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Linear response, validity of semiclassical gravity, and the stability of flat space
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A quantitative test for the validity of the semiclassical approximation in gravity is given. The criterion
proposed is that solutions to the semiclassical Einstein equations should be stable to linearized perturbations,
in the sense that no gauge invariant perturbation should become unbounded in time. A self-consistent linear
response analysis of these perturbations, based upon an invariant effective action principle, necessarily in-
volves metric fluctuations about the mean semiclassical geometry, and brings in the two-point correlation
function of the quantum energy-momentum tensor in a natural way. This linear response equation contains no
state dependent divergences and requires no new renormalization counterterms beyond those required in the
leading order semiclassical approximation. The general linear response criterion is applied to the specific
example of a scalar field with arbitrary mass and curvature coupling in the vacuum state of Minkowski
spacetime. The spectral representation of the vacuum polarization function is computed inn dimensional
Minkowski spacetime, and used to show that the flat space solution to the semiclassical Einstein equations for
n54 is stable to all perturbations on distance scales much larger than the Planck length.
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I. INTRODUCTION

There are many well known difficulties that arise wh
attempting to combine quantum field theory and general r
tivity into a full quantum theory of gravity. Almost certainly
a consistent quantum theory at the Planck scale requir
fundamentally different set of principles from those of cla
sical general relativity, in which even the concept of spa
time itself is likely to be radically altered. Yet, over a ve
wide range of distance scales, from that of the electrow
interactions (10216 cm) to cosmology (1027 cm), the basic
framework of a spacetime metric theory obeying general
ordinate invariance is assumed to be valid, and receives
nomenological support both from the successes of flat sp
quantum field theory at the lower end of this distance sc
and classical general relativity at its upper end. Hence, w
ever the full quantum theory of gravity entails, it shou
reduce to an effective low energy field theory on this ve
broad range of some 43 orders of magnitude of dista
@1,2#.

To the extent that quantum effects are relevant at al
gravitational phenomena within this range of scales, o
would expect to be able to applysemiclassical techniques to
the low energy effective theory of gravity. In the semiclas
cal approximation to gravity the spacetime metricgab is
treated as a classicalc-number field and its quantum fluctua
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tions are neglected, although quantum fluctuations of
other fields are taken into account. The semiclassical
proach has been discussed and studied for some time
and a considerable body of results has been obtained@3#. Yet
a definitive answer to the question of what is the limit
validity of this approach has remained somewhat unclea

It is our purpose in this paper to propose a well-defin
quantitativecriterion for the validity of the semiclassical ap
proximation to gravity, within the semiclassical formalis
itself, namely that solutions to the semiclassical Einst
equations should be stable against linearized perturbation
the geometry. This criterion may be formulated within t
framework of linear response theory@4–6#.

It is important to distinguish what we mean in this pap
by the semiclassical approximation from the ordinary lo
expansion, which is sometimes also called semiclassica
the ordinary loop expansion of the effective action,\ is the
formal ~loop expansion! parameter. As a result both the ma
ter and gravitational quantum fluctuations are treated on
actly the same footing, and the back-reaction of these fl
tuations on the metric~being first order in the expansio
parameter\) is neglected. If one does attempt to includ
such effects in some modified loop expansion, the techn
issues involved in defining a one-loop effective action
gravitons that respects both linearized gauge and backgro
field coordinate invariance must be faced. These are diffi
enough to have impeded progress in the standard loop
pansion in gravity@7,8#. An unambiguous definition of the
corresponding conserved and gauge invariant ene
momentum tensor for gravitons in an arbitrary curved spa
©2003 The American Physical Society26-1
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time has not yet been given@9#. Apart from such technica
difficulties it should be clear that a simple loop expansion
ill-suited physically to many applications that have been a
are likely to be of interest in semiclassical gravity, such
particle creation in the early universe, or black hole radian
where the quantum effects of matter significantly affect
background geometry after some period of time, but~it is
usually assumed! the quantum fluctuations of the geomet
itself can be neglected. Whenever quantum effects of ma
are expected significantly to affect the classical geometry,
standard loop expansion, which treats these effects as o
\ and small, must certainly break down.

The semiclassical approximation to gravity we discuss
this paper treats the matter fields as quantum but the sp
time metric as classical, and allows for the consistent ba
reaction of the quantum matter on the classical geome
This asymmetric treatment can be justified formally by re
licating the number of matter fieldsN times and taking the
large N limit of the quantum effective action for the matte
fields in an arbitrary background metricgab @10#. Then, the
semiclassical equations for the metric are derived by vary
the effective action, with local gravitational terms include
Since no assumption of the weakness or perturbative na
of the metric is assumed, the largeN expansion is able to
address problems in which gravitational effects on the ma
are strong, and the matter fields can have a large cumula
effect on the classical geometry in turn. The absence of qu
tum gravitational effects in the lowest order largeN approxi-
mation also means that the technical obstacles arising f
the quantum fluctuations of the geometry are avoided. G
eral coordinate invariance is assured, provided only that
matter effective action is regularized and renormalized i
manner which respects that invariance@7#. In that case the
quantum expectation value of the matter energy-momen
tensor^Tab& is necessarily conserved.

Assuming that the classical energy-momentum tensor
the matter field~s! vanishes~an assumption that may be ea
ily relaxed if necessary!, the unrenormalized semiclassic
back-reaction equations take the form@11#

Gab1Lgab58pG
N
^Tab&. ~1.1!

HereGab is the Einstein tensor,L is the cosmological con
stant~which may be taken to be zero in some application!,
G

N
is Newton’s constant, and̂Tab& is the expectation value

of the energy-momentum tensor operator of the quanti
matter field~s!. Among the technical issues that must be co
fronted is the renormalization of the expectation value
Tab , a quartically divergent composite operator inn54
spacetime dimensions. The renormalization of its expecta
value requires the introduction of fourth order counterter
in the effective action, that modify the geometric terms
the left hand side of Eq.~1.1! @3#.

Once a renormalized semiclassical theory has been
fined, one possible route to investigating its validity is
compare calculations in a theory of quantum gravity w
similar semiclassical calculations. Since a well-defined,
quantum theory is lacking, this has been done only in so
simplified models of quantum gravity. Large quantum gra
02402
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ity effects were found in three-dimensional models by As
tekar@12# and Beetle@13#. In four dimensions, Ford has con
sidered the case of graviton production in a linearized the
of quantum gravity on a flat space background, and co
pared the results with the production of gravitational wav
in semiclassical gravity@14#. He found that they were com
parable when the renormalized energy-momentum~con-
nected! correlation function,

^Tab~x!Tcd~x8!&con[^Tab~x!Tcd~x8!&2^Tab~x!&^Tcd~x8!&
~1.2!

satisfied the condition

^Tab~x!Tcd~x8!&con!^Tab~x!&^Tcd~x8!&. ~1.3!

The limits of validity of the semiclassical approximatio
have also been studied without making reference to a spe
model of quantum gravity. Kuo and Ford@15# proposed that
a measure of how strongly the semiclassical approxima
is violated can be given by how large the quantity,

Dabcd~x,x8![U^Tab~x!Tcd~x8!&con

^Tab~x!Tcd~x8!&
U ~1.4!

is, where it is assumed that the expectation values in
expression are suitably renormalized. It is important to n
that Eq. ~1.4! is coordinate dependent, since both the n
merator and denominator aretensorquantities. The situation
is complicated further by the regularization and renormali
tion issues that arise in defining the quantities appearing
this expression. Using normal ordering, Kuo and Ford@15#
computed the quantity

D~x![U^T00~x!T00~x!&con

^T00~x!T00~x!&
U ~1.5!

for a free scalar field in flat space for several states includ
the Casimir vacuum. They found that it vanishes in a coh
ent state, whereas in many other cases, including the Cas
vacuum, it is of order unity.

Wu and Ford@16# computed the radial flux component o
Eq. ~1.4!, in the cases of a moving mirror in 2-dimension
and an evaporating black hole far from the event horizon
both 2 and 4 dimensions. They found that it was of ord
unity over time scales comparable to the black hole mass,
that it averages to zero over much larger times. In a nor
ordering prescription they found state dependent diverg
terms. They also showed that in the simple case of radia
exerting a force on a mirror, the quantum fluctuations in
radiation pressure are due to a state dependent cross te
the energy-momentum tensor correlation function@17,18#.

Phillips and Hu@19# used zeta function regularization t
computeD(x) with the denominator replaced by the quant
^T00(x)&2, for a free scalar field in some curved spacetim
having Euclidean sections. They also computedD(x) for a
scalar field in flat space in the Minkowski vacuum sta
using both point splitting and a smearing operator to rem
the divergences@20#. For the flat space calculation the
found thatD(x) depends on the direction the points are sp
6-2
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but that it is of order unity regardless of how the points a
split. They used their results to criticize the Kuo-Ford co
jecture and to suggest that the criteria for the validity of
semiclassical approximation should depend on the scal
which the system is being probed.

Wu and Ford@18# addressed the Kuo-Ford conjecture a
the above mentioned criticism of it by Phillips and Hu. Th
stated that the conjecture is incomplete because it does
address the effect of divergent state dependent terms. T
suggested that any criterion for the validity of the semicl
sical approximation should be a nonlocal one that invol
integrals over the world lines of test particles. They a
argued that the question of whether the semiclassical
proximation is valid depends on the specifics of a given s
ation, including the scales being probed and the choice
initial quantum state.

Although it is somewhat unclear what the dimensionle
small parameter is that controls the inequality~1.3!, Ford’s
initial work and these subsequent discussions draw atten
to the importance of the higher point correlation functions
the energy-momentum tensor. It is quite clear, at leas
qualitative terms, that if the higher point connected corre
tion functions ofTab are large~in an appropriate sense to b
determined!, it cannot be correct to neglect them complete
as the semiclassical equations~1.1! certainly do.

Another context in which the quantitŷTab(x)Tcd(x8)&con

plays a role is stochastic semiclassical gravity@1,21–25#. In
this case the probability distribution function for the qua
tum noise is obtained from the symmetric part of this cor
lation function @21#. A dissipation kernel has also bee
shown to be related to the antisymmetric part of this cor
lation function @26#. Stochastic semiclassical gravity is a
interesting attempt to go beyond the semiclassical appr
mation. However, for the purposes of the present work,
do not make any stochastic assumptions and determin
investigate the validity of the semiclassical equations wit
the largeN approximation itself.

The energy-momentum correlation functio
^Tab(x)Tcd(x8)&con has been directly computed for a sca
field in a two dimensional spacetime with a moving boun
ary @27#, for scalar fields and the Maxwell field in
Minkowski spacetime@28,29#, and for a massless minimall
coupled scalar field in de Sitter spacetime, in the case
the points are spacelike separated and geodesically
nected@30#. It has also been computed indirectly through t
nonlocal kernel appearing in the deviation of^Tab& from flat
space@31–33#, from a Robertson-Walker spacetime@34#, and
from a general conformally flat spacetime@35#. The noise
and dissipation kernels in stochastic semiclassical gravity
related to the energy-momentum tensor correlation func
@26#. These quantities have been computed exactly or
proximately for scalar fields of various types in several si
ations including Minkowski spacetime@36,37#, hot flat space
@26#, the far field limit of a black hole in equilibrium with a
thermal field @38#, Robertson-Walker spacetime
@21,22,39,40#, Bianchi type I spacetimes@23#, and a weakly
curved spacetime using a covariant expansion in power
the curvature@41#.
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Although technical problems such as renormalization a
coordinate invariance complicate matters, this body of pre
ous work suggests that the correlation functi
^Tab(x)Tcd(x8)&con should play an important role in dete
mining the validity of the semiclassical approximation. How
ever, the proper context for incorporating and making use
the information contained in this correlation function in
well-defined ~i.e., finite!, quantitative framework, that re
spects general coordinate invariance, has remained so
what unclear.

The criterion we propose in this paper, that solutions
the semiclassical Einstein equations should be stable ag
linearized perturbations of the geometry, provides just suc
framework. According to standard linear response the
@4,5,42#, the linearized equations for the perturbed met
depend on the retarded two-point correlation function of
energy-momentum tensor evaluated in the semiclass
background metricgab @6#. In this case, the correlation func
tion can be computed using the closed time path~CTP! ef-
fective action@43#. The result is a retarded correlation fun
tion that involves the commutator of two energy-momentu
tensor operators. Hence the perturbations are manife
causal. Moreover, the UV divergences found in the unren
malized linear response equations are exactly those requ
to renormalize the semiclassical theory itself. This ensu
that no state-dependent divergences occur. Finally, ga
transformations of the linearized metric fluctuations,hab , are
easily handled within the linear response framework, so t
ambiguities related to quantities such as Eq.~1.4! do not
arise. Thus, standard linear response theory provides a w
defined test of the validity of the semiclassical approxim
tion to gravity, which directly involveŝTab(x)Tcd(x8)& and
its renormalization, in a manner that is in complete acc
dance with the physical principles of general covariance
causality.

Since this criterion for the validity of the semiclassic
approximation lies strictly within the context of that approx
mation itself, one avoids problems such as gauge invaria
of the energy-momentum tensor for gravitons, that inevita
appear if one tries to go beyond the semiclassical appr
mation and include quantum effects due to the gravitatio
field. Although these effects certainly are not contained in
semiclassical Einstein equations~1.1!, it is possible to study
the properties of linearized gravitational fluctuations ab
the self-consistent solution of Eq.~1.1!, simply by taking one
higher variation of the effective action that leads to th
equation. This second variation involves the two-point c
relation function~1.2!, evaluated in the self-consistent bac
ground geometry.

To understand qualitatively the role of the two-point co
relation function in the validity of the semiclassical approx
mation, it is helpful to consider the physical analogy betwe
semiclassical gravity and semiclassical electromagneti
The connected correlation function~1.2! measures the gravi
tational vacuum polarization, which contributes to the prop
self-energy of the linearized graviton fluctuations around
background metric, just as the current two-point correlat
function, ^ j a(x) j b(x8)&con, measures the electromagnet
vacuum polarization which contributes to the proper se
6-3
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energy of the photon@44,45#. Hence, if these polarization
effects are significant, the semiclassical approximation
certainly broken down, at least in the form specified by E
~1.1!, where all fluctuations of the metric have been ignor
In quantum electromagnetism~QED! we know exactly how
to take these fluctuation effects into account, namely by s
tering and interaction Feynman diagrams involving the p
ton propagator. These processes are important not onl
scattering between a few particles at high energies, but
in low energy processes in hot or dense plasmas@5#. Analo-
gous statements should be applicable to gravity. Thus, if
linear response validity criterion is not satisfied, there will
no avoiding the technical difficulties and physical cons
quences of treating the fluctuations of the gravitational fi
itself, even if we seek to understand only theinfrared behav-
ior of a semiclassical approximation to the effective theo
of gravity, far below the Planck energy scale.

As a particular illustration of the validity criterion, w
apply it to the example of a scalar field with arbitrary ma
and curvature coupling in the vacuum state of Minkow
spacetime. We express the retarded correlation function
the linear response analysis in flat space in terms of a Ka¨llén-
Lehmann spectral representation@45#. The positivity of the
spectral representation is sufficient to demonstrate that t
are no unstable modes of the linearized semiclassical e
tions around flat space at distance scales far larger than
Planck scale, and hence, that flat spacetime is comple
infrared stable in semiclassical gravity. The semiclassical
bility of Minkowski spacetime has been investigated pre
ously by several authors@32,33,46#, and instabilities have
been found which involve strictly Planck scale variations
the metric fluctuations in space and/or time, which arise fr
the terms fourth order in derivatives of the metric that a
needed to renormalize Eqs.~1.1!. Their existence clearly pre
cludes the validity of the semiclassical largeN approxima-
tion at Planck time or distance scales. Prescriptions for
plicitly reducing the order of the equations, which eliminat
these Planck scale solutions, have been proposed@47,48# and
discussed in some detail@49#. Whether or not these prescrip
tions are accepted in the general case, it is quite cleara priori
that the semiclassical approximation~1.1! can be viewed at
best only as the low energy effective field theory limit of
more complete quantum theory@1,2#, and that no reliable
results can be obtained from this approximation in
Planckian regime. However, the flat space example treate
some detail in this paper shows explicitly that the semicl
sical approximation does give mathematically meaning
and physically sensible results, when properly restricted
its range of validity at space and distance scales very m
larger than the Planck scale.

The organization of the paper is as follows. In the ne
section the properties of the largeN semiclassical approxi
mation in gravity and its renormalization within the cova
ant effective action framework are reviewed. In Sec. III t
linear response theory for the semiclassical back-reac
equations is described. The form of the two-point correlat
function for the energy-momentum tensor that appears in
linear response equations is given, and its properties
renormalization are discussed. Then our proposal for a n
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essary condition for the validity of the semiclassical appro
mation is presented. In Sec. IV the use of our criterion
illustrated for the case of a scalar field with arbitrary ma
and curvature coupling in the vacuum state in Minkows
spacetime. The linear response analysis implies that
spacetime is stable under small fluctuations at large wa
lengths. Our results are discussed further in Sec. V. So
additional applications of our criterion to the study of qua
tum effects in cosmological and black hole spacetimes
suggested. There are two Appendixes. The first deals with
general decomposition of tensors and polarization opera
in Minkowski spacetime. The second contains the techn
details of the computation of the retarded correlation
sponse function for a scalar field in Minkowski spacetime

II. SEMICLASSICAL GRAVITY AND RENORMALIZATION

The most direct route to the semiclassical equations~1.1!
is via the effective action method in the largeN limit. We
consider the specific example ofN noninteracting scalar
fields. Generalizations to interacting fields and fields of ot
spin are straightforward, but as they are not required to
pose the main elements of the stability criterion, we tr
only this simplest case in detail. We begin by reviewing t
effective action formulation of the semiclassical Eqs.~1.1!
without regard to boundary conditions or the state of
field. Thus, the equations in this section are valid for both
^outu in& and ^ inu in& formalisms. We postpone to the ne
section the introduction of the CTP method which sele
real and causal̂ inu in& expectation values. It is this latte
form that must be used for the linear response analysis.

The classical action for one scalar field~of arbitrary mass
and curvature coupling! is

Sm@F,g#52
1

2E d4xA2g @~¹aF!gab~¹bF!1m2F2

1jRF2#, ~2.1!

where¹a denotes the covariant derivative for the metricgab ,
j is the dimensionless curvature coupling, andR is the scalar
curvature. The path integral over the free scalar fieldF is
Gaussian and may be computed formally by inspection, w
the result

E @DF#expS i

\
Sm@F,g# D5expS 2

1

2
Tr ln G21@g# D

[expS i

\
Seff

(1)@g# D , ~2.2!

where

G21@g#[2h1m21jR, ~2.3!

is the inverse propagator of the scalar field in the backgro
metric gab , and the~generally nonlocal! functional
6-4
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Seff
(1)@g#5

i\

2
Tr ln G21@g#, ~2.4!

may be regarded as the effective action due to the quan
effects of the scalar field in this metric. It contains an expli
factor of\. No assumption about the smallness of the me
deviations from flat spacetime or any other preferred spa
time has been made.

The expectation value of the energy-momentum tenso
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the quantum matter field in this background can be forma
obtained by the variation

^Tab~x!&52
2

A2g

d

dgab
Seff

(1)@g#

52 i\Dab G@g#~x,x8!ux85x , ~2.5!

whereDabG@g#(x,x8) in the coincident limit is
DabG@g#~x,x![DabG@g#~x,x8!ux85x5F1

4
~2¹a¹b2gabh !2

1

2
m2gab1j~gabh2¹a¹b1Gab!GG@g#~x,x!

1S 2da
cdb

d1
1

2
gabg

cdD¹c¹dG@g#~x,x8!ux85x . ~2.6!
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By Noether’s theorem, this~unrenormalized! expectation
value of Tab is covariantly conserved, provided that the e
fective actionSeff

(1)@g# is invariant under general coordina
transformations. However,^Tab& is divergent because of th
singular nature of the limitx8→x in Eq. ~2.5!, which re-
quires a careful UV regularization and subtraction proced
consistent with coordinate invariance, before a finite ren
malized value for its expectation value can be defined@3#.

In physical terms the UV regularization and renormaliz
tion procedure mean that the theory is not strictly defined
arbitrarily short time and distance scales. The lack of inf
mation about the physics at those arbitrarily small scales m
be absorbed into a finite number of parameters in the ef
tive low energy theory at larger scales. Since the effec
Lagrangian and energy-momentum tensor have canon
scale dimensionn ~in n spacetime dimensions!, the number
of parameters is given by the number of local coordin
invariant scalars up to dimensionn. In n54 dimensions,
these are the parameters of the Einstein-Hilbert action
the coefficients of the two independent fourth order inva
antsR2 andCabcdC

abcd, whereR is the scalar curvature an
Cabcd is the Weyl tensor, respectively. Thus, in order
renormalize the theory we require the total low energy eff
tive gravitational action,

Seff@g#5Seff
(1)@g#1

1

16pG
N

E d4xA2g~R22L!

2
1

2E d4xA2g~aCabcdC
abcd1bR2!, ~2.7!

with arbitrary dimensionless constantsa and b. Renormal-
ization means thatG

N
, L, a, andb are at first bare param

eters, which may be chosen to depend on the UV cu
~introduced to regulate the divergences in the one-loop t
Seff

(1)@g#) in such a way as to cancel those divergences
render the total action,Seff@g#, independent of the cutoff
re
r-

-
t

-
y

c-
e
al

e

s
-

-

ff
m
d

Hence the four parameters of the local geometric terms~up
to fourth order derivatives of the metric which area priori
independent of\) must be considered as parameters of
same order as the corresponding divergent terms inSeff

(1)@g#,
which from Eq.~2.4! is first order in\. Formally, this may
be justified by consideringN identical copies of the matte
field, so thatSeff

(1)@g# is replaced byNSeff
(1)@g# and G

N

21 ,

L/G
N
, a, andb are rescaled by a factor ofN. In this way all

the terms in Eq.~2.7! are now of the same order inN asN
→`.

This formal rescaling byN is carried out at the level of the
generating functional of connectedp-point vertices,Seff@g#
~which are theinverseof p-point Green’s functions!, rather
than the Green’s functions themselves. Therefore, it has
net effect of resumming the quantum effects contained in
one-loop diagrams of the matter field~s! to all orders in the
metricgab . The largeN expansion and its relationship to th
standard loop expansion have been extensively studie
both F4 theory and electrodynamics~both scalar and spino
QED! in flat space@50#. The QED case is most analogous
the present discussion with the classical vector potentialAm
replaced by the metricgab . The largeN approximation~2.7!
is also invariant under changes in the ultraviolet renorm
ization scale~by definition of the UV cutoff dependence o
the local counterterms which cancel against those of the m
ter action!, and is equivalent to the UV renormalizatio
group ~RG! improved one-loop approximation.

It is the largeN, RG improved one-loop approximatio
that is necessary to derive the renormalized semiclass
equations~1.1! with back-reaction, for only in such a re
summed loop expansion can the one-loop quantum effec
^Tab& influence the nominally classical background met
gab . As mentioned in the previous section, in the ordina
~unimproved! loop expansion the quantum fluctuations of t
matter can make at most small corrections to the backgro
metric. The largeN approximation also preserves the cov
riance properties of the theory, since it can be derived fr
6-5
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an invariant action functional~2.7!. The divergences in̂Tab&
are in one-to-one correspondence with the local counterte
in the actionSeff@g#, whose variations with respect togab
produce, in addition to the terms in the classical Einst
equations, the fourth order tensors,

(1)Hab[
1

A2g

d

dgabE d4xA2gR2

52gabhR22¹a¹bR12RRab2
gab

2
R2, ~2.8a!

(C)Hab[
1

A2g

d

dgabE d4xA2gCabcdC
abcd

54¹c¹dCacbd12RcdCacbd. ~2.8b!

Hence the variation of the effective action~2.7! gives the
equations of motion for the spacetime metric for zero exp
tation value of the free scalar fieldF:

2a (C)Hab2b (1)Hab1
1

8pG
N

~Gab1Lgab!5^Tab&R
,

~2.9!

where ^Tab&R
is the renormalized expectation value of t

energy-momentum tensor of the scalar field, and all the
rameters are now understood to take finite renormalized
ues. In order for the renormalized parameters to be defi
unambiguously, we require that any terms of precisely
form of the local geometric tensors on the left hand side
Eq. ~2.9!, specified at an arbitrary but fixed renormalizati
scalem, are removed from the expectation value on the ri
side of Eq.~2.9! by an explicit subtraction procedure at th
scalem. A concrete example of this subtraction procedure
flat spacetime is given in Sec. IV.

It is worth emphasizing that the UV renormalization
the energy-momentum tensor and the covariant form of
equations of motion~2.9! are justified by formal appeal to a
underlying covariant action principle~2.7!, whose variation
they are. Although particular regularization and renormali
tion procedures, such as noncovariant point splitting or a
batic subtraction, may break explicit covariance, the re
must be of the form~2.9!, with a covariantly conserved
^Tab&R

, or the procedure does not correspond to the addi

of local counterterms up to dimensionn54 in the effective
action, as required by the general principles of renormal
tion theory. Thus, the renormalization of the effective act
~2.7! suffices in principle to renormalize the equations
motion ~2.9! andall of its higher variations, a fact we mak
use of in the next section.

The largeN approximation is equivalent to a Gaussi
path integration for the quantum matter fields, in which t
spacetime metric and gravitational degrees of freedom h
been treated asc numbers, coupled only to the expectatio
value of the energy-momentum tensor through Eq.~1.1!.
Since the energy-momentum tensor expectation value ca
expressed as a coincidence limit of local derivatives of
one-loop matter Green’s functionG@g#(x,x) in the back-
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ground metricgab through Eq.~2.5!, it requires solving the
differential equationG21@g#+G@g#51, or more explicitly

~2h1m21jR!G@g#~x,x8!5
d4~x,x8!

A2g
, ~2.10!

concurrently with the semiclassical back-reaction equat
~2.9!. It is the exact solution of this equation, without an
perturbative re-expansion ofG@g#, and the resulting self-
consistent solution of Eq.~2.9! for the metricgab , that con-
stitutes the principal nonperturbative RG improved feature
the largeN limit.

The equations of motion~2.9!, which are the original Eqs
~1.1! modified by the additional terms required by the U
renormalization of̂ Tab&, are fourth order in derivatives o
the metric. This feature, which is not present in QED~but is
a general feature of effective field theories that are cha
terized by derivative expansions!, has been the source o
much discussion in the literature@32,33,46–49#. As is well
known from the general theory of differential equations,
the order of the equations is changed by adding higher
rivative terms, the solutions of the modified equations f
into two classes, viz., those that approach the solutions of
lower order equations as the new parametersa,b→0, and
those which become singular in that limit. The latter class
solutions are not present in the lower order theory and c
respond physically to solutions which vary on Planck leng
and time scales~in order for the higher derivative terms to b
of the same order as the lower derivative Einstein term!.
There is clearly no experimental basis for taking these so
tions seriously~since they would predict that even empty fl
space is unstable to arbitrarily short length and time sc
perturbations! @32,33,46,49#. Instead, the modern framewor
of effective field theories suggests that we should regard
Planck scale as the physical UV cutoff which defines
extreme limit of possible validity of semiclassical gravit
and that we should confine our attention to only those p
dictions of the theory which involve length scales, much
greater than the Planck length,Pl . In this regime, the effects
of the higher order local terms in Eq.~2.9! are suppressed b
at least two powers of,Pl /,, provided the solutions remain
regular in the limit of vanishing renormalized coefficientsa
and b of the higher order terms. We are interested in t
paper primarily in defining a validity and stability criterio
of the semiclassical approximation at length scales,@,Pl ,
and only comment briefly on the Planck scale solutions ag
in the Discussion.

III. CTP, LINEAR RESPONSE AND THE STABILITY
CRITERION

In this section we present our criterion for the validity
the semiclassical approximation which relies on a linear
sponse analysis. This analysis makes use of^ inu in& expecta-
tion values which can be realized using the CTP formali
@43#. We begin by reviewing a few details of this formalis
that are needed to derive the causal linear response equa

The desired̂ inu in& expectation values are obtained b
integrating the path integral~2.2! along a contour from the
6-6
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initial time up to a late time in the future, and then bac
wards to the initial time. This results in a doubling of th
field variables with a new CTP index~denoted by capita
roman lettersA,B,C, . . . ), running over the valuesA
51,2, that specify the forward or backward part of the co
tour, respectively. After all manipulations are performed
resulting expressions are evaluated by equating field v
ables on the two contours.

In the CTP formalism the leading order effective acti
for the matter fields is formally identical to Eq.~2.4! with the
replacement,

G21@g#→~G 21@g# !AB[cABG21@gA#, ~3.1!

with G@g# a 232 matrix in the CTP indices andcAB

5diag(1,21) the CTP metric. Thus,G 11
21@g# depends only

on fields of type 1, whileG 22
21@g# depends only on fields o

type 2. The signs in the CTP metric,cAB , keep track of the
direction of the time contour, positively directed forward
time for field variables of the first type, and negatively d
rected backward in time for field variables of the seco
type. The corresponding CTP effective action will be d
noted bySeff

CTP . Performing the variation ofSeff
CTP with re-

spect to the first CTP component of the metric variable,gab
1 ,

is formally identical to that ofSeff
(1)@g# in Eq. ~2.5!, and gives

^ inuTab(x)u in&, the unrenormalized diagonal matrix eleme
of the energy-momentum tensor, which is real for Hermit
Tab .

The linear response equation can be obtained by exp
ing the CTP effective action, in a functional Taylor series
one higher order, around a given semiclassical geometrygab
that solves Eq.~2.9!. Writing

gab→gab1hab , ~3.2!

one finds that to second order inhab the CTP effective action
is
02402
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Seff
CTP@g1h#5Seff

CTP@g#1E d4x
dSeff

CTP@g#

dgab
A ~x!

hab
A ~x!

1
1

2E d4xE d4x8
d2Seff

CTP@g#

dgab
A ~x!dgcd

B ~x8!

3hab
A ~x!hcd

B ~x8!1•••, ~3.3!

where the first variation vanishes by Eq.~2.9!. Varying with
respect tohab

1 and then settingh15h25h and g15g25g,
gives the linear response equation which is equivalent to
first variation of the semiclassical Einstein equations, nam

d F2a (C)Hab2b (1)Hab1
1

8pG
N

~Gab1Lgab!G5d^Tab&

5
1

4
Mab

cdhcd~x!1
1

2
Ed4x8A2g~x8! Pab

(ret)cd~x,x8!hcd~x8!,

~3.4!

where

Pab
(ret)cd~x,x8!5Pab

11cd~x,x8!1Pab
12cd~x,x8!, ~3.5!

is the nonlocal connected, retarded polarization tensor
Mab

cd is the purely local part of the variation o
^ inuTab(x)u in& at x. We follow here the notation of Ref.@6#,
except for an opposite sign convention in the definition
the energy-momentum tensor in Eq.~2.2! of that work.

To demonstrate that Eq.~3.5! is indeed the retarded polar
ization tensor, we carry out the variation of the~unrenormal-
ized! CTP effective action for the scalar matter field expli
itly, so that
ct
d^ inuTab~x!u in&52 i\E d4x8
dDab

dgcd
B ~x8!

G@g#~x,x!hcd
B ~x8!2 i\E d4x8Dab

dG @g#~x,x!

dgcd
B ~x8!

hcd
B ~x8!

5
1

4
Mab

cdhcd~x!1 i\E d4x8A2g8$c11DabG1A@g#~x,x8!cAB~2D cd!GB1@g#~x8,x!%hcd~x8!

5
1

4
Mab

cdhcd~x!2 i\E d4x8A2g8$DabG11@g#~x,x8!D cdG11@g#~x8,x!

2DabG12@g#~x,x8!D cdG21@g#~x8,x!%hcd~x8!. ~3.6!

The minus sign in (2D cd) enters because the variation with respect togcd is opposite in sign from the variation with respe
to gab used to defineDab in Eqs.~2.5! and ~2.6!.

The definitions of the various components of the CTP matrix Green’s function of the scalar field are@43,50,51#

G12@g#~x,x8!5 i ^ inuF~x8!F~x!u in&[G,~x,x8!,
6-7
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G21@g#~x,x8!5 i ^ inuF~x!F~x8!u in&[G.~x,x8!5G,~x8,x!,

G11@g#~x,x8!5 i ^ inuT@F~x!F~x8!#u in&[u~ t,t8!G.~x,x8!1u~ t8,t !G,~x,x8!,

G22@g#~x,x8!5G11* @g#~x,x8!52u~ t8,t !G.~x,x8!2u~ t,t8!G,~x,x8!. ~3.7!

Hence suppressing momentarily the spacetime indices in the last line of Eq.~3.6!, the CTP structure of that expression is

u~ t,t8!@G.~x,x8!#21u~ t8,t !@G,~x,x8!#22G,~x,x8!G.~x8,x!

5u~ t,t8!$@G.~x,x8!#22@G,~x,x8!#2%52
1

2
u~ t,t8!^ inu@F2~x!,F2~x8!#u in&, ~3.8!

where we have used the definitions~3.7! and the properties of the Heaviside step functionu(t,t8) for unequal arguments, thu
ignoring possible ambiguities at the coincident pointsx5x8. Restoring the spacetime indices, we find that the nonlocal t
of the variation of̂ Tab&R

in Eq. ~3.4! can be written formally as

1

2E d4x8A2g8Pab
(ret)cd~x,x8!hcd~x8!5

i\

2 E d4x8A2g8u~ t,t8!^ inu@Tab~x!,Tcd~x8!#u in&hcd~x8!, ~3.9!
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which is real and causal.
This derivation is still formal because of the singular b

havior of the retarded polarization operator at coincid
points x5x8. This singular behavior is related to the sho
distance behavior of the formal expressions and their re
malization. The singular behavior of commutators of phy
cal currents and their various time ordered products has b
recognized for some time@44#, and has been discussed in t
gravitational context in Ref.@6#. The proper covariant defi
nition of the singular functions requires combining the
tarded commutator with the first local~contact! term,
1
4 Mab

cdhcd(x) in Eq. ~3.6!, in such a way that the diver
gences in the sum of the two quantities can be renormal
via the usual counterterms, namely exactly the same cou
terms at the level of the effective action which are necess
to renormalize the semiclassical Eqs.~2.9! themselves. Alter-
natively, one may calculate the time asymmetric part of
response function, which is free of singularities in the lim
x→x8, anddefinethe renormalized time symmetric part o
the full response function~including the local contact terms!
by a covariant regularization and renormalization procedu
which gives unique answers up to finite redefinitions of
coefficientsa andb in the fourth order renormalized effec
tive action. It is this latter procedure which we carry o
explicitly by means of a dispersion integral, after Four
transforming Eq.~3.9! in the flat space example provided
the next section.

The linearized fluctuationhab(x) obeys an integro-
differential equation~3.4! in which the integral depends onl
on the past ofx, due to the causal boundary conditions, a
which involves the two-point correlation function of the ma
ter energy-momentum tensor. According to the general p
ciples of linear response analysis, this retarded correla
function is evaluated in the background geometry of
leading order solution of the semiclassical equations~2.9!.

The polarization operator,Pab
(ret)cd(x,x8), is determined

by the second variation of the same effective action that
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termines the energy-momentum tensor, and it also obeys
same covariant conservation law,

¹aPab
(ret)cd~x,x8!5¹c8Pab

(ret)cd~x,x8!50, for xÞx8.
~3.10!

Equations~3.4! are covariant in form and therefore are non
nique up to linearized coordinate~gauge! transformations

dgab→dgab1¹aXb1¹bXa , ~3.11!

for any vector fieldXa . Singular gauge transformations i
the initial data fordgab are certainly not allowed, and som
care is required to decide whether time dependent linear
gauge transformations which grow in time without bound a
allowed or not. Since the action principle is fundamental
the present approach, any transformation of the form~3.11!,
for which the action~2.7! is not invariant~due to boundary
or surface terms!, is not a true invariance and should b
excluded from the set of allowable gauge transformations
the linear response equations~3.4!.

We now state our stability criterion for the semiclassic
approximation. A necessary condition for the validity of th
large N semiclassical equations of motion~2.9! is that the
linear response equations~3.4! should have no solutions with
finite non-singular initial data for which any linearized gau
invariant scalar quantity grows without bound. Such a qu
tity must be constructed only from the linearized metric p
turbation hab and its derivatives, and it must be invaria
under allowed gauge transformations of the kind descri
by Eq. ~3.11!.

The existence of any solutions to the linear respo
equations with unbounded growth in time, that cannot
removed by an allowed linearized gauge transformat
~3.11!, implies that the influence of the growing gravitation
fluctuations on the semiclassical background geometry
large, and must be taken into account in the evolution of
background itself. That is to say, if the gravitational fluctu
6-8
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tions around the background grow, even if they were initia
small, then the leading order semiclassical equations~2.9!,
which neglect these fluctuations, must eventually bre
down.

IV. STABILITY OF FLAT SPACETIME

Flat spacetime is a solution of the semiclassical Eins
equations for vanishing expectation value ofTab and cosmo-
logical term, with the quantum matter field in its Loren
invariant vacuum ground state. This is the simplest solut
of the semiclassical Eqs.~2.9! to which we can apply our
validity criterion, and for which the polarization operato
Pab

(ret)cd , can be evaluated in closed form. In addition to
lustrating the application of the criterion to a well-defin
specific case, the analysis of the normal modes which s
the linear response Eq.~3.4!, will permit us to reach a de
finitive conclusion on the stability of Minkowski spacetim
to quantum perturbations on distance and time scales
larger than the Planck scale.

The linear response equation~3.4! around a Minkowski
background,hab , can be decomposed into scalar, vector a
tensor components according to the decomposition and
jection operators defined in Appendix A. The variations
the local tensors appearing on the left hand side of Eq.~3.4!
are given by Eqs.~A16!. Thus, Eq.~3.4! around flat space
may be written in the form

Fah22
1

16pG
N

hGPab
(T)cdhcd~x!

1F6bh21
1

8pG
N

hGPab
(S)cdhcd~x!

5
1

4
Mab

cdhcd~x!1
1

2E d4x8Pab
(ret)cd~x,x8!hcd~x8!.

~4.1!

The nonlocal vacuum polarization tensor@right hand side of
Eq. ~4.1!# can be decomposed into exactly the same t
scalar and tensor projections~see both Appendixes A and B!,
Pab

(T)cdP (T)(ret)1Pab
(S)cdP (S)(ret), and a Ka¨llén-Lehmann spec-

tral representation@5,4,45# given for the Fourier transform o
each of these two gauge invariant scalar functions,

P ( i )(ret)~k0,kW !5E
2`

` dv

2p

s ( i )~v,kW !

v2k02 i e
, i 5T,S. ~4.2!

This is a form of Cauchy’s theorem for

Im@P ( i )(ret)~k0,kW !#5
1

2
s ( i )~k0,kW ![pr ( i )~s!sgn~k0!,

s5~k0!22ukW u2. ~4.3!

In Fourier space the nonlocal real convolution in Eq.~4.1!
becomes a simple multiplication withhcd(k). Its real part is
even and its imaginary part odd under time reversal, whic
02402
k

in

n

ve

ar

d
o-
f

o

is

taken into account by the sgn(k0) function in Eq.~4.3!, and
which is a consequence of the causal, retarded boundary
ditions of the CTP formalism.

Since the purely local term,Mab
cd , is time reversal in-

variant, it does not contribute to the imaginary part of t
dispersion relation~4.2! of P ( i )(ret)(k0,kW ) which is finite and
well defined. The proper definition of the local term is co
nected with the renormalization procedure needed to rec
struct the real part of the Fourier transform of Eq.~4.1! from
its imaginary part, and in fact, the dispersion integral in E
~4.2! doesnot exist due to the largek behavior, viz.k4, of the
Lorentz invariant spectral functionsr ( i )(s52k2). This di-
vergent behavior of the unrenormalized dispersion integ
~4.2! ask2→`, is nothing but the ambiguities of the coinc
dent limit x→x8 in the retarded polarization function in
different guise. The divergent terms are proportional
d4(x,x8) and up to four derivatives thereof, which by Lo
entz invariance must be of exactly the same form as the lo
terms on the left hand side of the linear response Eq.~3.4!.
Thus, these divergences, as well as the local termMab

cd ,
can be handled by the same renormalization proced
needed to define the expectation value of the dimensio
operatorTab in Eq. ~1.1!, namely by subtraction of the al
lowed covariant counterterms up to dimension 4. In the
space dispersion integral~4.2!, this is easily accomplished b
subtracting the first three terms in its Taylor series expans
aroundk250, anddefiningthe renormalized real part of th
retarded correlation function by

Re@P ( i )(ret)~k2!uR#

[ReH P ( i )(ret)~k2!2P ( i )(ret)~0!2k2F ]P ( i )(ret)

]k2 U
k250

G
2

~k2!2

2 F ]2P ( i )(ret)

]~k2!2 U
k250

G J
52~k2!3PE

0

` ds

s3

r ( i )~s!

s1k2
, ~4.4!

whereP denotes the principal part prescription for the int
gral whenk is timelike (2k25s). The subtractions do no
affect the time odd imaginary part of the retarded polari
tion function. The integral overs in the real part is now
well-defined and UV finite, and may even be computed
terms of elementary functions, in the case of a scalar field
arbitrary massm.0 and curvature couplingj. The details of
this calculation are given in Appendix B. The three subtra
tions in Eq.~4.4! correspond physically to renormalizing th
coefficients of the cosmological constant (L), Newton’s
constant (1/G

N
), and the coefficients of the fourth orde

terms (a and b). These are of order (k2)0, k2 and (k2)2

respectively. The renormalized values of these paramete
k250 are what appear then on the left hand side of Eq.~2.9!.
The singular local term,Mab

cd in Eq. ~4.1! is effectively
removed by these subtractions in flat space as well, so
the entire linear response equation becomes well-defined
6-9
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covariant. Indeed had we performed the renormalization
the level of the effective action directly then it would b
clear that no local term ambiguities appear in the renorm
ized equations.

Since the projections onto scalar and tensor modes
linearly independent~in fact, orthogonal!, the coefficients of
the two projection operators must satisfy the linear respo
relation separately. Transferring the polarization part to
left hand side of Eq.~4.1! and taking account of the reno
malization just described, yields two independent dispers
formula, namely,

k2F2ak21
1

8pG
N

1~k2!2E
0

` ds

s3

r (T)~s!

~s1k22 i esgn~k0!!
G50,

~4.5a!

k2F12bk22
1

4pG
N

1~k2!2E
0

` ds

s3

r (S)~s!

~s1k22 i esgn~k0!!
G50.

~4.5b!

The two spectral functionsr ( i )(s) are calculated explicitly
for the free scalar field with arbitrary mass and curvat
coupling in Appendix B. For this case, the spectral functio
have support only whens.4m2, which corresponds to the
two particle threshold for timelike gravitational fluctuation
However, some conclusions can be drawn from the two
persion relations above using only the fact that both spec
functions are positive for both transverse tensor and sc
gravitational perturbations of flat space.

Let us examine first the tensor dispersion relation.
clearly is always satisfied byk250. This solution corre-
sponds to the physical, transverse linearized gravitatio
waves propagating in a flat space background. The co
cient ofk2 at k250 is unchanged from the classical value
the quantum parametera and vacuum polarization correc
tions. Therefore, these linearized gravitational waves ca
the same energy density in the semiclassical approxima
as they do in the classical Einstein theory.

Next we may examine the interior of the brackets to d
termine if there are any other solutions to the tensor lin
response equations. Solutions withk252(k0)21ukW u2.0
correspond to unstable modes with imaginary frequenc
since we can always consider these modes in a frame w
kW50. Whenk2.0 the2 i e prescription is not needed, ande
may be set to zero. Thus, by making use only of the posi
ity of r (T), we observe that the bracket is strictly positive f
k2.0, provided

16paG
N
k211.0. ~4.6!

If a>0 this is always satisfied, and indeed this constraint
a is required by positivity of the energy density 2(C)H00
corresponding to the fourth orderCabcdC

abcd term in the
action. This demonstrates that there are no unstable tr
verse tensor perturbations of flat spacetime fora>0. Since
this conclusion relies only on the positivity of the spect
functionr (T)(s), it requires only causality, a bounded Ham
tonian, and a well-defined positive Hilbert space norm
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the quantum matter theory. Hence it is valid much more g
erally than for the specific scalar field example.

Going further, we may inquire as to the existence of a
ditional stable solutions characterized by propagating ten
wave modes with timelikek (k2,0). The bracket in Eq.
~4.5a! vanishes if

16paG
N
k21118pG

N
k2F (T)50, ~4.7!

where

F (T)[k2E
0

` ds

s3

r (T)~s!

@s1k22 i esgn~k0!#
, ~4.8!

is a dimensionless function ofk2/m2 ~and the sign ofk0),
given explicitly for the case of a scalar field by Eq.~B44!. It
is clear that if this function remains bounded for allk2/m2,
the equality~4.7! can never be satisfied for 16pG

N
uk2u!1,

since both the third~polarization! term and first (a) term can
never be of order unity. In fact, from the explicit form ofF (T)

for a scalar field, given by Eq.~B44!, we find

ReFF (T)S k2

m2D G→ 1

960p2 lnS uk2u
m2 D as uk2u→`,

~4.9!

so that the function does grow without bound, but only log
rithmically. Hence the relation~4.7! cannot be satisfied ex
cept atk2 approachingG

N

21, providedm2.0. If a,0 then

the preceding analyses fork2.0 and k2,0 interchange
roles, with the conclusion unchanged. Thus, there are no
sor mode solutions of the linear response Eq.~3.4! on length
scales much larger than the Planck length for a massive
theory around flat space, other than the usual lineari
gravitational waves of the classical theory. On physi
grounds one must expect this result to hold for any quan
matter field polarization tensor of finite mass obeying t
same general properties of our scalar field example.

The logarithmic divergence in the response functionF (T)

whenk2→` is a consequence of the larges ~UV! behavior
of the spectral function proportional tos2, and is generic,
with only the value of the finite coefficient of the logarithm
dependent on the matter content. However the appearan
m2 in the lower limit of the logarithm is a result of ou
definition of the renormalizeda parameter atk250, which
allows no other scale to appear in the logarithm. This d
nition is no longer tenable in the zero mass limit. Inste
one may renormalize the parameter at an arbitrary nonz
value ofk25m2, related to our previous definition by

aR~m2!5a1
1

1920p2 lnS m2

m2D . ~4.10!

Then,m2 replacesm2 in the logarithm of Eq.~4.9!, and the
m2→0 limit may be taken safely by maintainingaR(m2)
finite. The conclusions about the absence of solutions to
transverse linear response equation~4.5a! at length scales
much greater than the Planck length remain unchanged.
6-10
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Turning now to the scalar component of the linear
sponse equation~4.5b!, we note the opposite sign in the co
efficient of the 1/G

N
term, which is the well-known negativ

metric sign of the conformal factor in the Einstein-Hilbe
action. From several different analyses@52,53# it is known
that there are no physical wavelike scalar excitations of
space in either the classical or semiclassical theory. Ph
cally the reason is that the conformal factor is constrained
the diffeomorphism invariance. This implies that the expa
sion of the gravitational action to second order in the me
perturbations about flat space,h(S)abk2hab

(S) should be treated

as proportional toux̃u2, wherex̃ is the Fourier transform of a
new scalar field variable with no kinetic term in the Einste
Hilbert action. This redefinition may be understood as
quired also in the covariant path integral treatment of
linearized gravitational fluctuations around flat space@53#.
The net effect of either the covariant or canonical analysi
to remove the overallk250 solution from the scalar secto
as it is not dynamically allowed by the constraints.

Finally, the analysis of the expression within the brack
of Eq. ~4.5b! shows that there are no scalar mode solutio
~stable or otherwise! with 8pG

N
uk2u!1, for exactly the

same reason as in the tensor case, notwithstanding the
change in the Einstein term. In the scalar case the exp
form of the response function~B45! yields

ReFF (S)S k2

m2D G→ 1

96p2~126j!2 ln S uk2u
m2 D as uk2u→`,

~4.11!

which shows that the linear response equation cannot be
isfied for either sign ofk2 unlessG

N
uk2u becomes of order

unity. This result was first obtained in Ref.@53# for the case
of a massive, but conformally coupled field withj51/6. In
the conformal case, the larges behavior of the scalar spectra
functionr (S) is much less severe, as is clear from its expli
form given in Eq.~B38!, and only two subtractions suffice
This corresponds to only a finite renormalization of thebR2

term in the effective action. Ignoring theb term completely,
the only twice subtracted dispersion formula gives then

114pG
N
k2E

0

` ds

s2

r (S)~s!

@s1k22 i esgn~k0!#
50, ~4.12!

in the scalar sector. This form of the linear response equa
was used in Ref.@53# to demonstrate the stability of fla
space to scalar~conformal! fluctuations in the infrared limit,
i.e., on wavelengths far larger than the Planck length. Inde
substituting the explicit form ofr (S), Eq. ~B37b! with j
51/6, into Eq. ~4.12!, shows that it is identical with Eq
~4.13! of @53# with 2m4r(s)/3 of that reference equal t
r (S)(s) here.

WhenjÞ1/6 this argument cannot be used since the s
lar spectral function behaves ass2 for larges and the twice
subtracted dispersion integral in Eq.~4.12! diverges. How-
ever, analysis of the fully subtracted response function
havior in Eq.~4.11! above leads to the same result. As in t
tensor case the logarithmic growth withuk2u is generic, with
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only the coefficient of the logarithm depending on the mat
content, possibly vanishing in some special cases suchj
51/6. Also as in the tensor case the lower limit of the log
rithm can be made finite in them2→0 limit by redefining the
renormalizedb coefficient at a finitem2Þ0 analogously to
Eq. ~4.10!, namely,

bR~m2!5b1
1

1152p2
~126j!2 ln S m2

m2D . ~4.13!

One obtains then the same conclusion as for the tensor c
namely that there are no new solutions of the linear respo
equations, stable or unstable, far from the Planck regi
despite the opposite sign of the classical Einstein term in
scalar sector. There is an unstable solution in the scalar
tor at

k2.
1

48pGNbR~k2!
, ~4.14!

which signals the breakdown of the semiclassical approxim
tion to flat space in the Planckian regime.

V. DISCUSSION

We have presented a criterion for the validity of the sem
classical approximation for gravity that involves solving t
linear response equation~3.4!, to determine the stability of
solutions to the semiclassical equations~2.9!. If, for a given
state and background geometry that solves the semiclas
equations, one or more solutions to the linear response e
tions experience unbounded growth in a gauge invar
sense, then the semiclassical approximation is not valid
that particular geometry, at least not for that particular sta
Clearly this is a necessary, though perhaps not a suffic
condition for the validity of the approximation.

As discussed in the Introduction, various methods ha
been suggested previously to test the validity of the semic
sical approximation by making use of the two-point corre
tion function for the energy-momentum tensor. The line
response criterion provides a natural and well-defined w
for this two-point correlation function to enter into the dete
mination of the validity of the semiclassical approximatio
Further, linear response involves quantities that lie entir
within the semiclassical approximation itself, since the p
larization tensor is computed on the semiclassical ba
ground geometry. The largeN method, augmented by th
causal CTP formulation of the effective action, provides
well-defined framework for applying the validity criterion
which is equivalent to a stability criterion for the semicla
sical solution.

In the covariant effective action formulation, it is clea
that the UV renormalization counterterms are the same
those needed to define the semiclassical approximation i
and that there are no state-dependent divergences. Altho
the matter energy-momentum tensor correlator by itself s
fers from possible ambiguities at coincident points, these
removed by a proper covariant regularization and renorm
ization procedure, which ties these divergences in the c
6-11
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ANDERSON, MOLINA-PARÍS, AND MOTTOLA PHYSICAL REVIEW D 67, 024026 ~2003!
relator atx5x8 to counterterms in the purely local gravita
tional effective action. The resulting combination ofall terms
in Eq. ~3.4! then becomes well-defined.

We have illustrated the use of the stability criterion w
the simple example of a quantized scalar field with arbitr
mass and curvature coupling in the vacuum state
Minkowski spacetime. In this case it is possible to carry o
the analysis to completion and show that flat space is st
in the infrared limit. There are no solutions to the line
response equations~3.4! around flat space, except the usu
transverse, traceless gravitational wave excitations of
classical Einstein theory, provided we restrict ourselves
solutions with 4pG

N
uk2u!O(1). Theexact finite number of

order unity on the right hand side of this inequality det
mines the values ofk2 for which new Planckian solution
and instabilities will appear. Its value depends on both
matter theory and the values of the renormalized coefficie
a and b of the fourth order terms. The existence of su
growing modes, which violate the validity criterion propos
here, informs us not that flat spacetime is unstable, but o
that the quantum fluctuations of the geometry should be
cluded in some consistent way at short scales. It is then
semiclassical notion of flat space as a pseudo-Rieman
manifold endowed with a smooth metric down to arbitrar
short length scales that is breaking down at the Planck sc
The semiclassical approximation which does not incorpo
the effects of these quantum fluctuations on the mean ge
etry is certainly not valid in the Planck regime. Because
the unstable tachyon mode~4.14! in the scalar sector, the
semiclassical approximation contains the signal of its o
breakdown at such short scales according to our validity
terion, but otherwise leads to a completely satisfactory
bility of flat space for all perturbations obeying 4pGN uk2u
!1.

That empty flat space with quantum matter in its vacu
ground state should be stable, and quantum gravitationa
fects negligible excluding at the Planck scale, is hardly s
prising. It does mean that the predictions of the semiclass
approximation at least are not in complete disagreement
observations in this case. In addition to providing an expl
example of how to handle the energy-momentum tensor
relation function by standard renormalization methods to
tain well-defined answers, working out this case in de
also provides an important clue as to how the validity cri
rion may fail to be satisfied in more interesting cases. W
is required is simply that the polarization tensor of the ma
fluctuations become singular, i.e., large and unbounded
some region. Only in this way can the natural suppressio
8pGN uk2u!1 in flat space be overcome. A nontrivial e
ample, where new modes may be expected, is a finite t
perature quantum matter field in an Einstein–de Sitter mo
@54#. It would be interesting to apply the validity criterio
proposed here to a consistent solution of the semiclass
Einstein equations possessing thermal matter.

Further important and interesting examples to which
criterion may be applied are solutions with event horizo
such as Schwarzschild and de Sitter spacetimes, as we
more general cosmological solutions of the semiclass
equations. If the linearized solutions of Eq.~3.4! show any
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growing modes~due to a singular behavior of the polariz
tion tensor in such cases!, then one would be led to the
conclusion that inclusion of gravitational fluctuations beyo
the leading order semiclassical approximation would be
quired. A number of different arguments lead to the conc
sion that de Sitter spacetime is not the stable ground stat
a quantum theory of gravity with a cosmological term@55#.
In fact, the two-point correlation function of the energ
momentum tensor for a scalar field was estimated in@6#, and
argued to contribute to a gauge invariant growing mode
the horizon time scale. This proposition could be tested b
detailed calculation of the two-point correlation function
the energy-momentum tensor and the solutions of the lin
response equations~3.4! in de Sitter space.

A second important application of the criterion is to bla
hole spacetimes. Ever since the discovery of black hole
diance, it has been recognized that the quantum behavio
black holes is qualitatively different from the classical an
logs at long times, since semiclassical black holes decay
late times, while classical black holes are stable. In
Hartle-Hawking state@56# one can construct a static solutio
to the semiclassical equations~2.9! that is quite close to the
classical one near the horizon@57–59#. On thermodynamic
grounds this state is expected to be unstable@60#. However,
the stability of this self-consistent solution has not been
vestigated in a dynamical approach. The validity criteri
proposed in this paper provides a clear dynamical princ
for the stability or instability of the self-consistent solution
in both the black hole and de Sitter cases.
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APPENDIX A: TENSOR DECOMPOSITION
AND SPECTRAL REPRESENTATION IN FLAT SPACE

An arbitrary metric perturbation,hab , aroundn dimen-
sional flat space,hab , can be decomposed in the followin
way:

hab5hab
' 1]avb

'1]bva
'1S ]a]b2

1

n
habh Dw1

hab

n
h,

~A1!

wherehab
' is transverse and traceless with respect to the

metric hab

]ahab
' 505]bhab

' , and habhab
' 50, ~A2!

andva
' is transverse

]ava
'50. ~A3!
6-12
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By taking partial derivatives and traces and using these
fining properties, the various terms in the decomposition
be isolated successively, viz.

h5habhab , ~A4!

w52
1

n21
h21~hab2nh21]a]b!hab , ~A5!

va
'5h21~da

c2h21]a]c!]dhcd , ~A6!

hab
' 5Fda

cdb
d2

1

n21
habh

cd1
2

n21
h22]a]b]c]d

1h21S 2da
c]b]d2db

c]a]d1
1

n21
hab]

c]d

1
1

n21
hcd]a]bD Ghcd , ~A7!

where h21 denotes the propagator inverse ofh
[hab]a]b .

Under an infinitesimal coordinate~gauge! transformation,

hab→hab1]aXb1]bXa , ~A8!

the change inhab can be absorbed into a redefinition of th
various components of the decomposition according to

h→h12hY,

w→w12Y,

va
'→va

'1Xa
' ,

hab
' →hab

' , ~A9!

whereXa has been decomposed into its transverse and
gitudinal parts, as

Xa5Xa
'1]aY, with ]aXa

'50. ~A10!

From these transformations we observe that the transve
traceless tensorhab

' and the linear combination of scalars

h2hw5
n

n21
~hcd2h21]c]d!hcd , ~A11!

are invariant under infinitesimal coordinate transformatio
Hence we may define the projections onto the scalar~spin-0)
and transverse, traceless tensor~spin-2), gauge invarian
terms in the general decomposition of the symmetric ten
perturbationhab by

hab
(S)[

1

n21
~hab2h21]a]b!~hcd2h21]c]d!hcd

5
1

n
~hab2h21]a]b!~h2hw![Pab

(S)cdhcd ,

~A12a!
02402
e-
n

n-

se,

.

or

hab
(T)[hab

' [Pab
(T)cdhcd . ~A12b!

The remaining terms in the decomposition contain all
gauge dependence. We denote the vector perturbation@con-
taining both transverse~spin-1) and longitudinal~spin-0)
components# by

hab
(V)5h21~da

c]b1db
c]a2h21]a]b]c!]dhcd[Pab

(V)cdhcd .

~A13!

Thus, the general symmetric tensor metric perturbation
be written as the sum of three projected components

hab5hab
(S)1hab

(V)1hab
(T)5 (

i 5S,V,T
Pab

( i )cdhcd . ~A14!

The three projectors are orthonormal, i.e.,

Pab
( i )e fPe f

( j )cd5d i j Pab
( i )cd, ~A15!

and complete, and define a unique decomposition„modulo
the @n(n11)#/2 conformal Killing vectors in flat space
time….

Because they are conserved tensors derived from inv
ant action functionals, all the local tensors on the left ha
side of the linear response Eq.~3.4! must be expressible in
terms of only the scalar and tensor components of the me
fluctuations. Indeed, by explicit computation inn54 dimen-
sions,

d (C)Hab52h2hab
(T)52h2Pab

(T)cdhcd , ~A16a!

d (1)Hab526h2hab
(S)526h2Pab

(S)cdhcd ,
~A16b!

dGab5hS 2
1

2
hab

(T)1hab
(S)D

52
1

2
hPab

(T)cdhcd1hPab
(S)cdhcd , ~A16c!

wherehab[dgab is the metric perturbation~variation!.
The scalar and tensor projectors onto the space of ga

invariant metric perturbations can be written in momentu
space in the compact forms,

Pab
(S)cd~k!5

1

n21
uabu

cd, ~A17a!

Pab
(T)cd~k!5

1

2
~ua

cub
d1ua

dub
c!2

1

n21
uabu

cd,

~A17b!

where we have introduced the tensoruab ,

uab[hab2
kakb

k2 , ~A18!

which obeyskauab5kbuab50. Therefore, the scalar an
tensor projectors are also transverse:
6-13



n

a

u

co
he

m

nu

m
i-

d

o-
ing

the
ple
a-
t of
ion
-
cal
al-
ns
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kbPab
(S)cd~k!5kbPab

(T)cd~k!50. ~A19!

Because of this property the correlation function of two co
served energy-momentum tensors in momentum space

Pab
. cd~k!5 i E dnx

~2p!n
eik•(x2x8)^Tab~x!Tcd~x8!&,

~A20!

may be expanded in terms of the gauge invariant scalar
tensor projectors only. By conservation ofTab this correlator
must be transverse, with zero projection onto the vector s
space, i.e.@61#,

Pab
.cd~k!5Pab

(S)cd~k!P (S)~k!1Pab
(T)cdP (T)~k!, ~A21!

in terms of two scalar functions of momentumk.
The most convenient way of expressing the retarded

relation function in Fourier space is first to introduce t
spectral function representation@45# in the spin-2~T! and
spin-0~S! sectors, in terms of the Euclidean four-momentu
(k4 ,kW )

P
E

( i )~ ik4 ,kW !5E
2`

` dv

2p

s ( i )~v,kW !

v2 ik4
. ~A22!

The retarded correlator is given then by the analytic conti
ation, ik4→k01 i e, i.e.,

P ( i )(ret)~k0,kW !5P
E

( i )~ ik45k01 i e,kW !5E
2`

` dv

2p

s ( i )~v,kW !

v2k02 i e
,

~A23!

which corresponds to Eq.~4.2! of the text. Moreover, since
s ( i )(v,kW ) is an odd function ofv ~by the reality ofP

E

( i )),
which otherwise depends only on the Lorentz invariant co
binations[v22kW•kW , we can define Lorentz invariant pos
tive spectral functionsr ( i )(s) by
02402
-

nd

b-

r-

-

-

s ( i )~v,kW !52psgn~v!r ( i )~s!, ~A24!

and obtain the dispersion formula,

Pab
(ret)cd~k!5Pab

(S)cd~k!E
0

` dsr (S)~s!

s1k22 i esgn~k0!

1Pab
(T)cd~k!E

0

` dsr (T)~s!

s1k22 i esgn~k0!
,

~A25!

which follows by substituting Eq.~A24! into Eq. ~4.2!, di-
viding the integration range overv into positive and nega-
tive v, renaming the integration variable, and usings
52vdv. Thus, the spectral functionsr ( i )(s) of the two in-
dependent scalar functions given in Eq.~A21! can be ob-
tained by computing the simple correlator in Euclidean m
mentum and evaluating the imaginary part, after perform
the specific analytic continuation~4.2!, namely

Im@P
E

( i )~ ik45k01 i e!#5psgn~k0!r ( i )~s52k2!,
~A26!

which is also obtained by continuing the Euclidean

~k4!21kW•kW→k22 i esgn~k0!, ~A27!

to the Lorentziank25habk
akb52(k0)21kW•kW . The useful-

ness of this representation is that the imaginary part of
correlator is given by spectral functions which have sim
positivity properties and which are completely free of ultr
violet divergences. These appear only when the real par
the correlator is constructed by the fully covariant dispers
integrals overs in Eq. ~A25!, and may be handled by stan
dard methods that make clear their relation to covariant lo
countertems in the effective action. The covariant renorm
ization of these dispersion integrals by explicit subtractio
in flat space is described in Sec. IV.
function
APPENDIX B: GRAVITATIONAL VACUUM POLARIZATION TENSOR IN FLAT SPACE

The classical energy-momentum tensor for a scalar field inn dimensional Minkowski spacetime is given by

Tabuflat5~122j!¹aF¹bF1S 2j2
1

2Dhab¹cF¹cF22jF¹a¹bF12jhabF¹c¹
cF2

1

2
habm

2F2, ~B1!

which can be rewritten as

Tabuflat5F1

4
~2¹a¹b2hab¹c¹

c!2
1

2
m2hab1j~hab¹c¹

c2¹a¹b!GF21~2da
cdb

d1 1
2 habh

cd!F~¹c¹dF!. ~B2!

When this is substituted into the Fourier transform of the energy-momentum tensor two-point connected correlation
in Euclidean space and the two possible Wick contractions of^F2(x)F2(x8)&con are taken into account, we obtain

Pab
cduE~k!5E dnx^Tab~x!Tcd~x8!&U

E

eik•(x2x8)52D ab
(1)~k!D (1)cd~k!H~k!12D ab

(1)~k!D c8d8
(2)cdI c8d8~k!

12D ab
(2)a8b8D (1)cd~k!I a8b8~k!12D ab

(2)a8b8D c8d8
(2)cdJa8b8

c8d8~k!12D ab
(2)a8b8D c8d8

(2)cdKa8b8
c8d8~k!. ~B3!
6-14
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Herek5(k4 ,kW ) is the Euclidean momentum, and we have introduced the following tensors:

D ab
(1)~k!5j~kakb2habk

2!1
1

4
~habk

222kakb!1
1

2
m2hab , ~B4!

D ab
(2)cd52da

cdb
d1

1

2
habh

cd, ~B5!

and the notation for the following integrals:

H~k!5E dnp

~2p!n

1

p21m2

1

~p1k!21m2
, ~B6!

I cd~k!5E dnp

~2p!n

pcpd

p21m2

1

~p1k!21m2
, ~B7!

Jab
cd~k!5E dnp

~2p!n

papbpcpd

p21m2

1

~p1k!21m2
, ~B8!

Kab
cd~k!5E dnp

~2p!n

papb

p21m2

~pc1kc!~pd1kd!

~p1k!21m2
. ~B9!

We regularize all integrals by means of dimensional regularization inn dimensions@62,63#. By introducing a Feynman
parameterx, the previous integrals are evaluated to yield@63#

H~k!5
pn/2

~2p!n
GS 22

n

2D E
0

1

dx@m21k2x~12x!# (n/2)22, ~B10!

I cd~k!5
pn/2

~2p!n
GS 22

n

2D E
0

1

dx@m21k2x~12x!# (n/2)22H hcd

22n
@m21k2x~12x!#1x2kckdJ , ~B11!

Jab
cd~k!5

pn/2

~2p!n
GS 22

n

2D E
0

1

dx@m21k2x~12x!# (n/2)22H 1

n~n22!
~tab

(1)cd1tab
(2)cd!@m21k2x~12x!#2

2
x2

~n22!
~tab

(3)cd1tab
(4)cd!@m21k2x~12x!#1x4tab

(5)cdJ , ~B12!

Kab
cd~k!5

pn/2

~2p!n
GS 22

n

2D E
0

1

dx@m21k2x~12x!# (n/2)22H 1

n~n22!
~tab

(1)cd1tab
(2)cd!@m21k2x~12x!#2

2
x2

~n22!
tab

(3)cd@m21k2x~12x!#1
x~12x!

~n22!
tab

(4)cd@m21k2x~12x!#1x2~12x!2tab
(5)cdJ . ~B13!
v

ed
d in
n

These expressions are given in terms of the following fi
basis tensors:

tab
(1)cd~k!5habh

cd, ~B14!

tab
(2)cd~k!5da

cdb
d1da

ddb
c , ~B15!

tab
(3)cd~k!5habk

ckd1hcdkakb , ~B16!

tab
(4)cd~k!5da

ckbkd1da
dkbkc1db

ckakd1db
dkakc, ~B17!
02402
e tab
(5)cd~k!5kakbkckd. ~B18!

In order to obtain the Euclidean polarization tensor we ne
to compute the corresponding tensor products specifie
Eq. ~B3!. Once we do this we can write the polarizatio
operator~in n dimensions and forj50) as

Pab
cduE~k,j50!5(

j 51

5

F j~k!tab
( j )cd~k!, ~B19!

where
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F1~k!5
pn/2

~2p!n
GS 22

n

2D E
0

1

dx@m21k2x~12x!#~n/2! 22

3Fn222n24

2n~n22!
@m21k2x~12x!#21S xk2

n22
~12nx!

1
k2

2
2m2D @m21k2x~12x!#1

k4x2

4
@~12x!21x2#

1k2x2S 2
k2

2
1m2D1

1

2 S 2
k2

2
1m2D 2G , ~B20!

F2~k!5
pn/2

~2p!n
GS 22

n

2D E
0

1

dx@m21k2x~12x!# (n/2)22

3
2

n~n22!
@m21k2x~12x!#2, ~B21!

F3~k!5
pn/2

~2p!n
GS 22

n

2D E
0

1

dx@m21k2x~12x!# (n/2)22

3F S ~22x1~n12!x2!

~n22!
2

1

2D @m21k2x~12x!#

2
k2

4
1

m2

2
2

k2

2
x2@~12x!21x222#2x2m2G ,

~B22!

F4~k!5
pn/2

~2p!n
GS 22

n

2D E
0

1

dx@m21k2x~12x!# (n/2)22

3
x~122x!

~n22!
@m21k2x~12x!#, ~B23!

F5~k!5
pn/2

~2p!n
GS 22

n

2D E
0

1

dx@m21k2x~12x!# (n/2)22

3F1

2
1x2~~12x!21x222!G . ~B24!

The j dependent part of the polarization operator can
written as

Pab
cduE~k,j!

5j
pn/2

~2p!n
GS22

n

2DE0

1

dx@m21k2x~12x!# (n/2)22

3Fk2~uabh
cd1ucdhab!S 2@m21k2x~12x!#

2
k2

2
1m21k2x2D1~uabk

ckd1kakbucd!k2

3~122x2!G12j2k4uabu
cd

3
pn/2

~2p!n
GS22

n

2DE0

1

dx@m21k2x~12x!# (n/2)22. ~B25!
02402
e

In order to obtain the retarded polarization operator we n
to analytically continue the Euclidean momentum to
Lorentzian momentum. This analytic continuation is defin
by

k4
21kW2→habk

akb2 i esgn~k0!, ~B26!

with e→01 ~see Appendix A!. Notice that the continuation
depends on the sign ofk0. We also take the limitn→4 and
write n542d, with d→01. The real part of the polariza
tion tensor has a pole atn54, but its imaginary part come
only from the logarithmic branch cut of the function,@m2

1k2x(12x)#2d/2 expanded aroundd50,

Im$@m21k2x~12x!#2d/2%

5
pd

2
sgn~k0!u@2m22habk

akbx~12x!#1O~d2!,

~B27!

so that the pole inG(d/2)→2/d atd50 is canceled. Thus the
imaginary part is finite in the limitn→4. Becausex(12x)
<1/4 in the interval@0,1#, the step function condition is
satisfied only if (s/4)2m2.0, wheres52k252habk

akb,
and xP@x2 ,x1#, with x6 the real roots of the quadrati
polynomialm22x(12x)s50. In particular

x65
1

2
~16r !, with r[A12

4m2

s
. ~B28!

Therefore,

ImH lim
d→01

E
0

1

dxFGS d

2D @m21k2x~12x!#2d/2G•••J
5E

x2

x1

dxpsgn~k0!u~s24m2!•••, ~B29!

where the ellipsis denotes any function ofx to be integrated.
Thus, thex integrals all become simple powers ofx, and

for the casen54, we obtain

Im@F1~s!#5sgn~k0!
u~s24m2!

16p

r

15S 2m414m2s1
3

4
s2D ,

~B30!

Im@F2~s!#5sgn~k0!
u~s24m2!

16p

r

15S 2m42m2s1
1

8
s2D ,

~B31!

Im@F3~s!#5sgn~k0!
u~s24m2!

16p

r

15s S 2m414m2s1
3

4
s2D ,

~B32!

Im@F4~s!#5sgn~k0!
u~s24m2!

16p

r

15s S 2m42m2s1
1

8
s2D ,

~B33!
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Im@F5~s!#5sgn~k0!
u~s24m2!

16p

r

15s2
~6m412m2s1s2!.

~B34!

These functions are not linearly independent, as the cova
conservation of the energy-momentum tensor implies tha

F1~s!2sF3~s!50, ~B35a!

F2~s!2sF4~s!50, ~B35b!

F3~s!12F4~s!2sF5~s!50. ~B35c!

In fact the combinations, 2F2 and 3F112F2, yield the ten-
sor and scalar spectral functions of Eq.~A25!, respectively.

Likewise, after computing thex integrals, thej dependent
polarization tensor becomes

Im@Pab
cd~s,j!#5sgn~k0!

u~s24m2!

24p
A12

4m2

s
uabu

cd

3@2js~s12m2!13j2s2#, ~B36!

which is explicitly transverse and proportional to the sca
projector Pab

(S)cd . Combining thisj dependent contribution
with the previousj independent part, and recalling Eq
~A17! and~A26!, we may now identify the two independen
tensor and scalar spectral functions,

r (T)~s!5
u~s24m2!

60p2
A12

4m2

s S s

4
2m2D 2

>0, ~B37a!

r (S)~s!5
u~s24m2!

24p2
A12

4m2

s Fm21
~126j!s

2 G2

>0.

~B37b!

Both spectral functions are positive, as they must be,
agree with results~for j50) reported in@28#, and~for arbi-
trary m andj) reported in@29#.

In the case that the curvature coupling takes its confor
value, j51/6, the scalar spectral function does not ha
terms proportional tos2 or to m2s, and becomes

r (S)uj51/6~s!5u~s24m2!
m4

24p2
A12

4m2

s
, ~B38!

which agrees with@53#, after account is taken of a relativ
factor of 2m4/3 in the definition of the spectral functio
r (S)(s) here, relative tor(s) of that work.

Finally the integrals appearing in the Ka¨llén-Lehmann
representations~A25! are all of the form,

I n,l[k2E
4m2

` ds

sl 11~s1k2!
S 12

4m2

s D n1(1/2)

~B39!

for k2.0 and n and l integers. By making the change o
variabless54m2/(12u2), all integrals of this kind may be
reduced to linear combinations of
02402
nt

r

d

al
e

I n~z![I n,l 5052E
0

1

du
u2n12

z22u2
, ~B40!

where

z[A11
4m2

k2 , ~B41!

and theI n(z) functions obey the recursion formula,

I n~z!52
2

2n11
1z2I n21~z!, ~B42!

with

I 0~z!5221z ln S z11

z21D for z.1

[221 f S k2

m2D for k2.0. ~B43!

Using these relations, the response function for the ten
fluctuations can be written as

F (T)S k2

m2D[k2E
4m2

` ds

s3~s1k2!
r (T)~s!

5
1

960p2 F2
2

5
2

2

3
z21z4I 0~z!G

5
1

960p2 F2
46

15
2

56

3

m2

k2 2
32m4

~k2!2

1S 11
4m2

k2 D 2

f S k2

m2D G , ~B44!

while the corresponding response function for the scalar fl
tuations is

F (S)S k2

m2D[k2E
4m2

` ds

s3~s1k2!
r (S)~s!

5
1

96p2H 1

15
1

2

3
~126j!2

2

3

m2

k2

1F ~126j!2
2m2

k2 G2F221 f S k2

m2D G J .

~B45!
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As k2→0, z→`, and the functionI 0 ~or f ) is analytic at
z2150. However, ask2 changes sign,z21 becomes pure
imaginary and

f S k2

m2D52S 4m2

s
21D 1/2

tan21F S 4m2

s
21D 21/2G

for 0,s52k2<4m2, ~B46!
n-

,

R

en
-

ne

02402
which remains real in this range. Finally, whens52k2

.4m2, f develops an imaginary part, viz.

f S k2

m2D5z lnS 11z

12zD2 ipzsgn~k0!

for z5A12
4m2

s
,

s52k2>4m2, 0<z,1. ~B47!
.
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