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Structure of radial null geodesics in higher dimensional dust collapse

K. D. Patil*
Department of Mathematics, B. D. College of Engineering, Sewagram, Wardha (M. S.), India

~Received 18 September 2002; published 17 January 2003!

We investigate here the occurrence and nature of a naked singularity for the inhomogeneous gravitational
collapse of higher dimensional Tolman-Bondi dust clouds. The final state of collapse, a black hole or naked
singularity, turns out to depend on the order of the first nonvanishing derivative of the density at the center. The
study of the collapse along radial null geodesics seems to suggest that higher dimensions (D>6) respect the
CCH, if one chooses a smooth analytic density profile as initial data.
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I. INTRODUCTION

The cosmic censorship hypothesis~CCH! of Penrose@1,2#
says that, in generic situations, all spacetime singulari
arising from regular initial data are always hidden beh
event horizons and hence invisible to outside observers~no
naked singularities!. This hypothesis plays a fundament
role in the theory of black holes and has been recognize
one of the most important open problems in classical gen
relativity. There exist many exact solutions of Einstein
equations which admit naked singularities. The models s
ied so far include the collapse of dust@3#, radiation@4#, per-
fect fluid @5#, and imperfect fluids@6#.

The possible existence of dimensions greater than 4
been seriously considered in recent times. This has c
about from approaches in particle physics to the unificat
of all forces including gravitation such as Kaluza-Klein the
ries and superstring theory. Quite recently there has be
great deal of interest in models where the size of the e
dimensions is much larger than the Planck length@7#. It is
now important to consider the evolution of the extra dime
sions since the observed strength of the gravitational forc
directly dependent on the size of the extra dimensions~cf.
Ref. @8#!.

From the viewpoint of the CCH, one would like to kno
the effect of extra dimensions on the existence of a na
singularity. In this context, one question which could na
rally arise is, what happens in higher dimensions~HD! which
are currently being considered in view of their relevance
string theory and other field theories? Would the example
a naked singularity in four dimensions~4D! go over to HD or
not? Does the CCH hold in higher dimensional spacetim
Also it is well known that as the dimensions increase t
simultaneous but opposite effects set in: one increase in
homogeneity and the other a strengthening of gravitatio
field. The former would facilitate the formation of a nake
singularity while the latter favors the formation of a bla
hole. It is well known that@9# in the 4D case the final state o
collapse, a black hole or naked singularity, depends on
order of the first nonvanishing derivative of density at t
center. We want to see whether there is any relation betw
the order of the leading nonvanishing derivative of dens
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and dimension. Does the order of the first nonvanishing
rivative of density get affected by increase in dimension
the space? We shall try to find out the answers to these q
tions in this work.

In the next section we discuss the nature of singularitie
higher dimensional Tolman-Bondi spacetime. In Sec. IV
try to check whether a family of geodesics can terminate
the singularity with a given root as a tangent. We conclu
with some concluding remarks.

II. NAKED SINGULARITIES IN THE HIGHER
DIMENSIONAL TOLMAN-BONDI SPACETIMES

To facilitate the discussion we give a brief summary
the higher dimensional Tolman-Bondi solution. For a d
tailed study, the reader may refer to Refs.@3,9,10#.

Let us consider the metric for (N12)-dimensional space
time with spherical symmetry@10#:

ds252dt21
R82

11 f ~r !
dr21R2 dV2, ~1!

where

dV25du1
21sin2 u1 du2

21sin2 u1 sin2 u2 du3
21¯

1sin2 u1 sin2 u2 sin2 u3¯sin2 uN21 duN
2 , ~2!

is the metric on theN sphere andN5D22 ~whereD is the
total number of dimensions!, together with the stress-energ
tensor for dust

Tab5«~ t,r !da
t db

t , ~3!

whereua5da
t is the (N12)-dimensional velocity andR is

the area radius at timet of the shell having the comoving
coordinater.

The Einstein equations for the collapsing cloud are

«~ t,r !5
NF8

2RNR8
~4!

and

Ṙ25
F~r !

RN21 1 f ~r ! ~5!
©2003 The American Physical Society17-1
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~we have set 8pG/C451).
Here the overdot and prime denote partial derivatives w

respect tot andr, respectively. The quantityF(r ) arises as a
free function from the integration of the Einstein equatio
and can be interpreted physically as the total mass of
collapsing cloud within a coordinate radiusr. f (r ) is also
another free function ofr and is called the energy function
Since in the present discussion we are concerned with gr
tational collapse, we takeṘ(t,r ),0.

For physical reasons, one assumes that energy de
«(t,r ) is non-negative everywhere. The epochR50 denotes
a physical singularity where the spherical shell of matter c
lapses to zero radius and where the density«(t,r ) blows up
to infinity. The timet5ts(r ) corresponds to the valueR50
where the area of the shell of matter at a constant valu
coordinater vanishes. The singularity curvet5ts(r ) corre-
sponds to the time when the matter shells meet the phys
singularity.

This specifies the ranges of the coordinates for the me
~1!:

0<r ,`, 2`,t,ts~r !. ~6!

For simplicity, we consider the marginally bound casef (r )
50.

Hence, Eq.~5! yields

Ṙ25
F~r !

RN21 . ~7!

Since we are considering the collapsing case, we take

Ṙ5
2AF

R~N21!/2 . ~8!

Integration of Eq.~8! yields

R~N11!/25F r ~N11!/22
~N11!

2
AFt G , ~9!

where we have used the freedom in the scaling of the
moving coordinater to setR(0,r )5r at the starting epoch o
the collapse so that the physical area radiusR increases
monotonically inr, and withR851 there are no shell cross
ings on the initial surface.

We will be interested here only in the central she
focussing singularity atR50, r 50 which is a gravitationally
strong singularity, as opposed to the shell crossing o
which are weak and through which the spacetime may so
times be extended@11#.

It follows from Eq. ~4! that the functionF(r ) becomes
fixed once the initial density distribution«(0,r )5r(r ) is
given, i.e.,

F~r !5
2

N E r~r !r N dr. ~10!

We assume that initial density profiler(r ) has the series
expansion@9#
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r~r !5r01r1r 1
r2r 2

2!
1

r3r 3

3!
1¯1

rnr n

n!
1¯ ~11!

near the centerr 50, which can be substituted in Eq.~10! to
yield

F5F0r N111F1r N121F2r N131¯ , ~12!

where

Fn5
2

N

rn

n! ~N111n!
, ~13!

and rn is the nth derivative of density andn takes integral
values 0,1,2,••• . We note that the first nonvanishing deriv
tive in the series expansion~11! should be negative, as w
will consider only those density functions which decreases
one moves away from the center.

As ts(r ) gives the time at which area radiusR becomes
zero it follows from Eq.~9! that

ts~r !5S 2

N11D r ~N11!/2

AF
. ~14!

The Kretschmann scalarK5RabcdR
abcd for the metric~1! is

given by

K5
AF82

R2NR822
BFF8

R2N11R8
1

CF2

R2N12 , ~15!

whereA,B,Care some constants. It is seen from Eqs.~4! and
~15! that the energy density and Kretschmann scalar b
diverge at the shell labeledr indicating the presence of
scalar polynomial curvature singularity atr.

The outgoing radial null geodesics of Eq.~1! are given by

dt

dr
5R8. ~16!

Let u5r a (a.1). Then

dR

du
5

1

ar a21 S Ṙ
dt

dr
1R8D . ~17!

By virtue of Eqs.~8! and ~16! the above equation leads to

dR

du
5

R8

ar a21 F12
AF

R~N21!/2G5
R8

ar a21 F12A L

XN21G
5U~X,u!, ~18!

where

L5
F

uN21 , X5
R

u
. ~19!

It is clear thatR50, u50 is a singular point of Eq.~18!. If
there are outgoing radial null geodesics terminating in
past at the singularity with a definite tangent, then at
singularity we havedR/du.0. Hence apparent horizon fo
7-2
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STRUCTURE OF RADIAL NULL GEODESICS IN . . . PHYSICAL REVIEW D67, 024017 ~2003!
(N12) dimensional spacetime is given byR5F1/(N21). In
order to check whether the singularity is naked, we exam
the null geodesic equations for the tangent vectorsKa

5dxa/dk, wherek is an affine parameter along the geod
sics.

The radial null geodesics of the spacetime~1! are given
by

Kt5
dt

dk
5

P

R
, ~20!

Kr5
dr

dk
5

Kt

R8
5

P

RR8
, ~21!

where the functionP(t,r ) satisfies the differential equation

dP

dk
1P2S Ṙ8

R8R
2

Ṙ

R22
1

R2D 50. ~22!

Differentiation of Eq.~9! yields

R85
Xhr a21

N11
1FN112h

N11 G 1

X~N21!/2r ~a21!~N21!/2 ,

~23!

whereh5rF 8/F.
Since we are interested in the behavior ofh near the cen-

ter, we can simplifyh further to get

h~r !5~N11!1h1r 1h2r 21h3r 31¯ , ~24!

where

h15
F1

F0
, h25

2F2

F0
2

F1
2

F0
2 ,

h35
3F3

F0
2

3F1F2

F0
2 1

F1
3

F0
3 , etc. ~25!

If all the derivativesrn of the density vanish forn<(q
21), and theqth derivative is the first nonvanishing deriva
tive, thenTh

q , theqth term in the expansion forh, is

Th
q5

qFqr q

F0
. ~26!

Hereq takes the values 1,2,3, etc. In this case, we can w
h(r ) as

h~r !5~N11!1
qFq

F0
r q1O~r q11!. ~27!

We use expression for@(N11)2h# from Eq. ~27! keeping
only terms up to the orderq and substitute in Eq.~23! to get

R85r ~a21!F hX

N11
2

qFq

~N11!F0X~N21!/2r ~a21!~N11!/2 r qG .
~28!

We substitute the above expression forR8 in Eq. ~18! to
yield
02401
e
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dR

du
5

1

a F12A L

X~N21!G F hX

N11
2

Q

X~N21!/2G5U~X,u!,

~29!

where

Q5
qFq

~N11!F0r ~a21!~N11!/2 r q. ~30!

Let us consider the limitX0 of the tangentX along the null
geodesic terminating at the singularity atR50, u50.

Thus,

X05 lim
R→0
u→0

R

u
5 lim

R→0
u→0

dR

du
5 lim

R→0
u→0

U~X,u!. ~31!

If a real and positive value ofX0 satisfies the above equatio
then the singularity could be naked. If the singularity is n
ked, somea exists such that at least one finite positive val
of X0 exists which solves the algebric equation

V~X0!50, ~32!

where

V~X!5U~X,0!2X

5
1

a F12A L0

XN21GF h0X

N11
2

Q0

X~N21!/2G2X, ~33!

where

L05 lim
r→0

L, h05 lim
r→0

h.

Note that this root equation method picks up only the g
desics behaving asX5R/r a5const.

There may be the possibility of the existence of geodes
which have different behaviors than are assumed. To
such geodesics, we must solve the null geodesic equa
@12#.

The constanta can be determined by the requirement th
Q0 , the limiting value ofQ asr→0, should not be equal to
zero or infinity. This gives

q5~a21!~N11!/2, i.e., a5
2q

N11
11, ~34!

which implies

Q05
qFq

~N11!F0
. ~35!

Using Eqs.~12! and~34!, the limiting value of the functionL
is found to be
7-3
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L050, q,~N11!/~N21!

5F0 , q5~N11!/~N21!

5`, q.~N11!/~N21!. ~36!

We note thatq is the order of the first nonvanishing deriv
tive of density. SinceL0 takes different values for differen
choices ofq, the nature of the roots depends on the fi
nonvanishing derivative of density at the center.

So we analyze the various cases in (N12)-dimensional
spacetimes one by one.

~A! First considerN53 ~i.e., 5D!. We shall consider vari-
ous cases of density profile in this spacetime.

Case~i!: r1Þ0. In this case,q51, a53/2, L050, Q0
5F1/4F0 , h054. Hence Eq.~33! yields

X0
25

2F1

2F0
5

22r1

5r0
. ~37!

Because of the assumption that the density decreases
from the center,r1,0 and soX0 will be positive and thus
the singularity is naked.

Case ~ii !: r150, r2Þ0. In this caseq52, a52, L0
5F0 , Q05F2/2F0 . Equation~33! then leads to

2X0
3

F0
3/2 1

2X0
2

F0
1

F2X0

F0
5/2 2

F2

F0
2 50. ~38!

We definey5X0 /AF0, j5F2 /F0
2. Equation~38! then be-

comes

2y312y21yj2j50. ~39!

Numerical calculations show that the above equation
positive real roots~in fact 2! if

j<
12A5

924A5
, i.e., j<222.18033. ~40!

Thus wheneverj<222.18033, the central singularity is na
ked, and it is covered ifj is greater than this number.

Case~iii !: r150, r250, r3Þ0 ~i.e., q>3). In this case
a>5/2, L05`, and Eq.~33! does not have positive rea
roots and hence collapse ends into a black hole.

Case~iv!: r15r25r350, r4Þ0. In this situation,q54,
a53, L05`. So positive values ofX0 cannot satisfy Eq.
~33! for the roots, hence the singularity is covered.

~B! Next considerN>4 ~i.e., spacetimes where the d
mensions are greater than or equal to 6!.

Case~i!: r1Þ0. In this caseq51, a5(N13)/(N11),
L050, Q05F1 /(N11)F0 . Hence Eq.~33! gives

X05S 2F1

2F0
D 2/~N11!

. ~41!

SinceF1 is negative,X0 will be positive and hence the sin
gularity is naked.

Case ~ii !: When r150, r2Þ0. In this caseq52, L0
5`, and hence Eq.~33! does not have real positive root
02401
t

ay

s

Thus in all the spacetimes where the dimensions are gre
than or equal to 6, the singularity is naked only for the mo
els wherer1,0.

Case~iii !: r15r250, r3Þ0. In this caseq53, and it can
be seen from Eq.~36! thatL05`. Hence Eq.~33! cannot be
satisfied for any positive value ofX0 . Therefore the collapse
ends with a black hole.

Case~iv!: r15r25r350, r4Þ0. Hereq54 and hence
by same reasoning explained in case~iii !, the singularity is
covered.

III. THE FAMILY OF SINGULAR GEODESICS

We follow the method described by Christodolou@13# to
check whether a family of outgoing null geodesics term
nates at the singularity in the past with given rootX0 as a
tangent. Suppose that a real positive rootX5X0 satisfies
V(X)50.

From X5R/u, we can write

dX

du
5

U~X,u!2X

u
. ~42!

We could then write

U~X!5~X2X0!~h021!1h~X!, ~43!

whereh0 is a constant defined by

h05S dU

dXD
X5x0

, ~44!

and the functionh(X) contains hither-order terms in (X
2X0) such that

h~X0!5S dh

dXD
X5x0

50. ~45!

Equation~42! can be written as

dX

du
2~X2X0!

~h021!

u
5

B

u
, ~46!

where

B5B~X,u!5U~X,u!2U~X,0!1h~X! ~47!

is such thatB(X0,0)50.
Equation~46! can be integrated to get

X2X05Auh0211uh021E Bu2h0 du, ~48!

whereA is a constant of integration that labels different ge
desics. Ifh0,1 then there is only one radial null geodes
terminating at the singularity described byA50. On the
other hand, ifh0.1, then there are infinitely many familie
of radial null geodesics terminating at the singularity w
each curve being labeled by different values of constantA.
7-4
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STRUCTURE OF RADIAL NULL GEODESICS IN . . . PHYSICAL REVIEW D67, 024017 ~2003!
The form of Eq.~46! is similar to the form of the null
geodesic equation of TBL spacetime given in Refs.@11–13#.
Here one may apply the contraction mapping principle to
~46! to show the existence and uniqueness of a solution
Eq. ~46!. For complete analysis the reader may refer to R
@11–13#.

For (N12)-dimensional spacetime,h0 can be calculated
from Eq. ~33! as

h05S dU

dXD
X5X0

5
1

a F S 12
AL0

X0
~N21!/2D S 11

~N21!

2

Q0

X0
~N11!/2D

1S X2
Q0

X0
~N21!/2D S ~N21!

2

AL0

X0
~N11!/2D G . ~49!

Since we have taken under consideration the collapse in
spacetimes (D.4) where only the first two leading deriva
tives of density at the center plays the role of deciding
nature of the singularity, we consider these cases one by

~i! Let r1Þ0. Then L050, q51, a5(N13)/(N11),
Q05F1 /(N11)F0 , X05(2F1/2F0)2/(N11). Substituting
these quantities in Eq.~49! we get

h05
2

N13
,1.

Hence there will be only one outgoing null geodesic com
out from the singularity havingX0 as a tangent.

~ii ! Next considerr2Þ0. For higher dimensional dust co
lapse this case is applicable only to the 5D case, where
collapse leads to a naked singularity whenj5F2 /F0

2,
222.18033. In this case,N53, q52, a52, L05F0 , Q0
5F2/2F0 . We substitute these quantities in Eq.~49! to get

h05
1

2 F11
F2

2F0X0
22

F2

AF0X0
3G . ~50!

Using Eq.~39! this can be written as

h052
~j12y2!

4y3 . ~51!

In particular forj5240 @satisfying condition~40!# there are
two positive roots to Eq.~39!, namely,y151.1386363 and
y253.25599.

From Eq.~51! it can be seen that

@h0#y5y1
56.634

and

@h0#y5y2
50.13

Thus along smaller root we haveh0.1 and we have an
infinite family of radial null geodesic coming out along th
02401
.
to
s.

D

e
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g
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direction, while along larger root we haveh0,1 and hence
we can have only one radial null geodesic coming out alo
this direction~with A50).

IV. STRENGTH OF SINGULARITY

Following Clarke and Krolak@14# a sufficient condition
for a singularity to be strong in the sense of Tiple@15# is that,
at least along one null geodesic~with affine parameterk!, we
should have in the limit of approach to the singularity

lim
k→0

k2RabK
aKb.0, ~52!

whereKa is the tangent to null geodesics andRab is the Ricci
tensor. For our (N12)-dimensional dust model, along radi
null geodesics, we find that

lim
k→0

k2RabK
aKb5

Nh0L0

2aX0
N13 lim

k→0
S kP

r 2aD 2

. ~53!

Using Eqs.~20!–~22! and theL-Hospital rule we find that

lim
k→0

kP

r 2a5
aX0

3

aX012AL0~a21!
if lim

k→0
P5P050,̀ ,

5
X0

2

2
, otherwise. ~54!

Hence using Eqs.~36!, ~53!, and~54! we get

lim
k→0

k2RabK
aKb50, q,

N11

N21

.0, q>
N11

N21
. ~55!

Equation~55! is a general statement for (N12)-dimensional
dust collapse, regarding the curvature strength along ra
null geodesics. Thus with the help of Eq.~55! and earlier
calculations from this section, we conclude that strong c
vature naked singularities occur only in 4D and 5D cases
the density profiles wherer3Þ0 andr2Þ0, respectively, and
there are infinite families of RNGs terminating at the sing
larity in the past~along smaller root!.

In the spacetime, where dimension is greater than or eq
to 6 ~i.e., N>4) naked singularities occur only for the de
sity profile wherer1,0 and these singularities are of wea
curvature type. Further there is only one RNG terminating
the singularity as the value ofh0 is less than 1 in these case

V. CONCLUDING REMARKS

We have generalized the earlier work given in Re
@9,11# to higher dimensional Tolman-Bondi spacetimes. It
interesting to note that in the 4D case, the leading three
rivatives of density at the center play the role of deciding
nature of the singularity, whereas in the 5D case the lead
two derivatives decide the nature of the singularity and
7-5
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K. D. PATIL PHYSICAL REVIEW D 67, 024017 ~2003!
spacetimes where the dimensions are greater than or equ
6 only the first derivative of density plays this role. Thus
the dimension of the spacetime increases, the calculatio
less numbers of derivatives of the density at the center
required to decide the nature of the singularity. This might
the effect of the increase in strength of gravity~as the gravi-
tational force is directly proportional to the size of the ex
dimensions!

If one considers the analytic initial data, in the case of
collapse of a dust cloud, this amounts to demanding ana
icity of the density function. The initial densityr(r ) then
must contain only even powers inr, and we have

r~r !5r01r2r 21r4r 41¯ .

Since the first derivative of density at the centerr1 is absent
in the above analytic density profile, there could not be
naked singularity in spacetimes where the dimensions
greater than or equal to 6. Thus one may argue that in th
spacetimes~for D>6) the cosmic censorship hypothes
holds, if the analytic density function is chosen as an ini
data.
a-

hy

v.

.
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There are previous works on this same subject@16,17#. In
particular, in Ref.@17# it has been claimed that the highe
dimensional Tolman-Bondi collapse admits naked singula
of strong curvature in any higher dimensions, whereas in
present work we have shown that in all the higher dime
sional spacetimes whereD>6, the naked singularity is wea
along radial null geodesics. Different conclusions on t
same subject arise due to the fact that the models consid
in both papers are different. The difference between the
classes of models is similar to the difference between N
man’s work @11# ~if the assumption of evenness of dens
function is dropped! and the work given in Ref.@18#. The
main difference between these two classes of models is
with the scaling of coordinates given byR(0,r )5r , the den-
sity and other functions such as Kretschmann’s scalar
smooth on thet50 hypersurface in the case of our mode
whereas in the models considered in Ref.@17#, there is a
singularity atr 50 on this surface. It thus follows that th
class being treated here is different from the models trea
by Ghosh and Beesham@17#. This is discussed in detail in
Ref. @19# ~while making the comparison with Newman
work! in the case of 4D spacetime.
y
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