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Self-force via a Green’s function decomposition
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The gravitational field in a neighborhood of a particle of small massm moving through curved spacetime is
naturally decomposed into two parts each of which satisfies the perturbed Einstein equations throughO(m).
One part is an inhomogeneous field which looks like them/r field tidally distorted by the local Riemann tensor.
The other part is a homogeneous field that completely determines the self-force of the particle interacting with
its own gravitational field, which changes the worldline atO(m) and includes the effects of radiation reaction.
Surprisingly, a local observer measuring the gravitational field in a neighborhood of a freely moving particle
sees geodesic motion of the particle in a perturbed vacuum geometry and would be unaware of the existence
of radiation atO(m). In the light of all previous work this is quite an unexpected result.
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INTRODUCTION

The principle of equivalence in general relativity implie
that a freely moving particle, of infinitesimal mass and si
follows a geodesic of spacetime@1#. For a small but finite
mass m, the particle perturbs the spacetime geometry
O(m). The interaction of the particle with this perturbatio
of the metric is called the ‘‘self-force’’ which changes th
worldline atO(m) and includes the effects of radiation rea
tion.

A local observer measuring the gravitational field in
neighborhood of the particle, with noa priori knowledge of
the background geometry, sees a combination of the b
ground metric plus itsO(m) perturbation caused by the pa
ticle. Local measurements, in a neighborhood of the parti
cannot distinguish these two specific contributions. Nev
theless, we show below that the combined metric in
neighborhood of the particle can be uniquely decompo
into two distinct parts:~i! the tidally distortedm/r piece of
the perturbation of the metric, which is an inhomogeneo
solution of the perturbed Einstein equations atO(m), and~ii !
the sum of the background metric and the remainder of
metric perturbation, which together are a homogeneous s
tion of the Einstein equations throughO(m).

The self-force is shown to result in geodesic motion of
particle, throughO(m), in the homogeneous perturbed me
ric, ~ii ! above. With only local measurements, the obser
has no means of distinguishing the homogeneous pertu
tion from the background metric throughO(m). As the par-
ticle moves along a geodesic of this perturbed vacuum
ometry, the observer sees no effect which one would
compelled to interpret as radiation reaction atO(m). In this
precisely defined fashion, we extend the understanding o
principle of equivalence in general relativity: The orbit of th
particle is a geodesic throughO(m), in a locally measurable
vacuum gravitational field.

HISTORICAL BACKGROUND

In Dirac’s @2# analysis of the self-force for the electro
magnetic field of a particle in flat spacetime, he used
conservation of the stress-energy tensor inside a nar
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world tube surrounding the particle’s worldline to deriv
equations of motion with radiation reaction effects include
DeWitt and Brehme@3# extended this approach to allow fo
curvature in spacetime. Mino, Sasaki and Tanaka@4# gener-
alized it to include the gravitational self-force as well. Quin
and Wald@5# and Quinn@6# have obtained similar results b
pursuing an axiomatic approach for the gravitational, elec
magnetic and scalar field self-forces.

On a formal level, these analyses provide a coherent
consistent treatment of the self-force. Analysis begins wit
given worldlineG, described byza(t), which obeys the Lor-
entz force law through the fixed background gravitation
and electromagnetic fields. The self-force gives the ac
worldline an acceleration away fromG, and it is the mass
times this acceleration that we wish to determine.

Towards this end, first the retarded field is obtained
terms of the corresponding Green’s function. Traditiona
the Green’s function has been decomposed into ‘‘direct’’ a
‘‘tail’’ parts. The resulting ‘‘direct’’ part of the field at a point
x is determined completely by sources on the past null c
of x; in flat spacetime this is the Lie´nard-Wiechert potentia
for electromagnetism. The curvature of spacetime allows
an additional contribution from sources within the past n
cone, and this is the ‘‘tail’’ part. The self-force on a particle
then composed of two pieces: The first piece comes from
direct part of the field and the acceleration ofG in the back-
ground geometry; in flat spacetime this is the Abraha
Lorentz-Dirac~ALD ! force. The second piece comes fro
the tail part of the field and is present in curved space eve
G is a geodesic. While the decomposition of the field into t
direct and tail parts has been useful for describing the s
force, neither of these parts individually is a solution of t
field equation.

In flat spacetime Dirac@2# decomposed the retarded ele
tromagnetic field into two parts:~i! the ‘‘mean of the ad-
vanced and retarded fields’’ which is an inhomogeneous fi
resembling the Coulombq/r piece of the scalar potentia
near the particle, and~ii ! a ‘‘radiation’’ field, his Eqs.~11!
and ~13!, which is a homogeneous solution of Maxwell
equations. He described the self-force as the interaction
the particle with the radiation field, a well-defined vacuu
Maxwell field.
©2003 The American Physical Society25-1
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Previous descriptions of the self-force in curved spa
time @3–6# reduce to Dirac’s result in the flat spacetime lim
And they provide clear, adequate expressions for the s
force. However, they do not share the physical simplicity
Dirac’s analysis where the force is described entirely
terms of an identifiable, vacuum solution of the field equ
tions. Indeed, for an electromagnetic field, the vector pot
tial Aa

self @cf. Eq. ~14! for the corresponding scalar field ex
pression# might be said to be responsible for the self-forc
But generallyAa

self does not satisfy Eq.~23! below, and the
current densityJa, which would result from the application
of the operator on the left hand side of Eq.~23! to Aa

self,
would have a nonvanishing charge distribution in the vicin
of the particle. Furthermore,Aa

self is nondifferentiable at the
location of the particle with four-velocityua if ( Rab
2 1

6 gabR)ubÞ0 there. Similar statements hold for scalar a
gravitational fields.

In this paper we present a curved space generalizatio
Dirac’s scheme. We find that, near the worldlineG, even in a
curved geometry, the retarded field can be decomposed
two parts such that the first,Aa

S, is an inhomogeneous solu
tion to the field equation with a point source, similar to t
‘‘mean of the advanced and retarded fields,’’ while the s
ond,Aa

R, is a homogeneous solution which yields a compl
description of the self-force. These parts are related to
distinct from the usual direct and tail parts. Scalar and gra
tational fields are analyzed similarly.

Below, we first focus on the scalar field case, and th
briefly describe our results for the electromagnetic and gr
tational fields.

SCALAR FIELD

The force on a point particle with chargeq moving in a
scalar field may be deduced from~see discussion in@6#!

Fa5q¹ac, ~1!

where the derivative of the field is to be evaluated at
location of the particle. Usually it is implicit thatc does not
include the field from the particle itself but is composed on
of the ‘‘external’’ field. The description of the self-force i
not so straightforward. However, one can introduce a qu
tity cself, as in our Eq.~14!, which when substituted into th
right hand side of Eq.~1! formally yields the scalar-field
self-force as described by Quinn@6#. Similar expressions for
the force in terms of the derivatives of the field are given
Eq. ~28! and Eq.~34! for electromagnetic and gravitationa
fields.

The scalar field equation

¹2c[¹a¹ac524pr ~2!

is formally solved in terms of a Green’s function,

¹2G~x,z!52~2g!21/2d4~x2z!. ~3!

The source function for a point charge moving along
worldline G, described by coordinatesza(t), is
02402
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r~x!5qE ~2g!21/2d4
„x2z~t!… dt, ~4!

wheret is the proper time along the worldline of the partic
with scalar chargeq. The scalar field of this particle is

c~x!54pqE G@x,z~t!# dt. ~5!

A symmetric scalar field Green’s function is derived fro
the Hadamard form to be

Gsym~x,z!5
1

8p
@u~x,z!d~s!2v~x,z!Q~2s!#, ~6!

where u(x,z) and v(x,z) are biscalars, the properties o
which are described by DeWitt and Brehme@3#. They are
determined by a local expansion in the vicinity ofG, and are
symmetric under interchange ofx and z. s is half of the
square of the distance measured along the geodesic fromx to
z with s,0 for a timelike geodesic, ands50 on the past
and future null cones ofx. The expansions for the biscala
u(x,z) andv(x,z) are known to be convergent within a finit
neighborhood ofG if the geometry is analytic@7#. The Q
(2s) guarantees that only whenx andz are timelike related
is there a contribution fromv(x,z). The terms in any Green’s
function containingu andv are frequently referred to as th
‘‘direct’’ and ‘‘tail’’ parts, respectively.

The direct part ofGsym(x,z) has support only on the nul
cone of x, and the resultant direct part of the field for
particle moving alongG is

cdir
sym~x!5Fqu~x,z!

2ṡ
G

tret

1Fqu~x,z!

2ṡ
G

tadv

, ~7!

where ṡ5ds„x,z(t)…/dt, and t ret and tadv refer to the
proper time of the intersection ofG with the past and future
null cones ofx, respectively.

The tail part ofGsym(x,z) has support within both the pas
and future null cones ofx, and the resultant tail part of th
field for a particle moving alongG is

c tail
sym~x!52

q

2 S E
2`

tret
1E

tadv

` D v~x,z! dt. ~8!

DeWitt and Brehme@3# use local expansions in the vicin
ity of G to show that@9#

u~x,z!511
1

12
Rab¹

as ¹bs1O~r 3!, x→G; ~9!

r is the proper distance fromx to G measured along the
spatial geodesic which is orthogonal toG. They also show
that the symmetric biscalarv(x,z) is a solution of the homo-
geneous wave equation,

¹2v~x,z!50, ~10!

and that forx close toG,
5-2
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SELF-FORCE VIA A GREEN’S FUNCTION DECOMPOSITION PHYSICAL REVIEW D67, 024025 ~2003!
v~x,z!52
1

12
R~z!1O~r !, x→G. ~11!

The retarded and advanced Green’s functions are der
from Gsym(x,z),

Gret~x,z!52Q@S~x!,z#Gsym~x,z!

Gadv~x,z!52Q@z,S~x!#Gsym~x,z!, ~12!

whereQ@S(x),z#512Q@z,S(x)# equals 1 ifz is in the past
of a spacelike hypersurfaceS(x) that intersectsx, and is zero
otherwise. TheGrad(x,z) implicitly used by Dirac in flat
spacetime is

Grad~x,z!5Gret~x,z!2Gsym~x,z!. ~13!

Note that the fields resulting from two different Green
functions that each obey Eq.~3! necessarily differ by a ho
mogeneous solution of Eq.~2!.

Gret(x,z) has reasonable causal structure, and we ass
for simplicity that c ret is, in fact, the actual field resulting
from the source particle.

SELF-FORCE

Careful analyses@3–6# show that contributions to the sel
force result from both the source’s acceleration, ifG is not a
geodesic, and from the curvature of spacetime. For these
distinct possibilities, the self-force is a consequence of
particle interacting with either the direct or the tail part of
field, respectively. By following the detailed derivations
@3–6#, we see that the self-force may be considered to res
via Eq.~1!, from the interaction of the particle with the qua
tity

cself52Fqu~x,z!

2ṡ
G

tret

tadv

2qE
2`

tret
v@x,z~t!# dt ~14!

where, unlike Dirac’s radiation field,cself is not a homoge-
neous solution of the field equation.

The first expression in Eq.~14! is finite and differentiable
in the coincidence limit,x→G. When substituted into the
right hand side of Eq.~1! this expression provides the curve
space generalization of the ALD force, and local expansi
of u(x,z) and ṡ(x,z) in @3–6# give the resultant force in
terms of the acceleration ofG and components of the Rie
mann tensor.

The integral in Eq.~14! comes from the tail part of the
Green’s function. Its derivative results, in part, from the im
plicit dependence oft ret upon x. Quinn @6# computes this
contribution to the derivative to be
02402
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2qv@x,z~t ret!#¹at ret5q@vṡ21¹as#tret

52
qR~x!

12r
~xa2za!1O~r !, x→G,

~15!

the spatial part of which is not defined whenx is onG. In the
usual self-force analysis, one first averages¹acself over a
small, spatial two-sphere surrounding the particle, thus
moving the spatial part of Eq.~15!. Then one takes the limi
of this average as the radius of the two-sphere goes to z
thereby obtaining a well defined contribution to the se
force @3–6#.

HOMOGENEOUS FIELD

We now provide an alternative expression for the fie
responsible for the self-force.

Given one Green’s function which solves Eq.~3!, a sec-
ond may be generated by adding to the first any bisc
which is a homogeneous solution of Eq.~3!. v(x,z) is just
such a biscalar and is also symmetric,v(x,z)5v(z,x) @3#.
Thus, a new symmetric Green’s function is

GS~x,z![Gsym~x,z!1
1

8p
v~x,z!5

1

8p
@u~x,z!d~s!

1v~x,z!Q~s!#, ~16!

which has no support within the null cone. We useGS(x,z)
only in a local neighborhood of the particle, and do not d
pend upon any knowledge of its global existence.GS(x,z)
does have support on the null cone ofx, just asGsym(x,z)
does, and also outside the null cone, at spacelike sepa
points. The use ofGS(x,z) is thus not complicated by the
need for knowledge of the entire past history of the sou
and is amenable to local analysis. The corresponding fie

cS~x!5Fqu~x,z!

2ṡ
G

tret

1Fqu~x,z!

2ṡ
G

tadv

1
q

2Etret

tadv
v~x,z! dt

~17!

is an inhomogeneous solution of Eq.~2! just asc ret is. In the
pioneering spirit of Dirac, it is natural to define

GR~x,z![Gret~x,z!2GS~x,z! ~18!

@cf. Eq. ~13!#. Remarkably, likeGret(x,z), GR(x,z) has no
support inside the future null cone. Corresponding
GR(x,z), we construct

cR5c ret2cS52Fqu~x,z!

2ṡ
G

tret

tadv

2q

3S E
2`

tret
1

1

2Etret

tadvD v~x,z! dt ~19!
5-3
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analogous to Dirac’s radiation field. By constructioncR is a
homogeneous solution of Eq.~2! and has the conseque
property that it is smooth in the coincidence limit,x→G. We
note its relation tocself

cR5cself2
1

2
qE

tret

tadv
v~x,z! dt. ~20!

Our most significant technical result is, in fact, that t
self-force is determined by the particle’s interaction withcR,
since the integral term in Eq.~20! gives no contribution to a
self-force. For a field pointx which is nearG, the integrand
may be expanded using Eq.~11!. The dominant part of the
integral fromt ret to tadv then brings in a factor oftadv2t ret
52r 1O(r 2) timesv(x,x), and the integral term of Eq.~20!
is

2qrv~x,x!1O~r 2!5
1

12
qrR~x!1O~r 2!, x→G.

~21!

The derivative of 1
12 qrR(x) gives an outward pointing, spa

tial unit vector nearG; this exactly cancels the troublesom
part of ¹acself in Eq. ~15! which is thus absent from¹acR.
The derivative of the remainder termO(r 2) is zero in the
limit that x approachesG and gives no contribution to th
self-force. Thus, the self-force may be seen to be due ex
sively to the interaction of the particle withcR via Eq. ~1!.
We regard this approach as preferable, becausecR is differ-
entiable at the location of the particle, so that averaging is
longer required in computing the self-force. Even more i
portantly,cR is a homogeneous solution of Eq.~2!.

ELECTROMAGNETIC AND GRAVITATIONAL FIELDS

The analysis for the scalar field is easily generalizable
both electromagnetic and gravitational fields by the addit
of extra indices tou(x,z) andv(x,z) to create correspondin
bivectors and bitensors, and by the introduction ofḡab8(x,z),
which is the bivector of parallel displacement@3#. The
primed indices below refer to the source pointz, the
unprimed indices to the field pointx as above. The defini
tions and relationships for the various Green’s functions
low the same pattern as above and are not repeated be

For the electromagnetic field, the Lorentz gauge requ

¹aAa50, ~22!

so that Maxwell’s equations become

¹2Aa2Ra
bAb524pJa. ~23!

DeWitt and Brehme@3# show that

uab8~x,z!5ḡab8~x,z!u~x,z!, ~24!

and that~asx→G)

vab8~x,z!5
1

2
ḡa

c8S Rb8c82
1

6
gb8c8RD1O~r !. ~25!
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If ( Rab2 1
6 gabR)ubÞ0 at the particle, thenAa

self is nondiffer-
entiable there.

Similar to the scalar field,Aa
S is an inhomogeneous solu

tion of Eq. ~23!. That it also satisfies the gauge conditio
~22! follows from an argument similar to that after Eq.~3.37!
in @3#. We have

¹aAa
S5E ¹a8~GSJa8!A2g d4x8, ~26!

assuming thatJa is conserved, whereGS is the scalar
Green’s function of Eq.~16!. ThatGS has no support within
the past or future null cone implies that the integral is ze
when written as a boundary integral.

With the definition

Aa
R[Aa

ret2Aa
S, ~27!

Aa
R gives a homogeneous electromagnetic field. The elec

magnetic self-force becomes

Fa5qgac~¹cAb
R2¹bAc

R!żb. ~28!

This combines with the Lorentz force law from the bac
ground to determine the actual worldline of the particle.

For the gravitational field, the harmonic gauge require

¹ah̄ab50, ~29!

and, withRab50, the perturbed Einstein equations are

¹2h̄ab12Ra
c

b
dh̄cd5216pTab , ~30!

whereh̄ab5hab2 1
2 gabh

c
c is the trace reversed version of th

metric perturbationhab . Mino, Sasaki and Tanaka@4# show
that

uabc8d8~x,z!52ḡac8~x,z!ḡbd8~x,z!u~x,z!, ~31!

and that~asx→G)

vabc8d8~x,z!52ḡa
e8ḡb

f 8Rc8e8d8 f 8~z!1O~r !. ~32!

If Rcadbu
cudÞ0 at the particle, thenh̄ab

self is nondifferentiable
there.

Similar to the electromagnetic field case,h̄ab
S is an inho-

mogeneous solution of Eq.~30! satisfying the gauge condi
tion ~29!, if Tab is conserved. With the definition

h̄ab
R [h̄ab

ret2h̄ab
S , ~33!

h̄ab
R is differentiable onG, and

Fa52m~gab1 żażb!żcżdS ¹chdb
R 2

1

2
¹bhcd

R D . ~34!

Subject to this force, the particle moves along a worldli
which is actually a geodesic for a metric composed of
background geometry complemented byhab

R . While geode-
sic motion has been demonstrated in the past@4,5#, only in
5-4
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our case is the reference metric,gab1hab
R , a vacuum solu-

tion of the Einstein equations throughO(m).

DISCUSSION

For the clearest demonstration of the impact of our ana
sis, we consider the free motion of a particle of small masm
in the purely gravitational case. With noa priori knowledge
of the background geometry, an observer makes local m
surements of the metric within a neighborhood of the wor
line of the particle. That field has two distinct contribution
The first is the background metric combined withhab

R —this
combination appears as an ‘‘external,’’ homogeneous fie
no local measurement distinguisheshab

R from the back-
ground. The second comes fromhab

S ; for free motion the
observer knows this contribution to be simply them/r part of
02402
-

a-
-
.

;

the metric with its tidal distortion from the ‘‘external,’’ ho
mogeneous field@8#. As a consequence of Eq.~34!, the local
observer naturally sees that the worldline of the particle i
geodesic in the combined, ‘‘external’’ homogeneous fie
which he measures. Making only local measurements n
the worldline, the observer sees no radiation, no local sou
for the ‘‘external’’ field and also no effect which he would b
compelled to describe as radiation reaction.
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