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Axisymmetric general relativistic hydrodynamics: Long-term evolution of neutron stars and stellar
collapse to neutron stars and black holes

Masaru Shibata
Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan

~Received 20 October 2002; published 30 January 2003!

We report a new implementation for axisymmetric simulation in full general relativity. In this implementa-
tion, the Einstein equations are solved using the Nakamura-Shibata formulation with the so-called cartoon
method to impose an axisymmetric boundary condition, and the general relativistic hydrodynamic equations
are solved using a high-resolution shock-capturing scheme based on an approximate Riemann solver. As tests,
we performed the following simulations:~i! long-term evolution of nonrotating and rapidly rotating neutron
stars,~ii ! long-term evolution of neutron stars of a high-amplitude damping oscillation accompanied with
shock formation,~iii ! collapse of unstable neutron stars to black holes, and~iv! stellar collapses to neutron
stars. Tests~i!–~iii ! were carried out with theG-law equation of state, and test~iv! with a more realistic
parametric equation of state for high-density matter. We found that this new implementation works very well:
It is possible to perform the simulations for stable neutron stars for more than 10 dynamical time scales, to
capture strong shocks formed at stellar core collapses, and to accurately compute the mass of black holes
formed after the collapse and subsequent accretion. In conclusion, this implementation is robust enough to
apply to astrophysical problems such as stellar core collapse of massive stars to a neutron star, and black hole,
phase transition of a neutron star to a high-density star, and accretion-induced collapse of a neutron star to a
black hole. The result for the first simulation of stellar core collapse to a neutron star started from a realistic
initial condition is also presented.

DOI: 10.1103/PhysRevD.67.024033 PACS number~s!: 04.25.Dm, 04.30.2w, 04.40.Dg
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I. INTRODUCTION

In the 1980s, one of the most important issues in the fi
of numerical relativity involved performing simulations o
rotating stellar collapse with the assumption of axial symm
try. Simulations of rotating stellar collapse in full gener
relativity were first performed by Nakamura and collabo
tors @1,2#. Using the ~211!11 formalism developed by
Maedaet al. @3#, they succeeded in performing simulatio
of a rotating collapse of massive stars to black holes. T
used cylindrical coordinates (Ã,z) with a nonuniform grid
spacing and with at most~42, 42! grid resolution for (Ã,z)
because of restricted computational resources.

To compute gravitational waves emitted during gravi
tional collapse to black holes, Stark and Piran@4# subse-
quently performed simulations similar to those of Nakam
et al., adopting spherical polar coordinates with a typic
grid size ~100, 16! for (r ,u). The distinguishing feature o
their work is that they adopted the Bardeen-Piran formal
@5#, which is well suited for computation of gravitationa
waves in the wave zone. As a result of this choice of form
ism, they succeeded in computing gravitational wave for
and clarified that the wave forms are characterized by
quasinormal mode of rotating black holes formed after gra
tational collapse and that the total radiated energy of gr
tational waves is at most 0.1% of the gravitational mass
the system@4#.

Since the completion of their works, no new work in th
field was done for the next 15 years@6#. Although several
questions that they originally wished to answer have b
answered by their simulations, it was not feasible to perfo
sophisticated astrophysical simulations in the 1980s. Thi
0556-2821/2003/67~2!/024033~24!/$20.00 67 0240
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likely due to the fact that the computational resources w
severely restricted, and, in addition, that techniques in
merical relativity such as methods to provide realistic init
conditions and to perform the long-term simulations we
not sufficiently developed. As a result, there still rema
many unsolved issues in astrophysics and general relat
that can be studied with axisymmetric hydrodynamic sim
lations in full general relativity. Among them, realistic simu
lations of rotating core collapse of massive stars, wh
thereby become black holes or protoneutron stars, in
general relativity, have not yet been performed. Stellar c
lapse is a common phenomenon in the universe and, he
understanding the formation mechanism of black holes
neutron stars in nature is one of the most important issue
astrophysics. Actually, the study of the formation of rapid
rotating black holes with surrounding accretion disks in st
lar core collapse is currently one of the hot topics in conn
tion with a hypothetical scenario for the central engine
g-ray bursts@7#. To date, simulations of a rotating collapse
a massive stellar core have been done in the Newtonian g
ity @8–13# or in an approximate general relativistic gravi
@14# using the so-called conformal flatness approximation~or
the Isenberg-Wilson-Mathews approximation!. In rotating
stellar core collapses, general relativity plays an import
role. As demonstrated in@14#, general relativistic effects
modify the collapse, bounce, and amplitude of gravitatio
waves emitted significantly, even in the formation of neutr
stars. Of course, general relativity plays a crucial role in
formation of black holes. Thus, general relativistic simu
tion is inevitable to precisely understand the nature of ste
core collapses.

One long-standing issue for axisymmetric simulations
full general relativity has been to develop methods in wh
©2003 The American Physical Society33-1
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the accuracy and stability for a long-term simulation can
preserved. In axisymmetric simulations, we have in gen
used cylindrical and/or spherical polar coordinate syste
which have coordinate singularities at the origin and alo
the symmetric axisÃ50. At such coordinate singularities
the finite differencing scheme has to be changed, resul
often in numerical instabilities. To stabilize computation, w
have often been required to add artificial viscosities aro
the coordinate singularities to stabilize the numerical sys
@15#.

Recently, the Potsdam numerical relativity group has p
posed the so-called cartoon method by which a robust
merical relativity implementation for axisymmetric system
can be made@16#. The essence of their idea is that the C
tesian coordinates (x,y,z) could be used even for simula
tions of axisymmetric systems if the Einstein field equatio
are solved only for they50 ~or x50) plane, using the
boundary condition aty56Dy ~or x56Dx) provided by
the axial symmetry.~Here,Dx, Dy, andDz denote the grid
spacing.! Since the field equations are written in the Car
sian coordinate system, we neither have singular terms
do we have to change the finite differencing scheme a
where, except at the outer boundaries. Thus, it is possib
perform a stable and accurate long-term simulation with
any prescription or artificial viscosities, but only by a min
modification of a three-dimensional implementation that h
already been developed@17–20#.

Other important progress has been made regarding c
putational resources. Current large-scale supercomputers
we can use are typically of several hundred Gbytes mem
Necessary memory in an axisymmetric simulation w
double precision, withN2 grid points, and withNv variables
is

;2 GbytesS N

103D 2S Nv

250D , ~1!

whereNv is ;200 in our general relativistic implementatio
This implies that the memory of current supercomputers
large enough to carry out an axisymmetric numerical sim
lation with N; several thousands. UsingN of order 103, it is
feasible to carry out a well-resolved simulation and a care
convergence test, changing the grid resolution for a w
range fromN;100 to 1000. This situation is in contrast wit
that of three-dimensional numerical relativity, since it is s
very difficult to carry out a three-dimensional simulatio
with N;103, for which the required computational memo
is of order TByte.

Motivated by the status mentioned above, we recen
started a project in axisymmetric numerical relativity.
@21#, we reported a numerical hydrodynamic implementat
for axisymmetric spacetimes that is made using the cart
method and incorporating a hydrodynamic implementat
in the cylindrical coordinates. In that paper, we presen
numerical results for simulations of rotating stellar collap
adopting simple initial conditions and simple equations
state to investigate the effects of rotation on the criteria
prompt collapse to black holes in an idealized setting.
demonstrated that the axisymmetric implementation and
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rent computational resources are well suited to system
cally perform stable and well-resolved hydrodynamic sim
lations in axisymmetric numerical relativity. Tha
implementation has also been applied to a study of colla
of rotating supermassive stars to supermassive black h
@22#.

We have recently remade a hydrodynamic implementa
using a high-resolution shock-capturing scheme based o
Godunov-type scheme@23–28#. Although the previous one
@21# works well for problems in which shocks are weak, su
as evolution of single rotating stars and collapse of neut
stars and supermassive stars to a black hole, it is expe
that such implementation cannot produce an accurate
merical result for problems in which shocks are strong. D
ing rotating core collapses to a neutron star or a black h
strong shocks are likely to be accompanied. Therefo
implementing a high-resolution shock-capturing schem
such as that adopted in@28#, is a promising strategy. To
check that the new implementation works well, we have p
formed a wide variety of test simulations. In this paper,
present the numerical results, paying particular attention
long-term numerical simulations of neutron stars as done
e.g., @18,28#, and to stellar collapse in which strong shoc
are accompanied. Finally, we present the first numerical
sults of stellar core collapse to a neutron star for which
simulation is started from a realistic initial condition. In a
dition to presenting the successful numerical results, we
dress the advantage of axisymmetric simulations in testin
new general relativistic hydrodynamic implementation, sin
we can study in detail the convergence of numerical res
in the test simulations changing the grid number for a w
range to a well-resolved level~e.g.,N; several hundreds!,
which is still difficult in three-dimensional simulations be
cause of restricted computational resources.

The paper is organized as follows. In Sec. II, we descr
the formulation that we adopt. In Sec. III, we define glob
quantities of the system and describe the calibration met
for the numerical results. In Sec. IV, we present the num
cal results. Section V is devoted to a summary and disc
sion. Throughout this paper, we use the geometrical unit
which G515c, whereG andc denote the gravitational con
stant and speed of light. We use Cartesian coordinatesxk

5(x,y,z), as the spatial coordinates, withr 5Ax21y21z2,
Ã5Ax21y2, andw5tan21(y/x). t denotes the coordinat
time. Greek indicesm,n, . . . denotex, y, z, and t, small
Latin indices i , j , . . . denotex, y, and z, and capital Latin
indicesA,B, . . . denotex andz.

II. FORMULATION

A. Formulation for the Einstein equation

The Einstein equation is solved in the~311! formulation,
in which the line element is written in the form

ds25~2a21bkb
k!dt212bkdxkdt1g i j dxidxj , ~2!

wherea, bk, andg i j are the lapse function, shift vector, an
three-metric. The three-metric is defined by
3-2
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gmn5gmn1nmnn , ~3!

wherenm is a timelike, unit-normal vector that is orthogon
to a spacelike hypersurface, and its components are wr
as (1/a,2bk/a). The extrinsic curvature is defined as

Ki j 52
1

2
L–ng i j 52

1

2a
~] tg i j 2Dib j2D jb i !, ~4!

whereL–n is the Lie derivative with respect tonm, andDi is
the covariant derivative with respect tog jk .

The Einstein field equations are solved using the sa
formulation, gauge conditions, and outer boundary con
tions as in previous papers@17–20,29,30,21#: We adopt the
so-called Nakamura-Shibata formulation@2,31# with some
modification from the original version~see@20#, to which the
reader may refer for basic equations and gauge condition
the latest version!. In this formalism, we evolve the follow
ing geometric variables using a free evolution code:

f[ 1
12 ln@det~g i j !#, ~5!

g̃ i j [e24fg i j , ~6!

K[Ki j g
i j , ~7!

Ãi j [e24f~Ki j 2g i j K/3!, ~8!

Fi[d jk]kg̃ i j . ~9!

The Hamiltonian and momentum constraint equations
solved att50, and used to check the accuracy of numeri
solutions during computation.

The slicing and spatial gauge conditions for determin
a and bk are basically the same as those adopted in
previous series of papers@17–20,29,30,21#, i.e., we impose
an ‘‘approximate’’ maximal slicing condition (K'0) and an
‘‘approximate’’ minimum distortion~AMD ! gauge condition

@D̃ i(] tg̃
i j )'0, whereD̃ i is the covariant derivative with re

spect to g̃ i j ]. However, in contrast with previous pape
@17,29,19,20#, we do not modify the spatial gauge conditio
even in the formation of black holes, since in the axisymm
ric simulation, a sufficient number of grid points can
taken to resolve black hole formation and subsequent ev
tion even using the AMD gauge condition without modific
tion.

We impose the axially symmetric condition to the ge
metric variables using the so-called cartoon method propo
by Alcubierreet al. @16#. First, we define the computationa
domain as 0<x,z<L and 2Dy<y<Dy, whereL denotes
the location of the outer boundaries, and reflection symm
with respect to thez50 plane is assumed. With this comp
tational domain, we need only three points in they direction,
0 and6Dy. We determine here that the Einstein equation
solved only in they50 plane. Then, the boundary condition
at y56Dy that are necessary in evaluatingy derivatives are
supplied from the assumption of axial symmetry as
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QAB5LA
CLB

DQCD
(0) ,

QAz5LA
CQCz

(0) , QA5LA
CQC

(0) ,

Qzz5Qzz
(0) , Qz5Qz

(0) , Q5Q(0), ~10!

where

LA
B5S cosw~x! 2sinw~x!

sinw~x! cosw~x! D , ~11!

and w(x)5tan21@6Dy/Ax21(Dy)2#. Qi j , Qi , and Q de-
note (g̃ i j ,Ãi j ), (Fi ,b i), and (f,K,a), respectively, and

Qi j
(0) , Qi

(0) , and Q(0) are the values ofQi j , Qi , and Q at

„Ax21(Dy)2,0,z…, which are interpolated using Lagrange
formula @32# with three nearby grid points along thex direc-
tion ~i.e., x6Dx and x). At x5L, we use only two points,
x2Dx andx, for the extrapolation.

To impose the gauge conditions, as well as to solve
constraint equations in preparing the initial conditions,
solve scalar and vector elliptic-type equations of the fo
@18#

DflatQ5S, ~12!

DflatQi5Si , ~13!

where Dflat denotes the Laplacian in the flat thre
dimensional space, andS and Si denote the source terms
Using the interpolation mentioned above,]yyQ and ]yyQi
are evaluated in the finite differencing as

]yyQ52
Q(0)2Q~x,0,z!

~Dy!2
,

]yyQz52
Qz

(0)2Qz~x,0,z!

~Dy!2
,

]yyQx52
Qx

(0)ucosw~x!u2Qx~x,0,z!

~Dy!2
,

]yyQy52
Qy

(0)ucosw~x!u2Qy~x,0,z!

~Dy!2
.

On the other hand, the finite differencing in thex and z
directions,]xxQi and]zzQi , is written in the standard form
as

Qi~x1Dx,0,z!22Qi~x,0,z!1Qi~x2Dx,0,z!

~Dx!2 ,

Qi~x,0,z1Dz!22Qi~x,0,z!1Qi~x,0,z2Dz!

~Dz!2 .

Thus, in the finite differencing form for each component
Eq. ~13!, only one component ofQi is included, implying
3-3
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that each component of the vector elliptic-type equation
solved independently, as in the case of the scalar elli
equation.

Finally, we note a necessary modification for numerica
handling Einstein’s evolution equations in the axisymme
case. In our formalism, the evolution equations are written
the form @31,17,20#

] tQ1bk]kQ5right-hand side, ~14!

whereQ denotes one of the geometric variablesg̃ i j , Ãi j , f,
K, andFk . In the three-dimensional case, we apply an u
wind scheme to numerically handle the transport termbk]kQ
for all the components@17#. In the axisymmetric case, th
same method is used forbx]xQ and bz]zQ, but is not for
by]yQ, since it is not appropriate.~Remember that in the
hydrodynamic equations in the axisymmetric case, ther
no transport term for the rotational direction.! For by]yQ,
we use the following schemes: ForQ5f, K, g̃zz, andÃzz,
we setby]yQ50 because of symmetry. For other variable
we simply use the cell-centered~second-order! finite differ-
ence.

B. Formulation for the hydrodynamic equations in general
relativity

The hydrodynamic equations in general relativity a
written as

¹m~rum!50, ~15!

¹mTn
m50, ~16!

where ¹m is the covariant derivative with respect to th
spacetime metricgmn , r is the baryon rest-mass density,um

is the four-velocity, and

Tmn5rhumun1Pgmn. ~17!

Here,P is the pressure,h[11«1P/r is the enthalpy, and«
is the specific internal energy. Equations~15! and ~16! are
the continuity equation and the equations of motion, resp
tively.

We adopt the so-called high-resolution shock-captur
scheme in numerically handling the transport terms of hyd
dynamic equations. To use such a scheme, the hydrodyn
equations should be of a conservative form as

] t~r*
Ah!1] i~r*

Ahv i !50, ~18!

] t~r*
Ahû j !1] i~r*

Ahv i û j1Pae6fAhd j
i !

5P] j~ae6fAh!2r*
AhFwh] ja2ûi] jb

i

1
1

2uth
ûkûl] jg

klG , ~19!
02403
s
ic

c
n

-

is

,

c-

g
-
ic

] t~r* êAh!1] i@r*
Ahêv i1Pe6fAh~v i1b i !#

5ae6fAhPK1
r*

Ah

uth
ûi û jK

i j 2r*
Ahûig

i j D ja,

~20!

where

r* [rwe6f, ~21!

v i[
ui

ut52b i1ag i j
û j

hw
, ~22!

ûi[hui , ~23!

ê[
e6f

r*
Tmnnmnn5hw2

P

rw
, ~24!

w[aut, ~25!

andh is a determinant in curvilinear coordinates; in the c
lindrical coordinates,h5Ã. We note that subscriptsi , j , . . .
here denote the components in curvilinear spatial coo
nates. Equations~18!, ~19!, and~20! are the continuity, Euler,
and energy equations. The Euler and energy equations
derived fromg j

n¹mTn
m50 andnn¹mTn

m50, respectively.
We solve the hydrodynamic equations in the assump

of axial symmetry. Thus, we first write equations in the c
lindrical coordinates (Ã,w,z). However, the Einstein equa
tions are solved in they50 plane with the Cartesian coord
nates. Hence, we rewrite the hydrodynamic equations in
Cartesian coordinates using relations such asÃ5x and uw

5xuy for y50. Then, the explicit forms of the equations ca
be written as

] tr* 1]x~r* vx!1]z~r* vz!52
r* vx

x
, ~26!

] t~r* ûA!1]x@r* ûAvx1Pae6fdA
x #

1]z@r* ûAvz1Pae6fdA
z #

52
r* ûAvx

x
1

r* ûyv
y

x
dAx1P]A~ae6f!

2r* Fwh]Aa2û j]Ab j1
ae24fûi û j

2wh
]Ag̃ i j

2
2ah~w221!

w
]AfG , ~27!

] t~r* ûy!1]x~r* ûyv
x!1]z~r* ûyv

z!52
2r* ûyv

x

x
,

~28!
3-4
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] t~r* ê!1]x@r* êvx1Pe6f~vx1bx!#

1]z@r* êvz1Pe6f~vz1bz!#

52
r* êvx1Pe6f~vx1bx!

x
1ae6fPK

1
r*
uth

ûi û jK
i j 2r* ûig

i j D ja, ~29!

where a subscriptA denotesx or z, andi , j , . . . here denote
x, y, andz. For numerically handling the transport terms
]x(•••) and ]z(•••), we apply an approximate Rieman
solver with third-order~piecewise parabolic! spatial interpo-
lation. Other terms are regarded as the source terms. N
tificial viscosity is added, in contrast with our previous ax
symmetric implementation@21#. The time integration is done
with the second-order Runge-Kutta method as explaine
@18#. Detailed numerical methods with respect to the tre
ment of the transport terms are also described in Appendi

We note that from Eqs.~26! and ~28!, conservation of
baryon rest-mass and angular momentum is derived. H
ever, we write these equations as nonconservative forms
hence, these conserved quantities are not precisely conse
in numerical computation. To suppress the growth of vio
tion of the conservations in an acceptable level~e.g., within
1%!, we should be careful in the grid resolution~see Sec.
IV !.

In every time step of computation,w at each grid point is
obtained by solving the following equations, which is d
rived from the normalization relation of the four-velocity a

w2511g i j uiuj511g i j ûi û j S ê

w
1

P

rw2D 22

. ~30!

Here, P5P(r,«)5P@r* /(we6f),ê# ~see Sec. II C! and r

5r* /(we6f). Thus for a giveng̃ i j , f, ûi , ê, andr* , Eq.
~30! constitutes an algebraic equation forw, which can be
solved by standard numerical techniques@32#. After w is ob-
tained,r, P, «, h, andv i can be updated. We note that th
procedure is essentially the same as that used in our prev
papers~see@18# for details!.

C. Equations of state

We adopt two equations of state. One is the so-ca
G-law equation of state of the form

P5~G21!r«, ~31!

whereG is an adiabatic constant. In using Eq.~31!, we al-
ways give an initial condition using the polytropic equati
of stateP5KPr

G of the identicalG, whereKP is a polytropic
constant. In this paper, we set the adiabatic constant aG
52 @i.e., the polytropic indexn is given by n51/(G21)
51] as a qualitative approximation of moderately stiff equ
tions of state for neutron stars. We note that if we prepar
polytropic star as an initial condition and the system evol
in an adiabatic manner~with no shock, cooling, and heating!,
02403
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the equation of state is preserved in the polytropic form e
using Eq.~31!; i.e., the valueP/rG[KP(x

m) for any fluid
element remains a constant (5KP).

The second one is a parametric equation of state that
been used by Yamada and Sato@11# and by Müller and his
collaborators@12,14# for the simulation of a rotating stella
core collapse. In this equation of state, we assume that
pressure consists of the sum of polytropic and thermal p
as

P5PP1Pth . ~32!

The polytropic part is in general given asPP5KP(r)rG(r),
whereKP andG are not constants but functions of densityr.
In this paper, we follow@14# for the choice ofKP(r) and
G(r): For density smaller than the nuclear densityrnuc[2
31014 g/cm3, G5G1(5const) is set to be& 4

3 , and for r
>rnuc, G5G2(5const)>2. Thus,

PP5H K1rG1, r<rnuc,

K2rG2, r>rnuc,
~33!

whereK1 andK2 are constants. SincePP should be continu-
ous, we demand that the relation,K25K1rG12G2, should be
satisfied. Following@12,14#, we setK15531014 cgs, be-
cause we can well approximate the polytropic part of
equation of state forr,rnuc in which the degenerate pres
sure of electrons is dominant. Taking into account that
specific internal energy should also be continuous ar
5rnuc, the polytropic specific internal energy«P is written
as

«P55
K1

G121
rG1, r<rnuc,

K2

G221
rG21

~G22G1!K1rnuc
G121

~G121!~G221!
, r>rnuc.

~34!

With these settings, we mimic a realistic equation of state
high-density, cold nuclear matter.

The thermal part of pressure plays a role in the case
shocks are generated. Here, we write it as

Pth5~G t21!r« th , ~35!

where« th[«2«P. Following @12,14#, we setG th51.5 in this
paper.

We performed simulations of rotating stellar collapses
ing this parametric equation of state. In choosing this,
always give equilibrium stars as initial conditions using t
polytropic equation of state

P5K0r4/3, ~36!

where K0 is a constant. Following@12,14#, we setK055
31014 cm3/s2/gr1/3, with which a soft equation of state gov
erned by the electron degenerate pressure is well appr
mated @33#. Here, K0 and K1 are related by K1

5K0r0
4/32G1, wherer051 g/cm3.
3-5
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D. Adding atmosphere

In using high-resolution shock-capturing schemes,
have to add an atmosphere of small density outside s
sincer andP have to be nonzero. Att50, we put an atmo-
sphere of uniform density and specific internal energy in
computational domain ofr50, according to the following
methods. For theG-law equation of state withG52, the
uniform density of the atmosphere is set asra51026rmax,
wherermax denotes the maximum density of a star. The s
cific internal energy is given using the polytropic constant
KP/4. For parametric equations of state~32!, the uniform
density of the atmosphere is set asra'1 g/cm3. In this case,
the specific internal energy is given using the polytropic c
stant asK0.

For the G-law equation of state withG52, the density
decreases steeply around the surface of a neutron sta
such a case, numerical instability could often turn on arou
the stellar surface, if the density of the atmosphere is too l
This is the reason that we attach the atmosphere of relati
high density. On the other hand, a small value ofra is ac-
ceptable in parametric equations of state.

III. GLOBAL QUANTITIES AND METHOD
FOR CALIBRATION

We monitor the conservation of the total baryon rest-m
M* , ADM massM, and angular momentumJ, which are
computed in they50 plane as

M* 54pE
0

L

xdxE
0

L

dzr* , ~37!

M522E
0

L

xdxE
0

L

dzF22pEe5f1
ef

8
R̃

2
e5f

8 H Ãi j Ã
i j 2

2

3
K2J G , ~38!

J54pE
0

L

x2dxE
0

L

dzr* ũy , ~39!

whereE5rhw22P andR̃ is the Ricci scalar with respect t
g̃ i j . M* should be conserved in any system. Because of
axial symmetry,J should also be conserved. On the oth
hand,M is not conserved in general because of gravitatio
radiation. However, the total radiated energy of gravitatio
waves is likely to be quite small in the axisymmetric spa
time, so that we can considerM as an approximately con
served quantity. In our axisymmetric hydrodynamic imp
mentation,M* and J are not guaranteed to be conserv
precisely. Thus, monitoring the conservation of them is
good check of numerical accuracy.

In addition to the mass and angular momentum, we a
check the conservation of the specific angular momen
spectrum@37#,
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M* ~ j 0!54pE
j < j 0

xdxdzr* , ~40!

where j is the specific angular momentum computed
xûy(5huw) and j 0 denotes a particular value forj.

The numerical accuracy is also checked monitoring
violation of the Hamiltonian constraint, which is written a

H528c25F D̃c2
c

8
R̃12pEc51

c5

8
Ãi j Ã

i j 2
c5

12
K2G ,

~41!

wherec[ef, and D̃ denotes the Laplacian with respect
g̃ i j . In this paper, we define the averaged violation accord
to

ERROR5
1

M*
E r* uVud3x, ~42!

where

V5

D̃c2
c

8
R̃12pEc51

c5

8
Ãi j Ã

i j 2
c5

12
K2

uD̃cu1U c

8
R̃U12pEc51

c5

8
Ãi j Ã

i j 1
c5

12
K2

. ~43!

Namely, we user* as the weight factor for the average. Th
reason that we introduce this average is as follows. In us
high-resolution shock-capturing schemes, we add an at
sphere of small density outside neutron stars and/or colla
ing stars. In the atmosphere, a small error in the metric
sults in a large violation of the Hamiltonian constrai
becauseE is a very small value. Furthermore, the volum
fraction occupied by the atmosphere in the whole compu
tional domain is larger than that for main bodies. Thus, if
simply compute the volume integral ofuVu, it is close to
unity irrespective of the grid resolution. However, the n
merical accuracy in the atmosphere is not very important
evolution of the main bodies and for global evolution of t
system in which we are interested. Therefore, to mon
whether the main bodies~neutron stars and collapsing star!
are accurately computed or not, this type of weight facto
necessary.

IV. NUMERICAL RESULTS

In the numerical simulations reported in Secs. IV A–IV
below, we adopted a fixed uniform grid, in which the gr
spacingDx5Dy5Dz is constant, with grid size (N11,N
11) for (x,z) to cover a computational domain as
<x, z<L, whereL5NDx. In the simulation reported in
Sec. IV D, we varied the grid spacing during the compu
tion, but still used the uniform grid in whichDx5Dy
5Dz. To check the convergence of the numerical results
Dx→0, numerical computations were carried out with thr
levels of the grid resolution while fixingL. All the computa-
tions were done on the FACOM VPP5000 machine in
data processing center of the National Astronomical Obs
3-6
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vatory of Japan. The memory and CPU time in one run w
a grid sizeN5600 and with four processors are about
GByte and 12 CPU hours for;30 000 time steps.

We note that for a simulation withN5600 in three spatia
dimensions, we would need;300 Gbytes memory and i
takes;1000 CPU hours for 30 000 time steps using 32 p
cessors@20#. Such simulation is pragmatically impossibl
because the computational costs are too high~note that under
normal circumstances, we can use at most;1000 CPU
hours per year!. However, takingN5600 in an axisymmetric
simulation is an easy task with the current computatio
resources.

A. Spherical neutron stars

In this subsection, we focus on the long-term evolution
spherical neutron stars. The initial conditions are given us
the polytropic equation of state withG52, and during the
time evolution, theG-law equation of state~31! is used. Al-
though we did the same test simulations for the previ
hydrodynamic implementation and obtained successful
puts from it @18#, we repeated the tests again in the pres
new implementation to demonstrate that it also works wel
difference in the present tests from the previous ones is
we have performed much longer-term simulations than th
in the previous tests, since it is computationally inexpens
and pragmatically possible to do in the axisymmetric cas

In the polytropic equations of state, the polynomial re
tion c32nKP

n/2G23/2 has dimension of mass. With this prop
erty, all the quantities can be scaled to be nondimensiona
we multiply an appropriate combination ofc, G, and KP.
Thus, we will only show the nondimensional quantities
using this equation of state. In other words, we adopt
units of c5G5KP51. In these units, the maximum ADM
mass and baryon rest-mass of spherical neutron stars
'0.164 and 0.180, respectively, with the central densityrc
'0.318. RecoveringKP, the mass and density in dimen
sional units can be written as

M* phys52.11M (S KP

23105 cgs
D 1/2S M*

0.180D , ~44!

TABLE I. The central densityrc , baryon rest-massM* , ADM
massM, and compactnessM /R of spherical neutron stars withG
52 that we pick up in this paper. Here,R denotes the circumferenc
radius. All the quantities are shown in units ofc5G5KP51. The
star denoted with † is of the maximum allowed mass and he
marginally stable against gravitational collapse. In the last colu
numerical results of the radial oscillation period for thef mode,
Posc, are presented in units ofrc

21/2.

rc M* M M /R Poscrc
1/2

S1 0.0637 0.105 0.100 0.0932
S2 0.127 0.150 0.140 0.146 5.0
S3 0.191 0.170 0.156 0.178 6.9
S4 0.255 0.178 0.162 0.200 11
S5† 0.318 0.180 0.164 0.214
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rphys51.3531015 g/cm3S KP

23105 cgs
D 21S r

0.3D . ~45!

In Table I, we list several quantities for five models
spherical neutron stars that we pick up in this subsect
Below, we refer to these models as models~S1!–~S5!. Mod-
els ~S1!–~S4! are stable against gravitational collapse, wh
~S5! is marginally stable.

In Figs. 1~a! and 1~b!, we display the time evolution o
the central density, central value of the lapse function~here-
after ac), central value ofK(Kc), averaged violation of the
Hamiltonian constraint, and violation of ADM mass an
baryon rest-mass conservation for model~S2!. Throughout
this subsection, the time is shown in units ofrc, init

21/2, where
rc, init denotes the central density att50. To induce a small
oscillation, we initially reduce the pressure by 0.2%. We n
that whenever we superimpose a perturbation to an equ
rium configuration, we reinforce the Hamiltonian and m
mentum constraints att50. Numerical results are shown fo

e
n,

FIG. 1. ~a! Time evolution of central density, central value o
lapse function, and extrinsic curvature at origin, and~b! time evo-
lution of averaged violation of the Hamiltonian constraint, violatio
of the ADM mass conservation, and violation of the baryon re
mass conservation for a stable spherical neutron star~S2!. In both
figures, the solid, dotted, and dashed curves denote the results
N5180, 120, and 90. With these grid numbers, the radius is
tially covered by about 65, 44, and 33 grid numbers.rc, init denotes
the central density att50, and the time is shown in units ofrc, init

21/2.
3-7
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N590, 120, and 180 with a fixed value ofL, to demonstrate
that the convergence is achieved. The simulations contin
for ;30 dynamical times cales~see also Fig. 2! until the
crash of the run, irrespective of the grid resolution, althou
the accuracy deteriorates gradually with time. Here, we re
to the period of the fundamental radial~and quasiradial! os-
cillation as the dynamical time scale.

L is chosen as;3Rs , whereRs denotes the coordinat
radius of the neutron star. For simulating spherical syste
we imposed the outer boundary conditions as

g̃ i j 5d i j , Ãi j 50, ~rf! ,r50, K50, and Fi50.
~46!

~For nonspherical problems, we impose an outgoing bou
ary condition forg̃ i j and Ãi j .) These boundary condition
are adequate but not physically perfect. As a result, for
choice of a too small value ofL as ;Rs , the numerical
solution is affected by the spurious effects of the ou

FIG. 2. ~a! Time evolution of central density, lapse function
origin, and averaged violation of the Hamiltonian constraint
stable stars~S2! ~solid curves!, ~S3! ~dotted curves!, and ~S4!
~dashed curves!. The simulations were performed withN5180.
With these grid numbers, the radius is covered by about 65, 58,
51 grid numbers for~S2!, ~S3!, and ~S4!, respectively.~b! Fourier
spectra of the central density for~S2! ~solid curve!, ~S3! ~dotted
curve!, and~S4! ~dashed curve!.
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boundaries, resulting in an earlier crash of the run. Howe
for L.2Rs , the results are not significantly modified by th
spurious effects.

As we mentioned in Sec. III, the baryon rest-mass is
numerically conserved strictly. However, the violation do
not seriously affect the numerical results. Indeed, the av
aged values of the central density and lapse remain cons
as they should. The numerical results indicate that if we w
to suppress the violation of the mass conservation within
~2%! after 10 dynamical time scales, the radius of the n
tron star should be covered by more than 40~30! grid points.

The error of mass conservation converges to zero w
improving the grid resolution at approximately second ord
The averaged violation of the Hamiltonian constraint a
indicates approximate second-order convergence. There
we can conclude that the numerical solution converges to
exact solution in the limitDx→0. We note, however, tha
the convergence is only approximately at second order,
cause near stellar surfaces, the gradients of hydrodyna
variables are so steep that transport terms are often comp
with first-order accuracy in space. The convergence may
become first order if shocks are generated during numer
computations~see Sec. IV C!, since near the shocks, the h
drodynamic computations are done with first-order accura
A similar tendency is reported by Milleret al. in the simula-
tions of a head-on collision of two neutron stars@34#.

In the last figure of Fig. 1~a!, it is shown thatKc is not
zero exactly but relaxes to a finite value. This indicates t
even in solving the equation for the maximal slicing con
tion, K deviates from zero as long as finite differencin
methods are used. Indeed,Kc converges to zero at secon
order with improving the grid resolution. Thus the maxim
slicing conditionK50 cannot be precisely imposed in nu
merical computation even in a well-resolved simulation,
we adopt finite differencing schemes. This tells us that
should follow the evolution ofK and should nota priori set
K50 in numerical computation, even in choosing the ma
mal slicing condition.

Long-term simulations for more compact stable stars~S3!
and ~S4! were also carried out. In Fig. 2, we display th
results for models~S2!, ~S3!, and~S4! together. For~S3!, the
simulation continued for;20 dynamical time scales unt
the crash of the run. However, for~S4!, the star starts col-
lapsing to a black hole after about 5 oscillation periods. T
reason for this consequence is clear. The ADM mass
model ~S4! is '99% of the maximum allowed value. Thu
with a slight increase of the mass as a result of the accu
lation of numerical error, the mass exceeded the maxim
allowed value for stable stars, resulting in eventual grav
tional collapse. It is interesting to note that in this case,
computation was able to be continued until the formation
a black hole of the apparent horizon mass@see Eq.~49! for
definition# ;M , whereM is the initial ADM mass. Thus, the
increase of the central density and the decrease ofac @see
Fig. 2~a!# do not imply that the computation crashed. T
avoid the collapse to a black hole and to make the oscilla
time longer, we need to take more grid numbers to impro
the grid resolution. Actually, we have checked that we c

r
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increase the oscillation cycles in numerical computation w
improvement of the grid resolution.

The duration of the simulation to crash for model~S3!
was shorter than that of~S2!. This fact indicates that with
increasing the compactness of neutron stars, the comp
tions crash earlier. We note here that the duration of
simulation for these models depends only weakly on the g
resolution. Thus, it does not depend on the numerical ac
racy, but seems to depend on certain factors associated
formulation or gauge conditions or outer boundaries. T
same tendency is found in the simulations of rotating neut
stars. We will argue this point in Sec. IV B again.

Although the simulations can be continued only for a
nite time scale, the duration of.10 dynamical time scale
seems to be sufficiently long. Indeed, we can accurately
tract the oscillation frequencies of the fundamental rad
mode from these simulations. In Fig. 2~b!, we display the
Fourier spectra ofrc(t), which is defined as

F~ f ![U E
0

t f
@rc~ t !2rc,av#e

2p i f tdtU, ~47!

where t f is chosen as;70rc
21/2, 55rc

21/2, and 40rc
21/2 for

~S2!, ~S3!, and~S4!, respectively.rc,av is computed from

rc,av[
1

t f
E

0

t f
rc~ t !dt. ~48!

The Fourier spectra indicate that the oscillation period of
f mode of the radial oscillation is'5.0rc

21/2, 6.9rc
21/2, and

11rc
21/2 for ~S2!, ~S3!, and ~S4!. These values agree we

with those derived from Chandrasekhar’s semianalytic f
mula @35,18#. Furthermore, the result for~S2! is in good
agreement with that for a spherical star ofrc50.128 re-
ported in@28#. Thus, we conclude that the computation c
be continued for a sufficiently long time to accurately obta
the oscillation frequencies of even extremely relativistic n
tron stars. The simulation would be able to be carried ou
study nonspherical oscillations of neutron stars, as was d
in @18,36#.

In Fig. 3, we display the time evolution of several qua
tities for collapse of a marginally stable spherical neutr
star ~S5!. To induce the collapse, we initially reduced th
pressure by 0.5%. With this setting, the neutron star collap
to a black hole in;10rc, init

21/2. We have checked that eve
with a 0.2% decrease of the pressure, the star collapses
black hole in;20rc, init

21/2, which is longer than that for the
case of 0.5%. Numerical results are presented forN590,
120, and 180 and demonstrate that the convergenc
achieved. Note that with lower grid resolution, it takes
slightly longer time to form a black hole. This is because
dissipation that prevents the increase of density is larger w
lower grid resolution.

In the final phase of the collapse, the grid resoluti
around the black hole forming region became so bad that
computation crashed. It is interesting to note that the ma
tude of the averaged violation of the Hamiltonian constra
ERROR, relaxes to;0.2 irrespective of the grid resolutio
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at t;10rc, init
21/2. This verifies that the computation crash

when ERROR is;0.2. We can also observe that as t
accuracy deteriorates,~i! the central density stops increasin
and instead starts decreasing, and~ii ! exponential decrease o
ac that is a feature in the maximal slicing condition is mod
fied. The reason for~i! is as follows. In our implementation
r* is a fundamental quantity to evolve, andr is computed
from r* /(e6fw). In numerical computations,r* and f
monotonically increase, but sincef around the origin is too
large @of O(1)] in the late phase of the collapse, a sma
error inf leads to a large error inr. As a result,r decreases
in the late phase. The reason for~ii ! is simply that the com-
putation crashed. Indeed, the time at which the behavio
ac starts changing agrees with that at which the magnit
of the averaged violation of the Hamiltonian constraint sa
rates to;0.2.

Although the accuracy deteriorates in the final phase
the collapse, the simulation can be carried out at least u
the formation of an almost static black hole. To confirm t
black hole formation, apparent horizons were located dur

FIG. 3. ~a! Time evolution of central density, lapse function
origin, and violation of baryon mass conservation, and~b! time
evolution of mass of the apparent horizonMAH in units of the ADM
mass of the system for a marginally stable spherical neutron
~S5!. To destabilize, we initially reduce the pressure by 0.5%.
both figures, the solid, dotted, and dashed curves denote the re
with N5180, 120, and 90. With these grid numbers, the radius
initially covered by about 71, 47, and 35 grid points.
3-9
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the simulations. In Fig. 3~b!, we display the time evolution o
the mass of the apparent horizon in units of the ADM m
of the system. Here, the mass of the apparent horizo
defined as

MAH5A S

16p
, ~49!

whereS is the area of the apparent horizon. The figure in
cates thatMAH relaxes approximately toM in the final phase
of the collapse.~For N5180, uMAH /M21u is less than
1%.! This implies that the simulation was carried out up
the time when a spacetime settles down to a static black
spacetime.

In Fig. 4~a!, we show the time evolution of several qua
tities for an oscillating spherical neutron star of a high a
plitude. In this simulation, we picked up a low-mass sphe
cal star ~S1!, and to induce an oscillation of a hig
amplitude, we initially reduced the pressure by 40 %. T
numerical results are shown forN590, 120, and 180, and

FIG. 4. ~a! Time evolution of central density, lapse function
origin, and averaged violation of Hamiltonian constraint for an
cillating spherical neutron star. The solid, dotted, and dashed cu
denote the results withN5180, 120, and 90. With these grid num
bers, the radius is initially covered by about 78, 52, and 39 g
points.~b! Profiles of«/(KPr

G21) andr at t'0 ~dotted curves! and
after about one oscillation period~solid curves!. The unit of the
horizontal axis is the initial radius of the neutron star.
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demonstrate that convergence is achieved. In each case
neutron star is initially covered by 39, 52, and 78 grid poin
respectively.

Because of a significant decrease of the pressure, the
dius of the neutron star decreases by a factor of;2 soon
after the simulation starts. However, the magnitude of
pressure decrease is not large enough for the star to coll
to a black hole. Instead, the star bounces when the ce
density becomes about six times of initial value, and repe
oscillations subsequently. As the density approaches
maximum, shocks are formed around the stellar surface,
as a result, outer envelopes explode. To illustrate that sh
heating indeed occurs, we display«/(KPr

G21) at t'0 and
after about one oscillation period in Fig. 4~b!. As mentioned
in Sec. II C, in the absence of shocks, this quantity does
change from the initial value, but in the presence of sho
heating it increases. Figure 4~b! clearly shows that in the
outer envelope, the shock heating is significant. On the o
hand, a negligible effect of shocks can be seen around
central region. Since the shocks are generated only in
atmosphere, the averaged violation of the Hamiltonian c
straint still converges approximately at second order w
improving the grid resolution.

Figure 4~a! indicates that the amplitude of the oscillatio
gradually decreases, and after several oscillation period
settles down approximately to a constant. This illustrates
the kinetic energy of the oscillation is dissipated by t
shocks gradually. Similar results are reported in@28# for a
simulation of a migrating neutron star. The lower figure
Fig. 4~b! shows the density profiles att50 andt; one os-
cillation period. This indicates that the density profile
modified to a more centrally condensed state as a resu
the shock dissipation.

We emphasize that this simulation is highly dynamic
and general relativistic. Even in such a case, the simula
was able to be continued for more than 20 oscillation pe
ods. This illustrates the robustness of our implementation
dynamical problems in general relativity.

B. Rapidly rotating neutron stars

We focus here on the long-term evolution of rigidly an
rapidly rotating neutron stars at mass shedding limits
which the angular velocity at the equator is equal to
Kepler angular velocity. Following Sec. IV A, we adopt th
polytropic equation of state withG52 for setting initial con-
ditions and evolve neutron stars using theG-law equation of
state~31!. The axial ratio of the polar radius to the equator
one is '0.58 for rotating neutron stars at mass shedd
limits with G52. As in Sec. IV A, we only present the
scaled dimensionless quantities with the units ofc5G5KP
51 throughout this subsection. In these units, the maxim
ADM mass and baryon rest-mass of rigidly rotating neutr
stars are about 0.188 and 0.207, respectively, with the ce
densityrc'0.27 @38#. The central density of the marginall
stable star against gravitational collapse has slightly lar
density ('0.295) than this value@38,29#. In Table II, we list
several quantities of six rotating neutron stars that we p
up here. In the following, we refer to these neutron stars
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models ~R0!–~R5!. Models ~R0!–~R4! are stable agains
gravitational collapse, and~R5! is unstable and very close t
the marginally stable point.

In Fig. 5, we display the time evolution of several qua
tities for model~R1!. The ADM mass of this model is'91%
of the maximum mass of rigidly rotating neutron stars w
G52, so that it is a sufficiently relativistic model. To induc
a small oscillation of the fundamental quasiradial mode,
initially reduce the pressure by 0.5%. Numerical results
shown for N5240, 180, 120, and 90 to demonstrate th
convergence is achieved. With these grid numbers, the p
~equatorial! radius is covered by about 46~80!, 35 ~60!, 23
~40!, and 18~30! grid points, respectively.

The simulations continued for;10 dynamical time
scales, and eventually crashed. The duration of the sim
tion to crash depends only weakly on the grid resolution a
the spherical cases. This implies that the crash is not t
gered by accumulation of the numerical error. The durat
also does not vary much even if we change the outer bou
ary conditions and the location of the outer boundary aL
'3Re– 4Re , whereRe denotes the coordinate radius at t
equator. Furthermore, the duration of the simulation fo
rotating neutron star is shorter than that for a spherical sta
identical compactness. Therefore, we deduce that the c
of computations might be associated with our choice of
spatial gauge condition or the formulation, although we
not understand the reason fully at present. There may sti
room to improve the spatial gauge condition and/or the f
mulation, if one wants to perform an extremely long-te
simulation of the duration@10 dynamical time scales. How
ever, 10 dynamical timescales are long enough to prod
scientific results for most problems, so that we do not
dress this problem any longer in this paper.

As in the spherical case, convergence is achieved w
improvement of the grid resolution. As argued in Sec. III, t
angular momentum as well as the baryon rest-mass are
conserved strictly, although they are conserved quanti
However, the violation converges to zero nearly at sec
order with improving the grid resolution. The results of th
convergence test indicate that the polar axis should be

TABLE II. The central density, baryon rest-mass, ADM ma
M /R, rotational period (Prot) in units ofrc, init

21/2, J/M2, anduT/Wu of
rotating neutron stars at mass shedding limits withG52 that we
pick up in this paper. HereT andW are the rotational kinetic energ
and gravitational potential energy, andR denotes the circumferenc
radius at the equator. All the quantities are shown in units oc
5G5KP51. The star denoted with † is unstable. In the last c
umn, numerical results of the quasiradial oscillation period for thf
mode,Posc, are presented in units ofrc, init

21/2.

rc M* M M /R Protrc
1/2 J/M2 uT/Wu Poscrc

1/2

R0 0.103 0.169 0.158 0.111 8.52 0.667 0.0932 5.
R1 0.136 0.186 0.172 0.129 8.53 0.630 0.0909 6.
R2 0.183 0.200 0.183 0.148 8.56 0.599 0.0876 8.
R3 0.215 0.204 0.186 0.158 8.60 0.585 0.0856 10
R4 0.253 0.206 0.188 0.167 8.65 0.573 0.0834 16
R5† 0.296 0.206 0.188 0.175 8.72 0.561 0.0809
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ered by at least;30 grid points if one wants to demand th
the violation of the conservation of angular momentum a
baryon rest-mass is less than a few % after;10 dynamical
time scales. If the polar axis is covered by fewer than 20 g
points, the magnitude of the violation becomes larger th
10% after 10 dynamical time scales.

The long-term simulations were also performed for mo
els ~R0!, ~R2!, ~R3!, and ~R4!. In all these simulations, we
initially reduced the pressure by 0.5% and takeN5180.
With this grid number, the polar~equatorial! radius is cov-
ered by 35~60! grid points. The time evolution of the centra
density and central value of the lapse function (ac) are
shown together in Fig. 6~a!. As in the spherical case, th
duration of the simulation is shorter for more compact sta
~The moment of the crash of a run is identified with the tim
at whichac sharply drops.! This might be evidence that with
our spatial gauge, coordinate distortion is accumulated
much for the long-term simulation, because it is likely to
accumulated more rapidly for more compact stars. As in

,

-

FIG. 5. ~a! Time evolution of central density, lapse function
origin, and extrinsic curvature at origin, and~b! time evolution of
averaged violation of the Hamiltonian constraint, violation of re
mass conservation, and violation of angular momentum conse
tion for a stable and rapidly rotating neutron star at the mass s
ding limit ~R1!. In both figures, the solid, dotted, dashed, a
dotted-dashed curves denote the results withN5240, 180, 120, and
90. With these grid numbers, the polar~equatorial! radius is covered
by about 46~80!, 35 ~60!, 23 ~40!, and 18~30! grid points, respec-
tively.
3-11
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MASARU SHIBATA PHYSICAL REVIEW D 67, 024033 ~2003!
simulation for~S4!, a high-mass rotating star~R4!, for which
the ADM mass is'99.5% of the maximum, collapses to
black hole in a few dynamical time scales instead of cra
ing, because of a slight increase of the baryon rest-mass
to numerical error. It is necessary to takeN.180 to continue
computations of such high-mass stars for more than two
cillation periods. However, as long as the neutron star is
very close to the marginally stable point, the simulation c
be continued for more than five dynamical time scales w
N;200, and this duration is long enough to produce sci
tific results for most problems. For example, from the
simulations, we can extract the frequency of fundamen
quasiradial oscillation modes. In Fig. 6~b!, we show the Fou-
rier spectra of the central density as in the case of Sec. IV
The figure indicates clear peaks that denote the fundame
frequency of the quasiradial oscillation modes.

In Fig. 7, we summarize the frequencies of the radial a
quasiradial oscillation modes for spherical and rapidly ro
ing neutron stars withG52. The filled and open circles de

FIG. 6. ~a! Time evolution of central density and lapse functio
at origin for stable rotating stars~R0! ~dotted-dashed curves!, ~R1!
~solid curves!, ~R2! ~dotted curves!, ~R3! ~long-dashed curves! and
~R4! ~dashed curves!. The simulations were performed withN
5180. With these grid numbers, the equatorial radius is covere
about 60 grid numbers.~b! Fourier spectra ofrc(t) for ~R0! ~dotted-
dashed curves!, ~R1! ~solid curves!, ~R2! ~dotted curves!, ~R3!
~long-dashed curves! and ~R4! ~dashed curves!.
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note the numerical results for spherical and rotating neut
stars, respectively. The filled circle along the vertical axis
plotted according to a Newtonian analysis for the spher
polytrope@39#. On the other hand, the filled and open circl
along the horizontal axis are plotted by the fact that the f
quency of the fundamental radial and quasiradial oscillati
of the marginally stable stars is zero. We note that the
quency in dimensional units is computed from

f '9485 Hz~Poscrc, init
1/2 !21S KP

23105 cgs
D 21/2S rc, init

0.3 D 1/2

,

~50!

wherePosc51/f is the oscillation period of the fundament
quasiradial mode.

As mentioned in Sec. IV A, the frequencies for spheric
neutron stars agree well with semianalytical results@35#. For
rotating neutron stars, the frequency is slightly smaller th
that for spherical neutron stars for identicalrc . A similar

y

FIG. 7. Frequency of fundamental radial and quasiradial os
lation modes for spherical stars~filled circles! and rotating stars a
mass shedding limits~open circles! ~a! as a function of the centra
density and~b! as a function of the lapse function at origin. Th
frequency atrc, init50 for the spherical star is derived in a Newto
ian analysis. The filled and open circles along the horizontal a
are plotted according to the fact that the oscillation frequency of
marginally stable star is zero.
3-12
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AXISYMMETRIC GENERAL RELATIVISTIC . . . PHYSICAL REVIEW D 67, 024033 ~2003!
tendency is found in the results of@28#. It is interesting to
note that for the identical value of the central lapse functi
the frequencies approximately coincide forac&0.6.

In Fig. 8~a!, we display the central density, central val
of the lapse function, and averaged violation of the Ham
tonian constraint for collapse of an unstable rotating neut
star ~R5!. To induce the collapse, we initially reduced th
pressure by 0.5%. We also carried out the simulations w
the reduced factor of 0.2%, and have found that the star~R5!
collapses also in this case, although it takes longer to b
black hole. Numerical results are shown forN5240, 180,
and 120 and demonstrate that the convergence is achi
well. With these grid numbers, the polar~equatorial! radius is
initially covered by about 69~120!, 52 ~90!, and 35~60!,
respectively.

During the collapse, the density~lapse function! mono-
tonically increases~decreases! with time, and finally a black
hole is formed~i.e., the apparent horizon is located! in the
late time whenac&0.03. As in the spherical case, the reas
that rc decreases in the late stage of the collapse is th

FIG. 8. ~a! Time evolution of central density, lapse function
origin, and averaged violation of the Hamiltonian constraint, a
~b! mass of the apparent horizon as a function of time for colla
of an unstable and rapidly rotating neutron star at the mass shed
limit ~R5!. In both figures, the solid, dotted, and dashed cur
denote the results withN5240, 180, and 120. With these grid num
bers, the polar~equatorial! radius is initially covered by about 69
~120!, 52 ~90!, and 35~60! grid points.
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small error inf that is ofO(1) at the formation of the black
hole leads to a large error inr that is computed from
r* /(we6f). It is also found that at the time when the ma
nitude of the averaged violation of the Hamiltonian co
straint becomes;0.2, the computation crashed due to t
grid stretching around the horizon of a black hole, and t
the magnitude of ERROR at the crash is almost independ
of the grid resolution.

In Fig. 8~b!, we show the time evolution of the mass
the apparent horizon defined by Eq.~49!. Here, the long-
dashed horizontal line denotes the expected final va
ASEH/(16pM2), whereSEH is derived from the formula for
the area of the event horizon of a Kerr black hole as@33#

SEH58pM2S 11A12
J2

M4D , ~51!

whereM andJ are the ADM mass and angular momentum
the collapsing neutron star. Since almost all the matter ev
tually falls into a black hole in this simulation, the area of t
apparent horizon should settle down toSEH. The figure in-
dicates that the area of the apparent horizon asymptotic
approaches the expected value. This demonstrates tha
spacetime in the final phase of our simulation almost rela
to a stationary, Kerr black hole spacetime.

C. Collapse of rotating stars with parametric equations
of state

The purpose of this subsection is to demonstrate that w
our implementation, it is feasible to carry out stable and
curate simulations for the collapse of rotating stars with pa
metric equations of state~32! that are more realistic for high
density matter than theG-law equation of state used in th
previous two subsections. Since the equation of state
high-density matter is still not precisely known, the param
ric equation of state~32! is used for several choices ofG1
andG2. Initial conditions are set up adopting the polytrop
equation of state~36! with G5 4

3 .
In the realistic core collapse of massive stars, the cen

density just before the collapse is of order 1010 g/cm3

@14,40#. Since the collapse leads to the formation of a ne
tron star of density of order 1015 g/cm3 or a black hole, the
characteristic length scale changes by a factor of;100. This
implies that we need to takeN of O(103) for a well-resolved
simulation in the fixed uniform grid. Although it is possibl
to take a large value ofN as several thousands, performin
such large-scale simulation is not computationally inexp
sive even in the axisymmetric case. Since the main purp
of this subsection is not to present scientific results, but b
to demonstrate that realistic equations of state can be ado
in our implementation and to grasp characteristic behav
associated with new implementation with such equations
state, here we pick up more compact stars of central den
'631012 g/cm3 as initial conditions to save the comput
tional costs as a first step. In the next subsection, we
show a numerical result with a more realistic initial data
as illustration.
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MASARU SHIBATA PHYSICAL REVIEW D 67, 024033 ~2003!
Velocity profiles of equilibrium rotating stars used as in
tial conditions are given according to a popular relati
@41,42#,

utuw5Ãd
2~Va2V!, ~52!

whereVa denotes the angular velocity along thez axis, and
Ãd is a constant. In the Newtonian limit, the rotational pr
file is written as

V5Va

Ãd
2

Ã21Ãd
2 . ~53!

Thus,Ãd indicates the steepness of differential rotation.
this paper, we pick up the rigidly rotating cases in whi
Ãd→` and a differentially rotating case in whichÃd /Re

5 1
2 where Re is the equatorial coordinate radius. In bo

cases, we choose the axial ratio of polar radius to equato
radius as 2/3. In Table III, we list several quantities for t
models we adopt in the numerical computation. We refe
these models as~C1! and ~C2!.

The simulations were carried out for (G1 ,G2)
5(1.325,2)~a!, ~1.3,2! ~b!, ~1.325,2.5! ~c!, and~1.3, 2.5! ~d!.
In the following, we specify our choice ofG1 and G2 in
terms of ~a!, ~b!, ~c!, and ~d!. For example, if we pick up
model ~C1! as the initial condition and chooseG151.325
andG252, we refer to this model as~C1a!. In Table IV, we
list masses and central density for spherical neutron star
maximum mass in the parametric, cold equation of sta
~33! with four choices ofG1 andG2, which are obtained by
numerically solving the TOV equation@33#. ForG151.3 and
G252, the maximum mass is too small to be a realis
value, but with this model, we can study qualitative prop
ties of stellar core collapses in an extremely soft equation
state.

According to a numerical result@43#, rigidly rotating stars
in equilibrium with G5 4

3 are unconditionally unstable

TABLE III. The central density, baryon rest-mass, ADM mas
equatorial radiusRe , J/M2, anduT/Wu of initial conditions for the
simulations of stellar collapse in Sec. IV C.

Ãd /Re

rc

(1012 g/cm3)
M*

(M () M (M ()
Re

~km! J/M2 uT/Wu

C1 ` 6.02 1.347 1.343 265 0.434 8.38d-
C2 1/2 6.24 1.465 1.465 231 0.888 3.51d

TABLE IV. Maximum baryon rest-mass, ADM mass, core re
massM* core, and density at the maximum for spherical stars
cold, parametric equations of state~33!, with four types ofG1 and
G2.

G1 G2 M* (M () M (M () M* core(M () rc(g/cm3)

a 1.325 2 1.425 1.363 1.362 2.68d15
b 1.3 2 0.991 0.925 0.980 6.01d15
c 1.325 2.5 2.259 2.056 2.183 1.69d15
d 1.3 2.5 1.810 1.600 1.792 2.87d15
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against gravitational collapse, if the compactnessM /Re is
larger than;1/700. Thus, the equilibrium state of mod
~C1! is unstable. The criterion of the instability has not be
established yet for differentially rotating stars. Thus, the s
bility is not clear for~C2!. However, since the compactne
is much larger than 1/700, the initial equilibrium of~C2! is
also likely to be unstable. Hence, by decreasingG from 4

3 to
G1, 4

3 at t50, the collapse is accelerated. To investiga
convergence, the simulations were carried out withN
5600, 400, and 300 for all the models. In these simulatio
the equatorial radius was initially covered byN grid points.

In Figs. 9 and 10, we display snapshots of the den
contour curves and velocity fields at selected time steps
models~C1a! and ~C2a! as examples. It is found that mode
~C1! has a spheroidal structure initially, while model~C2!
has a slightly toroidal shape due to the effect of differen
rotation. In Figs. 11 and 12, we also show the time evolut
of several quantities for models~C1a! and ~C2a!. Here
M* core denotes the total baryon rest-mass of high-den
matter withr.rnuc. As indicated in these figures, the co
lapses proceed in the following manner. In the early phas
which the central density is smaller thanrnuc, the central
region of the star contracts approximately in a homologo
manner because the adiabatic index is close to4

3 @44#. After
the central density exceedsrnuc, a core is formed at the
central region, and the mass gradually increases as a res
subsequent accretion. At the time when the central den
becomes;4.5rnuc for ~C1a! and ;3.5rnuc for ~C2a!, the
increase of the core mass stops, and strong shocks ra
propagate outward due to the restoring force of the co
After this moment, the core settles down toward an appro
mately stationary state, and finally the central density rela
to ;3rnuc for ~C1a! and ;2.5rnuc for ~C2a!. On the other
hand, the shocks propagate outward, sweeping the infa
matter. In both cases~C1a! and ~C2a!, the baryon rest-mas
of r>rnuc is ;0.65M ( after shock propagates far from th
core. Since the angular momentum att50 for ~C2a! is larger
than that for~C1a!, the baryon rest-mass of the core a
central density of the final state of the core are sligh
smaller for model~C2a!. These facts indicate that the prod
ucts after collapse depend basically on the equation of s
but are modified by the magnitude and distribution of ang
lar momentum that are initially retained by a precollapse s
If the initial angular momentum is much larger than those
~C1a! and ~C2a!, the collapse would be halted before th
central density reachesrnuc, and as a result, a neutron st
would not be formed@14#.

Another noticeable feature is that for the differentia
rotating initial condition, a small modulation is found in th
time evolution of the central density andac after a quasi-
static core is formed. This is likely because in the collap
with a differentially rotating initial condition, the collapsin
star deviates highly from spherical symmetry and shocks
formed in a nonspherical manner. As a result, the nonsph
cal oscillation is excited in the formed core. Similar resu
are observed in@14#.

In Figs. 11~b! and 12~b!, we display the violation of the
baryon rest-mass conservation, angular momentum con
vation, and averaged violation of the Hamiltonian constra

,

f
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AXISYMMETRIC GENERAL RELATIVISTIC . . . PHYSICAL REVIEW D 67, 024033 ~2003!
First, we note that att;6.5 msec, the shocks reach the ou
boundaries, and the matter escapes from the computat
domain. This causes the rapid angular momentum decr
for t*6.5 msec. Besides this, the errors converge to z
with improving the grid resolution, as we saw in Secs. IV
and IV B. However, there are several noticeable proper

FIG. 9. Density contour curves ofr and velocity fields ofvA for
model ~C1a! at selected time steps. The contour curves are dra
for r/rnuc51020.5j , for j 50,1,2, . . . ,20.
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that have not been seen in the previous subsections. O
that the magnitude of the errors quickly increases wh
shocks are generated. The second is that the averaged v
tion of the Hamiltonian constraint converges to zero at ab
first order~not at second order!. We cannot explain the rea
son for them correctly. However, we deduce it as follows:
the shocks, the hydrodynamic quantities are discontinuo
and as a result, the second partial derivatives of the me

n
FIG. 10. The same as Fig. 9 but for model~C2a!.
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MASARU SHIBATA PHYSICAL REVIEW D 67, 024033 ~2003!
are discontinuous and the complete analyticity for the me
is violated. This may change the global convergence prop
from second order to first order.

The magnitude of the errors for~C2a! is smaller than that
for ~C1a! with identical grid spacing. This is a consequen
of the fact that the central density for~C2a! after shock for-
mation is smaller than that for~C1a!, and as a result, the gri
resolution for~C2a! is better than that for~C1a!.

To see the effects of the equations of state on the dyn
ics of collapse and on accumulation of the numerical erro
we display numerical results for~C1a!, ~C1b!, ~C1c!, and
~C1d! in Fig. 13. All the simulations were done withN
5600, by which the equatorial radius is initially covered
N grid points. Reflecting the difference ofG1 and G2, the
products after the collapse and time evolution of the num
cal errors are different. The following is a summary of t
differences:~a! for G151.3, the magnitude of the errors
larger than that forG151.325, ~b! for the identical value of
G1, the central density andM* core in the final state of the

FIG. 11. ~a! Time evolution of central density, lapse function
origin, and fraction of baryon rest-mass forr.rnuc, and ~b! time
evolution of violation of rest-mass conservation, angular mom
tum conservation, and averaged violation of the Hamiltonian c
straint for collapse of a star~C1a!. In both figures, the solid, dotted
and dashed curves denote the results withN5600, 400, and 300.
With these grid numbers,Dx50.442, 0.663, and 0.884 km. Fort
.6.5 msec, shocks reach outer boundaries of the computat
domain, and matter starts escaping.
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core are smaller for the larger value ofG2, ~c! M* core is
larger for the larger value ofG1 with the identical value of
G2, ~d! the magnitude of the error of the baryon rest-ma
conservation always increases with time~never decreases in
the absence of mass ejection from the computational
main! irrespective ofG1 andG2, and~e! the angular momen-
tum increases due to the numerical error forG151.325 but
decreases forG151.3. The reason for~a! is clear because fo
smaller values ofG1, the central density increases by a lar
factor, and as a result, the grid resolution becomes wo
even in the identical grid spacing. The reason for~b! is also
clear because with stiffer equations of state, the central d
sity of neutron stars is smaller. The result~c! comes from the
fact that with smaller values ofG1, shocks are stronger, an
as a result, the amount of mass that is ejected outside
core is larger. However, the reason for~d! and~e! is not clear
at all. These may be consequences of our choice of the fi
differencing scheme for the hydrodynamic equations. Inde
a similar tendency is found in the results of an approxim
general relativistic simulation@14#.

It is interesting to note that even for~C1b!, in which the
maximum allowed baryon rest-mass of neutron stars is v

-
-

al

FIG. 12. The same as Fig. 11 but for collapse of a star~C2a!. In
both figures, the solid, dotted, and dashed curves denote the re
with N5600, 400, and 300. With these grid numbers,Dx50.385,
0.577, and 0.770 km. Fort.7 msec, shocks reach outer boundar
of the computational domain, and matter starts escaping.
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AXISYMMETRIC GENERAL RELATIVISTIC . . . PHYSICAL REVIEW D 67, 024033 ~2003!
small (;1M (), a low-mass neutron star ofM* core

;0.55M ( is formed after the collapse. This is because
shocks explode the infalling matter sufficiently. Thus, ev
in the case that the stellar core mass before collapse is m
larger than the maximum allowed mass of the neutron
for a given equation of state, a neutron star instead of a b
hole could be formed at least temporarily, although suc
neutron star could easily collapse to a black hole by sub
quent accretion of matter or by a fall-back.

In Fig. 14, the specific angular momentum spectra at
lected time steps are shown for~C1d! and~C2a! as examples.
In both cases, we takeN5600. The figures demonstrate th
the spectral shape is well conserved throughout the sim
tions irrespective of the initial angular velocity profile
Therefore, we conclude that angular momentum transfer
to numerical dissipation is sufficiently small in numeric
computations.

D. An example of stellar core collapse

In this subsection, we present numerical results fo
simulation of rotating stellar core collapse that is star

FIG. 13. ~a! Time evolution of central density, lapse function
origin, and fraction of baryon rest-mass forr.rnuc, and ~b! time
evolution of violation of rest-mass conservation, angular mom
tum conservation, and averaged violation of the Hamiltonian c
straint for ~C1a! ~solid curves!, ~C1b! ~dotted curves!, ~C1c!
~dashed curves!, and ~C1d! ~dotted-dashed curves!. We adoptN
5600, by which the equatorial radius is initially covered byN grid
points for all the models.
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from a realistic initial condition with the central densit
;1010 g/cm3 and with G5 4

3 . We give a rigidly rotating
equilibrium star that is close to the mass shedding limit
the initial condition. Several quantities of this rotating st
are listed in Table V. Since it is rapidly rotating and its com
pactness is sufficiently small, this equilibrium star is dynam
cally stable against gravitational collapse even for the po
tropic equation of state withG5 4

3 @43#. Thus, the collapse is
triggered by the slight decrease of the adiabatic cons
from 4

3 to G1. In the present simulation, we setG151.325
andG252.

Since the characteristic length scale changes by a facto
;100 during the collapse, we performed the simulati

-
-

FIG. 14. Specific angular momentum spectra at selected t
steps~a! for ~C1d! and ~b! for ~C2a!.

TABLE V. Central density, baryon rest-mass, ADM mass, eq
torial radius, ratio of the rotational kinetic energy to potential e
ergy, non-dimensional angular momentum parameter, and ce
value of the lapse function of a rotating star chosen as an in
condition for a stellar core collapse simulation in Sec. IV D.

rc

(g/cm3)
M*

(M () M (M () R (km) uT/Wu J/M2 ac

1.6531010 1.491 1.491 1910 8.8931023 1.136 0.993
3-17



to

in
gr

a
v-

ou

nd
na

r w
t
ow
la

-
f
ric
no
e

nd
a

in
he

-
ac
ic

te

s
th

e
al

o
e
n
ar

m
to

sip-
ot

-
uld
ic
he

tour

MASARU SHIBATA PHYSICAL REVIEW D 67, 024033 ~2003!
changing the grid size and grid number as done in@22#. The
grid size and computational domain were changed moni
ing the value of the lapse function at the center (ac), which
approximately indicates the compactness of the collaps
star. Whenever we carried out regridding, we made the
spacing half and used cubic interpolation@32# for assigning
the values of variables on the finer grids. The simulation w
started withN5500, by which the equatorial radius is co
ered by 480 grid points initially. Att50, ac'0.993. We
carried out the first regridding whenac was 0.975, at which
the mean radius of the collapsing star became; 1

4 of the
initial one. In this regridding, we choseN5900 and made
the grid spacing half. The next regridding was carried
whenac50.95 and 0.90, and we choseN51500 and 2100,
respectively. Afterac reached 0.90, we fixedN and grid
spacing.L andDx in the final stage are about 1050 km a
0.5 km, respectively. For this simulation, the computatio
time was about 100 CPU hours for'60 000 time steps using
eight processors of the FACOM VPP 5000 machine.

Since the computational region was reduced wheneve
carried out the regridding, a small amount of mass tha
outside the new computational domain was discarded. H
ever, the magnitude of the violation of mass and angu
momentum conservation is less than;0.5% and 2%, respec
tively @see Fig. 16~b!#. This implies that the total amount o
the discarded mass is comparable to that of the nume
error associated with the finite differencing, which does
much affect the evolution of the system, as indicated in S
IV C.

In Fig. 15, we display the density contour curves a
velocity fields at selected time steps around which shocks
formed. The time of the shock formation is;71.7 msec,
which is in good agreement with that for model A1B3G1
@14# with the correction factor which is associated with t
dynamical time scale as (rc, init/1010 g/cm3)21/2. ~Note that in
@14#, the central density of the initial condition is 1010 g/cm3,
while hererc, init'1.6531010 g/cm3.! This coincidence sug
gests that the approximate general relativistic appro
adopted in@14# is indeed suited for study of axisymmetr
stellar core collapse to neutron stars in general relativity.

After the shock formation, the shock fronts of prola
shape spread outward. The prolateness is produced by
fact that the shocks are stronger for thez direction due to the
absence of centrifugal force@11,12,14#. In Fig. 16~a!, we
display the time evolution of the central density and lap
function at the center. Global features are qualitatively
same as those for the simulation of model~C1a! presented in
Sec. IV C. As in that case, the central density~lapse function!
monotonically increases~decreases! until it exceedsrnuc.
When it becomes;3.5rnuc, the collapse is halted and th
shocks start propagating outward, while the core gradu
settles down toward a quasistationary state ofrc;2rnuc.

Although these qualitative features are the same as th
for ~C1a!, there are a few quantitative differences betwe
the results of two models. First, the maximum density a
central density of the formed neutron star found here
slightly smaller than those for~C1a!. This is likely due to the
fact that the effect of the centrifugal force plays a more i
portant role than for~C1a!. Second, the core does not relax
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a static state soon, but oscillates approximately in a qua
eriodic manner for several periods. This oscillation is n
conspicuous for model~C1a!. These facts imply that to ob
tain quantitative outputs of stellar core collapse, we sho
start the simulations from an initial condition of a realist
density profile, although qualitative global features of t

FIG. 15. Density contour curves ofr and velocity fields ofvA at
selected time steps around which shocks are formed. The con
curves are drawn forr/rnuc51020.4j , for j 50,1,2, . . . ,20.
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collapse can be found even using a more compact in
condition. We note that the quasiperiodic oscillation fou
here is also observed in@14#. As reported in@12,14#, quasi-
periodic gravitational waves are likely emitted associa
with this oscillation. However, we have not tried to compu
gravitational waves in the present work. As expected fr
the results in@14#, the amplitude of gravitational waves is n
very large, so that it would not be technically easy to extr
them from the metric in which gauge modes and numer
noises are included. Developing a method for the wave
traction of a weak signal will be one of the challenging pro
lems in the future.

In the last figure of Fig. 16~b!, the time evolution of
baryon rest-mass of the core~of density larger thanrnuc) is
shown. As in the time evolution ofrc , it reaches the maxi-
mum at whichrc reaches the maximum value, and th
settles down toward a constant;0.55M ( . Thus, the tempo-
rary product after the collapse is a low mass neutron sta
this simulation.

V. SUMMARY

We have presented numerical results obtained by an
symmetric general relativistic implementation, and dem
strated that with this new implementation, it is feasible

FIG. 16. ~a! Time evolution of the central density and lap
function at the center.~b! Time evolution of the violation of rest-
mass conservation, angular momentum conservation, and the
evolution of rest-mass of the core withr.rnuc.
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carry out long-term simulations for spherical and rapidly r
tating neutron stars, and rotating stellar collapses to a n
tron star and a Kerr black hole. It is shown that the simu
tions for stable neutron stars can be continued for*10
dynamical time scales until the crash of computation w
N;200, even if the neutron stars are of;95% of the maxi-
mum allowed mass. The duration of the computation is lo
enough to obtain oscillation modes of neutron stars. T
simulations are also feasible for collapse of rotating neut
stars to Kerr black holes. We have illustrated that with o
implementation, the mass of a Kerr black hole formed af
the collapse can be computed accurately. We have also d
onstrated that it is feasible to perform the simulations
rotating stellar core collapse to a neutron star, adopting p
metric equations of state that mimic realistic equations
state. This illustrates that the new implementation works w
also for realistic equations of state that have not be
adopted so far in fully general relativistic simulations.
conclusion, the axisymmetric numerical implementation p
sented here will be used for a wide variety of astrophysi
simulations such as rotating core collapse of a massive
to a neutron star or a black hole, and accretion-induced
lapse of a neutron star to a black hole. As the next step,
plan to perform simulations for rotating core collapse to ne
tron stars, and compare the results with those in an appr
mate relativistic approach@14#. We also consider that col
lapse of a massive stellar core to a black hole is one of
most interesting topics.

Because of the assumption of axial symmetry, we w
able to carry out a wide variety of tests and calibrations
our new hydrodynamic implementation with low comput
tional costs. In previous works, e.g.,@18,28#, tests of their
hydrodynamic implementations picking up single stars ha
been done in three spatial dimensions. In those caseN
could be at most 100, since the computational costs w
very high for N.100. It is pragmatically very difficult to
investigate the accuracy and convergence in a well-reso
simulation withN; several hundreds under normal circum
stances in which we can use at most;1000 CPU hours per
year. In the axisymmetric case, the simulation w
N;several hundreds is not very expensive, and thus for
tailed tests of new hydrodynamic implementations in gene
relativity, axisymmetric simulation has great advantages.
expect that for the testing of new gauge conditions and w
extraction techniques, it would also play an important rol

Finally, we note the following point. Although we focu
only on the axisymmetric simulation in this paper, th
present hydrodynamic implementation can be used for th
dimensional simulations with a slight modification, since t
transport terms in the hydrodynamic equations are of
same form. Actually, we have already implemented it a
checked that it works. We expect that with the same g
resolution that we adopted in this paper, the same results
be obtained~although it takes a much longer time to car
out the long-term simulations!. So far, we have performed
simulations for a merger of binary neutron stars only us
the G-law equation of state@19,20#. However, with the new

me
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hydrodynamic implementation reported in this paper, we w
be able to adopt a variety of equations of state. We plan
perform the simulation for a merger of binary neutron st
adopting more realistic equations of state in the future.
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APPENDIX: TREATMENT FOR TRANSPORT TERMS IN
THE HYDRODYNAMIC EQUATIONS

Equations~26!–~29! are of the forms

] tQa1]AFa
A5Sa , ~A1!

whereQa andFa
A for a51 –5 are defined as

Qa5~r* , Jx , Jy , Jz , E* !, ~A2!

Fa
A5@r* vA, Jxv

A1PaAgdx
A , Jyv

A,

Jzv
A1PaAgdz

A , E* vA1PAg~vA1bA!]. ~A3!

Here, Ji[r* ûi , E* [r* ê, and Sa in Eq. ~A1! denote the
right-hand sides of Eqs.~26!–~29!. We note thatg here is the
determinant of the three-metric in the Cartesian coordina
02403
ll
to
s

l

-

is
o

s.

In numerical computation, we evaluate the transport ter
using the approximate Riemann solver, which relies on
characteristic decomposition of the equations~see, e.g.,
@25,27# and references therein!. To adopt this method, we
first need to compute the Jacobian matrix and then to c
out the spectral decomposition of it.

The Jacobian matrix for theAth direction,Mab
A , is de-

fined by

Mab
A 5

]Fa
A

]Qb
~A5x or z!. ~A4!

Using this, Eq.~A1! may be expressed in the form

] tQa1 (
b51

5

(
A5x,z

Mab
A ]AQb5Sa . ~A5!

Thus,Mab
A has information on the characteristic speed of

fluid.
Following Fontet al. @23,24#, we calculate the Jacobia

matrix from

Mab
A 5 (

c51

5 ]Fa
A

]qc

]qc

]Qb
[(

c51

5

Bac
A Cbc

21 , ~A6!

where

Bac
A [

1

Ag

]Fa
A

]qc
, ~A7!

Cbc[
1

Ag

]Qb

]qc
, ~A8!

andqc5(r,vx,vy,vz,«). Explicit forms for Cab andBab
x in

our notation are
Cab53
w rw3

Vx

a2 rw3
Vy

a2 rw3
Vz

a2 0

h1w2

a
Vx

rhw2

a
Fxx

rhw2

a
Fxy

rhw2

a
Fxz rh2

w2Vx

a

h1w2

a
Vy

rhw2

a
Fxy

rhw2

a
Fyy

rhw2

a
Fyz rh2

w2Vy

a

h1w2

a
Vz

rhw2

a
Fxz

rhw2

a
Fyz

rhw2

a
Fzz rh2

w2Vz

a

h1w22x 2
rhw4

a2 Vx 2
rhw4

a2 Vy 2
rhw4

a2 Vz rh2w22rk

4 , ~A9!

and
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Bab
x 53

wvx rwS 11
w2Vxv

x

a2 D rw3
Vyv

x

a2 rw3
Vzv

x

a2 0

h1w2

a
Vxv

x1ax
rhw2

a
~vxFxx1Vx!

rhw2

a
vxFxy

rhw2

a
vxFxz rh2

w2Vxv
x

a
1rka

h1w2

a
Vyv

x
rhw2

a
~vxFxy1Vy!

rhw2

a
vxFyy

rhw2

a
vxFyz rh2

w2Vyv
x

a

h1w2

a
Vzv

x
rhw2

a
~vxFxz1Vz!

rhw2

a
vxFyz

rhw2

a
vxFzz rh2

w2Vzv
x

a
4 4 4

4 , ~A10!
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h1w2vx1xbx 2
rhw

a2 Vxv
x1rhw2 2

rhw

a2 Vyv
x 2

rhw

a2 Vzv
x rh2w2vx1rkbx
ipts
where

Vi[g i j ~v j1b j !, ~A11!

x[
]P

]r U
«

, ~A12!

k[
1

r

]P

]« U
r

, ~A13!

Fi j 5g i j 1
2w2ViVj

a2 , ~A14!

h1[11«1x, ~A15!
02403
h2[11k. ~A16!

Bab
z is obtained by appropriate exchanges of subscr

amongx,y,z of Bab
x .

The eigenvalues of the matrixMab
A ,lA, correspond to the

characteristic speeds of the fluid in theAth direction, and are
derived from the equation

det~Bab
A 2lACab!50. ~A17!

The solutions are@24,25#

lA5l6
A , vA~ triple!, ~A18!

where
l6
A 5

1

a22VkV
kcs

2@vAa2~12cs
2!2bAcs

2~a22VkV
k!6acsA~a22VkV

k!$gAA~a22VkV
kcs

2!2~12cs
2!VAVA%#

~no summation forA! ~A19!
and

cs
25

1

h S x1
P

r
k D , ~A20!

Vk5gklVl5vk1bk. ~A21!

Using the eigenvalues, the spectrum decomposition forMab
A

can be done in a straightforward manner as

Mad
A 5(

b,c
Rab

A Lbc
A ~RA!cd

21 , ~A22!
where Lbc
A is the diagonal matrix composed oflA in the

following order: @l1
A ,vA,vA,vA,l2

A #. For convenience of
the calculation ofRab

A , we define a matrixTab
A , which satis-

fies the relation as

Rab
A 5 (

c51

5

CacTcb
A . ~A23!

SinceRab
A is calculated from the right eigenvectors ofMab

A ,
Tab

A is composed of vectorstb
(I ) that satisfy the equation

(
b51

5

~Bab
A 2lACab!~ tb

A!(I )50 for I 51;5. ~A24!

Then, Tab
A 5@(ta

A)(1),(ta
A)(2),(ta

A)(3),(ta
A)(4),(ta

A)(5)#, and
hence we obtain
3-21
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Tab
x 53

1 2k 0 0 1

Hxx~l1
x ! 0 0 0 Hxx~l2

x !

Hxy~l1
x ! 0 r21 0 Hxy~l2

x !

Hxz~l1
x ! 0 0 r21 Hxz~l2

x !

P

r2

x

r
0 0

P

r2

4 ,

~A25!

Tab
z 53

1 0 0 2k 1

Hzx~l1
z ! r21 0 0 Hzx~l2

z !

Hzy~l1
z ! 0 r21 0 Hzy~l2

z !

Hzz~l1
z ! 0 0 0 Hzz~l2

z !

P

r2 0 0
x

r

P

r2

4 ,

~A26!

where

FIG. 17. Comparison of numerical solutions~filled circles! of a
one-dimensional Riemann shock-tube problem with the analyt
solution ~solid curves! at t50.4 for b51 ~left! and 2~right!. The
grid number is 400 and the grid spacing is 0.0025. Only 200 d
points are plotted.
02403
Hxk~l!5
2cs

2~vx2l!$a2gxk2Vk~bx1l!%

rw2~vx2l!2
, ~A27!

Hzk~l!5
2cs

2~vz2l!$a2gzk2Vk~bz1l!%

rw2~vz2l!2
. ~A28!

After the above reconstruction of the fluid equation, t
numerical fluxes in the upwind scheme are computed fro

F̂a
A5

1

2 FFa
A~Qc

r !1Fa
A~Qc

l !

2 (
b51

5

~RuLuR21!ab~Qb
l 2Qb

r !G , ~A29!

where we omit the subscripts forRab andLab . Qc
l andQc

r

denoteQc at the left and right sides of the correspondi
interfaces, and are evaluated using the third-order spatia
terpolation. At the interface between thei th and (i 11)th
cells, we define them according to

Qc
l 5Qi1

D i 21

6
1

D i

3
, ~A30!

al

ta

FIG. 18. The same as Fig. 17, but for a one-dimensional w
shock problem withG5

4
3 at t51.6.
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Qc
r 5Qi 112

D i

3
2

D i 11

6
, ~A31!

whereD i5Qi 112Qi . To suppress the oscillation near sho
discontinuities, we modify the interpolation using the follow
ing min-mod limiter as@46#

Qc
l 5Qi1

F~r i 21
1 !D i 21

6
1

F~r i
2!D i

3
, ~A32!

Qc
r 5Qi 112

F~r i
1!D i

3
2

F~r i 11
2 !D i 11

6
, ~A33!

where

r i
15D i 11 /D i , ~A34!

r i
25D i 21 /D i , ~A35!

F~r !5min-mod~1,br !

~1<b<4 for TVD condition!. ~A36!

For the simulations presented in this paper, we choosb
52, since forb'1, the dissipation is so large that the e
velope of neutron stars spreads outward too quickly, wh
for b54, the oscillation around shock discontinuities is t
serious.
ys

og

n-

n
a-
ys

.

.
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The values for components of matricesRab and Lab at
grid interfaces are computed using the Roe-type aver
such as@45,46#

qi 11/25
A~r* ! i 11qi 111A~r* ! iqi

A~r* ! i 111A~r* ! i

, ~A37!

where we carry out the average for variablesûi , k, x, andh
~i.e., qi is one of these variables!. Other variables are com
puted from them. It should be noted that in the relativis
case, the average is not uniquely specified in contrast w
the Newtonian case@45#. However, numerical results of tes
computations~see below! seem to indicate that this averag
ing is appropriate.

To confirm that our hydrodynamic implementation c
capture shocks accurately, we carried out the simulations
Riemann shock tube problems and wall shock problems
the 111 special relativistic spacetime with (t,x) as the co-
ordinates. In this test, we adopt theG-law equation of state.
In both tests, we takeN5400 with Dx51/N.

In the Riemann shock-tube problem, we chooseG5 5
3 .

The parameters of the initial condition are chosen asr510
andP513.3 forx,0 andr51 andP51026 for x.0 fol-
lowing previous papers@27#. In the wall shock problem, we
set the parameters asvx50.9, r51, andP51026 with G
5 4

3 .
In Figs. 17 and 18, we compare numerical results of

Riemann shock tube problem and of the wall shock probl
with analytical solution~solid curves! for the choiceb51
and 2. As indicated in these figures, numerical results ag
well with analytic solutions, in particular forb52.
, it
ut
n,
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