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Generalized Israel junction conditions for a Gauss-Bonnet brane world
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In spacetimes of dimension greater than four it is natural to consider higher order~in R) corrections to the
Einstein equations. In this paper generalized Israel junction conditions for a membrane in such a theory are
derived. This is achieved by generalizing the Gibbons-Hawking boundary term. The junction conditions are
applied to simple brane world models, and are compared to the many contradictory results in the literature.
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It is well known that for a boundaryless spacetime, t
Einstein equations can be derived from the Einstein-Hilb
action. This is no longer true if the spacetime has a bound
The problem is resolved by adding a Gibbons-Hawk
boundary term to the action@1#. Varying the action then
gives the correct field equations, as well as boundary co
tions at the edge of the spacetime.

A slight variation of this is to consider an infinitely thi
(D22)-brane in aD dimensional spacetime. Since spac
time is split into two, the brane can then be treated as
boundary of each half of the spacetime. Varying t
Gibbons-Hawking term then gives the Israel junction con
tions on the membrane@2#. These junction conditions hav
recently received a great deal of attention due to their us
the study of ‘‘brane worlds’’~see for example@3–7#!. In a
brane-world scenario our universe is modeled by a 3-br
embedded in a five-dimensional ‘‘bulk’’ spacetime. In th
simplest cases, all the standard model fields are confine
the brane, while only gravity propagates in the bulk. T
brane is usually taken to be of zero thickness, and so
Israel junction conditions can be used to relate the bulk
namics to what we, on the brane, observe.

The bulk gravitational field equations are usually assum
to be the five-dimensional Einstein equations. However
spaces of dimension greater than four it is natural to cons
additional higher order curvature terms@8–11#.

In general relativity, the vacuum field equations are tak
to be a linear combination of the Einstein tensor and
metric. This choice is motivated by the fact that it is the m
general combination of tensors which~a! is symmetric,~b!
depends only on the metric and its first two derivatives,~c! is
divergence free and~d! is linear in second derivatives of th
metric. In fact, in four dimensions, the fourth condition
superfluous since it is implied by the other three@8#. In five
dimensions the second order Lovelock tensor

Hab5RRab22RacR b
c 22RcdRacbd1Ra

cdeRbcde

2
1

4
gab~R224RcdR

cd1RcdesRcdes! ~1!

also satisfies the above conditions. Thus the most gen
choice of gravitational vacuum field equations in five dime
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sions is a linear combination ofgab , Gab and Hab . In the
absence of any experimental evidence to the contrary,
three terms should be included.

A further motivation for higher order curvature terms
that they also appear in the low energy effective field eq
tions arising from most string theories. Since brane wor
are motivated by string theories, it is particularly natural
include the extra terms in the five-dimensional field equ
tions.

Like the standard Einstein equations, these higher or
generalizations can also be derived from an action. The
sor Hab can be obtained from an action containing t
Gauss-Bonnet term

LGB5R224RabR
ab1RabcdRabcd. ~2!

Consider the action

SM5
1

2k2EM
dDxA2g$R22L1aLGB% ~3!

for a D dimensional manifoldM. In a string theory context
we would havek225M

*
D22 anda}M

*
22 , whereM* is the

string mass scale.
Let us suppose, as would be the case in a co-dimen

one brane world scenario, thatM is split into two parts by a
hypersurfaceS, whose two sides will be denotedS6 . Their
normals,na, will be taken to point away from the surfac
and into the adjacent space.

Varying the action~3! with respect to the metric gives

dSM5
1

2k2EM
dDxA2gdgab~Gab1Lgab12aHab!

2
1

k2ES6

dD21xA2hna~ga[cgd]b12aPabcd!¹ddgbc

~4!

wherehab5gab2nanb is the induced metric onS, and

Pabcd5Rabcd12Rb[cgd]a22Ra[cgd]b1Rga[cgd]b ~5!

is the divergence-free part of the Riemann tensor.
Expression~4! contains normal derivatives of the metr

variation. As with the Einstein-Hilbert action, we must add
©2003 The American Physical Society30-1
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boundary term in order to cancel them. For an action wit
Gauss-Bonnet term~3!, the appropriate term is@10#

SS52
1

k2ES6

dD21xA2h~K12a$J22ĜabKab%! ~6!

whereK is the trace of the extrinsic curvature, defined
Kab5ha

c¹cnb , andJ is the trace of

Jab5
1

3
~2KKacK b

c 1KcdK
cdKab22KacK

cdKdb2K2Kab!.

~7!

Throughout this paper I will denote tensors associated w
the induced metric by a caret, soĜab is the (D21) dimen-
sional Einstein tensor onS corresponding tohab .

Varying the actionSM1SS now gives an expressio
which does not contain normal derivatives ofdgab . If we
also include a matter contribution to the action

Smat52E
M

dDxA2gL m
(M)2E

S
dD21xA2hL m

(S) , ~8!

then the variation of the total actionS5SM1SS1Smat gives

Gab12aHab1Lgab5k2Tab ~9!

in M, and

2^Kab2Khab&14a^3Jab2Jhab12P̂acdbK
cd&52k2Sab

~10!

on S, with ^X&5@X(S1)1X(S2)#/2 denoting the averag
of a quantity over the two sides (S6) of the hypersurface
The two energy-momentum tensors are defined
Tab52dL m

(M)/dgab2gabL m
(M) and Sab52dL m

(S)/dhab

2habL m
(S) .

With the aid of the Gauss-Codazzi equations~A1!–~A3!
below, we obtain the energy-momentum conservation eq
tion on the hypersurface

DaSab522^na~Gac12aHac!h b
c &522k2^naTach b

c &,
~11!

with Da denoting the covariant derivative corresponding
hab . This is very similar to the corresponding result in t
standard brane world models@6#.

Many previous papers have tried to derive the junct
conditions by treating the hypersurfaceS as ad-function
contribution toL m

(M) , as in the original brane cosmolog
papers@6#. In this case there is some ambiguity as to t
correct definition ofHab on S, which has led to the sugges
tion that the junction conditions must depend on the thi
ness of the brane@12#. This would be true for a genera
combination of second order curvature terms, whose ac
would contain third~or higher! order derivatives of the met
ric. However, this is not true for the Gauss-Bonnet combi
tion ~2! since it has been specifically chosen not to cont
such derivatives.
02403
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By allowing nc]cgab to be discontinuous at the brane, an
treating (nc]c)

2gab as a d function, junction conditions
which are independent of the brane thickness can be fo
@13–17#. However, care must be taken to regularize thed
function correctly@13,18#. This was done in Refs.@13–15#,
and the resulting junction conditions agree with those in t
article. References@16,17# do not regularize thed function
appropriately, and obtain incorrect results.

We will now use the above results to derive the Frie
mann equation for a cosmological brane world model. As
been shown by Kraus and Ida@7# ~for the standard five di-
mensional Einstein equations!, it is possible to obtain a cos
mological generalization of the Randall-Sundrum@5# model
by considering a static bulk spacetime, and allowing
brane to have a time dependent position in the bulk.

The bulk metric can be written in the form

ds252h~r !dT21
dr2

h~r !
1r 2V i j dxidxj ~12!

whereV i j is the three dimensional metric of space with co
stant curvaturek521,0,1. ForL m

(M)50, the field equations
are solved by@11#

h5k1
r 2

4a S 12A11
4

3
aL18a

m

r 4D ~13!

with m being an arbitrary constant. In thea→0 limit, m is
equal to the black hole mass.

We define the position of the brane asr 5a(t) and T
5t(t), which is parametrized by the proper time on t
branet. The induced metric is

ds252dt21a~t!2V i j dxidxj , ~14!

the tangent vector of the brane isua5(Ṫ,0,0,0,ṙ ) and na

5(2 ṙ ,0,0,0,Ṫ). Normalization ofna implies

2h2Ṫ21 ṙ 252h. ~15!

We take the brane matter to be a perfect fluid, soSab5(r
1p)uaub1phab . The (uu) component of Eq.~10! is then

S 11
8

3
aH214a

k

r 2D ^hṪ&
r

2
4

3
a

^h2Ṫ&

r 3
52

r

6
. ~16!

For simplicity let us assumeZ2 symmetry across the brane
Squaring Eq.~16! and simplifying with Eq.~15! gives a cu-
bic equation forH2. This has the real solution

H252
k

a2
1

c11c222

8a
~17!

where

c65SAS 11
4

3
aL18a

m

a4D 3/2

1
ar2

2
6rAa

2 D 2/3

.

~18!
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This Friedmann equation agrees with Ref.@13#, but not Ref.
@16,17#. The only difference between these two conflicti
results is one factor of 3, but surprisingly this gives a su
stantially different Friedmann equation. Forr5const, Eq.
~17! also agrees with Ref.@14#. Reference@19# uses different
boundary terms@20# to obtain a different Friedmann equa
tion. However the terms used do not give a consistent act
and so the result is incorrect.

As in the usual brane cosmology@6#, the standard Fried
mann equation can be recovered at late time~large a) by
splitting r into a cosmological constant and a matter p
@13#.

The boundary terms~6! are easily generalized to action
where other fields couple to the curvature tensors. Varia
of the action

S5
1

2k2EM
dDxA2g@F~xm!R22L1aC~xm!LGB#

2
1

k2ES6

dD21xA2h@F~xm!K12aC~xm!

3$J22ĜabKab%#1Smat ~19!

produces the field equations

FGab2¹a¹bF1gab¹
2F1Lgab12aCHab

14aPeacb¹
e¹cC5k2Tab ~20!

and the boundary conditions

^F~Kab2Khab!2habn
e]eF&12a^3CJab2CJhab

12C P̂acdbK
cd&12a^$2Ĝab12KeaKb

e22KKab

1hab@K22KcdK
cd#%ne]eC&18a^~Ka[chb]d

1Kc[ahd]b2Kha[chb]d!DcDdC&52
1

2
k2Sab .

~21!

All the problematic boundary terms, like those appearing
Eq. ~4!, cancel out. In a string theory contextF and C
would typically be functions of the dilaton or moduli field

If we consider a conformally flat spacetime of the form

ds252e2A(y)~dT21dxidxi !1dy2 ~22!

and takeF, C andL m
(S)5l/k2 to be functions ofy only, the

generalized Israel junction conditions reduce to

2^3FA81F824aA82~A8C13C8!&52l. ~23!

This agrees with other results in the literature@15#.

I am grateful to Jihad Mourad and Christos Charmou
for useful and interesting discussions. This work was s
ported by EC network HPRN-CT-2000-00152.
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APPENDIX

To prove Eq.~10!, we first use the Gauss-Codazzi equ
tions

Rpqrsh a
p h b

q h c
r h d

s 5R̂abcd1KbcKad2KacKbd , ~A1!

naRaqrsh b
q h c

r h d
s 5DdKbc2DcKbd , ~A2!

R̂bd5R qcp
a h a

c h b
q h d

p 1KKbd2KbcKd
c ~A3!

and contractions of them to expandnaPabcd in terms ofKab ,
na and quantities associated with the induced metric:

naPabcd52D [dKc]b12DeK [d
e hc]b12hb[dDc]K12Ĝb[cnd]

12~K b
e 2Kh b

e !Ke[cnd]1~K22KaeK
ae!hb[cnd] .

~A4!

The covariant derivativeD is defined by DaXbc•••

5h a
m h b

p h c
q
•••¹mXpq••• .

To find the variation ofSS @Eq. ~6!# with respect togab ,
we first note that the normalization ofna implies dna
5 1

2 nancnddgcd . Thus, after a little algebra, and using th
definitions ofKab andDa , we obtain

h a
c h b

d dKcd5ne¹[edgp]qh (a
p h b)

q 2
1

2
dgcdKc(ahb)d

2
1

2
D (a~h b)

c dgcen
e! ~A5!

and, from Eq.~A3!,

h a
c h b

d dR̂cd5D (aDe~h b)
c h e

d dgcd!2
1

2
DeDe~h a

c hd
bdgcd!

2
1

2
DaDb~hcddgcd!. ~A6!

Now, with the aid of integration by parts and the relation

Yabe¹edgab5De~Yabedgab!12ncdgcdY
(dp)eKpe

1dgabDeYabe, ~A7!

which holds for any tensorYabe that is orthogonal to the
normalnc, the variation of the total actionS can be reduced
to Eq. ~10!. The more general case~21! can be dealt with in
the same way.

The energy conservation equation~11! can be proved by
using DaP̂acdb50 and the Gauss-Codazzi equations~A1!–
~A3! to express the divergence of Eq.~10! in terms of bulk
tensors.
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