PHYSICAL REVIEW D 67, 024026 (2003

Linear response, validity of semiclassical gravity, and the stability of flat space

Paul R. Andersch
Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109

Carmen Molina-Pasf
T-8, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
and Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

Emil Mottola’
T-8, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Received 26 April 2002; revised manuscript received 5 September 2002; published 24 January 2003

A quantitative test for the validity of the semiclassical approximation in gravity is given. The criterion
proposed is that solutions to the semiclassical Einstein equations should be stable to linearized perturbations,
in the sense that no gauge invariant perturbation should become unbounded in time. A self-consistent linear
response analysis of these perturbations, based upon an invariant effective action principle, necessarily in-
volves metric fluctuations about the mean semiclassical geometry, and brings in the two-point correlation
function of the quantum energy-momentum tensor in a natural way. This linear response equation contains no
state dependent divergences and requires no new renormalization counterterms beyond those required in the
leading order semiclassical approximation. The general linear response criterion is applied to the specific
example of a scalar field with arbitrary mass and curvature coupling in the vacuum state of Minkowski
spacetime. The spectral representation of the vacuum polarization function is computedinrensional
Minkowski spacetime, and used to show that the flat space solution to the semiclassical Einstein equations for
n=4 is stable to all perturbations on distance scales much larger than the Planck length.
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[. INTRODUCTION tions are neglected, although quantum fluctuations of the
other fields are taken into account. The semiclassical ap-
There are many well known difficulties that arise whenproach has been discussed and studied for some time now,
attempting to combine quantum field theory and general relaand a considerable body of results has been obtdBledet
tivity into a full quantum theory of gravity. Aimost certainly, a definitive answer to the question of what is the limit of
a consistent quantum theory at the Planck scale requires\alidity of this approach has remained somewhat unclear.
fundamentally different set of principles from those of clas- It is our purpose in this paper to propose a well-defined
sical general relativity, in which even the concept of spacequantitativecriterion for the validity of the semiclassical ap-
time itself is likely to be radically altered. Yet, over a very proximation to gravity, within the semiclassical formalism
wide range of distance scales, from that of the electrowealtself, namely that solutions to the semiclassical Einstein
interactions (10*° cm) to cosmology (1 cm), the basic  equations should be stable against linearized perturbations of
framework of a spacetime metric theory obeying general cothe geometry. This criterion may be formulated within the
ordinate invariance is assumed to be valid, and receives phg-mework of linear response thed@—6].
nomenologlcal support both from the successes of flat space | jg important to distinguish what we mean in this paper
quantum field theory at the lower end of this distance scaley, e semiclassical approximation from the ordinary loop
and classical general relativity at its upper end: He_nce, Whatéxpansion, which is sometimes also called semiclassical. In
ever the full quantum theory of gravity entails, it S.hOUId the ordinary loop expansion of the effective actidnis the
reduce to an effective low energy field theory on this very )
: . formal (loop expansionparameter. As a result both the mat-
broad range of some 43 orders of magnitude of dlstanc? S .
[1,2] er and gravitational quantum fluctuations are treated on ex-
' inactly the same footing, and the back-reaction of these fluc-

To the extent that quantum effects are relevant at all ‘ h tbeing fi o th :
gravitational phenomena within this range of scales, ondu@tions on the metri¢being first order in the expansion

would expect to be able to appsemelassical techniques to Parametert) is neglected. If one does attempt to include
the low energy effective theory of gravity. In the semiclassi-SUch effects in some modified loop expansion, the technical
cal approximation to gravity the spacetime metgg, is  issues involved in defining a one-loop effective action for

treated as a classicelnumber field and its quantum fluctua- gravitons that respects both linearized gauge and background
field coordinate invariance must be faced. These are difficult

enough to have impeded progress in the standard loop ex-

*Electronic address: anderson@wfu.edu pansion in gravity{7,8]. An unambiguous definition of the
"Electronic address: molina@maths.warwick.ac.uk corresponding conserved and gauge invariant energy-
*Electronic address: emil@lanl.gov momentum tensor for gravitons in an arbitrary curved space-
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time has not yet been give®]. Apart from such technical ity effects were found in three-dimensional models by Ash-
difficulties it should be clear that a simple loop expansion istekar[12] and Beetlg 13]. In four dimensions, Ford has con-
ill-suited physically to many applications that have been andidered the case of graviton production in a linearized theory
are likely to be of interest in semiclassical gravity, such aof quantum gravity on a flat space background, and com-
particle creation in the early universe, or black hole radiancepared the results with the production of gravitational waves
where the quantum effects of matter significantly affect thein semiclassical gravity14]. He found that they were com-
background geometry after some period of time, @uis parable when the renormalized energy-moment(gan-
usually assumedthe quantum fluctuations of the geometry nected correlation function,
itself can be neglected. Whenever quantum effects of matter
are expected significantly to affect the classical geometry, the Tab(X) Tea(X"))cor=(Tan(X) Tea(X")) = (Tap(X) ) Tea(X'))
standard loop expansion, which treats these effects as order (1.2
% and smal!, mugt certainly .brea.k down. . . . satisfied the condition

The semiclassical approximation to gravity we discuss in
this paper treats the matter fields as quantum but the space- (Tan() Ted(X)eon<( Tan(X) W Teg(X')). (1.3
time metric as classical, and allows for the consistent back-
reaction of the quantum matter on the classical geometry. The limits of validity of the semiclassical approximation
This asymmetric treatment can be justified formally by rep-have also been studied without making reference to a specific
licating the number of matter fieldd times and taking the model of quantum gravity. Kuo and Fofd5] proposed that
large N limit of the quantum effective action for the matter a measure of how strongly the semiclassical approximation
fields in an arbitrary background metrig, [10]. Then, the s violated can be given by how large the quantity,
semiclassical equations for the metric are derived by varying

the effective action, with local gravitational terms included. ) <Tab(X)Tcd(X’)>con‘
Since no assumption of the weakness or perturbative nature Aaped X, X')= T a0 Tod X)) | (1.9
of the metric is assumed, the lar@eexpansion is able to abi?/ Ted

address problems in which gravitational effects on the matt_elrs’ where it is assumed that the expectation values in this
are strong, and the matter fields can have a large cumulativg,ression are suitably renormalized. It is important to note
effect on .the' classical gepmetry in turn. The absence of.quaqhat Eq.(1.4) is coordinate dependent, since both the nu-
tum gravitational effects in the lowest order laly@pproxi-  merator and denominator arensorquantities. The situation

mation also means that the technical obstacles arising frofg complicated further by the regularization and renormaliza-
the quantum fluctuations of the geometry are avoided. Genjop jssues that arise in defining the quantities appearing in

eral coordinate invariance is assured, provided only that thg, s expression. Using normal ordering, Kuo and FEite]
matter effective action is regularized and renormalized in %omputed the quantity '

manner which respects that invariari@d. In that case the
guantum expectation value of the matter energy-momentum <TOO(X)TOO(X)>con|
tensor(T,;,) is necessarily conserved. A(x)= (1.9

A ; - (TooX) Too(X)) |

ssuming that the classical energy-momentum tensor for

the matter fielgs) vanishesian assumption that may be eas- for a free scalar field in flat space for several states including
ily relaxed if necessapy the unrenormalized semiclassical the Casimir vacuum. They found that it vanishes in a coher-
back-reaction equations take the fofr] ent state, whereas in many other cases, including the Casimir
vacuum, it is of order unity.

Wu and Ford 16] computed the radial flux component of
Eqg. (1.4), in the cases of a moving mirror in 2-dimensions
Here Gy, is the Einstein tensor) is the cosmological con-  and an evaporating black hole far from the event horizon in
stant(which may be taken to be zero in some applicatipns hoth 2 and 4 dimensions. They found that it was of order
G, is Newton’s constant, anll,p,) is the expectation value unity over time scales comparable to the black hole mass, but
of the energy-momentum tensor operator of the quantizethat it averages to zero over much larger times. In a normal
matter fields). Among the technical issues that must be con-ordering prescription they found state dependent divergent
fronted is the renormalization of the expectation value ofterms. They also showed that in the simple case of radiation
T.p, @ quartically divergent composite operator =4 exerting a force on a mirror, the quantum fluctuations in the
spacetime dimensions. The renormalization of its expectatioradiation pressure are due to a state dependent cross term in
value requires the introduction of fourth order countertermshe energy-momentum tensor correlation functit,18].
in the effective action, that modify the geometric terms on  Phillips and Hu[19] used zeta function regularization to
the left hand side of Eq1.1) [3]. computeA (x) with the denominator replaced by the quantity

Once a renormalized semiclassical theory has been déTo(x))?, for a free scalar field in some curved spacetimes
fined, one possible route to investigating its validity is tohaving Euclidean sections. They also computdc) for a
compare calculations in a theory of quantum gravity withscalar field in flat space in the Minkowski vacuum state,
similar semiclassical calculations. Since a well-defined, fullusing both point splitting and a smearing operator to remove
guantum theory is lacking, this has been done only in soméhe divergenceqg20]. For the flat space calculation they
simplified models of quantum gravity. Large quantum grav-found thatA (x) depends on the direction the points are split,

Gab+Agab:87TGN<Tab>- 1.1
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but that it is of order unity regardless of how the points are Although technical problems such as renormalization and
split. They used their results to criticize the Kuo-Ford con-coordinate invariance complicate matters, this body of previ-
jecture and to suggest that the criteria for the validity of theous work suggests that the correlation function
semiclassical approximation should depend on the scale &T ,,(X)Tcq(X'))con Should play an important role in deter-
which the system is being probed. mining the validity of the semiclassical approximation. How-
Wu and Ford 18] addressed the Kuo-Ford conjecture andever, the proper context for incorporating and making use of
the above mentioned criticism of it by Phillips and Hu. Theythe information contained in this correlation function in a
stated that the conjecture is incomplete because it does nwtell-defined (i.e., finite), quantitative framework, that re-
address the effect of divergent state dependent terms. Thepects general coordinate invariance, has remained some-
suggested that any criterion for the validity of the semiclaswhat unclear.
sical approximation should be a nonlocal one that involves The criterion we propose in this paper, that solutions to
integrals over the world lines of test particles. They alsothe semiclassical Einstein equations should be stable against
argued that the question of whether the semiclassical agin€arized perturbations of the geometry, provides just such a
proximation is valid depends on the specifics of a given situffamework. According to standard linear response theory

ation, including the scales being probed and the choice df+2:42, the linearized equations for the perturbed metric
initial quantum state. depend on the retarded two-point correlation function of the

energy-momentum tensor evaluated in the semiclassical

Although it is somewhat unclear what the dimensionles . X .
oug ; . ; sbackground metrig,p, [6]. In this case, the correlation func-
small parameter is that controls the inequality3), Ford’s fion can be computed using the closed time [P ef-

initial work and these subsequent discussions draw attentiop . . ; .
. . . . . ective action[43]. The result is a retarded correlation func-
to the importance of the higher point correlation functions of

. . .tion that involves the commutator of two energy-momentum
the ?”?rgy'm"me”t“”? tenso_r. Itis qune clear, at least Rensor operators. Hence the perturbations are manifestly
qualitative terms, that if the higher point cgnnected Co"ela'causal. Moreover, the UV divergences found in the unrenor-
tion functions ofT,;, are large(in an appropriate sense to be jized linear response equations are exactly those required
determineg it cannot be correct to neglect them completely, g renormalize the semiclassical theory itself. This ensures
as the semiclassical equatiofisl) certainly do. that no state-dependent divergences occur. Finally, gauge
Another context in which the quantitff ,p(X) Tca(X"))eon  transformations of the linearized metric fluctuations,, are
plays a role is stochastic semiclassical grayity?1-29. In  easily handled within the linear response framework, so that
this case the probability distribution function for the quan-ambiguities related to quantities such as Eh4) do not
tum noise is obtained from the symmetric part of this corre-arise. Thus, standard linear response theory provides a well-
lation function [21]. A dissipation kernel has also been defined test of the validity of the semiclassical approxima-
shown to be related to the antisymmetric part of this corretion to gravity, which directly involvegT ,,(x) Tq(x")) and
lation function[26]. Stochastic semiclassical gravity is an its renormalization, in a manner that is in complete accor-
interesting attempt to go beyond the semiclassical approxidance with the physical principles of general covariance and
mation. However, for the purposes of the present work, weausality.
do not make any stochastic assumptions and determine to Since this criterion for the validity of the semiclassical
investigate the validity of the semiclassical equations withinapproximation lies strictly within the context of that approxi-
the largeN approximation itself. mation itself, one avoids problems such as gauge invariance
The energy-momentum correlation function of the energy-momentum tensor for gravitons, that inevitably
(Tap(X) Tea(X"))eon has been directly computed for a scalar appear if one tries to go beyond the semiclassical approxi-
field in a two dimensional spacetime with a moving bound-mation and include quantum effects due to the gravitational
ary [27], for scalar fields and the Maxwell field in field. Although these effects certainly are not contained in the
Minkowski spacetimg28,29, and for a massless minimally semiclassical Einstein equatiofs 1), it is possible to study
coupled scalar field in de Sitter spacetime, in the case thahe properties of linearized gravitational fluctuations about
the points are spacelike separated and geodesically cothe self-consistent solution of E@L.1), simply by taking one
nected 30]. It has also been computed indirectly through thehigher variation of the effective action that leads to that
nonlocal kernel appearing in the deviation(dt,,) from flat  equation. This second variation involves the two-point cor-
spacd 31-33, from a Robertson-Walker spacetifit], and  relation function(1.2), evaluated in the self-consistent back-
from a general conformally flat spacetini®5]. The noise  ground geometry.
and dissipation kernels in stochastic semiclassical gravity are To understand qualitatively the role of the two-point cor-
related to the energy-momentum tensor correlation functiomelation function in the validity of the semiclassical approxi-
[26]. These quantities have been computed exactly or apmation, it is helpful to consider the physical analogy between
proximately for scalar fields of various types in several situ-semiclassical gravity and semiclassical electromagnetism.
ations including Minkowski spacetini®6,37], hot flat space The connected correlation functigh.2) measures the gravi-
[26], the far field limit of a black hole in equilibrium with a tational vacuum polarization, which contributes to the proper
thermal field [38], Robertson-Walker spacetimes self-energy of the linearized graviton fluctuations around the
[21,22,39,40Q Bianchi type | spacetimd®3], and a weakly background metric, just as the current two-point correlation
curved spacetime using a covariant expansion in powers dfinction, (j3(x)j°(x'))¢n, Measures the electromagnetic
the curvaturd41]. vacuum polarization which contributes to the proper self-
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energy of the photoi44,45. Hence, if these polarization essary condition for the validity of the semiclassical approxi-
effects are significant, the semiclassical approximation hamation is presented. In Sec. IV the use of our criterion is
certainly broken down, at least in the form specified by Eq.llustrated for the case of a scalar field with arbitrary mass
(1.1), where all fluctuations of the metric have been ignoredand curvature coupling in the vacuum state in Minkowski
In quantum electromagnetisf@ED) we know exactly how spacetime. The linear response analysis implies that flat
to take these fluctuation effects into account, namely by scagPacetime is stable under small fluctuations at large wave-
tering and interaction Feynman diagrams involving the pholéngths. Our results are discussed further in Sec. V. Some
ton propagator. These processes are important not only igdditional apphcatlons of our criterion to the study qf quan-
scattering between a few particles at high energies, but aldy!M €ffects in cosmological and black hole spacetimes are
in low energy processes in hot or dense plasfBasAnalo- suggested. There are two Appendixes. The f|_rst (_jeals with the
gous statements should be applicable to gravity. Thus, if thg€neral decomposition of tensors and polarization operators
linear response validity criterion is not satisfied, there will be!M Minkowski spacetime. The second contains the technical
no avoiding the technical difficulties and physical conse-details of the computation of the retarded correlation re-

quences of treating the fluctuations of the gravitational fieldPOnse function for a scalar field in Minkowski spacetime.

itself, even if we seek to understand only th&ared behav-
ior of a semiclassical approximation to the effective theory|; SEMICLASSICAL GRAVITY AND RENORMALIZATION
of gravity, far below the Planck energy scale.

As a particular illustration of the validity criterion, we  The most direct route to the semiclassical equatidn
apply it to the example of a scalar field with arbitrary massis via the effective action method in the largelimit. We
and curvature coupling in the vacuum state of Minkowskiconsider the specific example & noninteracting scalar
spacetime. We express the retarded correlation function (ﬁe|dS. Generalizations to interacting fields and fields of other
the linear response analysis in flat space in terms oflg#a Spin are straightforward, but as they are not required to ex-
Lehmann spectral representatipts]. The positivity of the ~Pose the main elements of the stability criterion, we treat
spectral representation is sufficient to demonstrate that the@ly this simplest case in detail. We begin by reviewing the
are no unstable modes of the linearized semiclassical equ&ffective action formulation of the semiclassical E¢s.1)
tions around flat space at distance scales far larger than ththout regard to boundary conditions or the state of the
Planck scale, and hence, that flat spacetime is completefjeld. Thus, the equations in this section are valid for both the
infrared stable in semiclassical gravity. The semiclassical st&-0ut/in) and(in|in) formalisms. We postpone to the next
bility of Minkowski spacetime has been investigated previ-section the introduction of the CTP method which selects
ously by several author32,33,44, and instabilities have real and causa<[in|in> expectation values. It is this latter
been found which involve strictly Planck scale variations ofform that must be used for the linear response analysis.
the metric fluctuations in space and/or time, which arise from The classical action for one scalar fiéluf arbitrary mass
the terms fourth order in derivatives of the metric that areand curvature couplings
needed to renormalize Eg4..1). Their existence clearly pre-
cludes the validity of the semiclassical larbeapproxima- 1
tion at Planck time or distance scales. Prescriptions for ex- Sw[P,9]=— Ef d*x\ =g [(Va®) g2V @) + mPD2
plicitly reducing the order of the equations, which eliminates
these Planck scale solutions, have been proplgtgdg and + éRD?], (2.1
discussed in some deta#9]. Whether or not these prescrip-
tions are accepted in the general case, it is quite elg@iori

that the semiclassical approximati(ml)_can be viev_ve_d at ¢ is the dimensionless curvature coupling, & the scalar
best only as the low energy effective field theory limit of a curvature. The path integral over the free scalar fiélds

more complete quantum theof{,2], and that no reliable : - : :
results can be obtained from this approximation in theGaUSSIam and may be computed formally by inspection, with

Planckian regime. However, the flat space example treated itrﬁ] e result

some detail in this paper shows explicitly that the semiclas- . 1

sical approximation does give mathematically meaningful f ! _ =+ 1
and physically sensible results, when properly restricted to [DP]ex A Su[P,9] | =ex 2TrInG Lg]

its range of validity at space and distance scales very much i
larger than the Planck scale. _ 1)

The organization of the paper is as follows. In the next —exp(h SEﬁ[g])’ @2
section the properties of the large semiclassical approxi-
mation in gravity and its renormalization within the covari- \ynere
ant effective action framework are reviewed. In Sec. Ill the
linear response theory for the semiclassical back-reaction
equations is described. The form of the two-point correlation
function for the energy-momentum tensor that appears in the
linear response equations is given, and its properties and the inverse propagator of the scalar field in the background
renormalization are discussed. Then our proposal for a neenetricg,,, and the(generally nonlocalfunctional

whereV, denotes the covariant derivative for the megig,

G Ygl=—0O+m?+¢R, (2.3
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i% the quantum matter field in this background can be formally
s¥lgl= S Irin G gl (24 obtained by the variation
may be regarded as the effective action due to the quantum (Top(X))=— i S S(l)[g]
effects of the scalar field in this metric. It contains an explicit av J—g 8g2° eff
factor of». No assumption about the smallness of the metric )
deviations from flat spacetime or any other preferred space- =—ihDap GLG1(X,X") [y =x (2.9

time has been made.
The expectation value of the energy-momentum tensor ofvhereD,,G[g](x,x") in the coincident limit is

1 1
DabG[g](X:X)EDabG[g](XvX,”x’:x: [Z(Zvavb_ gabD)_ Engab+ g(gabD - Vavb+ Gab) G[g](x,x)

1
+| = 8500+ 5 9ab0® | VoV aBLgI XX ) [ —x. 2.6

By Noether’'s theorem, thigunrenormalizedl expectation Hence the four parameters of the local geometric tefups
value of T, is covariantly conserved, provided that the ef-to fourth order derivatives of the metric which aaepriori
fective actionS{¥[g] is invariant under general coordinate independent ofi) must be considered as parameters of the
transformations. HowevefT,,) is divergent because of the Same order as the corresponding divergent tern&g],
singular nature of the limi’—x in Eq. (2.5), which re- ~ Which from Eq.(2.4) is first order in%. Formally, this may
quires a careful UV regularization and subtraction procedurd®€ justified by considering identical copies of the matter
consistent with coordinate invariance, before a finite renorfield, so thatS{g[g] is replaced byNS{{[g] and G*,
malized value for its expectation value can be defif&d A/GN, a, andg are rescaled by a factor df In this way all

In physical terms the UV regularization and renormaliza-the terms in Eq(2.7) are now of the same order M asN
tion procedure mean that the theory is not strictly defined at_, o
arbitrarily short time and distance scales. The lack of infor-  Thjs formal rescaling by is carried out at the level of the
mation about the physics at those arbitrarily small scales mayenerating functional of connectgspoint vertices,Sy{ g]
be absorbed into a finite number of parameters in the effecyyhich are theinverseof p-point Green’s functions rather
tive low energy theory at larger scales. Since the effectivehan the Green's functions themselves. Therefore, it has the
Lagrangian and energy-momentum tensor have canonic@let effect of resumming the quantum effects contained in the
scale dimensiom (in n spacetime dimensiopsthe number  one-joop diagrams of the matter fiédjito all orders in the
of parameters is given by the number of local coordinatgmetricg,,. The largeN expansion and its relationship to the
invariant scalars up to dimensiam In n=4 dimensions, standard loop expansion have been extensively studied in
these are the parameters of the Einstein-Hilbert action plugpth ¢4 theory and electrodynamicboth scalar and spinor
the coefficients of the two independent fourth order invari-Qgp) in flat spacd50]. The QED case is most analogous to
antsR? andCqpedC***, whereR is the scalar curvature and the present discussion with the classical vector potendal
Canbcq is the Weyl tensor, respectively. Thus, in order t0ygpjaced by the metrig,,. The largeN approximation(2.7)
renormalize the theory we require the total low energy effecig a|so invariant under changes in the ultraviolet renormal-

tive gravitational action, ization scale(by definition of the UV cutoff dependence of
1 the local counterterms which cancel against those of the mat-
Sel9]1=SH[g]+ fd“x\/—_g(R—ZA) ter action, and is equivalent to the UV renormalization
167G, group (RG) improved one-loop approximation.

1 It is the largeN, RG improved one-loop approximation
Il 7 N abcd 2 that is necessary to derive the renormalized semiclassical
ZJ ¢*x V= g(aCapciC™*H BRY), (2.7 equations(1.1) with back-reaction, for only in such a re-

) . ) . summed loop expansion can the one-loop quantum effects of
with arbitrary dimensionless constantsand 8. Renormal- (Tap) influence the nominally classical background metric
ization means thaB , A, «, andp are at first bare param- " Ag mentioned in the previous section, in the ordinary
eters, which may be chosen to depend on the UV cutoffunimproved loop expansion the quantum fluctuations of the
(introduced to regulate the divergences in the one-loop terrmatter can make at most small corrections to the background
S{H[g]) in such a way as to cancel those divergences anehetric. The largeN approximation also preserves the cova-
render the total actionSe{g], independent of the cutoff. riance properties of the theory, since it can be derived from
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an invariant action functiond®.7). The divergences il ) ground metricg,, through Eq.(2.5), it requires solving the
are in one-to-one correspondence with the local counterterndifferential equatiorG~Y[g]eG[g]=1, or more explicitly
in the actionSg{ g], whose variations with respect

produce, in addition to the terms in the classical Einstein 2 N s (x,x")
equations, the fourth order tensors, (—O+m*+£R)GLg](x,x )_—\/—_g , (210
(1)Habzi 0 fd“x\/—_ng concurrently with the semiclassical back-reaction equation
J—g 5g9%° (2.9). It is the exact solution of this equation, without any
perturbative re-expansion d@[g], and the resulting self-
=20, 0R—2V,V,R+2RR,,— %RZ, (2.89 consistent solution of Eq2.9) for the metricg,,, that con-
2 stitutes the principal nonperturbative RG improved feature of
the largeN limit.
©n. = 1 8 j =g CpedC2c The equations of motiofR2.9), which are the original Egs.
ab J—g 5g97° 9%abe (1.1 modified by the additional terms required by the UV

renormalization of T,p,), are fourth order in derivatives of
=4V°VICyepat 2RCacpg. (2.8D  the metric. This feature, which is not present in QHt is
o ] ] ) a general feature of effective field theories that are charac-
Hence the variation of the effective actid@.7) gives the  (grized by derivative expansionshas been the source of
equations of motion for the spacetime metric for zero expec,,ch discussion in the literatuf82,33,46—49 As is well
tation value of the free scalar fiefH: known from the general theory of differential equations, if
the order of the equations is changed by adding higher de-
(Gapt Agab):<Tab>R, rivative terms, the solutions of the modified equations fall
into two classes, viz., those that approach the solutions of the
(2.9 lower order equations as the new parameter8—0, and
where (T, is the renormalized expectation value of the those_z which become singu_lar in that limit. The latter class of
ab/g P ) solutions are not present in the lower order theory and cor-
energy-momentum tensor of the scalar field, and all the parespond physically to solutions which vary on Planck length
rameters are now understood to take finite renormalized valynd time scaleéin order for the higher derivative terms to be
ues. In order for the renormalized parameters to be definegf the same order as the lower derivative Einstein terms
unambiguously, we require that any terms of precisely thernere is clearly no experimental basis for taking these solu-
form of the local geometric tensors on the left hand side otjons seriously(since they would predict that even empty flat
Eqg. (2.9), specified at an arbitrary but fixed renormalization space is unstable to arbitrarily short length and time scale
scaleu, are removed from the expectation value on the rightyertyrbations[32,33,46,49 Instead, the modern framework
side of Eq.(2.9) by an explicit subtraction procedure at that f effective field theories suggests that we should regard the
scalew. A concrete example of this subtraction procedure inpjanck scale as the physical UV cutoff which defines the
flat spacetime is given in Sec. IV. o extreme limit of possible validity of semiclassical gravity,

It is worth emphasizing that the UV renormalization of and that we should confine our attention to only those pre-
the energy-momentum tensor and the covariant form of thgjictions of the theory which involve length scalésmuch
equations of motioni2.9) are justified by formal appeal to an greater than the Planck lengfh,. In this regime, the effects
underlying covariant action principl€2.7), whose variation ¢ the higher order local terms in E(R.9) are suppressed by
they are. Although particular regularization and renormaliza»t |east two powers of pi/¢, provided the solutions remain
tion procedures, such as noncovariant point splitting or adiageqgylar in the limit of vanishing renormalized coefficients
batic subtraction, may break explicit covariance, the resulgmdﬁ of the higher order terms. We are interested in this
must be of the form(2.9), with a covariantly conserved paner primarily in defining a validity and stability criterion
<Tab>R, or the procedure does not correspond to the additioRf the semiclassical approximation at length scalestp,
of local counterterms up to dimensior=4 in the effective  and only comment briefly on the Planck scale solutions again
action, as required by the general principles of renormalizain the Discussion.
tion theory. Thus, the renormalization of the effective action
(2.7 suffices in principle to renormalize the equations of
motion (2.9) andall of its higher variations, a fact we make
use of in the next section.

The largeN approximation is equivalent to a Gaussian In this section we present our criterion for the validity of
path integration for the quantum matter fields, in which thethe semiclassical approximation which relies on a linear re-
spacetime metric and gravitational degrees of freedom haveponse analysis. This analysis makes usgrdin) expecta-
been treated as numbers, coupled only to the expectation tion values which can be realized using the CTP formalism
value of the energy-momentum tensor through EgQl).  [43]. We begin by reviewing a few details of this formalism
Since the energy-momentum tensor expectation value can ltkat are needed to derive the causal linear response equation.
expressed as a coincidence limit of local derivatives of the The desired(in|in) expectation values are obtained by
one-loop matter Green’s functio[ g](x,Xx) in the back- integrating the path integrdR.2) along a contour from the

o (C)Hab_ B (l)Hab+

87G
N

Ill. CTP, LINEAR RESPONSE AND THE STABILITY
CRITERION

024026-6



LINEAR RESPONSE, VALIDITY OF SEMICLASSICA . .. PHYSICAL REVIEW D 67, 024026 (2003

initial time up to a late time in the future, and then back-

wards to the initial time. This results in a doubling of the S&g+h]= SCTP[g]+J d*x J h2,(X)
field variables with a new CTP inde¢denoted by capital ab( )

roman lettersA,B,C, ...), running over the valuesA ZSCTP
=1,2, that specify the forward or backward part of the con- j Px f gy et 191 Lg]
tour, respectively. After all manipulations are performed the 5ghy(X) 8gE4(x")

resulting expressions are evaluated by equating field vari-
ables on the two contours. X hAb(x)h (Xt (3.3
In the CTP formalism the leading order effective action
for the matter fields is formally identical to E(.4) with the  where the first variation vanishes by EG.9). Varying with
replacement, respect tohl, and then settingi'=h?=h and g'=g?=g,
1 1 _ 1A gives the linear response equation which is equivalent to the
G Tel—=(G 1alas=casC 1971, @D first variation of the semiclassical Einstein equations, namely
with g[g] a 2X2 matrix in the CTP indices an@dsg

=diag(1~-1) the CTP metric. Thus;;;'[g] depends only 5
on fields of type 1, while7,; [g] depends only on fields of
type 2. The signs in the CTP metric,g, keep track of the
direction of the time contour, positively directed forward in 1
time for field variables of the first type, and negatively di- _ cd ayr | reticd, , 1 /
rected backward in time for field \ygriables of gt]he se{:ond - Z ab Ned(X)+ = fd —g(x) TS x X" Yheg(X'),
type. The corresponding CTP effective action will be de- (3.9
noted bySS ©. Performing the variation o5~ with re-
spect to the first CTP component of the metric variaggsa,, where
is formally identical to that o8{}[g] in Eq. (2.5, and gives
(in|Tap(x)]in), the unrenormalized diagonal matrix element TI0e9(x ") = TT19(x x") + TT229(x x"),  (3.5)
of the energy-momentum tensor, which is real for Hermitian
Tab

The linear response equation can be obtained by expan
ing the CTP effective action, in a functional Taylor series to
one higher order, around a given semiclassical geonmglyy
that solves Eq(2.9). Writing

a(©) (1) 1
Hap—B "Hapt 87G (GaptAGab) :5<Tab>
N

the nonlocal connected, retarded polarization tensor and

ﬁil ¢d s the purely local part of the variation of
(i n|Tab(x)||n) atx. We follow here the notation of Reff6],
except for an opposite sign convention in the definition of
the energy-momentum tensor in Eg.2) of that work.

Jab— Gab+ Nab. (3.2 To demonstrate that E3.5) is indeed the retarded polar-

ization tensor, we carry out the variation of tharenormal-

one finds that to second orderhg, the CTP effective action ized) CTP effective action for the scalar matter field explic-
is itly, so that

—5 - 991X, x)hgg (x’ )—Iﬁf d*x ’Dw@ hea (X")

5<in|Tab(x)|in)=—ihj d*x’ 568, (x')

cd( ,
1

= ZMadehcd(X)HﬁJ' d4X’\/_9'{CllpabglA[g](X,X')CAB(_DCd)gm[g](X’,X)}hcd(X')
1 cd H 4., ! ’ ’ cd ’

= M o0 i [ dx =GPl g1 DG g](X 0

DapG1d 91(x,X") DG g1(X’ ) }hea(X'). (3.6)

The minus sign in £ D°%) enters because the variation with respea {pis opposite in sign from the variation with respect
to g2° used to definé,;, in Egs.(2.5) and(2.6).
The definitions of the various components of the CTP matrix Green'’s function of the scalar fi¢hB&@,5]

G g1(x,x")=i(in|D(x")P(x)|in)=GC_(x,x"),

024026-7
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G2l g]1(x,x") =i(in|® ()P (x")[in) =G (x,X") = G (X" x),

Gul g](x,x") =i(in|T[®(x)P(x")][in)=6(t,t") G~ (X, X))+ 6(t", ) G (x,X'),

GoAd 91(x.X") =G5 g](x,X") = = 0", G- (x,X') = (1,1 ) G(x,X'). 3.7
Hence suppressing momentarily the spacetime indices in the last line §8.6qy.the CTP structure of that expression is

6(t,t,)[G>(X,X,)]2+ 0(t',t)[G<(X,X')]2—G<(X,X’)G>(X',X)

1
= 0(tU G- (X)) 2 =[G (xx) 2= = 5 0(t, )(in[[@2(x), @*(x") ] in), 3.8

where we have used the definitiof®7) and the properties of the Heaviside step functiftit’) for unequal arguments, thus
ignoring possible ambiguities at the coincident poixtsx’. Restoring the spacetime indices, we find that the nonlocal term
of the variation 01‘<Tab>R in Eg. (3.4) can be written formally as

1 if
5| axEIIE o ey = 5 [ o VGOl a0, T imheg(x), (39

which is real and causal. termines the energy-momentum tensor, and it also obeys the
This derivation is still formal because of the singular be-same covariant conservation law,

havior of the retarded polarization operator at coincident apy (reticd , 711 (retied / ,

points x=x'. This singular behavior is related to the short ~ V'Ilap  (XX")=V a7 (x,x")=0, for x#x'.

distance behavior of the formal expressions and their renor- (3.10

malization. The singular behavior of commutators of phys"Equations(BA) are covariant in form and therefore are nonu-

cal currents and their various time ordered products has begﬂ . : : .
. . . . ue up to linearized coordinatgauge transformations
recognized for some timet4], and has been discussed in the q P tgauge

gravitational context in Ref.6]. The proper covariant defi- 8Gap— Gap+ VaXp+ VoXa, (3.11
nition of the singular functions requires combining the re-
tarded commutator with the first localcontack term,  for any vector fieldX,. Singular gauge transformations in
Mo %%ea(x) in Eq. (3.6), in such a way that the diver- the initial data forég,, are certainly not allowed, and some
gences in the sum of the two quantities can be renormalizedare is required to decide whether time dependent linearized
via the usual counterterms, namely exactly the same countegrauge transformations which grow in time without bound are
terms at the level of the effective action which are necessargllowed or not. Since the action principle is fundamental to
to renormalize the semiclassical E¢®.9) themselves. Alter-  the present approach, any transformation of the f¢8r1),
natively, one may calculate the time asymmetric part of thefor which the action(2.7) is not invariant(due to boundary
response function, which is free of singularities in the limit or surface terms is not a true invariance and should be
x—x', anddefinethe renormalized time symmetric part of excluded from the set of allowable gauge transformations of
the full response functiofincluding the local contact terms  the linear response equatio(84).
by a covariant regularization and renormalization procedure, We now state our stability criterion for the semiclassical
which gives unique answers up to finite redefinitions of theapproximation. A necessary condition for the validity of the
coefficientsa and 8 in the fourth order renormalized effec- large N semiclassical equations of motid@.9) is that the
tive action. It is this latter procedure which we carry outlinear response equatiof.4) should have no solutions with
explicity by means of a dispersion integral, after Fourierfinite non-singular initial data for which any linearized gauge
transforming Eq(3.9) in the flat space example provided in invariant scalar quantity grows without bound. Such a quan-
the next section. tity must be constructed only from the linearized metric per-
The linearized fluctuationh,,(x) obeys an integro- turbationh,, and its derivatives, and it must be invariant
differential equatior(3.4) in which the integral depends only under allowed gauge transformations of the kind described
on the past ok, due to the causal boundary conditions, andby Eg. (3.11).
which involves the two-point correlation function of the mat-  The existence of any solutions to the linear response
ter energy-momentum tensor. According to the general prinequations with unbounded growth in time, that cannot be
ciples of linear response analysis, this retarded correlatioremoved by an allowed linearized gauge transformation
function is evaluated in the background geometry of the(3.11), implies that the influence of the growing gravitational
leading order solution of the semiclassical equati¢h$). fluctuations on the semiclassical background geometry are
The polarization operatodI{£"°%(x,x’), is determined large, and must be taken into account in the evolution of the
by the second variation of the same effective action that debackground itself. That is to say, if the gravitational fluctua-
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tions around the background grow, even if they were initiallytaken into account by the sgi) function in Eq.(4.3), and

small, then the leading order semiclassical equati@9, which is a consequence of the causal, retarded boundary con-

which neglect these fluctuations, must eventually breakditions of the CTP formalism.

down. Since the purely local termyi,,°“, is time reversal in-
variant, it does not contribute to the imaginary part of the

IV. STABILITY OF FLAT SPACETIME dispersion relatiori4.2) of IIM(eY (k0 k) which is finite and

Flat spacetime is a solution of the semiclassical Einsteir\{veII defined. The proper definition of the local term is con-

equations for vanishing expectation valueTgf, and cosmo- nected with the renormalization procedure needed to recon-
. i gn struct the real part of the Fourier transform of E4.1) from
logical term, with the quantum matter field in its Lorentz

: ; I . . its imaginary part, and in fact, the dispersion integral in Eq.
invariant vacuum ground state. This is the simplest solutlort4 2) doesnotexist due to the largk behavior, vizk?, of the
of the semiclassical Eq$2.9) to which we can apply our : N

S S , e Lorentz invariant spectral functions)(s=—k?). This di-
Va(lr'g)';[g criterion, and for Wh'Ch the polarization _o_perato_r, vergent behavior oﬁ‘) the unrenomﬁléed disp)ersion integral
IT3.7*%, can be evaluated in closed form. In addition to il- 4.9 ask? ; hing but th biquities of th s
lustrating the application of the criterion to a weII—defined( y )a_s L |s_not Ing but the am I.QUIt.IeS oft e coner-

e . X dent limit x—x’ in the retarded polarization function in a
spec_n‘lc case, the analysis of Fhe normal modes which SOIVSifferent guise. The divergent terms are proportional to
the linear response E@3.4), will permit us to reach a de- :

finitive conclusion on the stability of Minkowski spacetime 5*(x,x') and up to four derivatives thereof, which by Lor-
. Y X1 Sp entz invariance must be of exactly the same form as the local
to quantum perturbations on distance and time scales f

I . .
larger than the Planck scale. Ferms on the left hand side of the linear response (Bd).

. cd
The linear response equati@®.4) around a Minkowski Thus, these divergences, as well as the local thtgg™,

background,,, can be decomposed into scalar, vector and@" be handled by the same renormalization procedure

tensor components according to the decomposition and pr(51_eeded to define the expectation value of the dimension 4

jection operators defined in Appendix A. The variations OfoperatorTab in Eq. (1.1), namely by subtraction of the al-

the local tensors appearing on the left hand side of(B4) lowed g_ovana_nt qon:ntertezrmfh_up to d|_r;1en5|on 4'|.|?1 tzebflat
are given by Eqgs(A16). Thus, Eq.(3.4) around flat space spz;:e tl_spetrhsmp Irt] tehgréﬂ-t), IS |s_tea_?| Vlacco"ﬁp IShed by
may be written in the form subtracting the first three terms in its Taylor series expansion

aroundk?= 0, anddefiningthe renormalized real part of the

d

, (Med retarded correlation function by
ald?— ——— | Py ““heg(X) _
1om8, RETTO(() ]
1 (i)(ret)
+|6B80%+ m[] Pg%)‘:dhcd(x) = Rel [TV (K2) — 1Y gy — 2 Irte
N akZ
k2=0
1 1
= ZMadehcd(x)Jr ff d*x TR %, x" Y heg(X'). _(k2)2 2T (D(ret) ”
2\2
4.1) 2 | a0 lasg

The nonlocal vacuum polarization tengoight hand side of —(K))3P * f p{(s) 4.4
Eqg. (4.1)] can be decomposed into exactly the same two (k) 0 s3 s+k2’ '

scalar and tensor projectiofsee both Appendixes A and B
pDedr(Mred 4 p(Iedr(9(re)  and a Kdén-Lehmann spec-
tral representatiofb,4,49 given for the Fourier transform of
each of these two gauge invariant scalar functions,

whereP denotes the principal part prescription for the inte-
gral whenk is timelike (—k?=s). The subtractions do not
affect the time odd imaginary part of the retarded polariza-
- d 0)( 0 tion funption. The intggral oves in the real part is now .
H(‘)(’e‘)(kO,IZ):J Jw oo, =TS (4.2 well-defined and UV finite, and may even be computed in
—2T —K9—ie terms of elementary functions, in the case of a scalar field of
arbitrary massn>0 and curvature coupling. The details of
This is a form of Cauchy’s theorem for this calculation are given in Appendix B. The three subtrac-
tions in Eq.(4.4) correspond physically to renormalizing the
coefficients of the cosmological constand), Newton’s
constant (J!BN), and the coefficients of the fourth order

terms (@ and B). These are of orderkf)®, k? and (?)?
s=(k%2— |;2|2_ 4.3 respectively. The renormalized values of these parameters at

k?=0 are what appear then on the left hand side of(E).

In Fourier space the nonlocal real convolution in E4.1)  The singular local termM ade in Eq. (4.1 is effectively
becomes a simple multiplication with.4(k). Its real partis removed by these subtractions in flat space as well, so that
even and its imaginary part odd under time reversal, which ishe entire linear response equation becomes well-defined and

. I . :
Im[ITOTK k) ]= 5 oD (K, k) =mp{(s)sgn(k?),
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covariant. Indeed had we performed the renormalization athe quantum matter theory. Hence it is valid much more gen-

the level of the effective action directly then it would be erally than for the specific scalar field example.

clear that no local term ambiguities appear in the renormal- Going further, we may inquire as to the existence of ad-

ized equations. ditional stable solutions characterized by propagating tensor
Since the projections onto scalar and tensor modes angave modes with timelikek (k?’<0). The bracket in Eq.

linearly independentin fact, orthogonal the coefficients of (4.53 vanishes if

the two projection operators must satisfy the linear response

relation separately. Transferring the polarization part to the 167TaGNk2+ 1+ 87TGNk2F(T)=0, (4.7

left hand side of Eq(4.1) and taking account of the renor-

malization just described, yields two independent dispersionvhere

formula, namely,

; = ds M(s
1 = ds p(M(s) F(T)Esz S — ©) Nt (4.8
k2 2ak2+8 +(k2)ZJ — — —|=0, 0 s° [s+ko—iesgnk”)]
TG, 0 s° (s+k“—iesgnk”)) |
(459 is a dimensionless function &?/m? (and the sign ok®),
. given explicitly for the case of a scalar field by E§44). It
k2| 126K2 KR zf‘” ds p(s) o is clear that if this function remains bounded for IeﬁVmZ,
4G 0 & (s+k2—iesgrk?))| the equality(4.7) can never be satisfied for az@N|k |<1,

(4.5b since both the thirdpolarization term and first &) term can
' never be of order unity. In fact, from the explicit form Bf"

The two spectral functiong(V)(s) are calculated explicitly ~for a scalar field, given by EqB44), we find

for the free scalar field with arbitrary mass and curvature

coupling in Appendix B. For this case, the spectral functions ™ k2 1 |k?|

have support only whes>4m?, which corresponds to the ReF V2] 1= 9607T?|n mz

two particle threshold for timelike gravitational fluctuations. 4.9

However, some conclusions can be drawn from the two dis-

persion relations above using only the fact that both spectrado that the function does grow without bound, but only loga-

functions are positive for both transverse tensor and scalaithmically. Hence the relatio4.7) cannot be satisfied ex-

gravitational perturbations of flat space. cept atk? approachingﬁ;l, providedm?>0. If <0 then

Let us examine first the tensor dispersion relation. ltihe preceding analyses fd>0 and k?<0 interchange
clearly is always satisfied bk*=0. This solution corre- rgles, with the conclusion unchanged. Thus, there are no ten-
Sponds to the phySicaI, transverse linearized graVitation%OI* mode solutions of the linear response 8:14) on |ength
waves propagating in a flat space background. The coeffiscales much larger than the Planck length for a massive field
cient ofk? atk’=0 is unchanged from the classical value by theory around flat space, other than the usual linearized
the quantum parameter and vacuum polarization correc- gravitational waves of the classical theory. On physical
tions. Therefore, these linearized gravitational waves carrgrounds one must expect this result to hold for any quantum
the same energy density in the semiclassical approximatiomatter field polarization tensor of finite mass obeying the
as they do in the classical Einstein theory. same general properties of our scalar field example.

Next we may examine the interior of the brackets to de- The |ogarithmic divergence in the response funciioR
termine if there are any other solutions to the tensor lineajyhenk?—« is a consequence of the larggUV) behavior
response equations. Solutions wiltf=—(k%?+|k|>>0  of the spectral function proportional &, and is generic,
correspond to unstable modes with imaginary frequenciesyith only the value of the finite coefficient of the logarithm
since we can always consider these modes in a frame whedependent on the matter content. However the appearance of

K=0. Whenk?®>0 the—ie prescription is not needed, awed m? in the lower limit of the logarithm is a result of our
may be set to zero. Thus, by making use only of the positivdefinition of the renormalized parameter ak?=0, which

ity of p(™, we observe that the bracket is strictly positive for @llows no other scale to appear in the logarithm. This defi-
k?>0, provided nition is no longer tenable in the zero mass limit. Instead,

one may renormalize the parameter at an arbitrary nonzero
16maG k’+1>0. (4.6)  value ofk?=u?, related to our previous definition by

If =0 this is always satisfied, and indeed this constraint on o u?
« is required by positivity of the energy density“2H, ar(L)=at 155052 ln(W)'
corresponding to the fourth orde®,,.(C2°°¢ term in the

action. This demonstrates that there are no unstable tran¥hen, u? replacesm? in the logarithm of Eq(4.9), and the
verse tensor perturbations of flat spacetimeder0. Since  m?—0 limit may be taken safely by maintainingg(u?)

this conclusion relies only on the positivity of the spectralfinite. The conclusions about the absence of solutions to the
functionp(M(s), it requires only causality, a bounded Hamil- transverse linear response equati@ba at length scales
tonian, and a well-defined positive Hilbert space norm formuch greater than the Planck length remain unchanged.

as |k?|—oe,

(4.10
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Turning now to the scalar component of the linear re-only the coefficient of the logarithm depending on the matter
sponse equatioft.5b, we note the opposite sign in the co- content, possibly vanishing in some special cases su¢h as
efficient of the 16 term, which is the well-known negative =1/6. Also as in the tensor case the lower limit of the loga-

metric sign of the conformal factor in the Einstein-Hilbert fithm can be made finite in th@”— 0 limit by redefining the
action. From several different analysi2,53 it is known renormalizedB coefficient at a finiteu®+0 analogously to
that there are no physical wavelike scalar excitations of flaEd-. (4.10, namely,
space in either the classical or semiclassical theory. Physi- . 5
cally the reason is that the conformal factor is constrained by o 2 M
the diffeomorphism invariance. This implies that the expan- Pr(p®)=p+ 115272 (1-6£)%In (mz) 4.13
sion of the gravitational action to second order in the metric
perturbations about flat spad€®2°k?h{ should be treated One obtains then the same conclusion as for the tensor case,
as proportional tdy|2, wherey is the Fourier transform of a name!y that there are no new solutions of the linear response
new scalar field variable with no kinetic term in the Einstein-€quations, stable or unstable, far from the Planck regime,
Hilbert action. This redefinition may be understood as re-despite the opposite sign of the classical Einstein term in the
quired also in the covariant path integral treatment of thescalar sector. There is an unstable solution in the scalar sec-
linearized gravitational fluctuations around flat spf6g].  tor at
The net effect of either the covariant or canonical analysis is
to remove the overak?=0 solution from the scalar sector, K2~ 1

o i ! = (4.14
as it is not dynamically allowed by the constraints. 487Gy Br(k?)

Finally, the analysis of the expression within the brackets
of Eqg. (4.5b shows that there are no scalar mode solutionsvhich signals the breakdown of the semiclassical approxima-
(stable or otherwigewith 8WGN|k2|<1, for exactly the tion to flat space in the Planckian regime.

same reason as in the tensor case, notwithstanding the sign
change in the Einstein term. In the scalar case the explicit V. DISCUSSION

form of the response functiofB45) yields We have presented a criterion for the validity of the semi-
4.1 solutions to the semiclassical equatid@s9). If, for a given

classical approximation for gravity that involves solving the

k2
Ly as |k2|—oe, linear response equatidl.4), to determine the stability of

1 2

k2
w6
state and background geometry that solves the semiclassical

which shows that the linear response equation cannot be s&duations, one or more solutions to the linear response equa-
isfied for either sign ok? unlessG |k?| becomes of order tions experience unbounded growth in a gauge invariant
unity. This result was first obtained in R¢&3] for the case sense, then the semiclassical approximation is not valid for
of a massive, but conformally coupled field wigh 1/6. In that particular geometry, at least not for that particular state.

the conformal case, the largéehavior of the scalar spectral C'eaT'Y this is a hecessary, though p?’rhaPS hot a sufficient
. S . . .._condition for the validity of the approximation.
function p*> is much less severe, as is clear from its explicit

form given in Eq.(B38), and only two subtractions suffice As discussed in the Introduction, various methods have
mg d- ’ only o >, been suggested previously to test the validity of the semiclas-
This corresponds to only a finite renormalization of e

) . . . ical roximation by makin f the two-point correla-
term in the effective action. Ignoring th@ term completely, sical approximation by making use of the two-point correla

the onlv twice subtracted dispersion formula gives then tion function for the energy-momentum tensor. The linear
y P 9 response criterion provides a natural and well-defined way

for this two-point correlation function to enter into the deter-
(412 mination of the validity of the semiclassical approximation.

Further, linear response involves quantities that lie entirely

within the semiclassical approximation itself, since the po-
in the scalar sector. This form of the linear response equatiofarization tensor is computed on the semiclassical back-
was used in Ref[53] to demonstrate the stability of flat ground geometry. The largd method, augmented by the
space to scalaiconforma) fluctuations in the infrared limit, causal CTP formulation of the effective action, provides a
i.e., on wavelengths far larger than the Planck length. Indeedyell-defined framework for applying the validity criterion,
substituting the explicit form ofp®, Eq. (B37b with ¢  which is equivalent to a stability criterion for the semiclas-
=1/6, into Eq.(4.12, shows that it is identical with Eq. sical solution.
(4.13 of [53] with 2m*p(s)/3 of that reference equal to In the covariant effective action formulation, it is clear
p(s) here. that the UV renormalization counterterms are the same as

When ¢+ 1/6 this argument cannot be used since the scathose needed to define the semiclassical approximation itself

lar spectral function behaves &% for larges and the twice and that there are no state-dependent divergences. Although
subtracted dispersion integral in E@.12 diverges. How- the matter energy-momentum tensor correlator by itself suf-
ever, analysis of the fully subtracted response function befers from possible ambiguities at coincident points, these are
havior in Eq.(4.11) above leads to the same result. As in theremoved by a proper covariant regularization and renormal-
tensor case the logarithmic growth witk?| is generic, with ization procedure, which ties these divergences in the cor-

= ds (s
1+47er2f = (s -
NCJo % [s+k?—iesgn(k®)]
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relator atx=x’" to counterterms in the purely local gravita- growing modegdue to a singular behavior of the polariza-
tional effective action. The resulting combinationadifterms  tion tensor in such casgsthen one would be led to the
in Eq. (3.4) then becomes well-defined. conclusion that inclusion of gravitational fluctuations beyond
We have illustrated the use of the stability criterion with the leading order semiclassical approximation would be re-
the simple example of a quantized scalar field with arbitraryquired. A number of different arguments lead to the conclu-
mass and curvature coupling in the vacuum state o6ion that de Sitter spacetime is not the stable ground state of
Minkowski spacetime. In this case it is possible to carry outa quantum theory of gravity with a cosmological tefs5].
the analysis to completion and show that flat space is stablm fact, the two-point correlation function of the energy-
in the infrared limit. There are no solutions to the linear momentum tensor for a scalar field was estimateldinand
response equation(8.4) around flat space, except the usualargued to contribute to a gauge invariant growing mode on
transverse, traceless gravitational wave excitations of th#éhe horizon time scale. This proposition could be tested by a
classical Einstein theory, provided we restrict ourselves taletailed calculation of the two-point correlation function of
solutions with 4wGN|k2|<O(1). Theexact finite number of the energy-momentum tensor and the solutions of the linear

order unity on the right hand side of this inequality deter-response equatior(8.4) in de Sitter space.

mines the values ok? for which new Planckian solutions A second important application of the criterion is to black
and instabilities will appear. Its value depends on both thd'ole spacetimes. Ever since the discovery of black hole ra-
matter theory and the values of the renormalized coefficientdiance, it has been recognized that the quantum behavior of
a and B of the fourth order terms. The existence of suchblack holes is quaht_atlvely d|_fferen_t from the classical ana-
growing modes, which violate the validity criterion proposed!0gs atlong times, since semiclassical black holes decay at
here, informs us not that flat spacetime is unstable, but onl{2t® times, while classical black holes are stable. In the
that the quantum fluctuations of the geometry should be inHartle-Hawking stat¢56] one can construct a static solution
cluded in some consistent way at short scales. It is then th{® the semiclassical equatiof@9) that is quite close to the
semiclassical notion of flat space as a pseudo-Riemannigiassical one near the horiz¢57-59. On thermodynamic
manifold endowed with a smooth metric down to arbitrarily 9rounds this state is expected to be unst@6@. However,
short length scales that is breaking down at the Planck scalée Stability of this self-consistent solution has not been in-
The semiclassical approximation which does not incorporat¥estigated in a dynamical approach. The validity criterion
the effects of these quantum fluctuations on the mean geonfyOPosed in this paper provides a clear dynamical principle
etry is certainly not valid in the Planck regime. Because Offor the stability or instability of the self-consistent solutions
the unstable tachyon modé.14) in the scalar sector, the in both the black hole and de Sitter cases.

semiclassical approximation contains the signal of its own
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example of how to handle the energy-momentum tensor cor-
relation function by standard renormalization methods to ob- APPENDIX A: TENSOR DECOMPOSITION
tain well-defined answers, working out this case in detail Anp SPECTRAL REPRESENTATION IN ELAT SPACE
also provides an important clue as to how the validity crite-
rion may fail to be satisfied in more interesting cases. What An arbitrary metric perturbatiorh,,, aroundn dimen-
is required is simply that the polarization tensor of the matteisional flat spacey,,, can be decomposed in the following
fluctuations become singular, i.e., large and unbounded, iway:
some region. Only in this way can the natural suppression of 1
87Gy |k|<1 in flat space be overcome. A nontrivial ex- —hl L 1 _ =
ample,| W|here new modes may be expected, is a finite tem- Rab=Raptdavy + dbva+| dady~ {1761
perature quantum matter field in an Einstein—de Sitter model (A1)
[54]. It would be interesting to apply the validity criterion
proposed here to a consistent solution of the semiclassic
Einstein equations possessing thermal matter.

_Fu'rther important a}nd interesting examples to whu;h the #hL,=0=4gpht,, and 7?°hl =0, (A2)
criterion may be applied are solutions with event horizons,
such as Schwarzschild and de Sitter spacetimes, as well addu is transverse
more general cosmological solutions of the semiclassical
equations. If the linearized solutions of E@®.4) show any J*vz=0. (A3)

7
w+ —abh,
n

therehﬁb is transverse and traceless with respect to the flat
metric 7,p

024026-12
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By taking partial derivatives and traces and using these de-  h(D=h’ =p{Dcdh ;. (A12b)
fining properties, the various terms in the decomposition can
be isolated successively, viz. The remaining terms in the decomposition contain all the
ab gauge dependence. We denote the vector perturbptmm
h=7"hqp, (A4)  taining both transverséspin-1) and longitudinalspin-0)
1 componentkby
- _ -1/ ab__ —1sa4b
W= pmrD () ha, BS) h= O Y850y + 6508~ O 2040509 °heg=P L) %y,
(A13)
vy =0"Y85-0729,0%3Ncq, (AB)

Thus, the general symmetric tensor metric perturbation can
be written as the sum of three projected components

1 2
= 5;5(;_ 1 ﬂabﬂCd'f- m\:‘ 72&aabﬁcﬁd
ha=h$+h{)+h{}) = | :SZV ] PO, (Al4)

1
+0 1( — 850p09— 859,09+ — NapdSd _ .
The three projectors are orthonormal, i.e.,

hed, (A7) P{ePU)ed= sl P{ee, (A15)

1 cd
+ =17 dadp

and complete, and define a unique decomposiffmodulo
the [n(n+1)]/2 conformal Killing vectors in flat space-
time).
Because they are conserved tensors derived from invari-
(A8) ant action fu_nctionals, all the local tensors on the I'eft hand
side of the linear response E@.4) must be expressible in

the change i, can be absorbed into a redefinition of the terms o_f only the scalar and_te:\nsor comp_one.nts of.the metric
various components of the decomposition according to fluctuations. Indeed, by explicit computationnr=4 dimen-

where O°! denotes the propagator inverse dfl

— ,,ab

=7""0dady - o . ]
Under an infinitesimal coordinatgauge transformation,

hab_’ hab+ ﬁaXb-i- 0bXa f

sions,
h—h+203Y,
o (C)Hab: B Dzh(a-[)): - sz(a-[))(:dhcda (A16a)
w—w+2Y, 1 21(9) 2p(S)cd
8 WH p=—-60%nY) = -60%PY g,
bk XL (Al6b)
hip—hip, (A9)

1
8Gap= D( - 5hi5+hiP

where X, has been decomposed into its transverse and lon- .
gitudinal parts, as _ ED PDedh_ + P, (A160)
Xa=Xg+d,Y, with #2X;=0. (A10)
) whereh,,= 89, is the metric perturbatiofvariation.
traceless tensdr,, and the linear combination of scalars  invariant metric perturbations can be written in momentum
N space in the compact forms,

h—Ow= m(77“‘—D-la‘sad)hcd, (A11) 1
PR ) = =7 fant™, (A172)
are invariant under infinitesimal coordinate transformations.
Hence we may define the projections onto the sdaiain-0) 1 1
and transverse, traceless tengepin-2), gauge invariant PgL)Cd(k)=§(0§0g+ egeg)—meabocd,
terms in the general decomposition of the symmetric tensor

perturbationh,y, by (Al7b)
1 where we have introduced the tensy,,
h®= = (nap— 0 9405 (7= O~ *0°0% heq
n—-1 k.kp
Oap= Map— K2 (A18)

1
= — -1 _ — p(S)cd
n (ab™H770a0p) (h=DW) =Py heq, which obeysk?6,,=kP6,,=0. Therefore, the scalar and

(Al28  tensor projectors are also transverse:
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KPP{2 (k) = KPP (k) =0. (A19) D (w,K)=2msgr )pl)(s), (A24)

Because of this property the correlation function of two con-and obtain the dispersion formula,
served energy-momentum tensors in momentum space

% ©)
"X M) = PR(k) S )
H§b°d<k>=if ot AT T, 0 stk’-iesgrk’)
a
® (M

may be expanded in terms of the gauge invariant scalar and 0 stk“—iesgnk")
tensor projectors only. By conservationBf, this correlator (A25)
must be transverse, with zero projection onto the vector sub-
space, i.e[61], which follows by substituting Eq(A24) into Eq. (4.2), di-

viding the integration range oves into positive and nega-
94k =PRI (k) + PR IIM(k), (A21)  tive w, renaming the integration variable, and using d
. . =2wdw. Thus, the spectral functions"(s) of the two in-
in terms of two scalar functions of momentum dependent scalar functions given in H&21) can be ob-
The most convenient way of expressing the retarded COfgineq by computing the simple correlator in Euclidean mo-

relation function in Fourier space s first to introduce the nentm and evaluating the imaginary part, after performing
spectral function representatigd5] in the spin-2(T) and the specific analytic continuatia@.2), namely
spin-0(S) sectors, in terms of the Euclidean four-momentum . _
(Kq,K) IM[ITO(ik,=k+i€)]=msgn(k®) p®(s=—k?),
(A26)

N e » do o (w,k)
O (iky, k)= Jl 5 (A22)  which is also obtained by continuing the Euclidean

w2 w—iky
2L L 2_; 0
The retarded correlator is given then by the analytic continu- (ka)*+k-k—k"—iesgr(k’), (A27)

ation, ik,—k%+ie, i.e., _ Lo
a to the Lorentziark?= 7,k?%P= — (K%)2+ K-K. The useful-

= do o0 (w,K) ness of thi_s re_presentation is that the imag_inary part _of the
correlator is given by spectral functions which have simple
positivity properties and which are completely free of ultra-
(A23)  yiolet divergences. These appear only when the real part of
which corresponds to Ed4.2) of the text. Moreover, since f[he correlator i; constructed by the fully covariant dispersion

D (. K) i dd function ofw (by the reality off1() integrals overs in Eg. (A25), and may be_ handled by stan-
o(w.k) is an o y Y OHLL") dard methods that make clear their relation to covariant local
which otherwise depends only on the Lorentz invariant comgountertems in the effective action. The covariant renormal-
binations= w?—Kk-k, we can define Lorentz invariant posi- ization of these dispersion integrals by explicit subtractions
tive spectral functiong()(s) by in flat space is described in Sec. IV.

H(i)(ret)(kO,E):H(Ei)(ik‘l:k0+iE,E):

27 - KO~ i€’

APPENDIX B: GRAVITATIONAL VACUUM POLARIZATION TENSOR IN FLAT SPACE
The classical energy-momentum tensor for a scalar field dimensional Minkowski spacetime is given by

1 1
Tablfiar= (126 V,@ V@ + ( 28— > NapVeP VP — 26DV, Vp® + 287, PV VD — > NapM?®?, (BY)
which can be rewritten as
1 1
Tab| flat= [Z(Zvavb_ 7]abvcvc) - Emz Napt &( ﬂachVC— Vavb) D2+ (— 525g+ % nabWCd)q)(Vchq)) . (B2)

When this is substituted into the Fourier transform of the energy-momentum tensor two-point connected correlation function
in Euclidean space and the two possible Wick contractionbdi x)®2(x")).n are taken into account, we obtain

Mo e(k) = f dX(Tap() TX))| e I=2D DDk H (k) + 2D PR DL (k)
E

+2D @' pOed()] (k) +2D QX DRy ' () 4 op @R p@d Ay (B

c’'d" Ya’
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Here k=(k4,IZ) is the Euclidean momentum, and we have introduced the following tensors:

1
D (k) = €(kakp— nabk2>+ (7apk? = 2kakp) + 5 M2 745, (B4)
D)= — sSp+ > 77ab77Cda (B5)

and the notation for the following integrals:

_f 1 1 86

o= (2m)" p?+m? (p+k)2+m?’ (BY)
dnp pcpd 1

cd k) =

Mo f (2m)" p2+m? (p+k)2+m?’ (E7)

d"p  pappP°p* 1
f%m=J e —, (B8)
(2m)" p+m* (p+k)*+m

K ,2%(k) = (B9)

f dp paPy  (PEHKO)(pI+k?)
(2m)" p2+m?  (p+k)2+m?

We regularize all integrals by means of dimensional regularization @imensions[62,63. By introducing a Feynman
parameter, the previous integrals are evaluated to yigs8]

,n.n/2 n 1
H(k)= F(Z—— f dx[ m2+ k2x(1—x)](Ma-2 B10)
(0= T\ 2= 5] | (1-%)] (
7Tn/2 n 7]Cd
cd — _ 2 (n/2)—2 2 2 _ 2,c,d
(k) (zﬂ)nF(Z 2)f dx[m?+k?x(1—x)] {z_n[m +kx(1—x)]+xkk%, (B11)
cd " ni(t 2. 1,2 (n/2)-2 1 (Ded . (2)ed) 2 | 2 2
Jab (k)=(2w)nl“(2—§) fo dx[ m“+kx(1—x)] m(T + 75 O[mM+kx(1—x)]
X* @ed (4)ea 2 4_(5)cd
_(n_z)(Tab +7 )[m +k X(l X)]+X Tab ’ (812)
d " ni(* (Ded . (2)ed
cdpy _ 20 1291 s 1(0/2)—2 c c 2. 12 2
Kap (K) (ZW)nF(Z Z)J’o dx[m“+kx(1—x)] [n(n 2)(7 MM+ kx(1—X)]
x? A3)cd 2 X(1—-x) (4)edr 2 12 2 2_(5)cd
=2 7S m2+ k2x(1—x) ]+ n—2)’Tab M+ Kk X(1—=X)]+x(1—=X)"750 " . (B13)
|
These expressions are given in terms of the following five rg%)c"(k):kakbkckd. (B18)
basis tensors:
In order to obtain the Euclidean polarization tensor we need
DY) = 9ap 7Y, (B14)  to compute the corresponding tensor products specified in
Eqg. (B3). Once we do this we can write the polarization
Tg%)cd(k)z 5§5ﬁ+ 525;, (B15) operator(in n dimensions and foé=0) as
75K = mapkk?+ 7% ks, (B16) M e(k, &=0)= 2 Fik k), (B19)

TE0°0(K) = S5kok !+ Ogkpk®+ Spkak?+ Spkak®,  (B17)  where
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n/2 n 1
Fa(k)= (;)nr(z—z) fo XM+ K2x(1—x) ]2 ~2
n’-2n-4_ 5 k2
X m[m +kX(1=Xx)]°+ r]_2(1—nx)
k2 4X2
+5—mz)[m2+k2x(1—x)]+T[(l—x)2+x2]
k2 1 2 2
+k2x2(—§+m2 +5 —E+m2 } (B20)
i n [t 21,2 (nf2)-2
Fo(k)= (Zw)”r(2_§> fo dx[m“+kx(1—x)]
xn(n_z)[m2+k2x(1—x)]2, (B21)
" ny(* 2., 1,2 (n12)-2
F3(k)zwr(2—§ J; dx[m +k X(l—X)]
(—=2x+(n+2)x?) 1
[( =2) -3 [M?+k?x(1—x)]
k2 m? k2
—Z+7—?xz[(l—x)2+x2—2]—x2m2},
(B22)
7Tn/2 n 1
- S —x)1(2)~
F4(k) (277)”F(2 2>J0dx[m2+k2x(1 x)](M2-2
x%[m%kzx(l—x)], (B23)
71_n/2

Fs(k)=

( n) ! 2. 1,2 (nf2)—2
(Zw)”r 2—5 fodx[m +koX(1—x)]

1+x2((1—x)2+x2—2)

X
2

. (B24)

The ¢ dependent part of the polarization operator can be

written as
" e(k, &)

,n_nlz n
= I'l2—=
5(277)“ ( 2)

k%( 07+ 0°dnab>( —[m?+k?x(1-x)]

1
J dx[ m?+k?x(1—x) ]2
0

X

k2
-5t m?+ kzxz) + (02K K9+ Kk 059 k2

X (1—2x2)

+ 287K 0,,60°

71_n/2 ( n)
X ra2—;
(2m" 2

1
f dx[ m?+ k?x(1—x)]("2~2. (B25)
0

PHYSICAL REVIEW D 67, 024026 (2003

In order to obtain the retarded polarization operator we need
to analytically continue the Euclidean momentum to a
Lorentzian momentum. This analytic continuation is defined

by

k2+ k% 7,,k%kP—i esgr(k?), (B26)
with e—0" (see Appendix A Notice that the continuation
depends on the sign &°. We also take the limih—4 and
write n=4— 8, with 5—0". The real part of the polariza-
tion tensor has a pole at=4, but its imaginary part comes
only from the logarithmic branch cut of the functiofm?
+k?x(1—x)]~ %2 expanded around=0,

Im{{m?+k?x(1—x)]~ 92
g 0 2 b 2
= —SgNK") 0] —m* = 7, kKX (1= x) ]+ O(67),

(B27)

so that the pole i (5/2)—2/5 at 5=0 is canceled. Thus the
imaginary part is finite in the limih—4. Because(1—Xx)
=<1/4 in the interval[0,1], the step function condition is
satisfied only if 6/4)—m?>0, wheres= —k?= — 7,,k?k",
and xe[x_,x, ], with x. the real roots of the quadratic
polynomialm?—x(1—x)s=0. In particular

1 L —— 4m? B8
X =5(1%r), with r= - (829
Therefore,
1 S
Im[ lim f dx F(E)[m2+k2x(1—x)]5/2 }
50" 0

= JX+dX7Tng'(ko) 6(s—4m?)- - -, (B29)

where the ellipsis denotes any functionxofo be integrated.
Thus, thex integrals all become simple powers xfand
for the casen=4, we obtain

—4 2 3
Im[Fl(S)]=Sgr(k°)% 1r—5(2m4+4m25+ Zsz)’
(B30)
_ 2
im{F (s )=sgrtk) " 1ot e 5,
(B31)
_4 2 3
Im[Fg(s)]=sgr{k°)e(sTﬂ_m) %(2m4+4m23+ Zsz),
(B32)
_ 2
ImLF4(9)]=sgrtk) "o ﬁ(Zm“—mszr %32),

(B33
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B o, B(s—4m?) r . o B [t uPt?
Im[Fs(s)]=sgnk )TE(EM +2m“s+s°). In(z)=lny,=0—2f0 duzz—uz' (B40)
(B34)
These functions are not linearly independent, as the covariagihere
conservation of the energy-momentum tensor implies that
Fi(s)—sF;5(s)=0, (B359 am
z=1\/1+ W (B4D
Fa(s)—sF4(s)=0, (B35b)
F3(s) +2F4(s)—sFs(s)=0. (B350

and thel ,(z) functions obey the recursion formula,

In fact the combinations, 2, and 3+ 2F,, yield the ten-
sor and scalar spectral functions of E425), respectively.

Likewise, after computing theintegrals, thet dependent [(2)=— +2%1,_1(2), (B42)

polarization tensor becomes 2n+1
6(s—4m?) 4m .
IM[IIgE(s,6)]=sgrk%)——,——\/ 1= ——6p6°  With
X[ —gs(s+2m?) +3¢£257], (B36) 41

L . , Io(z):—2+zln(— for z>1
which is explicitly transverse and proportional to the scalar z-1
projector P{Y°Y. Combining this¢ dependent contribution 2
with the previous¢ independent part, and recalling Egs. = _2+f(_2> for k2>0. (B43)
(A17) and(A26), we may now identify the two independent m

tensor and scalar spectral functions,

0(s—4m?) am? [ s 2 Using these relations, the response function for the tensor
p(M(s)=———1 [1— e (__ m2) =0, (B37a fluctuations can be written as
6

0m? 4
2 2 2 2 m
p(S)(S):e(S—A'm) o Am {szr (A-69sl"_, ,:(T)(k_2>5k2f _ O p(s)
2472 S 2 m am? s3(s+k?)
(B37b
. . _ 1| 2.2, 4
Both spectral functions are positive, as they must be, and = 960772[ 532 +710(2)
agree with resultsfor £=0) reported in 28], and (for arbi-
trary m and £) reported in[29]. 1 46 56m? 32m*
In the case that the curvature coupling takes its conformal T 960m2| 15 3 kK2 (k?)?

value, £=1/6, the scalar spectral function does not have
terms proportional te? or to m?s, and becomes

S = f(s—4m? m 1 am B38
P = 1s6(s) = 0(s m)24772\/ -~ (B39

which agrees witj53], after account is taken of a relative
factor of 2m*/3 in the definition of the spectral function
p(s) here, relative tgp(s) of that work. )
Finally the integrals appearing in the kn-Lehmann ,:(S)(k_)Ek2J°c ds p(s)
representationA25) are all of the form, m* am? $3(s+k?)

+

am2\2 [ K2
1+?—) f(az” (B44)

while the corresponding response function for the scalar fluc-
tuations is

2 6 2 m?
1573176034z

4m2\ n+(1/2)
- ) (B39) 9672

o ds
In IEkzj
’ am? §' P 1(s+k?)

2m2 2 k2
for k?>0 andn and | integers. By making the change of + (1—65)——k2—} [—2+f ”7)“
variabless=4m?/(1—u?), all integrals of this kind may be
reduced to linear combinations of (B45)
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As k?—0, z—%, and the functionl, (or f) is analytic at

PHYSICAL REVIEW D 67, 024026 (2003

which remains real in this range. Finally, whes+ —k?

7z 1=0. However, ak® changes signz ! becomes pure >4m?, f develops an imaginary part, viz.

imaginary and

k2 4Am?
fl—5|=2l—-1
m s

e

for (B46)

. K2\ I +z\ . 0
W =zIn E —irzsgn )
4m?
for z= -—
S

s=—k?’=4m?, 0=z<l1.

(B47)
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