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Generalized Israel junction conditions for a Gauss-Bonnet brane world
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In spacetimes of dimension greater than four it is natural to consider higher(ard®y corrections to the
Einstein equations. In this paper generalized Israel junction conditions for a membrane in such a theory are
derived. This is achieved by generalizing the Gibbons-Hawking boundary term. The junction conditions are
applied to simple brane world models, and are compared to the many contradictory results in the literature.
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It is well known that for a boundaryless spacetime, thesions is a linear combination @f,,, G,, andH,,. In the
Einstein equations can be derived from the Einstein-Hilberabsence of any experimental evidence to the contrary, all
action. This is no longer true if the spacetime has a boundaryhree terms should be included.

The problem is resolved by adding a Gibbons-Hawking A further motivation for higher order curvature terms is

boundary term to the actiofil]. Varying the action then that they also appear in the low energy effective field equa-
gives the correct field equations, as well as boundary condiions arising from most string theories. Since brane worlds
tions at the edge of the spacetime. are motivated by string theories, it is particularly natural to

A slight variation of this is to consider an infinitely thin include the extra terms in the five-dimensional field equa-
(D—2)-brane in aD dimensional spacetime. Since space-tions.
time is split into two, the brane can then be treated as the Like the standard Einstein equations, these higher order
boundary of each half of the spacetime. Varying thegeneralizations can also be derived from an action. The ten-
Gibbons-Hawking term then gives the Israel junction condi-sor H,, can be obtained from an action containing the
tions on the membrang2]. These junction conditions have Gauss-Bonnet term
recently received a great deal of attention due to their use in
the study of “brane worlds’(see for exampl¢3—7]). In a Lep=R*=4R,, R+ RACR ;. 2
brane-world scenario our universe is modeled by a 3-brane ) )
embedded in a five-dimensional “bulk” spacetime. In the Consider the action
simplest cases, all the standard model fields are confined to
the brane, while only gravity propagates in the bulk. The
brane is usually taken to be of zero thickness, and so the
Israel junction conditions can be used to relate the bulk dy-
namics to what we, on the brane, observe. for a D dimensional manifold\. In a string theory context

The bulk gravitational field equations are usually assumegye would havex 2= ME_Z and ax M;z, whereM,, is the
to be the five-dimensional Einstein equations. However instring mass scale.
spaces of dimension greater than four it is natural to consider | et ys suppose, as would be the case in a co-dimension

additional higher order curvature teri-11]. one brane world scenario, thatl is split into two parts by a
In general relativity, the vacuum field equations are takerypersurfaces,, whose two sides will be denotétl, . Their
to be a linear combination of the Einstein tensor and thg,ormals,n?, will be taken to point away from the surface

metric. This choice is motivated by the fact that it is the mostynqinto the adjacent space.

general combination of tensors whi¢h) is symmetric,(b) Varying the action(3) with respect to the metric gives
depends only on the metric and its first two derivatiesjs

divergence free ang) is linear in second derivatives of the 1

metric. In fact, in four dimensions, the fourth condition is 5SM=—J dPx\/— g892°(Gap+ AGap+2aH 1)
superfluous since it is implied by the other thf&& In five 2k M

dimensions the second order Lovelock tensor

1
SM=_2 dDX\/_g{R_2A+C¥£GB} (3)
2k°IM

1
— D-1, [_ a[c~d]b abc
Hab=RRab_ZRacRcb_ZRCdRacbd+R CdeRbcde Kzfz d X hna(g J *2aP d)Vdégbc
a +

1 2 cd cde (4)
- Zgab(R —4R,R™+R SRcdes) (1) . . .
whereh,,=0ga,— NNy, is the induced metric ok, and

alsq satisfies _thg above condit'ions. Thu§ thg m_ost general Pabca= Rabed™ 2Roc8dja— 2Rafcdajb T RGajcdap (9
choice of gravitational vacuum field equations in five dimen-
is the divergence-free part of the Riemann tensor.
Expression(4) contains normal derivatives of the metric
*Electronic address: Stephen.Davis@th.u-psud.fr variation. As with the Einstein-Hilbert action, we must add a
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boundary term in order to cancel them. For an action with a By allowing n®s.g,;, to be discontinuous at the brane, and
Gauss-Bonnet terr(B), the appropriate term isLO] treating (1°9.)?g., as a & function, junction conditions
which are independent of the brane thickness can be found
1 b1 Aab [13-17. However, care must be taken to regularize the
Ss=- FJLd X\/__h(K+2“{J_2G Kao) (6)  function correctly[13,18. This was done in Ref§13-15,

- and the resulting junction conditions agree with those in this
whereK is the trace of the extrinsic curvature, defined byarticle. Referencepl6,17] do not regularize theS function
Kap=hSV,n,, andJ is the trace of approprlgtely, and obtain incorrect results. ' '

We will now use the above results to derive the Fried-
1 mann equation for a cosmological brane world model. As has
Jap=73 (2KK oK+ KogK K ap = 2KaK*Kap—K?Kap).  been shown by Kraus and 14d] (for the standard five di-
7) mensional Einstein equationst is possible to obtain a cos-
mological generalization of the Randall-Sundr{is} model
Throughout this paper | will denote tensors associated witly considering a static bulk spacetime, and allowing the

the induced metric by a caret, €, is the (O —1) dimen- bra_Pr? t(t)) r}Eve 5,: time d%pend_?tnt p_os;ﬂonf in the bulk.
sional Einstein tensor oB corresponding tdn,p,. € bulk-metric can be written in the form

Varying the actionS,,+Ss now gives an expression dr2 o
which does not contain normal derivatives &f,;,. If we ds?>=—h(r)dT?+ h—+rZQijdx'dxJ (12
also include a matter contribution to the action (r)

where();; is the three dimensional metric of space with con-
Sia= —f de\/—gLan)—f d®°~IxJ—hc), (8  stantcurvaturé=—1,0,1. ForC =0, the field equations
M p are solved by 11]

then the variation of the total actid®~ S+ Ss + Sy gives r2 4 1
) h=k+-——|1-\/1+5aA+8a— (13
Gapt2aHapt AGap=kTap ©) da 3 r
in M, and with u being an arbitrary constant. In the—0 limit, w is
equal to the black hole mass.
2(K g~ Khap) +4a(3Jap— Ihap+ 2P 1catK % = — k%S, We define the position of the brane asa(7) and T
(10 =t(7), which is parametrized by the proper time on the

braner. The induced metric is
on 3, with (X)=[X(Z )+ X(X_)]/2 denoting the average o
of a quantity over the two sideS(,) of the hypersurface. ds?=—d7?+a(7)2Q;;dxdx, (14
The two energy-momentum tensors are defined by _ _
Tap=28LY0/ 5920~ g, M and  S,,=25£0/sh2  the tangent vector of the brane ig=(T,0,0,0r) and n,

—hapl ). =(-r,0,0,07). Normalization ofn? implies
With the aid of the Gauss-Codazzi equatidAd)—(A3) o
below, we obtain the energy-momentum conservation equa- —h?T?+r2=—h. (15)

tion on the hypersurface )
We take the brane matter to be a perfect fluid,Sge=(p

D2S,,=—2(N¥ (Gt 2aH,)hC,) = _2K2<na'rach°b>, +p)uyup+phy,. The (Uu) component of Eq(10) is then
(11) : .
8 k\(hT) 4 (h?T) p
with D2 denoting the covariant derivative corresponding to 1+3aH +4ar—2 3% 3 & (16)

h,,. This is very similar to the corresponding result in the

standard brane world mode[€]. For simplicity let us assumg&, symmetry across the brane.

Many previous papers have tried to derive the junctionsquaring Eq(16) and simplifying with Eq.(15) gives a cu-
conditions by treating the hypersurfade as ad-function ;. equation forH2. This has the real solution

contribution tocw), as in the original brane cosmology
papers[6]. In this case there is some ambiguity as to the k c,+c_ -2
correct definition oH,, onS, which has led to the sugges- H?=—-—+ ~8a 17)
tion that the junction conditions must depend on the thick- a
ness of the bran¢l2]. This would be true for a general

- . where
combination of second order curvature terms, whose action

would contain third(or highey order derivatives of the met- 3 5 2/3
ric. However, this is not true for the Gauss-Bonnet combina- . — \/ 14 can+8aX] & ﬂip \/E _
tion (2) since it has been specifically chosen not to contain 3 at 2 2

such derivatives. (18
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This Friedmann equation agrees with Rgf3], but not Ref. APPENDIX
[16,17. The only difference between these two conflicting ) .
results is one factor of 3, but surprisingly this gives a sub-. To prove Eq.(10), we first use the Gauss-Codazzi equa-
. . ) ) tions
stantially different Friedmann equation. Fpe=const, Eq.
(17) also agrees with Ref14]. Referencg¢19] uses different
t_Joundary term¢20] to obtain a differe_nt Friedmgnn equa- qurshpahthrchsf@abcﬁ KpcKag—KacKpg, (AL)
tion. However the terms used do not give a consistent action,
and so the result is incorrect.
As in the usual brane cosmolog§], the standard Fried- N?Raqrsh%h"ch%y=DKpe— DcKpg, (A2)
mann equation can be recovered at late tifiaege a) by
splitting p into a cosmological constant and a matter part .
[13]. Roa=R%cph“ahphPy+ KKpg— KK (A3)
The boundary term$6) are easily generalized to actions
where other fields couple to the curvature tensors. Variatio@nd contractions of them to expan®P,,4in terms ofK 5,
of the action n? and quantities associated with the induced metric:

S= ;J dDX /—g[(l)(X“)R—ZA-l-a‘I'(X'“)L’GB] naPade=2D[ch]b+ 2DeKFdhC]b+ Zhb[dDC]K+2Gb[Cnd]
K°JM

+2(K®—Kh®)KepeNg + (K? = KaeK®) hpeNg) -

—izf AP~ xR D (XH)K + 20 W (x*) (Ad)
K3,

The covariant derivativeD is defined by D Xje...

X{J=2G*K 4p} ]+ St (19  =h"hPh% - Vi Xpg.
. _ To find the variation ofSy [Eq. (6)] with respect tag,y,,
produces the field equations we first note that the normalization af, implies &n,
=1n,n°n%6g.4. Thus, after a little algebra, and using the
DG,y— VoV @ + 9, V2D + Agapt+2aVH,, definitions ofK,, andD,, we obtain
+4aP g VeV = k2T, (20
1

and the boundary conditions h,h% 8K ¢g=N®V}e8gpqh°ah %, — 55QCch(ahb)d

_ _ e _ 1
<¢(Kab Khap) —hgpn ae¢>+2a<3q,‘]ab WJhy, _ED(a(th)5gcene) (A5)

+2WP g + 2a({2G 4p+ 2K o oK E— 2K K 5,
+hao[ K2 =K gK 9, W) + 8o (K apchiy g and, from Eq/(A3),

1
_ cnd __ .2 N 1
+Ketaags = KRajeheyo) DTDRY) =5 " Sap. h°h,8Rea=D (@D *(h°)h%89cq) — 5 D°De(h®h%09ca)

(21 1
All the problematic boundary terms, like those appearing in )
Eqg. (4), cancel out. In a string theory contestt and ¥

would typically be functions of the dilaton or moduli fields. Now, with the aid of integration by parts and the relation
If we consider a conformally flat spacetime of the form

DaDp(h®%8g.q). (A6)

d8’=— AN (dT?+dxidx,) +dy’ (22 Y2 Ve8Gab=De(Y*78Gap) +2N°80cqY P K pe
+ 5g@Ppe
and taked, ¥ and £ ) =\/«? to be functions of only, the 097D Vape, (AT)

generalized Israel junction conditions reduce to which holds for any tenso¥2°® that is orthogonal to the

, , 2N ) normaln®, the variation of the total actio8 can be reduced
2(3PA"+ @' —4aA'(A'Y+3¥'))=—\. (23 (g Eq.(10). The more general cag@l) can be dealt with in
the same way.

The energy conservation equati@iil) can be proved by

| am grateful to Jihad Mourad and Christos Charmousisusing DP,.4,=0 and the Gauss-Codazzi equatidiAd)—
for useful and interesting discussions. This work was sup¢A3) to express the divergence of Ed.0) in terms of bulk
ported by EC network HPRN-CT-2000-00152. tensors.

This agrees with other results in the literat(ii&).

024030-3



STEPHEN C. DAVIS PHYSICAL REVIEW D67, 024030 (2003

[1] G.W. Gibbons and S.W. Hawking, Phys. Rev. 13, 2752 [13] C. Charmousis and J.F. Dufaux, Class. Quantum Gi8y.

(1977. 4671(2002.
[2] W. Israel, Nuovo Cimento B4, 1 (1966. [14] K.A. Meissner and M. Olechowski, Phys. Rev. L6, 3708
[3] K. Akama, Lect. Notes Phy4.76, 267 (1982; V.A. Rubakov (2001.
and M.E. Shaposhnikov, Phys. Let25B, 136 (1983; M. [15]I. Low and A. Zee, Nucl. PhysB585 395 (2000; N.E.
Visser, ibid. 159B, 22 (1985; E.J. Squiresjbid. 167B 286 Mavromatos and J. Rizos, Phys. Rev.6R, 124004(2000;
(1986. I.P. Neupane, J. High Energy Phy89, 040 (2000; N.E.
[4] H.A. Chamblin and H.S. Reall, Nucl. PhyB562, 133(1999. Mavromatos and J. Rizos, hep-th/0205299; P. Binetruy, C.
[5] L. Randall and R. Sundrum, Phys. Rev. L&B8, 4690(1999. Charmousis, S.C. Davis, and J.F. Dufaux, Phys. Letb48,
[6] P. Binetruy, C. Deffayet, and D. Langlois, Nucl. Ph#&565 183 (2002.
269 (2000; P. Binetruy, C. Deffayet, U. Ellwanger, and D. [16] C. Germani and C.F. Sopuerta, Phys. Rev. L8&. 231101
Langlois, Phys. Lett. B}77, 285 (2000. (2002.
[7] P. Kraus, J. High Energy Phys2, 011(1999; D. Ida, ibid. 09, [17] J.E. Kim, B. Kyae, and H.M. Lee, Nucl. Phy&582 296
014 (2000. (2000; B591, 587E) (2000; B. Abdesselam and N. Moham-
[8] D. Lovelock, J. Math. Physl2, 498(1971). medi, Phys. Rev. 5, 084018(2002.
[9] J. Madore, Phys. Letl.10A, 289(1985; 111A, 283(1985; N. [18] Y.M. Cho, I.P. Neupane, and P.S. Wesson, Nucl. PB#21,
Deruelle and J. Madoréhid. 114A, 185(1986); Phys. Lett. B 388(2002.
186, 25(1987; J.T. Wheeler, Nucl. Phy$3268 737 (1986. [19] J.E. Lidsey, S. Nojiri, and S.D. Odintsov, J. High Energy Phys.
[10] R.C. Myers, Phys. Rev. 36, 392 (1987. 06, 026 (2002.
[11] D.G. Boulware and S. Deser, Phys. Rev. LBg,.2656(1985); [20] A.D. Barvinsky and S.N. Solodukhin, Nucl. PhyB479, 305
R.G. Cai, Phys. Rev. B5, 084014(2002. (1996; M. Cvetic, S. Nojiri, and S.D. Odintsovbid. B628,
[12] N. Deruelle and T. Dolezel, Phys. Rev.@2, 103502(2000. 295 (2002.

024030-4



