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Self-force via a Green’s function decomposition
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The gravitational field in a neighborhood of a particle of small masaoving through curved spacetime is
naturally decomposed into two parts each of which satisfies the perturbed Einstein equations @(eligh
One part is an inhomogeneous field which looks likeie field tidally distorted by the local Riemann tensor.
The other part is a homogeneous field that completely determines the self-force of the particle interacting with
its own gravitational field, which changes the worldlineXqtw) and includes the effects of radiation reaction.
Surprisingly, a local observer measuring the gravitational field in a neighborhood of a freely moving particle
sees geodesic motion of the particle in a perturbed vacuum geometry and would be unaware of the existence
of radiation atO(u). In the light of all previous work this is quite an unexpected result.
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INTRODUCTION world tube surrounding the particle’s worldline to derive
equations of motion with radiation reaction effects included.
The principle of equivalence in general relativity implies DeWitt and Brehmg 3] extended this approach to allow for
that a freely moving particle, of infinitesimal mass and size curvature in spacetime. Mino, Sasaki and TangKagener-
follows a geodesic of spacetini¢]. For a small but finite alized it to include the gravitational self-force as well. Quinn
mass u, the particle perturbs the spacetime geometry atind Wald[5] and Quinn[6] have obtained similar results by
O(w). The interaction of the particle with this perturbation pursuing an axiomatic approach for the gravitational, electro-
of the metric is called the “self-force” which changes the magnetic and scalar field self-forces.
worldline atO(u«) and includes the effects of radiation reac-  On a formal level, these analyses provide a coherent and
tion. consistent treatment of the self-force. Analysis begins with a
A local observer measuring the gravitational field in agiven worldlineI’, described by?(7), which obeys the Lor-
neighborhood of the particle, with re priori knowledge of  entz force law through the fixed background gravitational
the background geometry, sees a combination of the backend electromagnetic fields. The self-force gives the actual
ground metric plus it©(u) perturbation caused by the par- worldline an acceleration away from, and it is the mass
ticle. Local measurements, in a neighborhood of the particletimes this acceleration that we wish to determine.
cannot distinguish these two specific contributions. Never- Towards this end, first the retarded field is obtained in
theless, we show below that the combined metric in thaerms of the corresponding Green’s function. Traditionally
neighborhood of the particle can be uniquely decomposethe Green’s function has been decomposed into “direct” and
into two distinct parts{i) the tidally distortedu/r piece of  “tail” parts. The resulting “direct” part of the field at a point
the perturbation of the metric, which is an inhomogeneous is determined completely by sources on the past null cone
solution of the perturbed Einstein equation©dj), and(ii) of x; in flat spacetime this is the Liard-Wiechert potential
the sum of the background metric and the remainder of théor electromagnetism. The curvature of spacetime allows for
metric perturbation, which together are a homogeneous solan additional contribution from sources within the past null
tion of the Einstein equations through(u). cone, and this is the “tail” part. The self-force on a particle is
The self-force is shown to result in geodesic motion of thethen composed of two pieces: The first piece comes from the
particle, throughO(u), in the homogeneous perturbed met- direct part of the field and the accelerationlofn the back-
ric, (i) above. With only local measurements, the observeground geometry; in flat spacetime this is the Abraham-
has no means of distinguishing the homogeneous perturb&orentz-Dirac(ALD) force. The second piece comes from
tion from the background metric through(u). As the par- the tail part of the field and is present in curved space even if
ticle moves along a geodesic of this perturbed vacuum geF is a geodesic. While the decomposition of the field into the
ometry, the observer sees no effect which one would belirect and tail parts has been useful for describing the self-
compelled to interpret as radiation reactionCdtw). In this  force, neither of these parts individually is a solution of the
precisely defined fashion, we extend the understanding of thigeld equation.
principle of equivalence in general relativity: The orbit of the  In flat spacetime Diraf2] decomposed the retarded elec-
particle is a geodesic througb(u), in a locally measurable, tromagnetic field into two partsi) the “mean of the ad-

vacuum gravitational field. vanced and retarded fields” which is an inhomogeneous field
resembling the Coulomig/r piece of the scalar potential
HISTORICAL BACKGROUND near the particle, andii) a “radiation” field, his Eqgs.(11)

and (13), which is a homogeneous solution of Maxwell's
In Dirac’s [2] analysis of the self-force for the electro- equations. He described the self-force as the interaction of
magnetic field of a particle in flat spacetime, he used thehe particle with the radiation field, a well-defined vacuum
conservation of the stress-energy tensor inside a narroMaxwell field.
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Previous descriptions of the self-force in curved space-
time [3—6] reduce to Dirac’s result in the flat spacetime limit. P(X)ZQJ (—g)~Y25*(x—2z(7)) dr, (4)
And they provide clear, adequate expressions for the self-
force. However, they do not share the physical simplicity ofwherer is the proper time along the worldline of the particle
Dirac’s analysis where the force is described entirely inwith scalar charge. The scalar field of this particle is
terms of an identifiable, vacuum solution of the field equa-
tions. Indeed, for an electromagnetic field, the vector poten-
tial AS®" [cf. Eq. (14) for the corresponding scalar field ex-
pression might be said to be responsible for the self-force.
But generallyAS®" does not satisfy Eq23) below, and the
current densityd?, which would result from the application
of the operator on the left hand side of E&3) to A", 1
would have a nonvanishing charge distribution in the vicinity G¥M(x,z)= s—[u(x,2)8(o)—v(X,2)0(—0)], (6
of the particle. Furthermoré)3®" is nondifferentiable at the 8m

location of the particle with four-velocityu® if (Rap  \where u(x,z) and v(x,z) are biscalars, the properties of
1 b . . ’ ’ ’
—§9abR)U°#0 there. Similar statements hold for scalar andyhich are described by DeWitt and Brehrf@l. They are
gravitational fields. ~ determined by a local expansion in the vicinitylof and are
_In this paper we present a curved space generalization fmmetric under interchange ofand z. o is half of the
Dirac's scheme. We find that, near the worldlineevenina — gqyare of the distance measured along the geodesicxftom
curved geometry, the retarded field can be decomposed intp\ith <0 for a timelike geodesic, and=0 on the past
. S . . '
two parts such that the firsh;, is an inhomogeneous solu- and future null cones at. The expansions for the biscalars
tion to the field equation with a point source, similar to the(x, z) andv(x,z) are known to be convergent within a finite
‘mean of the advanced and retarded fields,” while the secnejghborhood of" if the geometry is analyti¢7]. The ©
R ; ; ; J
ond,A; , is a homogeneous solution which yields a complete — ) guarantees that only whenandz are timelike related
description of the self-force. These parts are related to by there a contribution from(x,z). The terms in any Green’s
distinct from the usual direct and tail parts. Scalar and gravifynction containingu andv are frequently referred to as the
tational fields are analyzed similarly. “direct” and “tail” parts, respectively.
Below, we first focus on the scalar field case, and then The direct part ofG%Y™(x,z) has support only on the null
briefly describe our results for the electromagnetic and gravicone ofx, and the resultant direct part of the field for a

¢r(x)=47-rqf G[x,z(7)] dr. (5)

A symmetric scalar field Green’s function is derived from
the Hadamard form to be

tational fields. particle moving alond” is
SCALAR FIELD qu(x,z) qu(x,z)
_ _ _ o Yar (X)= - + . : )
The force on a point particle with chargemoving in a 20 Tret 20 Ty

scalar field may be deduced frofsee discussion if6])

where o=do(x,z(7))/d7, and 7, and 7,4, refer to the
Fa=qVay (L) | - : :
a ' proper time of the intersection &f with the past and future

L S null cones ofx, respectively.
where the derivative of the field is to be evaluated at the 114 t4i part ofG™x,z) has support within both the past
location of the particle. Usually it is implicit thag does not .4 future null cones of, and the resultant tail part of the
include the field from the particle itself but is composed onlysqaiq for a particle moving alond is
of the “external” field. The description of the self-force is
not so straightforward. However, one can introduce a quan- ql (me (=
tity 4°°" as in our Eq(14), which when substituted into the e (X)=— E( J +J )v(X,Z) dr. (8)
right hand side of Eq(1) formally yields the scalar-field o Tadv
self-force as described by Quif6]. Similar expressions for DeWitt and Brehmd3] use local expansions in the vicin-
the force in terms of the derivatives of the field are given inity of ' to show thaf9]

Eq. (28) and Eq.(34) for electromagnetic and gravitational

fields. 1
The scalar field equation u(x,z)=1+ 1—2RabVaa' VPe+0(rd), x—I; (9
VAY=V2Vapp=—4mp 2t s the proper distance from to I' measured along the
. . , . spatial geodesic which is orthogonal o They also show
is formally solved in terms of a Green's function, that the symmetric biscalar(x,z) is a solution of the homo-
eneous wave equation,
V2G(x,2)=—(—g) Y2 (x~2). @ q
V2u(x,z)=0, (10)
The source function for a point charge moving along a
worldline I', described by coordinates(7), is and that forx close tol’,
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1 _ _ -1
U(X,Z): _ 1—2R(Z) + O(r), x—T. (11) qv[X,Z( Tret)]VaTret Q[UO' Vao-]’fre[
=—M(x —2,)+0(r), x—=T
The retarded and advanced Green’s functions are derived 12r a " ' '
from G"(x,2), (15

the spatial part of which is not defined whers onI'. In the

usual self-force analysis, one first averaggs*®" over a

small, spatial two-sphere surrounding the particle, thus re-

ady _ sy moving the spatial part of Eq15). Then one takes the limit
G*x,2)=20[22(x)]G¥x2), (12 of this average as the radius of the two-sphere goes to zero,
thereby obtaining a well defined contribution to the self-

where®[X(x),z]=1—0[z,2(x)] equals 1 ifzis in the past force[3—6].

of a spacelike hypersurfadyx) that intersects, and is zero

otherwise. _TheGrad(x,z) implicitly used by Dirac in flat HOMOGENEOUS EIELD

spacetime is

G"™(x,2)=20[2(x),z]G¥Mx,z)

We now provide an alternative expression for the field
a e o responsible for the self-force.
G™(x,2)=G"{(x,2) - G¥"x,2). 13 Given one Green’s function which solves H8), a sec-
ond may be generated by adding to the first any biscalar

Note that the fields resulting from two different Green's Which is @ homogeneous solution of E§). v(x,2) is just
functions that each obey E¢B) necessarily differ by a ho- SUCh @ biscalar and is also symmetii¢x,z) =v(z,x) [3].
mogeneous solution of E¢2). Thus, a new symmetric Green'’s function is

G'™(x,z) has reasonable causal structure, and we assume

LA S . . 1 1
for simplicity that "' is, in fact, the actual field resulting GS(x.2)=GY"x 7)+ X.7)= u(x.2) 8
from the source particle. (x.2) "x2) g0 ) 877[ (x.2)6(0)

+v(X,2)0(0)], (16)
SELF-FORCE . o
o which has no support within the null cone. We (3§ x,z)
Careful analysef3—6] show that contributions to the self- only in a local neighborhood of the particle, and do not de-
force result from both the source’s acceleratior]; ifs nota  pend upon any knowledge of its global existenG&(x,z)
geodesic, and from the curvature of spacetime. For these tWgbes have support on the null conexfjust asG»™x,z)
distinct pOSSIbIIItIeS, the self-force is a consequence of th%]oeS, and also outside the null cone, at Space”ke Separated
particle interacting with either the direct or the tail part of its points. The use 065(x,z) is thus not complicated by the
field, reSpeCtively. By fOllOWing the detailed derivations in need for know|edge of the entire past history of the source
[3—6], we see that the self-force may be considered to resulyng is amenable to local analysis. The corresponding field
via Eq.(1), from the interaction of the particle with the quan-
tity qu(x,z) g ( 7ad
e + >

20
ret adv

g j_rretv[x,z(r)] dr (14 17)

T

+ Vv(X,Z) dr

PS(x)=

qu(x,z)
>

Tret

T, T.

qu(x,2)

self_ __
v 20

ret

is an inhomogeneous solution of Hg) just asy™is. In the

pioneering spirit of Dirac, it is natural to define

where, unlike Dirac’s radiation fieldy*®" is not a homoge-

neous solution of the field equation. GR(x,2)=G"{x,2) — G5(x,2) (18
The first expression in Eq14) is finite and differentiable

in the coincidence limitx—T. When substituted into the [cf. Eq. (13)]. Remarkably, likeG"™Y(x,z), GR(x,z) has no

right hand side of Eq.1) this expression provides the curved support inside the future null cone. Corresponding to

space generalization of the ALD force, and local expansion§R(x,z), we construct

of u(x,z) and o(x,z) in [3—6] give the resultant force in

terms of the acceleration df and components of the Rie- qu(x,z) |2
R_ ret_ ,S_ _ —
mann tensor. Y=y —yr= Y
The integral in Eq(14) comes from the tail part of the RO P
Green'’s function. Its derivative results, in part, from the im- 1
plicit dependence ofr; upon x. Quinn [6] computes this % frre‘+ _ffadv v(x,2) dr (19
contribution to the derivative to be o 2) 1 '
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analogous to Dirac’s radiation field. By constructigfl is a  If (R,,— £g.,R)uP+0 at the particle, theAS*" is nondiffer-
homogeneous solution of Eq2) and has the consequent entiable there.

property that it is smooth in the coincidence limit-1". We Similar to the scalar fieldAS is an inhomogeneous solu-
note its relation tay**" tion of Eq. (23). That it also satisfies the gauge condition
(22) follows from an argument similar to that after E§.37)
R_ yseif_ L [T in [3]. We have
Tret
S ! ’
Our most significant technical result is, in fact, that the VaAa:f Vo (GI)V—g dx, (26

self-force is determined by the particle’s interaction witf _ ) )

since the integral term in E420) gives no contribution to a  @ssuming thatJ® is conserved, wheré5® is the scalar
self-force. For a field point which is nearT”, the integrand ~ Green’s function of Eq(16). ThatG® has no support within
may be expanded using E@L1). The dominant part of the the past or future null cone |_mpI|es that the integral is zero
integral from 7, to 7,4, then brings in a factor of,q— 7  When written as a boundary integral.

=2r+0(r?) timesv(x,x), and the integral term of E¢20) With the definition

IS
AR=AP-AS (27

—qrv(x,x)+O(r2)= iqu(x)+O(r2), Xx—T. AE gives a homogeneous electromagnetic field. The electro-
12 21) magnetic self-force becomes

_ R_ g AR\Lb
The derivative ofi5qrR(x) gives an outward pointing, spa- Fo=ag™(VeAp — bAC) 2. (28)

tial unit vector neatl”; this exactly cancels the troublesome
part of V,4°*" in Eq. (15) which is thus absent frofy,yR.
The derivative of the remainder ter@(r?) is zero in the
limit that x approached” and gives no contribution to the
self-force. Thus, the self-force may be seen to be due exclu- V.hab=0 (29)
sively to the interaction of the particle with® via Eq. (1). é '

We regard this approach as preferable, becatisis differ-  and, withR,,=0, the perturbed Einstein equations are
entiable at the location of the particle, so that averaging is no

longer required in computing the self-force. Even more im- V2hap+ 2R, bdﬁcdz —167T,y, (30)
portantly, 4 is a homogeneous solution of E@).

This combines with the Lorentz force law from the back-
ground to determine the actual worldline of the particle.
For the gravitational field, the harmonic gauge requires

Whereﬁabz hap— 39.5N°% is the trace reversed version of the
ELECTROMAGNETIC AND GRAVITATIONAL FIELDS metric perturbatiorh,,. Mino, Sasaki and Tanak&] show

The analysis for the scalar field is easily generalizable té[hat

both electromagnetic and gravitational fields by the addition
of extra indices tai(x,z) andv(X,z) to create corresponding

bivectors and bitensors, and by the introductiong?ﬁ(x,z), and that(asx—T")

which is the bivector of parallel displacemef8]. The o

primed indices below refer to the source point the Vaberd (%,2)= 0.8 0" Rerergri (2)+0O(r). (32
unprimed indices to the field point as above. The defini- o

tions and relationships for the various Green’s functions folf R,quu?+0 at the particle, theh®"is nondifferentiable
low the same pattern as above and are not repeated belowthere.

For the electromagnetic field, the Lorentz gauge requires  gjmilar to the electromagnetic field Caﬁb is an inho-
mogeneous solution of E¢30) satisfying the gauge condi-

Uabord (X,2) =20ac (X,2) Qo (X,2)U(X,2),  (3D)

a:
VaA"=0, (22) tion (29), if T,y is conserved. With the definition
so that Maxwell's equations become —
hE,=h—h3, (33
V2A2—R3 AP= —47J2, (23

hR is differentiable orl", and

DeWitt and Brehmég3] show that

e 1
_ a_ _ ab a_byScod R __— R
Unp (X,2) = Gap (X, Z2)U(X,2), (24) F un(g?°+2z%2°)z°z (Vchdb 2Vbhcd). (34
and that(asx—T") Subject to this force, the particle moves along a worldline
which is actually a geodesic for a metric composed of the
1 1 background geometry complemented Hgy,. While geode-
=—0.° rel T X et . . . . ’ .

Vap'(X,2)= 50a (Rb o~ gbre R) TOM). @9 e motion has been demonstrated in the pad], only in
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our case is the reference metrgjab-}- h;zb’ a vacuum solu- the metric with its tidal distortion from the “external,” ho-

tion of the Einstein equations throug ). mogeneous fiel@i8]. As a consequence of E(4), the local
observer naturally sees that the worldline of the particle is a
DISCUSSION geodesic in the combined, “external” homogeneous field

which he measures. Making only local measurements near
For the clearest demonstration of the impact of our analythe worldline, the observer sees no radiation, no local source
sis, we consider the free motion of a particle of small mass for the “external” field and also no effect which he would be
in the purely gravitational case. With rzopriori knowledge compelled to describe as radiation reaction.
of the background geometry, an observer makes local mea-
surements of the metric within a neighborhood of the world-
line of the particle. That field has two distinct contributions. ACKNOWLEDGMENTS

The first is the background metric combined Wh:g\o—thls We are gratefu| to Amos Ori and Robert Wald for com-
combination appears as an “external,” homogeneous fieldinents on an earlier version of this paper. This research has
no local measurement distinguishés, from the back- been supported in part by NSF Grant No. PHY-9800977
ground. The second comes frohib; for free motion the (B.F.W,) and NASA Grant No. NAGW-4864S.D) with the
observer knows this contribution to be simply th& part of  University of Florida.

[1] C. W. Misner, K. S. Thorne, and J. A. Wheel&ravitation [6] T.C. Quinn, Phys. Rev. B2, 064029(2000.

(Freeman, San Francisco, 1978. 211. [7] J. Hadamardl_ectures on Cauchy’s Problem in Linear Differ-
[2] P.A.M. Dirac, Proc. R. Soc. LondoA167, 148(1938. ential Equations(Yale University Press, New Haven, CT,
[3] B.S. Dewitt and R.W. Brehme, Ann. Phy§N.Y.) 9, 220 1923.

(1960. [8] S. Detweiler, Phys. Rev. Let86, 1931(2001).

[4] Y. Mino, M. Sasaki, and T. Tanaka, Phys. Rev.55, 3457 [9] Our convention %,V &.=Ranés agrees with that in Refs.

(1997. [5,6] and is the opposite of that used[i3,4].

[5] T.C. Quinn and R.M. Wald, Phys. Rev. 55, 3381(1997.

024025-5



