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We report a new implementation for axisymmetric simulation in full general relativity. In this implementa-
tion, the Einstein equations are solved using the Nakamura-Shibata formulation with the so-called cartoon
method to impose an axisymmetric boundary condition, and the general relativistic hydrodynamic equations
are solved using a high-resolution shock-capturing scheme based on an approximate Riemann solver. As tests,
we performed the following simulationsi) long-term evolution of nonrotating and rapidly rotating neutron
stars, (i) long-term evolution of neutron stars of a high-amplitude damping oscillation accompanied with
shock formation(iii) collapse of unstable neutron stars to black holes, (@ndstellar collapses to neutron
stars. Testgi)—(iii) were carried out with thd'-law equation of state, and te6v) with a more realistic
parametric equation of state for high-density matter. We found that this new implementation works very well:

It is possible to perform the simulations for stable neutron stars for more than 10 dynamical time scales, to
capture strong shocks formed at stellar core collapses, and to accurately compute the mass of black holes
formed after the collapse and subsequent accretion. In conclusion, this implementation is robust enough to
apply to astrophysical problems such as stellar core collapse of massive stars to a neutron star, and black hole,
phase transition of a neutron star to a high-density star, and accretion-induced collapse of a neutron star to a
black hole. The result for the first simulation of stellar core collapse to a neutron star started from a realistic
initial condition is also presented.
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[. INTRODUCTION likely due to the fact that the computational resources were
severely restricted, and, in addition, that techniques in nu-
In the 1980s, one of the most important issues in the fieldnerical relativity such as methods to provide realistic initial
of numerical relativity involved performing simulations of conditions and to perform the long-term simulations were
rotating stellar collapse with the assumption of axial symmenot sufficiently developed. As a result, there still remain
try. Simulations of rotating stellar collapse in full general Many unsolved issues in astrophysics and general relativity
relativity were first performed by Nakamura and collabora-that can be studied with axisymmetric hydrodynamic simu-
tors [1,2]. Using the (2+1)+1 formalism developed by lations in full general relativity. Among them, realistic simu-
Maedaet al. [3], they succeeded in performing simulations lations of rotating core collapse of massive stars, which

of a rotating collapse of massive stars to black holes. The)t)wereby bec‘?”_‘e black holes or protoneutron stars, in full
used cylindrical coordinatessf,z) with a nonuniform grid general relativity, have not yet been performed. Stellar col-

. . . . lapse is a common phenomenon in the universe and, hence,
spacing and W'th at mos#2, 42). grid resolution for ¢,z) understanding the formation mechanism of black holes and
because of restricted computational resources.

o . : .. heutron stars in nature is one of the most important issues in
To compute gravitational waves emitted during gravita-

) X astrophysics. Actually, the study of the formation of rapidly
tional collapse to black holes, Stark and Pirig] subse- | oiating black holes with surrounding accretion disks in stel-

quently performed simulations similar to those of Nakamuragy core collapse is currently one of the hot topics in connec-
et al, adopting spherical polar coordinates with a typicaltion with a hypothetical scenario for the central engine of
grid size (100, 16 for (r,6). The distinguishing feature of ,_ray burstg7]. To date, simulations of a rotating collapse of
their work is that they adopted the Bardeen-Piran formalisny massive stellar core have been done in the Newtonian grav-
[5], which is well suited for computation of gravitational ity [8—13] or in an approximate general relativistic gravity
waves in the wave zone. As a result of this choice of formal{14] using the so-called conformal flatness approximatmn
ism, they succeeded in computing gravitational wave formsthe Isenberg-Wilson-Mathews approximatiorin rotating
and clarified that the wave forms are characterized by thatellar core collapses, general relativity plays an important
quasinormal mode of rotating black holes formed after gravitole. As demonstrated ifil4], general relativistic effects
tational collapse and that the total radiated energy of gravimodify the collapse, bounce, and amplitude of gravitational
tational waves is at most 0.1% of the gravitational mass ofvaves emitted significantly, even in the formation of neutron
the systeni4]. stars. Of course, general relativity plays a crucial role in the
Since the completion of their works, no new work in this formation of black holes. Thus, general relativistic simula-
field was done for the next 15 yeal8]. Although several tion is inevitable to precisely understand the nature of stellar
questions that they originally wished to answer have beewore collapses.
answered by their simulations, it was not feasible to perform One long-standing issue for axisymmetric simulations in
sophisticated astrophysical simulations in the 1980s. This ifull general relativity has been to develop methods in which
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the accuracy and stability for a long-term simulation can beent computational resources are well suited to systemati-
preserved. In axisymmetric simulations, we have in generatally perform stable and well-resolved hydrodynamic simu-
used cylindrical and/or spherical polar coordinate systemdations in axisymmetric numerical relativity. That
which have coordinate singularities at the origin and alongmplementation has also been applied to a study of collapse
the symmetric axiss =0. At such coordinate singularities, of rotating supermassive stars to supermassive black holes
the finite differencing scheme has to be changed, resultinf22].
often in numerical instabilities. To stabilize computation, we We have recently remade a hydrodynamic implementation
have often been required to add artificial viscosities aroundising a high-resolution shock-capturing scheme based on a
the coordinate singularities to stabilize the numerical systenGodunov-type schemg23-28. Although the previous one
[15]. [21] works well for problems in which shocks are weak, such
Recently, the Potsdam numerical relativity group has proas evolution of single rotating stars and collapse of neutron
posed the so-called cartoon method by which a robust nustars and supermassive stars to a black hole, it is expected
merical relativity implementation for axisymmetric systemsthat such implementation cannot produce an accurate nu-
can be mad¢l16]. The essence of their idea is that the Car-merical result for problems in which shocks are strong. Dur-
tesian coordinatesx(y,z) could be used even for simula- ing rotating core collapses to a neutron star or a black hole,
tions of axisymmetric systems if the Einstein field equationsstrong shocks are likely to be accompanied. Therefore,
are solved only for they=0 (or x=0) plane, using the implementing a high-resolution shock-capturing scheme,
boundary condition ay=+ Ay (or x=+Ax) provided by such as that adopted if28], is a promising strategy. To
the axial symmetry(Here,Ax, Ay, andAz denote the grid check that the new implementation works well, we have per-
spacing). Since the field equations are written in the Carte-formed a wide variety of test simulations. In this paper, we
sian coordinate system, we neither have singular terms ngiresent the numerical results, paying particular attention to
do we have to change the finite differencing scheme anylong-term numerical simulations of neutron stars as done in,
where, except at the outer boundaries. Thus, it is possible t©.9.,[18,28, and to stellar collapse in which strong shocks
perform a stable and accurate long-term simulation withougre accompanied. Finally, we present the first numerical re-
any prescription or artificial viscosities, but only by a minor sults of stellar core collapse to a neutron star for which the
modification of a three-dimensional implementation that hassimulation is started from a realistic initial condition. In ad-
already been developdd7—20. dition to presenting the successful numerical results, we ad-
Other important progress has been made regarding contwess the advantage of axisymmetric simulations in testing a
putational resources. Current large-scale supercomputers thagw general relativistic hydrodynamic implementation, since
we can use are typically of several hundred Gbytes memoryve can study in detail the convergence of numerical results
Necessary memory in an axisymmetric simulation within the test simulations changing the grid number for a wide
double precision, wittN? grid points, and witiN, variables range to a well-resolved levée.g.,N~ several hundreds

is which is still difficult in three-dimensional simulations be-
cause of restricted computational resources.
N \2/ N, The paper is organized as follows. In Sec. Il, we describe
~2 Gbyte%W) (ﬁ) (1) the formulation that we adopt. In Sec. Ill, we define global

quantities of the system and describe the calibration method

whereN, is ~200 in our general relativistic implementation. for the numerical results. In Sec. IV, we present the numeri-
This implies that the memory of current supercomputers i$al results. Section V is devoted to a summary and discus-
large enough to carry out an axisymmetric numerical simuSion. Throughout this paper, we use the geometrical units in
lation with N~ several thousands. Usimgof order 16, itis ~ WhichG=1=c, whereG andc denote the gravitational con-
feasible to carry out a well-resolved simulation and a carefuftant and speed of light. We use Cartesian coordinates,
convergence test, changing the grid resolution for a wide= (X.Y.2), as the spatial coordinates, with x?+y?+ 2%,
range fromN~ 100 to 1000. This situation is in contrast with = = \/x2+y2, and p=tan (y/x). t denotes the coordinate

that of three-dimensional numerical relativity, since it is still time. Greek indicesu,v, ... denotex, y, z, andt, small
very difficult to carry out a three-dimensional simulation Latin indicesi,j, ... denotex, y, andz and capital Latin
with N~ 10°, for which the required computational memory indicesA,B, ... denotex andz

is of order TByte.

Motivated by the status mentioned above, we recently
started a project in axisymmetric numerical relativity. In Il. FORMULATION
[21], we reported a numerical hydrodynamic implementation
for axisymmetric spacetimes that is made using the cartoon ) ) . . )
method and incorporating a hydrodynamic implementation Th_e Einstein equation is sol\_/ed in th@+1) formulation,
in the cylindrical coordinates. In that paper, we presented’ Which the line element is written in the form
numerical results for simulations of rotating stellar collapse 2 Ky 42 K iy
adopting simple initial conditions and simple equations of ds°=(-a®+ BB At + 2pdxdt+ v, dxdx,  (2)
state to investigate the effects of rotation on the criteria for
prompt collapse to black holes in an idealized setting. Wavherea, ¥, andy;; are the lapse function, shift vector, and
demonstrated that the axisymmetric implementation and cutthree-metric. The three-metric is defined by

A. Formulation for the Einstein equation
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YMV:gMV+nMnV1 (3) QAB:ASAE EIOE))'
wheren* is a timelike, unit-normal vector that is orthogonal Qa=ARQY), QA=ARQY,
to a spacelike hypersurface, and its components are written
as (1k,— B ). The extrinsic curvature is defined as Q,=QY., Q,=QY, Q=Q, (10
1 1 where
Kij==5£0%==5-(d7y~DiB;=D;B), (4

! 27" 2a o cose(x) —sing(x)

; ; ative i : AR=| sine(x) cose(x) |- 1D
where £, is the Lie derivative with respect 10*, andD; is ¢ ¢

the covariant derivative with respect g, .

o st fild sauatons s Solved using the samand o()—ta [ 2Ay/\FEEIL. Q) Q, andQ de
] ] T | H
tions as in previous papef$7-20,29,30,2]t We adopt the nczga (7'30’)A”)’ (Féé)’g)’ and ($,K,a), respectively, and
so-called Nakamura-Shibata formulati¢?,31] with some Qij » Qi ', andQ™ are the values oQ;;, Q;, andQ at
modification from the original versiofsee[20], to which the ~ (\X*+(Ay)?,02), which are interpolated using Lagrange’s
reader may refer for basic equations and gauge conditions fiermula[32] with three nearby grid points along thedirec-
the latest version In this formalism, we evolve the follow- tion (i.e., x=Ax andx). At x=L, we use only two points,
ing geometric variables using a free evolution code: x—Ax andx, for the extrapolation.

To impose the gauge conditions, as well as to solve the

¢=1 In[det ¥;))], (5)  constraint equations in preparing the initial conditions, we
solve scalar and vector elliptic-type equations of the form
yi=e %y, e 18]
.. Aﬂ '[Q:S' (12)
K=K 9, (7) °
_ AaQi=S;, (13
Ajj=e"*(Kjj— v K/3), 8 .
where Ay, denotes the Laplacian in the flat three-
o~ dimensional space, anfl and S; denote the source terms.
Fi=8"dyi; - €)

Using the interpolation mentioned abowg,Q and d,,Q;

o i . are evaluated in the finite differencing as
The Hamiltonian and momentum constraint equations are

solved att=0, and used to check the accuracy of numerical QO-Q(x,02)
solutions during computation. Iy Q=2———"—"r
The slicing and spatial gauge conditions for determining (Ay)

« and B are basically the same as those adopted in our
previous series of papef47-20,29,30,211 i.e., we impose
an “approximate” maximal slicing condition~0) and an
“approximate” minimum distortionfAMD) gauge condition
[Di(d,y1)~0, whereD; is the covariant derivative with re-
spect to~yi jl. However, in contrast with previous papers
[17,29,19,20) we do not modify the spatial gauge condition
even in the formation of black holes, since in the axisymmet-
ric simulation, a sufficient number of grid points can be
taken to resolve black hole formation and subsequent evolu- (Ay)?
tion even using the AMD gauge condition without modifica-
tion. On the other hand, the finite differencing in tleand z
We impose the axially symmetric condition to the geo-directions,d,,Q; andd,Q;, is written in the standard form
metric variables using the so-called cartoon method proposeas
by Alcubierreet al. [16]. First, we define the computational
domain as &x,z<sL and —Ay<y<Ay, whereL denotes
the location of the outer boundaries, and reflection symmetry
with respect to the=0 plane is assumed. With this compu-
tational domain, we need only three points in yheirection,
0 and*+ Ay. We determine here that the Einstein equation is
solved only in they=0 plane. Then, the boundary conditions

QY-Q,(x,02)

=2
il (Ay)?

QO [cose(x)| — Qx(x,02)
(Ay)?

dyyQx=2

Q| cose(x)|—Q,(x,02)

dyyQy=2

Qi(x+Ax,02)—2Q;(x,02) +Q;(x—Ax,0,2)
(Ax)? '

Qi(x,0z+Az)—2Q;(x,02) + Q;(x,0z—Az)
(Az)? '

aty=* Ay that are necessary in evaluatinglerivatives are
supplied from the assumption of axial symmetry as

Thus, in the finite differencing form for each component of
Eqg. (13), only one component o®; is included, implying
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that each component of the vector elliptic-type equation is P +o evi+ P n(vi+ 8
solved independently, as in the case of the scalar elliptic (P \/;) '[p*\/; J;( Al

equation.

Finally, we note a necessary modification for numerically
handling Einstein’s evolution equations in the axisymmetric
case. In our formalism, the evolution equations are written in (20)
the form[31,17,2Q

= a€6¢\/;P K+ %;EHGJK” —Px \/Zlfh ’)/IJ DJ a,
u

where
3,Q+ B*9,Q=right-hand side, (14

ps=pwe®?, (21)
whereQ denotes one of the geometric variablgs, A;; , ¢, A
K, andF. In the three-dimensional case, we apply an up- L ) . AJ-
wind scheme to numerically handle the transport t@#,Q v'=g= Bt ay (22)
for all the component$l7]. In the axisymmetric case, the
same method is used f@*9,Q and 8%9,Q, but is not for .
B’3,Q, since it is not appropriatdRemember that in the ui=hu;, (23

hydrodynamic equations in the axisymmetric case, there is
no transport term for the rotational directiprizor 8Y9,Q, . €% P

~ 2 = PV — -
we use the following schemes: FQr= ¢, K, v,,, andA,,, Cps Tuwn*n"=hw pw’ (24
we setf¥9, Q=0 because of symmetry. For other variables,
we simply use the cell-centeré¢decond-orderfinite differ- w=aut (25)

ence.

and 7 is a determinant in curvilinear coordinates; in the cy-

B. Formulation for the hydrodynamic equations in general lindrical coordinatesy=w. We note that subscriptsj, . . .

relativity here denote the components in curvilinear spatial coordi-

The hydrodynamic equations in general relativity areNates. Equation€l®), (19), and(20) are the continuity, Euler,
written as and energy equations. The Euler and energy equations are
derived fromy;V,T;=0 andn”V,T;=0, respectively.

We solve the hydrodynamic equations in the assumption
of axial symmetry. Thus, we first write equations in the cy-
V TE=0 (16) lindrical coordinates ¢, ¢,z). However, the Einstein equa-

move tions are solved in thg=0 plane with the Cartesian coordi-
nates. Hence, we rewrite the hydrodynamic equations in the
Cartesian coordinates using relations suchsasx andu,,
=xu, for y=0. Then, the explicit forms of the equations can
be written as

17 pyU*
5tp*+ﬁx(p*vx)+&z(p*vz)=— X ' (26)

V,.(pu*)=0, (15

where V, is the covariant derivative with respect to the
spacetime metrig,,,, p is the baryon rest-mass densit,
is the four-velocity, and

T#"=phu*u”+Pg*".

Here,P is the pressurdy=1+ ¢+ P/p is the enthalpy, and

is the specific internal energy. Equatiofis) and (16) are

the continuity equation and the equations of motion, respec-
tively.

h(ps l’-\JA) + Py aAUX+ Pae&ﬁ&;]

We adopt the so-called high-resolution shock-capturing
scheme in numerically handling the transport terms of hydro-
dynamic equations. To use such a scheme, the hydrodynamic

0oX
__ PxUpv n P uyvy

+ 0, py Upv?+ Pae®? 5% ]

5AX+ P(?A( ae6¢)

equations should be of a conservative form as X
; “ ae”MU0 -
h(ps \/;)"'ai(l)* \/;UI)ZOy (18 —Px WhﬁAa’—Uj(?ABJ'F Thljo"A’y”
Ty \1U)) + 3i(py N o' U+ Pae®®\78) 2ah(w?2—1)
— ), (27
=Po7j(aes¢’\/;)—p*\/7] Wh&]a_aﬂ?J,BI A
- ~ . 2p, uy*
1 .. K at(P*uy)+ax(P*qu )+’9Z(P*va ):_T,
+ 2u_thUkU|(9j’y f (19) (28)

024033-4



AXISYMMETRIC GENERAL RELATIVISTIC . .. PHYSICAL REVIEW D 67, 024033 (2003

a(p, &)+ alp, evX+ P& (v*+ BY)] the equation of state is preserved in the polytropic form even
using Eq.(31); i.e., the valueP/p"=Kp(x*) for any fluid
+ 3, p,evi+Peb(v7+ BY)] element remains a constant Kp).
) The second one is a parametric equation of state that has
py €U+ Pe®%(v*+ B¥)  eBPK been used by Yamada and Sf1d] and by Miler and his
= - o

X collaboratord 12,14 for the simulation of a rotating stellar
core collapse. In this equation of state, we assume that the

[ N pressure consists of the sum of polytropic and thermal parts
+EUinK”—P*UiY”Dja, 29  as

where a subscriph denotesx or z, andi,j, ... here denote P=Pet P (32
x, y, andz For numerically handling the transport terms astne polytropic part is in general given &=Kp(p)p" ),

dx(---) and d,(---), we apply an approximate Riemann \yhereK,andI are not constants but functions of dengity
solver with third-order(piecewise paraboljcspatial interpo- | this paper, we follow[14] for the choice ofkp(p) and
lation. Other terms are regarded as the source terms. NO & ,,): For density smaller than the nuclear density,=2

tificial viscosity is added, in contrast with our previous axi- x 1% g/cn, T=T"y(=const) is set to bes%, and forp

symmetric implementatiof21]. The time integration is done >p I'=T,(=const=2. Thus

with the second-order Runge-Kutta method as explained in * "’ 2 ’

[18]. Detailed numerical methods with respect to the treat- Kip™ p=<pruc
ment of the transport terms are also described in Appendix A. Pl Ko ol2 o= (33
We note that from Eqs(26) and (28), conservation of 2P % P=Pruc

baryon rest.-mass and angular momentum is d.erived. How; hereK,; andK, are constants. Sind®, should be continu-
ever, we write these equations as nonconservative forms an s we demand that the relatidg.—K.o'1-T2 should be
hence, these conserved quantities are not precisely conservggt ! 2 b :

in numerical computation. To suppress the growth of viola- isfied. Following[12,14, we setK,=5x 10" cgs, be-
tion of the conservations in an acceptable lefeeg., within cause we can well approximate the polytropic part of the

; . . equation of state fop<p,, in which the degenerate pres-
0,
Il\//;)' we should be careful in the grid resolutigsee Sec. sure of electrons is dominant. Taking into account that the

In every time step of computation at each grid point is specific internal energy should also be continuouspat

obtained by solving the following equations, which is de-_ Prue the polytropic specific internal energy. is written
rived from the normalization relation of the four-velocity as

. . |e P 2 “ Prly P=Pnuc
W2:1+‘y|luin:1+‘y”Uin V_V+W . (30) Fl_l
Ep— _
) " ke o T ToKipt
Here,P=P(p,s)=P[p*/(vye6‘fi),e] (sge §ec. ICandp Fz—lp + (T,—1)(T,—1) ' P= Pnuc-
=p, [(we®?). Thus for a giveny;;, ¢, u;, e, andp, , Eq. (34)

(30) constitutes an algebraic equation fer which can be _ _ o o _
solved by standard numerical techniq(igg]. After wis ob- ~ With these settings, we mimic a realistic equation of state for
tained,p, P, &, h, andv' can be updated. We note that this high-density, cold nuclear matter.

procedure is essentially the same as that used in our previous The thermal part of pressure plays a role in the case that
papers(see[18] for detailg. shocks are generated. Here, we write it as

C. Equations of state Pin=T=Dpen, (39

We adopt two equations of state. One is the so-calledvheresy,=¢—ep. Following[12,14], we setl’y,= 1.5 in this

I'-law equation of state of the form paper.
We performed simulations of rotating stellar collapses us-
P=(I'-1)pe, (31)  ing this parametric equation of state. In choosing this, we

. . . _ always give equilibrium stars as initial conditions using the
wherel is an adiabatic constant. In using E81), we al- polytropic equation of state

ways give an initial condition using the polytropic equation

of stateP=Kpp' of the identicall’, whereK is a polytropic P=Kop*3, (36)
constant. In this paper, we set the adiabatic constart as

=2 [i.e., the polytropic index is given byn=1/(I'—1) where K, is a constant. Followindg12,14), we setKy=5

—1] as a qualitative approximation of moderately stiff equa-< 10 cm®s%gr'’3, with which a soft equation of state gov-
tions of state for neutron stars. We note that if we prepare gmed by the electron degenerate pressure is well approxi-
polytropic star as an initial condition and the system evolvegnated [33]. Here, K, and K; are related by K,

in an adiabatic mannéwith no shock, cooling, and heating = Kopgls_rl, wherepo,=1 glcnt.
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D. Adding atmosphere
M*(j0)=477J‘ - xdxdzp, , (40

In using high-resolution shock-capturing schemes, we i<io

have to add an atmosphere of small density outside stars,

sincep andP have to be nonzero. At=0, we put an atmo- wherej is the specific angular momentum computed as
sphere of uniform density and specific internal energy in the ,(=hu,) andj, denotes a particular value fir
computational domain 0p=0, according to the following The numerical accuracy is also checked monitoring the
methods. For thd'-law equation of state withi'=2, the  violation of the Hamiltonian constraint, which is written as
uniform density of the atmosphere is set@as- 10_6pmax,

wherep . denotes the maximum density of a star. The spe- 1/ s i W 5

cific internal energy is given using the polytropic constant as H=—8¥"° Ay- _R+27TE‘/’ + g A~ 2K

Kpl4. For parametric equations of sta{82), the uniform (41)
density of the atmosphere is set@s=1 g/cn?. In this case,

the specific internal energy is given using the polytropic conwhere y=e?, andA denotes the Laplacian with respect to

stant asK,. _ _ - Inthis paper, we define the averaged violation according
For theT'-law equation of state with'=2, the density 4

decreases steeply around the surface of a neutron star. In

such a case, numerical instability could often turn on around 1

the stellar surface, if the density of the atmosphere is too low. ERROR= M_j px|VId3x, (42
This is the reason that we attach the atmosphere of relatively *

high density. On the other hand, a small valuepgfis ac-  \yhere

ceptable in parametric equations of state.

P WO °
lll. GLOBAL QUANTITIES AND METHOD Ay— gR+2mEy°+ S A AT - SK?
FOR CALIBRATION V= s 7 7 (43
5 2
We monitor the conservation of the total baryon rest-mass Byl + _R 2Ryt _A A” + 1_2K

M, , ADM massM, and angular momenturd, which are
computed in they=0 plane as Namely, we usg, as the weight factor for the average. The
reason that we introduce this average is as follows. In using
L L high-resolution shock-capturing schemes, we add an atmo-
M, =47-rj xdxf dzp, , (37) sphere of small density outside neutron stars and/or collaps-
0 0 ing stars. In the atmosphere, a small error in the metric re-
sults in a large violation of the Hamiltonian constraint
becauseE is a very small value. Furthermore, the volume
= _zf def dz —27Ee%%+ —R fraction occupied by the atmosphere in the whole computa-
8 tional domain is larger than that for main bodies. Thus, if we
5 simply compute the volume integral ¢¥|, it is close to
- |A. Al ZK H (38)  unity irrespective of the grid resolution. However, the nu-
8 j 3 merical accuracy in the atmosphere is not very important for
evolution of the main bodies and for global evolution of the
L L system in which we are interested. Therefore, to monitor
J:47Tf dexf de*fly, (399  Wwhether the main bodie@eutron stars and collapsing stars
0 are accurately computed or not, this type of weight factor is
necessary.

whereE=phw?— P andR is the Ricci scalar with respect to

}ij . M, should be conserved in any system. Because of the
axial symmetry,J should also be conserved. On the other In the numerical simulations reported in Secs. IVA-IVC
hand,M is not conserved in general because of gravitationabelow, we adopted a fixed uniform grid, in which the grid
radiation. However, the total radiated energy of gravitationaspacingAx=Ay=Az is constant, with grid sizeN+ 1N
waves is likely to be quite small in the axisymmetric space-+1) for (x,z) to cover a computational domain as 0
time, so that we can consid®d as an approximately con- =x, z=<L, whereL=NAX. In the simulation reported in
served quantity. In our axisymmetric hydrodynamic imple-Sec. IV D, we varied the grid spacing during the computa-
mentation,M, and J are not guaranteed to be conservedtion, but still used the uniform grid in whiclAx=Ay
precisely. Thus, monitoring the conservation of them is a=Az. To check the convergence of the numerical results for
good check of numerical accuracy. Ax—0, numerical computations were carried out with three
In addition to the mass and angular momentum, we alsd¢evels of the grid resolution while fixing. All the computa-
check the conservation of the specific angular momentuntions were done on the FACOM VPP5000 machine in the
spectrum 37], data processing center of the National Astronomical Obser-

IV. NUMERICAL RESULTS
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TABLE I. The central density., baryon rest-maskl, , ADM

massM, and compactnessl/R of spherical neutron stars with Q’E- 101
=2 that we pick up in this paper. Here denotes the circumference ~ 1
radius. All the quantities are shown in units@f G=Kp=1. The < 0.99
star denoted with T is of the maximum allowed mass and hence 0B7T2 ET T T T T T T T T T T T T
marginally stable against gravitational collapse. In the last column, o 0.67 AA S 2
numerical results of. the radial 1(/)Zscillation period for thenode, 0.668
Posc, are presented in units @f ~<. 0.666
pe M, M MR Pospi” —5><10-2> ~— s
S1 0.0637  0.105  0.100  0.0932 M_Bodgg?; % ~~~~~~ e mmecarnne~end
S2 0.127 0.150  0.140  0.146 5.0 ' Sl L L 1S
s3 0191 0170 0156  0.178 6.9 0 0 40 €0
sS4 0.255 0178 0162  0.200 11 (@) VDo
ssf 0.318 0.180  0.164  0.214 _ )
£ 025 | .
201 .
vatory of Japan. The memory and CPU time in one run with 0 E 3
a grid sizeN=600 and with four processors are about 1 - 0.03 T T
GByte and 12 CPU hours for 30 000 time steps. . 002 E T
We note that for a simulation witN= 600 in three spatial ; 0.01 E PP
dimensions, we would need 300 Gbytes memory and it S 0 e T
takes~ 1000 CPU hours for 30 000 time steps using 32 pro- ™ 0.03 fr— T3
cessorg[20]. Such simulation is pragmatically impossible, 2 0.02 & T3
because the computational costs are too kngtte that under s 001 E I =
normal circumstances, we can use at mest000 CPU N S
hours per year However, takingN= 600 in an axisymmetric = 0 0 20 40 60
simulation is an easy task with the current computational ) t\/Pcm.t

resources.
FIG. 1. (a) Time evolution of central density, central value of
lapse function, and extrinsic curvature at origin, ghgtime evo-
lution of averaged violation of the Hamiltonian constraint, violation
In this subsection, we focus on the long-term evolution ofof the ADM mass conservation, and violation of the baryon rest-
spherical neutron stars. The initial conditions are given usingnass conservation for a stable spherical neutron(S2r In both
the polytropic equation of state with=2, and during the figures, the solid, dotted, and dashed curves denote the results with
time evolution, the-law equation of staté31) is used. Al- N=180, 120, and 90. With these grid nymbers, the radius is ini-
though we did the same test simulations for the previoudally covered by about 65, 44, and 33 grid numbeig;,; denotes
hydrodynamic implementation and obtained successful outh® central density at=0, and the time is shown in units pf i -
puts from it[18], we repeated the tests again in the present L
new implementation to demonstrate that it also works well. A 5 Kp )
difference in the present tests from the previous ones is thdtphys= 1-35X 10" g/cm’i(ms) (ﬁ) (45)
we have performed much longer-term simulations than those 9
in the previous tests, since it is computationally inexpensivqn Table |
and pragmatically possible to do in the axisymmetric case. '

In the polytropic equations of state, the polynomial rela’BeIow, we refer to these models as mod&4)—(S5). Mod-

H 3—np n2~-—3/2 H H H H
tion ¢ "Kp“G " has dimension of mass. With this prop- ¢|5(51)_(s4) are stable against gravitational collapse, while
erty, all the quantities can be scaled to be nondimensional, (55) is marginally stable.

we multiply an appropriate combination of G, and Kp. In Figs. 1a) and 1b), we display the time evolution of
Th_us, we will only show the nondimensional quantities inine central density, central value of the lapse functioere-
using this equation of state. In other words, we adopt theyger 4 ), central value oK(K,), averaged violation of the
units of c=G=Kp=1. In these units, the maximum ADM  jamiltonian constraint, and violation of ADM mass and

mass and baryon rest-mass of spherical neutron stars a8 on rest-mass conservation for mo@8R). Throughout
~0.164 and 0.180, respectively, with the central density s subsection, the time is shown in units @f~2, where

~ [ ity in di - ; > M init »
’70'318' Recoverind<p, the mass and density in dimen pc.init denotes the central density tat 0. To induce a small
sional units can be written as !

oscillation, we initially reduce the pressure by 0.2%. We note
K w2\ t_hat when.ever we superimpose a perturba}tion.to an equilib-
M, orve=2.11M P S) ( *0), (44) rium configuration, we reinforce the Hamiltonian and mo-
P 2x10° cg 0.18 mentum constraints at=0. Numerical results are shown for

A. Spherical neutron stars

we list several quantities for five models of
spherical neutron stars that we pick up in this subsection.

024033-7
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boundaries, resulting in an earlier crash of the run. However,
for L>2Rg, the results are not significantly modified by the
spurious effects.

As we mentioned in Sec. Ill, the baryon rest-mass is not
numerically conserved strictly. However, the violation does

T[T T T
’

7

—_
—_
T HI||II||||I||IIII
TN
!
14
N
b

The error of mass conservation converges to zero with
80 improving the grid resolution at approximately second order.
@) VP The averaged violation of the Hamiltonian constraint also
indicates approximate second-order convergence. Therefore,
we can conclude that the numerical solution converges to the
exact solution in the limiAx—0. We note, however, that
the convergence is only approximately at second order, be-
cause near stellar surfaces, the gradients of hydrodynamic
variables are so steep that transport terms are often computed
with first-order accuracy in space. The convergence may also
become first order if shocks are generated during numerical
computationgsee Sec. IV § since near the shocks, the hy-
drodynamic computations are done with first-order accuracy.
A similar tendency is reported by Milleat al. in the simula-
; AR tions of a head-on collision of two neutron stfBg].
0 0.1 0.2 0.3 In the last figure of Fig. (&), it is shown thatK, is not
(b) £/Vp zero exactly but relaxes to a finite value. This indicates that
even in solving the equation for the maximal slicing condi-
FIG. 2. (a) Time evolution of central density, lapse function at tion, K deviates from zero as long as finite differencing
origin, and averaged violation of the Hamiltonian constraint formethods are used. Indeeld, converges to zero at second
stable stars(S2) (solid curve$, (S3 (dotted curveg and (S4) order with improving the grid resolution. Thus the maximal
(dashed curvgs The simulations were performed witd=180.  slicing conditionK=0 cannot be precisely imposed in nu-
With these grid numbers, the radius is covered by about 65, 58, angherical computation even in a well-resolved simulation, if
51 grid numbers fo(S2), (S3), and(S4), respectively(b) Fourier  we adopt finite differencing schemes. This tells us that we
spectra of the central density f¢82) (solid curve, (S3 (dotted  should follow the evolution oK and should nog priori set

S UL I R B
o 8:; = E not seriously affect the numerical results. Indeed, the aver-
0.5 Esrm~rmmmmmm e e 4 aged values of the central density and lapse remain constant,
o4l Lo Lo 13 as they should. The numerical results indicate that if we want
0.15 T TS to suppress the violation of the mass conservation within 1%
£ 01E el (2%) after 10 dynamical time scales, the radius of the neu-
E 0.05 — T — tron star should be covered by more than(20) grid points.
0 20 40 60

—
o
(@]

55

1
1l
I
1
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1
I
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1
1
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]
1
Il
I
[}
Il
1
|
1
¥

NN

curve, and(S4) (dashed curve K=0 in numerical computation, even in choosing the maxi-
mal slicing condition.
N=90, 120, and 180 with a fixed value bf to demonstrate Long-term simulations for more compact stable st&3

that the convergence is achieved. The simulations continuedd (S4 were also carried out. In Fig. 2, we display the
for ~30 dynamical times calegsee also Fig. Runtil the  results for model$S2), (S3), and(S4) together. FokS3), the
crash of the run, irrespective of the grid resolution, althoughsimulation continued for~20 dynamical time scales until
the accuracy deteriorates gradually with time. Here, we refefhe crash of the run. However, f¢84), the star starts col-
to the period of the fundamental radi@nd quasiradialos-  1apsing to a black hole after about 5 oscillation periods. The
cillation as the dynamical time scale. reason for this consequence is clear. The ADM mass of
L is chosen as-3Rg, whereR denotes the coordinate Model(S4) is ~99% of the maximum allowed value. Thus,
radius of the neutron star. For simulating spherical systemgVith a slight increase of the mass as a result of the accumu-
we imposed the outer boundary conditions as lation of numerical error, the mass exceeded the maximum
allowed value for stable stars, resulting in eventual gravita-
tional collapse. It is interesting to note that in this case, the
computation was able to be continued until the formation of
a black hole of the apparent horizon masse Eq.(49) for
definition] ~M, whereM is the initial ADM mass. Thus, the
(For nonspherical problems, we impose an outgoing boundncrease of the central density and the decrease.disee
ary condition for}ij and Kij .) These boundary conditions Fig. 2(@] do not imply that the computation crashed. To
are adequate but not physically perfect. As a result, for thevoid the collapse to a black hole and to make the oscillating
choice of a too small value of as ~Rg, the numerical time longer, we need to take more grid numbers to improve
solution is affected by the spurious effects of the outerthe grid resolution. Actually, we have checked that we can

=8, A;=0, (r$),=0, K=0, and F;=0.
(46)
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increase the oscillation cycles in numerical computation with 2 PTTTTTTTTTITTTTTT AL
improvement of the grid resolution. Q':? AR
The duration of the simulation to crash for mod&id ~ ST
was shorter than that diS2). This fact indicates that with &1 =
increasing the compactness of neutron stars, the computa- O e L L, [T '1'3
tions crash earlier. We note here that the duration of the o 01F -
simulation for these models depends only weakly on the grid s £ E
resolution. Thus, it does not depend on the numerical accu- 001k 11, .5
racy, but seems to depend on certain factors associated with 1 grrry T T T
formulation or gauge conditions or outer boundaries. The & O0lF s
same tendency is found in the simulations of rotating neutron & 0.01 I z
stars. We will argue this point in Sec. IV B again. = 000'381 . Ll 1L
Although the simulations can be continued only for a fi- ' 10
nite time scale, the duration of 10 dynamical time scales (@)
seems to be sufficiently long. Indeed, we can accurately ex-
tract the oscillation frequencies of the fundamental radial 1 EC—C ]
mode from these simulations. In Fig(bh?, we display the C ]
Fourier spectra op(t), which is defined as 08 L b
t F 4
F(f)Eff[Pc(t)_pc,av]esztdt‘v (47) = 06 [ ]
0 ™~ r .

B C ]
wheret; is chosen as-70p; *2, 550 Y2, and 4@ Y for =04 §
(S2), (S3), and(S4), respectivelyp, 5, is computed from 02 C ]

1t C ]
Pc,av— _f pc(t)dt. (48 0
tiJo 9 10.5

. L I . b
The Fourier spectra indicate that the oscillation period of the ®

f mode of the radial oscillation is 5-0Pc_1/2’ 6-9051/21 and FIG. 3. (a) Time evolution of central density, lapse function at
11pc_1/2 for (S2), (S3), and (S4). These values agree well origin, and violation of baryon mass conservation, dbyl time
with those derived from Chandrasekhar’s semianalytic for-evolution of mass of the apparent horizeh, in units of the ADM
mula [35,18. Furthermore, the result fofS2) is in good mass of the system for a marginally stable spherical neutron star
agreement with that for a spherical star @f=0.128 re- (S9. To destabilize, we initially reduce the pressure by 0.5%. In
ported in[28]. Thus, we conclude that the computation canboth figures, the solid, dotted, and dashed curves denote the results
be continued for a sufficiently long time to accurately obtainwith N=180, 120, and 90. With these grid numbers, the radius is
the oscillation frequencies of even extremely relativistic neudnitially covered by about 71, 47, and 35 grid points.
tron stars. The simulation would be able to be carried out to
study nonspherical oscillations of neutron stars, as was doret t~10p;i1r{if. This verifies that the computation crashes
in [18,36]. when ERROR is~0.2. We can also observe that as the
In Fig. 3, we display the time evolution of several quan-accuracy deteriorate§) the central density stops increasing
tities for collapse of a marginally stable spherical neutronand instead starts decreasing, &indexponential decrease of
star (S5. To induce the collapse, we initially reduced the q, that is a feature in the maximal slicing condition is modi-
pressure by 0.5%. With this setting, the neutron star collapsefed. The reason fofi) is as follows. In our implementation,
to a black hole in~ 10pc_’ijr'1/i%. We have checked that even p, is a fundamental quantity to evolve, apdis computed
with a 0.2% decrease of the pressure, the star collapses toflm p, /(e®®w). In numerical computationsp, and ¢
black hole in~20p;i1,{if, which is longer than that for the monotonically increase, but sineg around the origin is too
case of 0.5%. Numerical results are presentedNet90, large [of O(1)] in the late phase of the collapse, a small
120, and 180 and demonstrate that the convergence &rorin¢ leads to a large error ip. As a resultp decreases
achieved. Note that with lower grid resolution, it takes ain the late phase. The reason fap is simply that the com-
slightly longer time to form a black hole. This is because theputation crashed. Indeed, the time at which the behavior of
dissipation that prevents the increase of density is larger witlx starts changing agrees with that at which the magnitude
lower grid resolution. of the averaged violation of the Hamiltonian constraint satu-
In the final phase of the collapse, the grid resolutionrates to~0.2.
around the black hole forming region became so bad that the Although the accuracy deteriorates in the final phase of
computation crashed. It is interesting to note that the magnithe collapse, the simulation can be carried out at least until
tude of the averaged violation of the Hamiltonian constraintthe formation of an almost static black hole. To confirm the
ERROR, relaxes te-0.2 irrespective of the grid resolution black hole formation, apparent horizons were located during
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G RN RN RN R R demonstrate that convergence is achieved. In each case, the
4 ] neutron star is initially covered by 39, 52, and 78 grid points,
5 respectively.

MYMYMYRRY SIS P B P Because of a significant decrease of the pressure, the ra-
ETT T T T T T T[T T T[T T T[T TS dius of the neutron star decreases by a factor-@ soon

3 after the simulation starts. However, the magnitude of the
3 pressure decrease is not large enough for the star to collapse
06 E vl i i 1R to a black hole. Instead, the star bounces when the central
density becomes about six times of initial value, and repeats

——————— SRS;

o 0.1 SRRV oscillations subsequently. As the density approaches the
= 0.01 - maximum, shocks are formed around the stellar surface, and
M 0 001 L as a result, outer envelopes explode. To illustrate that shock
’ 10 20 30 40 50 heating indeed occurs, we display(Kpp' ~1) att~0 and
@ A fafter about one oscillation period in Fig(b}. As mentioned
einit in Sec. Il C, in the absence of shocks, this quantity does not
108 g s change from the initial value, but in the presence of shock
— 10* E - heating it increases. Figureg} clearly shows that in the
I 1000 B 2 outer envelope, the shock heating is significant. On the other
;:t 100 g— —é hand, a negligible effect of shocks can be seen around the
I 10g = central region. Since the shocks are generated only in the
w 1E T = atmosphere, the averaged violation of the Hamiltonian con-
0.1 B Lo re PETIR T straint still converges approximately at second order with
1.5 SRR RREE improving the grid resolution.
= 1 E E Figure 4a) indicates that the amplitude of the oscillation
Q'i:- E ] gradually decreases, and after several oscillation periods, it
S 05 F = settles down approximately to a constant. This illustrates that
o 3 the kinetic energy of the oscillation is dissipated by the
o s [ shocks gradually. Similar results are reported 28] for a

o
[av]

0.5 1 1.5 simulation of a migrating neutron star. The lower figure of
(b) r / Ry Fig. 4b) shows the density profiles &0 andt~ one os-
. ) ) ) cillation period. This indicates that the density profile is
FIG. 4. (a) Time evolution of central density, lapse function at yqgified to a more centrally condensed state as a result of
origin, and averaged violation of Hamiltonian constraint for an 0S-the shock dissipation
cillating spherical neutron star. The solid, dotted, and dashed curves We emphasize thét this simulation is highly dynamical
denote the re§ult§ V\."t.h!zlso’ 120, and 90. With these grid num'.dand general relativistic. Even in such a case, the simulation
bers, the radius is initially covered by about 78, 52, and 39 gri - . .
was able to be continued for more than 20 oscillation peri-

oints.(b) Profiles ofe/(Kpp" ~1) andp att~0 (dotted curvesand o . .
gfter ai)czut one oscfillgti;ﬁ pe)rio(ﬂ;oll)id curve($ The unit ;Sf the 0ds. This illustrates the robustness of our implementation for
’ dynamical problems in general relativity.

horizontal axis is the initial radius of the neutron star.

the simulations. In Fig.®), we display the time evolution of
the mass of the apparent horizon in units of the ADM mass i o
of the system. Here, the mass of the apparent horizon is We focus here on the long-term evolution of rigidly and

B. Rapidly rotating neutron stars

defined as rapidly rotating neutron stars at mass shedding limits for
which the angular velocity at the equator is equal to the
/'S Kepler angular velocity. Following Sec. IV A, we adopt the

Man= 167 (49) polytropic equation of state with=2 for setting initial con-

ditions and evolve neutron stars using fhdaw equation of

whereSis the area of the apparent horizon. The figure indi-state(31). The axial ratio of the polar radius to the equatorial
cates thai 5, relaxes approximately tbl in the final phase one is ~0.58 for rotating neutron stars at mass shedding
of the collapse.(For N=180, |[My/M—1] is less than limits with '=2. As in Sec. IVA, we only present the
1%.) This implies that the simulation was carried out up toscaled dimensionless quantities with the unitcefG=Kp
the time when a spacetime settles down to a static black hole 1 throughout this subsection. In these units, the maximum
spacetime. ADM mass and baryon rest-mass of rigidly rotating neutron

In Fig. 4(a), we show the time evolution of several quan- stars are about 0.188 and 0.207, respectively, with the central
tities for an oscillating spherical neutron star of a high am-densityp.~0.27[38]. The central density of the marginally
plitude. In this simulation, we picked up a low-mass spheri-stable star against gravitational collapse has slightly larger
cal star (S1), and to induce an oscillation of a high density (~0.295) than this valug38,29. In Table I, we list
amplitude, we initially reduced the pressure by 40 %. Theseveral quantities of six rotating neutron stars that we pick
numerical results are shown fdf=90, 120, and 180, and up here. In the following, we refer to these neutron stars as
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TT T T[T T T T [T T T T[T 1111 Qg

TABLE II. The central density, baryon rest-mass, ADM mass,

2 1.06 & =

M/R, rotational period P,y in units ofp; iz, /M2, and|T/W| of Q’E‘ s A
rotating neutron stars at mass shedding limits with 2 that we ~ E RN
pick up in this paper. Her& andW are the rotational kinetic energy @095 B LT
and gravitational potential energy, aRdlenotes the circumference 0.625 LI LB O L L B
radius at the equator. All the quantities are shown in unitx of ., 062Kk =
=G=Kp=1. The star denoted with T is unstable. In the last col- 5 0.615 E M i
umn, numerical results of the quasiradial oscillation period foifthe 061 Bl il iy 103
mode, P, are presented in units (pfc_,l,{,f T J
—0.0002 Ea.\_ ................................................................................... _:

pc M, M M/R Pygp? JIM? |TIW| Pype x-0.0004 "7 R
~0.0006 5y Trriti i Iii Lo

RO 0.103 0.169 0.158 0.111 852 0.667 0.0932 5.7
R1 0.136 0.186 0.172 0.129 853 0.630 0.0909 6.5 0 10 =20 30 40 50
R2 0.183 0.200 0.183 0.148 856 0599 0.0876 8.2 (@) VP

R3 0.215 0.204 0.186 0.158 8.60 0.585 0.0856 10

1

R4 0.253 0.206 0.188 0.167 865 0573 0.0834 16 o R R
R5" 0.296 0.206 0.188 0.175 8.72 0.561 0.0809 % 000‘1 3
0.001 Bl b b b L

models (RO)—(R5). Models (RO)—(R4) are stable against L (o5 I~ B N R DR R
gravitational collapse, an@R5) is unstable and very close to g 001 F
the marginally stable point. 2 0.001 -

In Fig. 5, we display the time evolution of several quan- s 0.0001 & b b b L d
tities for model(R1). The ADM mass of this model is-91% VU O = N A
of the maximum mass of rigidly rotating neutron stars with 2 3 5
I'=2, so that it is a sufficiently relativistic model. To induce < 0.01 ¢ E
a small oscillation of the fundamental quasiradial mode, we = 0.001 Do KA i Lo L
initially reduce the pressure by 0.5%. Numerical results are 0 10 20 30 40 50
shown for N=240, 180, 120, and 90 to demonstrate that ®) V04 s
convergence is achieved. With these grid numbers, the polar ) ] ] ]
(equatorial radius is covered by about 480), 35 (60), 23 FIG. 5. (a) Time evolution of central density, lapse function at

origin, and extrinsic curvature at origin, aifd) time evolution of
The simulations continued for-10 dynamical time averaged violation of the Hamiltonian constraint, violation of rest-

scales. and eventually crashed. The duration of the simul mass conservation, and violation of angular momentum conserva-
' y | .E{ion for a stable and rapidly rotating neutron star at the mass shed-

tion to Cra.Sh depends on.ly \.Nea!(ly on the grid resol.ution as,“?iing limit (R1). In both figures, the solid, dotted, dashed, and
the spherical Cases.. This implies th"?‘t the crash is not t,”gdotted-dashed curves denote the results With240, 180, 120, and
gered by accumulation of the numerical error. The dura“ongo. With these grid numbers, the polaguatorial radius is covered

also does not vary much even if we change the outer boundsy ahout 46(80), 35 (60), 23 (40), and 18(30) grid points, respec-
ary conditions and the location of the outer boundarjas iyely.

~3R.—4R., whereR, denotes the coordinate radius at the
equator. Furthermore, the duration of the simulation for aered by at least-30 grid points if one wants to demand that
rotating neutron star is shorter than that for a spherical star ahe violation of the conservation of angular momentum and
identical compactness. Therefore, we deduce that the cradfaryon rest-mass is less than a few % aftetO dynamical
of computations might be associated with our choice of th@¢ime scales. If the polar axis is covered by fewer than 20 grid
spatial gauge condition or the formulation, although we dopoints, the magnitude of the violation becomes larger than
not understand the reason fully at present. There may still b&0% after 10 dynamical time scales.
room to improve the spatial gauge condition and/or the for- The long-term simulations were also performed for mod-
mulation, if one wants to perform an extremely long-termels (R0), (R2), (R3), and(R4). In all these simulations, we
simulation of the duratios>10 dynamical time scales. How- initially reduced the pressure by 0.5% and take- 180.
ever, 10 dynamical timescales are long enough to produc®/ith this grid number, the polatequatorial radius is cov-
scientific results for most problems, so that we do not adered by 3560) grid points. The time evolution of the central
dress this problem any longer in this paper. density and central value of the lapse functiom ) are

As in the spherical case, convergence is achieved witlshown together in Fig. (8). As in the spherical case, the
improvement of the grid resolution. As argued in Sec. Ill, theduration of the simulation is shorter for more compact stars.
angular momentum as well as the baryon rest-mass are nfThe moment of the crash of a run is identified with the time
conserved strictly, although they are conserved quantitiesat whichea, sharply drops.This might be evidence that with
However, the violation converges to zero nearly at secon@ur spatial gauge, coordinate distortion is accumulated too
order with improving the grid resolution. The results of this much for the long-term simulation, because it is likely to be
convergence test indicate that the polar axis should be covaccumulated more rapidly for more compact stars. As in the

(40), and 18(30) grid points, respectively.
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FIG. 7. Frequency of fundamental radial and quasiradial oscil-
FIG. 6. (a) Time evolution of central density and lapse function |ation modes for spherical staffilled circles and rotating stars at
at origin for stable rotating stak®0) (dotted-dashed curveSR1)  mass shedding limitéopen circle (a) as a function of the central
(solid curvey, (R2) (dotted curvel (R3) (long-dashed curvgésaind  density and(b) as a function of the lapse function at origin. The
(R4) (dashed curves The simulations were performed witN  frequency ap ;=0 for the spherical star is derived in a Newton-
=180. With these grid numbers, the equatorial radius is covered bjan analysis. The filled and open circles along the horizontal axis

about 60 grid numbersb) Fourier spectra of(t) for (RO) (dotted-  are plotted according to the fact that the oscillation frequency of the
dashed curves (R1) (solid curve$, (R2) (dotted curves (R3) marginally stable star is zero.

(long-dashed curveésand (R4) (dashed curves

note the numerical results for spherical and rotating neutron
. 0 ; stars, respectively. The filled circle along the vertical axis is
the ADM mass is=99.5% of the maximum, collapses 10 & intted according to a Newtonian analysis for the spherical

black hole in a few dynamical time scales instead of CraShpontrope[SQ]. On the other hand, the filled and open circles

ing, because of a slight increase of the baryon rest-mass duf,ng the horizontal axis are plotted by the fact that the fre-
to numerical error. It is necessary to take- 180 to continue

quency of the fundamental radial and quasiradial oscillations

computations of such high-mass stars for more than two 0S¢ the ‘marginally stable stars is zero. We note that the fre-
cillation periods. However, as long as the neutron star is ”Oauency in dimensional units is computed from

very close to the marginally stable point, the simulation can

simulation for(S4), a high-mass rotating stéiR4), for which

be continued for more than five dynamical time scales with Kp -1z peinit| V2
N~ 200, and this duration is long enough to produce scien- f~9485 HZ Pospea) 2| ———— ( 03 ) ,
tific results for most problems. For example, from these 2X10° cg :

simulations, we can extract the frequency of fundamental (50

quasiradial oscillation modes. In Fig(®, we show the Fou-

rier spectra of the central density as in the case of Sec. IV AwhereP .= 1/f is the oscillation period of the fundamental

The figure indicates clear peaks that denote the fundamentglasiradial mode.

frequency of the quasiradial oscillation modes. As mentioned in Sec. IV A, the frequencies for spherical
In Fig. 7, we summarize the frequencies of the radial ancheutron stars agree well with semianalytical resi86&. For

quasiradial oscillation modes for spherical and rapidly rotatrotating neutron stars, the frequency is slightly smaller than

ing neutron stars with’=2. The filled and open circles de- that for spherical neutron stars for identigal. A similar
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g  [TTTTTTIITTTIITTITTIITT A small error in¢ that is ofO(1) at the formation of the black
< L ] hole leads to a large error ip that is computed from
™~ ps [(We®?). It is also found that at the time when the mag-
&1 Lol b 13 nitude of the averaged violation of the Hamiltonian con-
L L A AN RN AR straint becomes-0.2, the computation crashed due to the
o 0.1F _ grid stretching around the horizon of a black hole, and that
s 0.01 ?_ N the magnitude of ERROR at the crash is almost independent
U Bl b by b 1S 1S of the grid resolution.
1 grer T In Fig. 8b), we show the time evolution of the mass of
= o0lp E the apparent horizon defined by E@9). Here, the long-
& 000'81 £ 3 dashed horizontal line denotes the expected final value
= 0.0001 et W R N NN L VSen/(167M?), whereSgy, is derived from the formula for
0 2 4 86 8 10 12 the area of the event horizon of a Kerr black hold 23|
(@) t\/pc,init
J2
L L B B BN BN B Sey=87M? 1+\/1—W), (51
0.8 — —
B ] whereM andJ are the ADM mass and angular momentum of
= 06 ] the collapsing neutron star. Since almost all the matter even-
Tt i tually falls into a black hole in this simulation, the area of the
= C ] apparent horizon should settle downSg,. The figure in-
= 04 ] dicates that the area of the apparent horizon asymptotically
- . approaches the expected value. This demonstrates that the
02 ] spacetime in the final phase of our simulation almost relaxes
r . ] to a stationary, Kerr black hole spacetime.
L 1 I 1 1 l’ 11 1 I 11 1 | 111 I 1 ]
106 108 11 112 114 C. Collapse of rotating stars with parametric equations
(b) VP i of state

FIG. 8. () Time evolution of central density, lapse function at | ne purpose of this subsection is to demonstrate that with
origin, and averaged violation of the Hamiltonian constraint, andoUr implementation, it is feasible to carry out stable and ac-
(b) mass of the apparent horizon as a function of time for collapsé€urate simulations for the collapse of rotating stars with para-
of an unstable and rapidly rotating neutron star at the mass sheddifgetric equations of sta{@2) that are more realistic for high-
limit (R5). In both figures, the solid, dotted, and dashed curvedlensity matter than th&-law equation of state used in the
denote the results witN= 240, 180, and 120. With these grid num- previous two subsections. Since the equation of state for
bers, the polafequatoridl radius is initially covered by about 69 high-density matter is still not precisely known, the paramet-
(120, 52 (90), and 35(60) grid points. ric equation of staté32) is used for several choices of;

andl,. Initial conditions are set up adopting the polytropic
tendency is found in the results f28]. It is interesting to  equation of stat¢36) with I'=73.
note that for the identical value of the central lapse function, In the realistic core collapse of massive stars, the central
the frequencies approximately coincide f¢=<0.6. density just before the collapse is of order4g/cn?

In Fig. 8@a), we display the central density, central value [14,40. Since the collapse leads to the formation of a neu-
of the lapse function, and averaged violation of the Hamil-tron star of density of order #®g/cn? or a black hole, the
tonian constraint for collapse of an unstable rotating neutrortharacteristic length scale changes by a factor @00. This
star (R5). To induce the collapse, we initially reduced the implies that we need to také of O(10%) for a well-resolved
pressure by 0.5%. We also carried out the simulations witlsimulation in the fixed uniform grid. Although it is possible
the reduced factor of 0.2%, and have found that the(&8r to take a large value dfl as several thousands, performing
collapses also in this case, although it takes longer to be such large-scale simulation is not computationally inexpen-
black hole. Numerical results are shown fde=240, 180, sive even in the axisymmetric case. Since the main purpose
and 120 and demonstrate that the convergence is achieved this subsection is not to present scientific results, but both
well. With these grid numbers, the pol@quatorial radius is  to demonstrate that realistic equations of state can be adopted
initially covered by about 69120), 52 (90), and 35(60), in our implementation and to grasp characteristic behaviors
respectively. associated with new implementation with such equations of

During the collapse, the densifyapse functioh mono-  state, here we pick up more compact stars of central density
tonically increasesdecreas@swith time, and finally a black ~6x 10 g/cn? as initial conditions to save the computa-
hole is formed(i.e., the apparent horizon is locajeid the tional costs as a first step. In the next subsection, we will
late time whemx,<0.03. As in the spherical case, the reasonshow a numerical result with a more realistic initial data set
that p. decreases in the late stage of the collapse is that as illustration.
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TABLE Ill. The central density, baryon rest-mass, ADM mass, against gravitational collapse, if the compactn®&R, is
equatorial radiuR,, J/M?, and|T/W| of initial conditions for the larger than~1/700. Thus, the equilibrium state of model
simulations of stellar collapse in Sec. IV C. (C1) is unstable. The criterion of the instability has not been
established yet for differentially rotating stars. Thus, the sta-

Jpe M. Re ) bility is not clear for(C2). However, since the compactness
@a/R. (107 glent) (Mo) M(Mo) (km) JIM? |T/W] is much larger than 1/700, the initial equilibrium €£2) is
Cl1 6.02 1.347 1.343 265 0.434 8.38d-3 also likely to be unstable. Hence, by decreadinfjom 3 to
c2 12 6.24 1465 1465 231 0.888 3.51d-2 [1<3 att=0, the collapse is accelerated. To investigate
convergence, the simulations were carried out with
=600, 400, and 300 for all the models. In these simulations,

Velocity profiles of equilibrium rotating stars used as ini- the equatorial radius was initially covered blygrid points.
tial conditions are given according to a popular relation In Figs. 9 and 10, we display snapshots of the density
[41,42, contour curves and velocity fields at selected time steps for

. ) models(C1a and(C2a as examples. It is found that model
Uu,=wg(Q,—0), (52 (c1) has a spheroidal structure initially, while mod&2)
has a slightly toroidal shape due to the effect of differential
rotation. In Figs. 11 and 12, we also show the time evolution
of several quantities for model&€C1la and (C23. Here
M., core denotes the total baryon rest-mass of high-density

where(), denotes the angular velocity along thexis, and
wq IS a constant. In the Newtonian limit, the rotational pro-
file is written as

w2 matter withp>p,.. As indicated in these figures, the col-
Q:Qa%_ (53 lapses proceed in the following manner. In the early phase in
Wy which the central density is smaller than,., the central

region of the star contracts approximately in a homologous

Thus, w4 indicates the steepness of differential rotation. Inmanner because the adiabatic index is closé [d4]. After

:'S_}pipae;' dvx;e d?;fcelieigiatlrll € r:l)?;ctjilr): r%tgtégg?nc\?vi?;ﬁm/;v hIChthe central density exceegs,,, a core is formed at the
‘i y 9 d’™e  central region, and the mass gradually increases as a result of

z whereR, is the equatorial coordinate radius. In both sypsequent accretion. At the time when the central density
cases, we choose the axial ratio of polar radius to equator'fﬂecomes~4.5pnuc for (Cla and ~3.5p,,. for (C2a), the
radius as 2/3. In Table Ill, we list several quantities for thej,crease of the core mass stops, and strong shocks rapidly
models we adopt in the numerical computation. We refer ropagate outward due to the restoring force of the core.
these models a&C1) and(C2). After this moment, the core settles down toward an approxi-
The simulations were carried out forI'{,I'))  mately stationary state, and finally the central density relaxes
=(1.325,2)(@), (1.3,2 (b), (1.325,2.5(c), and(1.3,2.3 (d). o ~3p, . for (C1a and ~2.5p,, for (C2a. On the other
In the following, we specify our choice df; andI'; in  nang, the shocks propagate outward, sweeping the infalling
terms of (a), (b), (c), and(d). For example, if we pick Up  matter. In both case&C1a and (C2a), the baryon rest-mass
model (C1) as the initial_condition and choode;=1.325  of =, is ~0.65M, after shock propagates far from the
andl’;=2, we refer to this model a€1a. In Table IV, we  core. Since the angular momentuntato for (C23 is larger
list masses and central density for spherical neutron stars @fan that for(Cla, the baryon rest-mass of the core and
maximum mass in the parametric, cold equation of stategentral density of the final state of the core are slightly
(33) with four choices off"; andI', which are obtained by smaller for modelC24. These facts indicate that the prod-
numerically solving the TOV equatidi$3]. Forl';=1.3 and  ycts after collapse depend basically on the equation of state,
I';=2, the maximum mass is too small to be a realistichyt are modified by the magnitude and distribution of angu-
value, but with this model, we can study qualitative proper-jar momentum that are initially retained by a precollapse star.
ties of stellar core collapses in an extremely soft equation off the initial angular momentum is much larger than those for
state. (Cla and (C23, the collapse would be halted before the

According to a numerical resyi3], rigidly rotating stars  central density reaches,,., and as a result, a neutron star
in equilibrium with T'=3% are unconditionally unstable \would not be formed14].

Another noticeable feature is that for the differentially
rotating initial condition, a small modulation is found in the
time evolution of the central density ang. after a quasi-
static core is formed. This is likely because in the collapse
with a differentially rotating initial condition, the collapsing
star deviates highly from spherical symmetry and shocks are
formed in a nonspherical manner. As a result, the nonspheri-

TABLE IV. Maximum baryon rest-mass, ADM mass, core rest-
massM, core; @nd density at the maximum for spherical stars of
cold, parametric equations of sta&3), with four types ofl’; and
FZ'

ry T, M.(Mg) M(Mg) M,odMe) pc(g/crr?)

a 1325 2 1.425 1.363 1.362 2.68d15 cal oscillation is excited in the formed core. Similar results
b 1.3 2 0.991 0.925 0.980 6.01d15 are observed if14].

¢ 1.325 25 2.259 2.056 2.183 1.69d15 In Figs. 11b) and 12b), we display the violation of the

d 13 25 1.810 1.600 1.792 2.87d15 baryon rest-mass conservation, angular momentum conser-

vation, and averaged violation of the Hamiltonian constraint.
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FIG. 9. Density contour curves pfand velocity fields ob” for FIG. 10. The same as Fig. 9 but for mod€el2a.

model (C1g at selected time steps. The contour curves are drawn

— — 0.5 P . . . i
for plpue=10""7, forj=0,1,2 ..., 20. that have not been seen in the previous subsections. One is

that the magnitude of the errors quickly increases when
First, we note that &t~ 6.5 msec, the shocks reach the outershocks are generated. The second is that the averaged viola-
boundaries, and the matter escapes from the computation@bn of the Hamiltonian constraint converges to zero at about
domain. This causes the rapid angular momentum decreasiest order(not at second orderWe cannot explain the rea-
for t=6.5 msec. Besides this, the errors converge to zerson for them correctly. However, we deduce it as follows: At
with improving the grid resolution, as we saw in Secs. IV Athe shocks, the hydrodynamic quantities are discontinuous,
and IV B. However, there are several noticeable propertieand as a result, the second partial derivatives of the metric
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FIG. 11. (a) Time evolution of central density, lapse function at FIG. 12. The same as Fig. 11 but for collapse of a &€23. In
origin, and fraction of baryon rest-mass for p,,., and(b) time both figures, the solid, dotted, and dashed curves denote the results
evolution of violation of rest-mass conservation, angular momenwith N=600, 400, and 300. With these grid numbeks,=0.385,
tum conservation, and averaged violation of the Hamiltonian con0.577, and 0.770 km. F&r7 msec, shocks reach outer boundaries
straint for collapse of a std€14. In both figures, the solid, dotted, of the computational domain, and matter starts escaping.
and dashed curves denote the results With600, 400, and 300.
With these grid numbersdx=0.442, 0.663, and 0.884 km. For .
>6.5 msec, shocks reach outer boundaries of the computationglOre are smaller for the larger value bb, (¢) M core i
domain, and matter starts escaping. larger for the larger value df; with the identical value of

I',, (d) the magnitude of the error of the baryon rest-mass

. . - . conservation always increases with tifmever decreases in
are discontinuous and the complete analyticity for the MetriG,o absence of mass ejection from the computational do-

is violated. This may change the global convergence propertyﬂain) irrespective off, andT',, and(e) the angular momen-

from second order to first order. . .
tum increases due to the numerical error Fgr=1.325 but

The magnitude of the errors f@€29 is smaller than that - .
for (C1 with identical grid spacing. This is a consequencedecreases fdr,; =1.3. The reason fof@) is clear because for

of the fact that the central density f6€24 after shock for- smaller values of "4, the central _density in_creases by a large
mation is smaller than that fé€1a), and as a result, the grid factor, and as a result, the grid resolution becomes worse
resolution for(C23 is better than that fofC13. even in the identical grid spacing. The reason(foris also

To see the effects of the equations of state on the dynanflear because with stiffer equations of state, the central den-
ics of collapse and on accumulation of the numerical errors$ity of neutron stars is smaller. The resi@t comes from the
we display numerical results fqiC1g), (C1b), (Clo, and fact that with smaller values df;, shocks are stronger, and
(Cld in Fig. 13. All the simulations were done witN as a result, the amount of mass that is ejected outside the
=600, by which the equatorial radius is initially covered by core is larger. However, the reason dy and(e) is not clear
N grid points. Reflecting the difference &f; andI',, the at all. These may be consequences of our choice of the finite
products after the collapse and time evolution of the numeridifferencing scheme for the hydrodynamic equations. Indeed,
cal errors are different. The following is a summary of thea similar tendency is found in the results of an approximate
differences:(a) for I';=1.3, the magnitude of the errors is general relativistic simulatiofiL4].
larger than that fol’;=1.325, (b) for the identical value of It is interesting to note that even fo€1b), in which the
I'y, the central density ani, .. in the final state of the maximum allowed baryon rest-mass of neutron stars is very
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FIG. 13. (a) Time evolution of central density, lapse function at (b) i/ M.

origin, and fraction of baryon rest-mass for p,,., and(b) time
evolution of violation of rest-mass conservation, angular momen- FIG. 14. Specific angular momentum spectra at selected time
tum conservation, and averaged violation of the Hamiltonian Con'steps(a) for (C1d) and (b) for (C23.

straint for (C1a (solid curve$, (Clb) (dotted curves (Clo
(dashed curvgs and (C1d (dotted-dashed curvesWe adoptN
=600, by which the equatorial radius is initially coveredXyrid
points for all the models.

from a realistic initial condition with the central density
~100 g/en? and with '=%. We give a rigidly rotating
equilibrium star that is close to the mass shedding limit as
small (~1My), a low-mass neutron star oM, ., the initial condition. Several quantities of this rotating star

~0.55M, is formed after the collapse. This is because there listed in Table V. Since it is rapidly rotating and its com-
shocks explode the infalling matter sufficiently. Thus, evenPactness is sufficiently small, this equilibrium star is dynami-
in the case that the stellar core mass before collapse is mué@lly stable against gravitational collapse even for the poly-
larger than the maximum allowed mass of the neutron stairopic equation of state with = 5 [43]. Thus, the collapse is
for a given equation of state, a neutron star instead of a blackiggered by the slight decrease of the adiabatic constant
hole could be formed at least temporarily, although such drom 3 to I';. In the present simulation, we sEt=1.325
neutron star could easily collapse to a black hole by subseandI',=2.
quent accretion of matter or by a fall-back. Since the characteristic length scale changes by a factor of
In Fig. 14, the specific angular momentum spectra at se~100 during the collapse, we performed the simulation
lected time steps are shown f@10d and(C23 as examples.
In both cases, we takd=600. The figures demonstrate that  TABLE V. Central density, baryon rest-mass, ADM mass, equa-
the spectral shape is well conserved throughout the simulaerial radius, ratio of the rotational kinetic energy to potential en-
tions irrespective of the initial angular velocity profile. ergy, non-dimensional angular momentum parameter, and central
Therefore, we conclude that angular momentum transfer duealue of the lapse function of a rotating star chosen as an initial
to numerical dissipation is sufficiently small in numerical condition for a stellar core collapse simulation in Sec. IV D.
computations.

Pc M,
D. An example of stellar core collapse (glen®)  (Mg) M(Mg) R (km) | T/W| JIM? o

In this subsection, we present numerical results for a.65x10° 1.491 1.491 1910 8.8910°3 1.136 0.993

simulation of rotating stellar core collapse that is started
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changing the grid size and grid number as dong2&]. The

grid size and computational domain were changed monitor-
ing the value of the lapse function at the centeg)( which
approximately indicates the compactness of the collapsing
star. Whenever we carried out regridding, we made the grid
spacing half and used cubic interpolati@®] for assigning
the values of variables on the finer grids. The simulation was
started withN=>500, by which the equatorial radius is cov-
ered by 480 grid points initially. At=0, «,~0.993. We
carried out the first regridding whes, was 0.975, at which
the mean radius of the collapsing star becamg of the
initial one. In this regridding, we chogd=900 and made
the grid spacing half. The next regridding was carried out
when a.=0.95 and 0.90, and we chosk=1500 and 2100,
respectively. Aftera, reached 0.90, we fixe®l and grid
spacing.L andAx in the final stage are about 1050 km and
0.5 km, respectively. For this simulation, the computational
time was about 100 CPU hours fsr60 000 time steps using
eight processors of the FACOM VPP 5000 machine.

Since the computational region was reduced whenever we
carried out the regridding, a small amount of mass that is
outside the new computational domain was discarded. How-
ever, the magnitude of the violation of mass and angular
momentum conservation is less tha®.5% and 2%, respec-
tively [see Fig. 16)]. This implies that the total amount of
the discarded mass is comparable to that of the numerical
error associated with the finite differencing, which does not
much affect the evolution of the system, as indicated in Sec.
IVC.

In Fig. 15, we display the density contour curves and
velocity fields at selected time steps around which shocks are
formed. The time of the shock formation is71.7 msec, (b)
which is in good agreement with that for model A1B3G1 in
[14] with the correction factor which is associated with the
dynamical time scale ap{ ;/10'° g/cn?®) ~V2 (Note that in
[14], the central density of the initial condition is ¥ay/cn?,
while herep i~ 1.65x< 10" g/cn?.) This coincidence sug-
gests that the approximate general relativistic approach
adopted in[14] is indeed suited for study of axisymmetric
stellar core collapse to neutron stars in general relativity.

After the shock formation, the shock fronts of prolate
shape spread outward. The prolateness is produced by the
fact that the shocks are stronger for théirection due to the
absence of centrifugal forcgl1,12,14. In Fig. 16a), we
display the time evolution of the central density and lapse
function at the center. Global features are qualitatively the
same as those for the simulation of mo@&lLag presented in
Sec. IV C. As in that case, the central dengigpse functioh (©) X(km)
monotonically increasegdecreasesuntil it exceedsp . _ o A
When it becomes-3.5p,,., the collapse is halted and the FIG. 15_. Density contour curves pfand velocity fields ob”™ at
shocks start propagating outward, while the core graduan}?e'ected time steps around W[wgcqh shocks are formed. The contour
settles down toward a quasistationary stateof 2p,,c. curves are drawn fop/pn,c=10"", for j=0,1.2....,20.

Although these qualitative features are the same as those
for (Cla, there are a few quantitative differences betweera static state soon, but oscillates approximately in a quasip-
the results of two models. First, the maximum density anceriodic manner for several periods. This oscillation is not
central density of the formed neutron star found here areonspicuous for mod€iC1a. These facts imply that to ob-
slightly smaller than those fdC1a. This is likely due to the tain quantitative outputs of stellar core collapse, we should
fact that the effect of the centrifugal force plays a more im-start the simulations from an initial condition of a realistic
portant role than fofC1g. Second, the core does not relax to density profile, although qualitative global features of the
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10% g1 T carry out long-term simulations for spherical and rapidly ro-
7 10 foxon TS tating neutron stars, and rotating stellar collapses to a neu-
O 108 paxaon E 3 tron star and a Kerr black hole. It is shown that the simula-
B0 101 ERx1om | e tions for stable neutron stars can be continued #ot0
< 101 E 7075 dynamical time scales until the crash of computation with
10t B R N~200, even if the neutron stars are-e85% of the maxi-
1 e 3 T H mum allowed mass. The duration of the computation is long
oo b 032 £ E E enough to obtain oscillation modes of neutron stars. The
& E o%s E E ] simulations are also feasible for collapse of rotating neutron
08 F 378E E . stars to Kerr black holes. We have illustrated that with our
C 70 . implementation, the mass of a Kerr black hole formed after
07 b b N the collapse can be computed accurately. We have also dem-
0 20 40 60 80 o . . .
@ T (msec) onstrated that it is feasible to perform the S|mulat_|0ns of
rotating stellar core collapse to a neutron star, adopting para-
T 0015 e g metric equations of state that mimic realistic equations of
§ 001 F state. This illustrates that the new implementation works well
5*' 0'008? : also for realistic equations of state that have not been
S _000p Bl Ll B adopted so far in fully general relativistic simulations. In
- L B s B e A conclusion, the axisymmetric numerical implementation pre-
',é 0 g E sented here will be used for a wide variety of astrophysical
< -0.01 ;— L/g simulations such as rotating core collapse of a massive star
® o2t ol 12 H to a neutron star or a black hole, and accretion-induced col-
>4 S B L L N I lapse of a neutron star to a black hole. As the next step, we
50 8'2 3 E plan to perform simulations for rotating core collapse to neu-
§02FE 3 tron stars, and compare the results with those in an approxi-
e | R e S L mate relativistic approacfil4]. We also consider that col-
0 =0 40 60 80 lapse of a massive stellar core to a black hole is one of the
(b) T (msec)

most interesting topics.
Because of the assumption of axial symmetry, we were
FIG. 16. (&) Time evolution of the central density and lapse gple to carry out a wide variety of tests and calibrations for
function at the qenter(.b) Time evolution of the violgtion of rest- _our new hydrodynamic implementation with low computa-
mass conservation, angular momentum conservation, and the time' "o |0 previous works, e.418,28, tests of their
evolution of rest:mass of the core Witf= pryc. hydrodynamic implementations picking up single stars have
collapse can be found even using a more compact initiabeen done in three spatial dimensions. In those céses,
condition. We note that the quasiperiodic oscillation foundcould be at most 100, since the computational costs were
here is also observed {i4]. As reported if12,14), quasi- very high for N>100. It is pragmatically very difficult to
periodic gravitational waves are likely emitted associatednvestigate the accuracy and convergence in a well-resolved
with this oscillation. However, we have not tried to computesimulation withN~ several hundreds under normal circum-
gravitational waves in the present work. As expected fromstances in which we can use at mest000 CPU hours per
the results i 14], the amplitude of gravitational waves is not year. In the axisymmetric case, the simulation with
very large, so that it would not be technically easy to extraCi\~ several hundreds is not very expensive, and thus for de-
them from the metric in which gauge modes and numericajyjied tests of new hydrodynamic implementations in general
noises are included. Developing a method for the wave exgg|ativity, axisymmetric simulation has great advantages. We
traction of a weak signal will be one of the challenging prob-g, hect that for the testing of new gauge conditions and wave
lems in the futu_re. . . . extraction techniques, it would also play an important role.
In the last figure of Fig. 1), the time evolutlon.of Finally, we note the following point. Although we focus
baryon rest_—mass .Of the coqu densﬂy larger thamy,J 'S only on the axisymmetric simulation in this paper, the
e e ESET ycynaric Imleentaton can b s for e
settles down towcard a constan0.58V ., . Thus thé tempo- dimensional simulations with a slight modification, since the
' ifransport terms in the hydrodynamic equations are of the
same form. Actually, we have already implemented it and
checked that it works. We expect that with the same grid
resolution that we adopted in this paper, the same results will
be obtainedalthough it takes a much longer time to carry
We have presented numerical results obtained by an axput the long-term simulationsSo far, we have performed
symmetric general relativistic implementation, and demon-simulations for a merger of binary neutron stars only using
strated that with this new implementation, it is feasible tothe I'-law equation of stat€l9,20. However, with the new

this simulation.

V. SUMMARY
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hydrodynamic implementation reported in this paper, we will  In numerical computation, we evaluate the transport terms
be able to adopt a variety of equations of state. We plan taising the approximate Riemann solver, which relies on the
perform the simulation for a merger of binary neutron starscharacteristic decomposition of the equatiofsee, e.g.,
adopting more realistic equations of state in the future. [25,27 and references therginTo adopt this method, we
first need to compute the Jacobian matrix and then to carry
ACKNOWLEDGMENTS out the spectral decomposition of it.
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A

MA a

ab:ﬁ_Qb (A=x or 2). (A4)

APPENDIX: TREATMENT FOR TRANSPORT TERMS IN
THE HYDRODYNAMIC EQUATIONS Thus,M%, has information on the characteristic speed of the

. fluid.
Equations(26)—(29) are of the forms Following Fontet al. [23,24], we calculate the Jacobian
matrix from
2Qa+ IaFa =S4, (A1) s en ;
J J
Mh=3 T =S B, (a9
whereQ, andF% for a=1-5 are defined as e=1 e 7% e
where
Qa=(pss Ixs in Jz, Ey), (A2)
A 1 0F%
A A A A Bac=—7 0. (A7)
Fo=[pxv", Jyw +Pa\/;5§, Jyo”, Vy 9dc
Jpr+Payst, E v +PJy(+8%]. (A3) Cbczi&Qb, (A8)
Vy 99c

Here, Ji=p,U;, E,=p,e, andS, in Eq. (A1) denote the
right-hand sides of Eq$26)—(29). We note thaty here isthe andq.=(p,v*,v¥,v% ). Explicit forms forC,, andBj, in
determinant of the three-metric in the Cartesian coordinatesur notation are

B \% V Vv 7
w pW3a—; pW3a—; pW3a—§ 0

h1W2V pthF pthF pthF h w2V,

o X o XX o Xy o xz PMN2 o
h,w? phw? phw? phw? WAV,

Can=| —,Vy ~ Py —Fyw 7 Fyz pha— , (A9)

h,w? hw? hw? hw? w2V

: V, P Fyz P Fyz P F.. phy :

a 1] a

hw? hw? hw?
haw?—x 20 v, 2pa2 v, 2250V, phw?-px

and
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- 2 X X X -
WV, V,v Vv
wo* pwW 1+ —azx—) pW3%2— pw37212— 0
h,w? hw? hw? hw? w2V, 0%
- Vio*+ ay P o (v FyxtVy) pTUXny P a v*Fy,  phy ax tpka
h,w? phw? phw? phw? w2V, %
Bo=| — V" —WFytVy)  ——UFy ——0*Fy, phy— . (A10)
h,w? . phw? . phw? . phw? N w2V
Vv p (V*Fy,tVy) v Fyz — v F,, ph, o
hw? hw? hw*
hyw?p*+ x B 2pa2 V,0*+ phw? 2pa2 Vyo* 2pa2 V,u*  phow?u*+ pk B
|
where h,=1+«k. (A16)
Vi=yi('+8), (A1l)  BZ is obtained by appropriate exchanges of subscripts
P amongx,y,z of B}, .
x=—1/, (A12) The eigenvalues of the matrM4, ,\*, correspond to the
ap |, characteristic speeds of the fluid in tA¢éh direction, and are
derived from the equation
10P
=2 (A13) de(B4,—\"C,,) =0. (A17)
P
WAV V- The solutions ar¢24,25
iV
= — .
st Tz (A1) M=, vA(triple), (A18)
h,=1+e+y, (A15  where

1
No= gl vt a(1- €~ BAed(a® = ViV = acsV(@® - ViV @ - Vi) - (1- e vAvAY]
S

(no summation forA) (A19)

and where Af, is the diagonal matrix composed af* in the
following order: [\ ,0”,v”,0A\"]. For convenience of
the calculation oR%,,, we define a matriqs,, which satis-
c§=% X+ EK) (A20) fies the relation as
5
Rib= 2, CacTeh- (A23)
VE= My =y K+ gk, (A21) et

SinceRY, is calculated from the right eigenvectors Mf, ,
TA, is composed of vector that satisfy the equation

Using the eigenvalues, the spectrum decompositiorM@g

. B 5
can be done in a straightforward manner as ;1 (BA—MAC.)(t)D=0 for I=1~5. (A24)

B A 1A (1A (1AY(3) (1AY(4) (1AY(5)
MA Z S RA AA (RA) L Aoy Then, TA=[(EHD, 4@, (tA)E), 2@, t2)®)], and
ad bEc abAbe(R)cd (A22) hence weaobtaina1 : ! : :
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FIG. 18. The same as Fig. 17, but for a one-dimensional wall

= 4 _
FIG. 17. Comparison of numerical solutiofféled circles of a ~ Shock problem with"=3 att=1.6.

one-dimensional Riemann shock-tube problem with the analytical

solution (solid curve$ att=0.4 forb=1 (left) and 2(right). The — (v =M {a?y* = VKB + )}

grid number is 400 and the grid spacing is 0.0025. Only 200 data HXK(\ )= >y 5 , (A27)
points are plotted. pW(v*=N)
r - 20z 2,7k ki nz
1 -k 0 0 1 —Cs(v = M{a Y =Vi(B*+N\)
“ HZK ) =— {2 : b (A28)
H*(\%) 0 0 H**(\X) pWa(v?=N\)
XY\ X -1 XY\ X
X _ HY(\) 0 p 0 H>(AZ) After the above reconstruction of the fluid equation, the
ab H*\%) O 0 p b H¥O\) | numerical fluxes in the upwind scheme are computed from
P X P
— = 0 0 — ., 1
P2 p P Fa=3| Fa(Q)+Fa(Qy)
(A25)
5
1 0 -« 1 -2 (RIAR a(Qy=Qh) |, (A29)
H*(\3) p™* 0 0  H¥)\Y)
, H#(\%) 0 pt 0 HZY(\2) where we omit the subscripts fd?_ab and A ;. Q'C and Q}, .
ab™ HZZ(\Z) 0 0 0 HZZA2) | denoteQ. at the left and right sides of the corresponding
+ - interfaces, and are evaluated using the third-order spatial in-
P 0 0 X P terpolation. At the interface between thth and {+1)th
? ; ? cells, we define them according to
- " (A26)
o o e (A30)
where ¢ <6 3’

024033-22



AXISYMMETRIC GENERAL RELATIVISTIC . .. PHYSICAL REVIEW D 67, 024033 (2003

A A, The values for components of matricBg, and A ,;, at
QL=Q1+1—§— 6 (A31)  grid interfaces are computed using the Roe-type average
such aq45,46
whereA;=Q;,1— Q;. To suppress the oscillation near shock rE— v n
discontinuities, we modify the interpolation using the follow- it 10= (P )ivalivat (p*)'q', (A37)
ing min-mod limiter ag46] V(P12 V(pe)i
D(rt A, (1A, vyhere we carry out the average for variatﬁgs K, X, andh
Q.l=Q+ mUmL Lt (A32)  (i.e., g; is one of these variablgesOther variables are com-
6 3 puted from them. It should be noted that in the relativistic
case, the average is not uniquely specified in contrast with
D(riNA; D(ri A the Newtonian casp45]. However, numerical results of test
Qi=Qi11— 3 - 6 , (A33) computationgsee below seem to indicate that this averag-

ing is appropriate.

To confirm that our hydrodynamic implementation can
capture shocks accurately, we carried out the simulations for
Riemann shock tube problems and wall shock problems in

where

r=Ai1/4, (A34)  the 1+1 special relativistic spacetime with,&) as the co-
ordinates. In this test, we adopt thelaw equation of state.
rT=Ai_q /A, (A35) In both tests, we takdl=400 with Ax=1/N.

In the Riemann shock-tube problem, we chodse 2.
) The parameters of the initial condition are choserpaslO
®(r)=min-mod1,br) andP=13.3 forx<0 andp=1 andP= 10" for x>0 fol-
lowing previous paperf27]. In the wall shock problem, we
(1<b=<4 for TVD condition. (A36) set the parameters a$=0.9, p=1, andP=10 % with T’
_ 4
=4,
For the simulations presented in this paper, we chdose In Figs. 17 and 18, we compare numerical results of the
=2, since forb~1, the dissipation is so large that the en- Riemann shock tube problem and of the wall shock problem
velope of neutron stars spreads outward too quickly, whilavith analytical solution(solid curve$ for the choiceb=1
for b=4, the oscillation around shock discontinuities is tooand 2. As indicated in these figures, numerical results agree
serious. well with analytic solutions, in particular fds=2.
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