2!1
indicate a good fit with the spacetime in question. Clea
the results displayed in Eq.~10! show that the small sub
intervals offer an excellent fit to those of two-dimension
Minkowski space. Furthermore, the fits with three- and fo
dimensional Minkowski space are no better, or much wo
than what can be expected between Minkowski space
different dimensions. The conformally flat spacetime
which the above results are given represents only one

FIG. 3. Comparison of the average value of the midpoi
scaling dimension for sub-intervals of a given size for the set
points shown in Fig. 2~2D curved! against the similar results for 2-
3-, and 4-dimensional Minkowski space. The results for small s
intervals suggest a local Minkowski dimension of 2.
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several (111)-dimensional spacetimes studied. In all cas
the results are similiar to those given here.

B. 2¿1 dimensions

Figure 4 shows a uniform sprinkling of 512 points into a
interval of a conformally flat spacetime in 211 dimensions
with conformal factorV25(x21y2)/t6. This example was
chosen because it produced the worst full interval results
all of the (211)-dimensional spacetimes studied. It is eas
to see what this interval is like from the projections. They-t
plane shows that more points are located at larger value
they coordinate and smaller values oft; thex-t plane shows
similar behavior. The projection onto thex-y plane shows
that the points are more crowded in the middle of the int
val. This crowding is due to the preference for smallt where
the spatial extent of the region is centralized.

Figure 5 shows a plot of the average Myrheim-Mey
dimension for sub-intervals of different size averaged o
15 sprinklings of the spacetime shown in Fig. 4. This cur
is compared against the results for Minkowski space. For
spacetime, the effects of the curvature become appa
aroundni540. Nevertheless, the result for the curved spa
time maintains a good approximation to the flat spaceti
result within the designated locally flat region. To verify th
the local Minkowski dimension of this spacetime should
taken to be 3, the relative goodness-of-fit results are

x̃2D,MM
2 53.03, x̃2D,mid

2 53.15,

x̃3D,MM
2 50.00807, x̃3D,mid

2 50.00697, ~11!

x̃4D,MM
2 51.15, x̃4D,mid

2 51.14.

-
f

-

FIG. 4. A uniform sprinkling of 512 points into an interval of
conformally flat spacetime in 211 dimensions with conformal fac
tor V25(x41y4)/t6. The figure also shows projections of th
points onto thex-t, y-t, andx-y planes.
4-5
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Here we see clearly that in the locally flat region this spa
time provides results that give an excellent fit to the res
for three-dimensional Minkowski space. Several other spa
times in 211 dimensions were studied giving similar resul

C. 3¿1 dimensions

Figure 6 shows projections of a uniform sprinkling of 51
points into an interval of a conformally flat spacetime in
11 dimensions with conformal factorV25(x41y4

1z4)/t6. Figure 7 is the corresponding plot for the avera

FIG. 5. Comparison of the average value of the Myrheim-Me
dimension for sub-intervals of the set shown in Fig. 4~3D curved!
against similar results for Minkowski space. The results for sm
sub-intervals suggest a local Minkowski dimension of 3.

FIG. 6. Projections of a uniform sprinkling of 512 points into a
interval of a conformally flat spacetime in 311 dimensions with
conformal factorV25(x41y41z4)/t6. Panel~a! shows the projec-
tion onto thex-t plane, panel~b! shows the projection onto they-t
plane, panel~c! shows the projection onto thez-t plane, and pane
~d! shows the projection onto thex-y plane.
02403
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dimension per size of the sub-interval. As with the oth
cases, the figure clearly shows that within the locally fl
region the curved spacetime result gives a much better fi
the Minkowski space having the same dimension. The re
tive goodness-of-fit results for this case are

x̃2D,MM
2 59.62, x̃2D,mid

2 510.4,

x̃3D,MM
2 50.825, x̃3D,mid

2 50.919, ~12!

x̃4D,MM
2 50.0382, x̃4D,mid

2 50.0252.

Several other spacetimes in 311 dimensions were studie
giving similar results.

D. A causal set generated by transitive percolation

So far, all of the causal sets used were guaranteed t
faithful because they were generated by sprinklings i
known manifolds. Having established the approach, it is
structive to apply this method to a causal set generated
some other means. Ultimately, there will be a quantum
namics for generating causal sets, and it will be these ca
sets ~or coarse-grained versions of them! whose manifold
dimensions we would like to estimate. Although a quantu
dynamics for causal sets does not yet exist, there is a cla
cal dynamics, due to Rideout and Sorkin@10#, which is prov-
ing to be very useful in helping to determine the extent
which causal sets can encode physical information. So,
classical dynamics provides an excellent avenue to illust
how the suggestions presented here might be used in a m
general case when we cannot be sure that the causal s
faithfully embeddable.

Perhaps the simplest model within the class of mod
proposed by Rideout and Sorkin is the one that they h

r

ll

FIG. 7. Comparison of the average value of the midpoi
scaling dimension for sub-intervals of the set represented in Fi
~4D curved! against similar results for Minkowski space. The r
sults for small sub-intervals suggest a local Minkowski dimens
of 4.
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MANIFOLD DIMENSION OF A CAUSAL SET: TESTS . . . PHYSICAL REVIEW D 67, 024034 ~2003!
called transitive percolation. The procedure followed here
generating a random causal set ofN elements via percolation
is as follows:~a! assign labels to theN elements;~b! impose
the partial ordering relationa onto each pair of element
with probability p, that is, if i ,k, the probability that ele-
ment i aelementk is p; and ~c! enforce the transitivity re-
quirement on the set. It has been shown that despite
labeling, causal sets generated in this way are label invar
in that the probability of getting a particular causal set
independent of how the elements were initially labeled@10#.

For this example, a causal set withN5512 and p
50.0261 was generated; these values produce a causa
that has a Myrheim-Meyer dimension of 2.0 when applied
the full causal set@11#. This causal set, however, is not
causal set interval. Therefore, the largest sub-interval of
512-element causal set was used; this sub-interval conta
298 elements. Figure 8 is a plot of the average Myrhe
Meyer dimensions for the sub-intervals of the 298-elem
causal set interval taken from the causal set generate
transitive percolation, compared against 298-element ca
sets generated by random sprinklings in Minkowski spa
What stands out in this figure is that the percolation cu
does not closely follow any of the Minkowski curves in th
local Minkowski region. Therefore, not even the small su
intervals of this causal set behave as sub-intervals
Minkowski space do. This suggests that the percolated ca
set should not be embeddable into any~flat or curved! space-
time.

Looking at Fig. 8 shows that the percolation curve is
closer fit to the three-dimensional Minkowski curve than it
to the other curves. The relative goodness-of-fit test yield

x̃2D,MM
2 51.82, x̃3D,MM

2 50.308, x̃4D,MM
2 51.952.

~13!

FIG. 8. Comparison of the average value of the Myrheim-Me
dimension for the largest sub-interval of a 512-element causa
generated by transitive percolation. The results for small s
intervals do not match any of the three Minkowski space res
suggesting that this percolated causal set is not faithfully e
beddable into any spacetime manifold.
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While these results confirm that the percolation curve i
better fit to the three-dimensional Minkowski result, we c
also see that thex̃3D

2 value is nearly two orders-of-magnitud
worse than what would be expected based on our stud
the random sprinklings. This fact gives some quantitat
weight to the conclusion reached by studying Fig. 8.

V. CONCLUSIONS

In this paper, I have suggested a method for estimating
manifold dimension of a causal set that can be faithfu
embedded into curved spacetimes and tested this metho
several conformally flat spacetimes. The method uses
spacetime dimension estimators to search for lo
Minkowski behavior within the causal set. This approach c
be applied to any causal set, and works independent of
specific properties of a particular curved spacetime. V
large causal sets are not required. Furthermore, this appr
is invariant under coarse-graining since both the Myrhe
Meyer and midpoint-scaling dimensions are invariant un
coarse-graining.

Implementation of this procedure can be summarized
follows: ~a! form an interval of sizeN of the causal set,
larger intervals give better statistics, but they do not need
be extremely large;~b! average the Myrheim-Meyer~or
midpoint-scaling! dimension for sub-intervals of a give
size;~c! perform ramdom sprinklings of sizeN or greater in
2-, 3-, and 4-dimensional Minkowski space and determ
average dimension values for their sub-intervals;~d! a com-
parision of the results for the causal set being chec
against the results for the three Minkowski sprinklings f
small sub-intervals, 3,ni,100, should reveal whether o
not the causal set in question displays the local Minkow
behavior that would be required of causal sets that are fa
fully embeddable into physically relevant spacetimes.

It is worth noting that instead of calculating the dimensi
values for closed sub-intervals, open sub-intervals can
be used. However, the statistical fluctuations are greater
open sub-intervals and this fact becomes somewhat prob
atic in 211 and especially in 311 dimensions. What now
remains is to apply this method to generically curved spa
times. The basic principle behind the local Minkowski d
mension certainly applies in the generic case, but the ex
to which this behavior can be extracted from the causal
is yet unknown. If this approach proves useful in that case
well, it would be an important step toward the goal of a mo
comprehensive manifold test for causal sets.
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