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Structure of radial null geodesics in higher dimensional dust collapse
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We investigate here the occurrence and nature of a naked singularity for the inhomogeneous gravitational
collapse of higher dimensional Tolman-Bondi dust clouds. The final state of collapse, a black hole or naked
singularity, turns out to depend on the order of the first nonvanishing derivative of the density at the center. The
study of the collapse along radial null geodesics seems to suggest that higher dimebDsidsrespect the
CCH, if one chooses a smooth analytic density profile as initial data.
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[. INTRODUCTION and dimension. Does the order of the first nonvanishing de-
rivative of density get affected by increase in dimension of

The cosmic censorship hypothe6BCH) of Penrosg1,2]  the space? We shall try to find out the answers to these ques-
says that, in generic situations, all spacetime singularitie§ons in this work.
arising from regu|ar initial data are a|WayS hidden behind In the next section we discuss the nature of singularities in
event horizons and hence invisible to outside obser(ess higher dimensional Tolman-Bondi spacetime. In Sec. IV we
naked singularities This hypothesis plays a fundamental try to check whether a family of geodesics can terminate at
role in the theory of black holes and has been recognized d§e singularity with a given root as a tangent. We conclude
one of the most important open problems in classical generayith some concluding remarks.
relativity. There exist many exact solutions of Einstein’s
equations which admit naked singularities. The models stud- [I. NAKED SINGULARITIES IN THE HIGHER
ied so far include the collapse of du&i, radiation[4], per- DIMENSIONAL TOLMAN-BONDI SPACETIMES
fect fluid [5], and imperfect fluid$6].

The possible existence of dimensions greater than 4 hg
been seriously considered in recent times. This has comg’;
about from ap>;)roaches in particle physics to the unificatiorjfalled study, th_e reader may refer to Re{&,g,l(_].
of all forces including gravitation such as Kaluza-Klein theo- Let us consider the metric foN(+ 2)-dimensional space-
ries and superstring theory. Quite recently there has been i€ With spherical symmetrj10J:

To facilitate the discussion we give a brief summary of
e higher dimensional Tolman-Bondi solution. For a de-

great deal of interest in models where the size of the extra 2
dimensions is much larger than the Planck length It is ds’=—dt?+ dr?+R? dQ?, (1)
now important to consider the evolution of the extra dimen- 1+5(r)

sions since the observed strength of the gravitational force i\?Vhere
directly dependent on the size of the extra dimensia@fis

Ref.[8]). 24020 i 2 i 2. ...
From the viewpoint of the CCH, one would like to know dQ7=ddy+ i 6y d0;+ it 0, sir? 0, do5+
the effect of extra dimensions on the existence of a naked +sir? 6, Sir? 0, Sir? 0 --sir? 6y_; d63,  (2)

singularity. In this context, one question which could natu-

rally arise is, what happens in higher dimensi@iB) which  is the metric on the\ sphere andN=D —2 (whereD is the
are currently being considered in view of their relevance forotal number of dimensionstogether with the stress-energy
string theory and other field theories? Would the examples ofensor for dust

a naked singularity in four dimensioféD) go over to HD or

not? Does the CCH hold in higher dimensional spacetime? Tab=<~3(t,r)5§i§t , 3)
Also it is well known that as the dimensions increase two

simultaneous but opposite effects set in: one increase in iwhereu,= &5 is the (N+2)-dimensional velocity and is
homogeneity and the other a strengthening of gravitationahe area radius at timeof the shell having the comoving
field. The former would facilitate the formation of a naked coordinater.

singularity while the latter favors the formation of a black The Einstein equations for the collapsing cloud are
hole. It is well known thaf9] in the 4D case the final state of

. . NF/
collapse, a black hole or naked singularity, depends on the e(t,r)= @)

order of the first nonvanishing derivative of density at the - 2RVR’
center. We want to see whether there is any relation between
the order of the leading nonvanishing derivative of densityand
. F(r)
2 _ 7 4
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(we have set #G/C*=1). pol?2  par? par"

Here the overdot and prime denote partial derivatives with p(D=potpil + -+ 5+ -+t (11)
respect ta andr, respectively. The quantiti(r) arises as a ' ' '
free function from the integration of the Einstein equationsnear the center=0, which can be substituted in E(L0) to
and can be interpreted physically as the total mass of thgje|d
collapsing cloud within a coordinate radius f(r) is also
another free function of and is called the energy function. F=ForNt 14+ F rN T2 ForNt34. .. (12)
Since in the present discussion we are concerned with gravi-

tational collapse, we takB(t,r)<0. where
For physical reasons, one assumes that energy density 2 p
t,r) is non-negative everywhere. The epdeh 0 denotes =—— '
s(t) g Y P PN (N 1) 3

a physical singularity where the spherical shell of matter col-
lapses to zero radius and where the denstyr) blows up
to infinity. The timet=t¢(r) corresponds to the valug=0
where the area of the shell of matter at a constant value q
coordinater vanishes. The singularity cunte=t¢(r) corre-

sponds to the time when the matter shells meet the physic

and p,, is the nth derivative of density and takes integral
alues 0,1,2;-. We note that the first nonvanishing deriva-
ve in the series expansiofil) should be negative, as we
inII consider only those density functions which decreases as
Bne moves away from the center.

singularity. As t(1) gi . : .
. o . . s(r) gives the time at which area radibsbecomes
(1)Th|s specifies the ranges of the coordinates for the metric. it follows from Eq.(9) that
0 t<ty(r) ®) p(N+1)/2
=sr<<oco, —oo{<lL(r). [ I
For simplicity, we consider the marginally bound cdge)
=0. The Kretschmann scal# = R,,.R2°°? for the metric(1) is
Hence, Eq(5) yields given by
, F(r) AF'?2  BFF CF?
R “RV-I (7) K= RINR'ZT RINTIR T RENTZ: (15

Since we are considering the collapsing case, we take whereA,B,Care some constants. It is seen from Eg$.and
(15) that the energy density and Kretschmann scalar both
—JF diverge at the shell labeled indicating the presence of a
RN-D72 @)  scalar polynomial curvature singularity &t
The outgoing radial null geodesics of E@) are given by

Integration of Eq.(8) yields dt

(N+1) dr

JFt|, (9)

R'. (16)
RN+ D2 | ((N+1)12_

Letu=r® (a>1). Then

where we have used the freedom in the scaling of the co- dRrR 1 ( dt
R—+R’

moving coordinate to setR(0,r)=r at the starting epoch of 3
r

the collapse so that the physical area radRisncreases
monotonically inr, and withR’ =1 there are no shell cross-
ings on the initial surface.

We will be interested here only in the central shell- dR R’ A
focussing singularity @®=0, r =0 which is a gravitationally oN=T
strong singularity, as opposed to the shell crossing ones X
which are weak and through which the spacetime may some- =U(X,u), (18)
times be extendefll].

It follows from Eq. (4) that the functionF(r) becomes where
fixed once the initial density distributioa(0,r)=p(r) is

iven, i.e., F R
g A= N=11 X:U- (19)

. (17)

du ar®?

By virtue of Egs.(8) and(16) the above equation leads to

JF

RIN-172

R’
a—1

1_

a—1 ar

du  ar

F(r)= Nf p(r)rt dr. (10 1t is clear thatR=0, u=0 is a singular point of Eq(18). If
there are outgoing radial null geodesics terminating in the
We assume that initial density profile(r) has the series past at the singularity with a definite tangent, then at the
expansiorn 9] singularity we havedR/du>0. Hence apparent horizon for
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(N+2) dimensional spacetime is given R=FYN"1 |n

order to check whether the singularity is naked, we examine

the null geodesic equations for the tangent vectkrs
=dx?/dk, wherek is an affine parameter along the geode-
sics.

The radial null geodesics of the spacetifi¢ are given

by

_dt P 20
Kr_dr_K‘_ P o1
“dk R RR &0

where the functiorP(t,r) satisfies the differential equation

dP+P2 R R 1 o -
wTPlrRr R RO (22
Differentiation of Eq.(9) yields
. Xpremt IN+1-7 1
R'= N+1 N+1 | XN-D2(a-D(N-D2
(23

where n=rF'/F.
Since we are interested in the behavior;ofiear the cen-
ter, we can simplifyn further to get

() =(N+1)+ gor + par 2+ mar3+--- . (29
where
F, 2F, F}
71 Fo’ 72 Fo F(z):
3F; 3F,F, F3
=—— =%+, etc 25
73 Fo Fg Fg ( )

If all the derivativesp,, of the density vanish fon<(q
—1), and thegth derivative is the first nonvanishing deriva-
tive, thenT‘j], theqth term in the expansion fom, is

qFqr

T Fy

I= (26)

Hereq takes the values 1,2,3, etc. In this case, we can writ
n(r) as

7(r)=(N+1)+ qF—Ff*rQ+0(rq+1). (27
0

We use expression fgiN+1)— »] from Eq. (27) keeping
only terms up to the ordeg and substitute in Eq23) to get

X qu
NT1 (Nt 1)F XN D2 (a-DN172

R/ =rle=D rd|.

(28)

We substitute the above expression #®f in Eq. (18) to
yield

02401

PHYSICAL REVIEW 7, 024017 (2003

drR 1 [ A X
du a - XN-DIIN+1 X<N*1>’2:U(X’u)’
(29
where
F
0 9" rd, (30)

= (N+1)F0r(a—l)(N+1)/2

Let us consider the limiX, of the tangen along the null
geodesic terminating at the singularityR¢ 0, u=0.
Thus,

R
Xo= lim—=lim

90 limU(X,u). (3D
R—0 rR—0odU Rr_o
u—0 u—0 u—0

If a real and positive value of, satisfies the above equation
then the singularity could be naked. If the singularity is na-
ked, somex exists such that at least one finite positive value
of X, exists which solves the algebric equation

V(Xo)=0, (32
where
V(X)=U(X,00— X
_% - \/ﬁ Nnixl_ x<l?—01>/2}_x' (33
where
Ao=lim A, 75o=1lim 7.
r—0 r—0

Note that this root equation method picks up only the geo-
desics behaving a¥=R/r “=const.

There may be the possibility of the existence of geodesics
which have different behaviors than are assumed. To find
such geodesics, we must solve the null geodesic equation
[12].

The constantr can be determined by the requirement that

eé)o, the limiting value of® asr— 0, should not be equal to

zero or infinity. This gives

. 2q
g=(a—1)(N+1)/2, ie., a= m+1, (34)
which implies
__9Fq
®°_(N+1)F0' (35)

Using Eqs(12) and(34), the limiting value of the functior
is found to be
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Ap=0, gq<(N+1)/(N-1) Thus in all the spacetimes where the dimensions are greater
than or equal to 6, the singularity is naked only for the mod-
=Fo, gq=(N+1)/(N—-1) els wherep;<0.
—o, q>(N+1)/(N-1). (36) Caseliii): p1=p,=0, p3#0. In this casg= 3, and it can

be seen from Eq.36) that A y=<. Hence Eq(33) cannot be

We note that is the order of the first nonvanishing deriva- satisfied for any positive value & . Therefore the collapse

tive of density. Since\, takes different values for different €nds with a black hole.

choices ofq, the nature of the roots depends on the first Case(iv): py=p,=p3=0, p4#0. Hereq=4 and hence

nonvanishing derivative of density at the center. by same reasoning explained in case), the singularity is
So we analyze the various cases M+ 2)-dimensional ~covered.

spacetimes one by one.

(A) First consideN=3 (i.e., 5D). We shall consider vari- Ill. THE FAMILY OF SINGULAR GEODESICS
0u%;§22§ o;ldiegsutz E[)r:glsalsneguslspjce;l/r;’el.xo:O, 0, We follow the method described by Christodol@lB] to
—F,/4Fy, 7o=4. Hence Eq(33) yields check whether a family of outgoing null geodesics termi-
oy do nates at the singularity in the past with given rogt as a
) |:1 -2p; tangent. Suppose that a real positive root X, satisfies
Xo=%F 5, @7  v(X)=o0.
0 Po

From X=R/u, we can write

Because of the assumption that the density decreases away

from the centerp;<0 and soX, will be positive and thus d_X_ —U(X,u)—xl

. L = (42
the singularity is naked. du u
Case(ii): p1=0, p,#0. In this caseq=2, a=2, Ag .
=F,, @,=F,/2F,. Equation(33) then leads to We could then write
2x3 2 FXo Fy U(X)=(X=X)(ho—1)+h(X), (43
=0. (39
F3 Fo F52 FS wherehg is a constant defined by
We definey=Xq/\Fo, é=F,/F3. Equation(38) then be- du
comes ho= (ﬁ) : (44)
X=Xq
2y3+2y2+ye—£=0. (39

and the functionh(X) contains hither-order terms inX(
Numerical calculations show that the above equation has-X,) such that
positive real rootgin fact 2 if

dh
_ h(Xo)= ( =0. (45
é< 115 , i.e., §£s=-22.18033. (40 X/ x =Xo
9-4.5
Equation(42) can be written as

Thus wheneveé< —22.18033, the central singularity is na-
ked, and it is covered if is greater than this number. dX (ho— ) B

Case(iii): p1=0, p,=0, p3#0 (i.e., g=3). In this case qu~ (X=%o) e (46)
a=5/2, Apy==, and EQ.(33) does not have positive real
roots and hence collapse ends into a black hole. where

Case(iv): p1=p2=p3=0, p,#0. In this situationg=4,
a=3, Ag=2. So positive values 0K, cannot satisfy Eq. B=B(X,u)=U(X,u)—U(X,0)+h(X) (47)

(33) for the roots, hence the singularity is covered.
(B) Next considerN=4 (i.e., spacetimes where the di- is such thaBB(X,,0)=0.

mensions are greater than or equal jo 6 Equation(46) can be integrated to get
Case(i): p1#0. In this caseq=1, a=(N+3)/(N+1),

Ao=0,0,=F,;/(N+1)F,. Hence Eq(33) gives X— Xo= Ao~ 1+ o 1J' Bu" du, (48)
—Fy | 2NFD
XO:( 2F, ) . (4D \whereA s a constant of integration that labels different geo-

desics. Ifhg<1 then there is only one radial null geodesic
SinceF is negative X, will be positive and hence the sin- terminating at the singularity described y=0. On the
gularity is naked. other hand, ifhy>1, then there are infinitely many families
Case (ii): When p;=0, p,#0. In this caseq=2, A,  of radial null geodesics terminating at the singularity with
=00, and hence Eq(33) does not have real positive roots. each curve being labeled by different values of consfant
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The form of Eq.(46) is similar to the form of the null direction, while along larger root we havg<1 and hence
geodesic equation of TBL spacetime given in Rgf4—-13.  we can have only one radial null geodesic coming out along
Here one may apply the contraction mapping principle to Eqthis direction(with A=0).

(46) to show the existence and uniqueness of a solution to

Eq. (46). For complete analysis the reader may refer to Refs. IV. STRENGTH OF SINGULARITY
[11-13. . - .
from Eq. (33 as for a singularity to be strong in the sense of Tifl®] is that,
at least along one null geodegigith affine parametek), we
n (du) should have in the limit of approach to the singularity
0~ | g%
dX/ x=x, lim k2R,,K3KP>0, (52)

k—0

whereK? is the tangent to null geodesics aRgl, is the Ricci
tensor. For our l+ 2)-dimensional dust model, along radial

1 VA, (N-1) O
5 P

p 2 XE)N+1)/2

0N (N—=1) A, null geodesics, we find that
+ X= X(N—l)/2>( 2 x(NFDZ| |- (49 ,
0 0 2 b N 770A0 ) kP
lim k RabKaK :—N-%—SII o (53
Since we have taken under consideration the collapse in HD k—0 aXy o\l

spacetimes®>4) where only the first two leading deriva- ) ) _
tives of density at the center plays the role of deciding théJsing Egs.(20—(22) and thel-Hospital rule we find that
nature of the singularity, we consider these cases one by one.

3
(i) Let p;#0. ThenAo=0, =1, a=(N+3)/(N+1), i kP aXy R
_ —(_ 2U(N+1) T IM 55 = if lim P=Py=0.,
Oo=F/(N+1)F,, Xo=(—F1/2F) . Substituting ool aXot+2\Ao(a—1) KesO
these quantities in Eq49) we get
X -
ho= <1 =5 otherwise. (54

N+3

Hence there will be only one outgoing null geodesic comingHence using Eqs(36), (53), and(54) we get

out from the singularity having, as a tangent. N+1
(i) Next considelp,# 0. For higher dimensional dust col- lim k?R,pK3KP=0, 9<N—1
lapse this case is applicable only to the 5D case, where the k—0
collapse leads to a naked singularity whér FZ/FS<
—22.18033. In this casd\i=3, =2, a=2, A,=F,, &, ~0, q=f1 (55
=F,/2F,. We substitute these quantities in E49) to get ' N—-1
1 F, F, Equation(55) is a gengral statement foN{ 2)-dimensional .
ho=§ I+ oo =3 (50 dust collapse, regarding the curvature strength along radial
2FoXo \/F_oxo null geodesics. Thus with the help of EG5) and earlier
) ) ) calculations from this section, we conclude that strong cur-
Using Eq.(39) this can be written as vature naked singularities occur only in 4D and 5D cases for
(£+2y?) the density profiles wherg;# 0 andp,# 0, respectively, and
__&rey) there are infinite families of RNGs terminating at the singu-
ho 3 (51 -
4y larity in the past(along smaller root

In the spacetime, where dimension is greater than or equal
In particular for§= — 40[satisfying conditior(40)] there are {5 6 (i.e., N=4) naked singularities occur only for the den-
two positive roots to Eq(39), namely,y;=1.1386363 and ity profile wherep,;<0 and these singularities are of weak
y2=3.25599. curvature type. Further there is only one RNG terminating at
From Eq.(51) it can be seen that the singularity as the value of, is less than 1 in these cases.
[holy-y,=6.634 V. CONCLUDING REMARKS
and We have generalized the earlier work given in Refs.
[9,11] to higher dimensional Tolman-Bondi spacetimes. It is
[holy-y,=0.13 interesting to note that in the 4D case, the leading three de-
rivatives of density at the center play the role of deciding the
Thus along smaller root we havg,>1 and we have an nature of the singularity, whereas in the 5D case the leading
infinite family of radial null geodesic coming out along this two derivatives decide the nature of the singularity and for

024017-5



K. D. PATIL PHYSICAL REVIEW D 67, 024017 (2003

spacetimes where the dimensions are greater than or equal to There are previous works on this same subjj&6t17. In

6 only the first derivative of density plays this role. Thus asparticular, in Ref.[17] it has been claimed that the higher
the dimension of the spacetime increases, the calculation sfimensional Tolman-Bondi collapse admits naked singularity
less numbers of derivatives of the density at the center aref strong curvature in any higher dimensions, whereas in the
required to decide the nature of the singularity. This might bePresent work we have shown that in all the higher dimen-
the effect of the increase in Strength of gra\ﬂ@s the gra\/i- sional Spacetimes whe@= 6, the naked Singularity is weak

tational force is directly proportional to the size of the extra@long radial null geodesics. Different conclusions on the
dimensions same subject arise due to the fact that the models considered

If one considers the analytic initial data, in the case of thdn Poth papers are different. The difference between the two
collapse of a dust cloud, this amounts to demanding analy£2sses ofkmffeli Itsh similar to ;[_he d|;ference betwfegn N.Et’W'
icity of the density function. The initial density(r) then man's work[11] (if the assumption of evenness of density

must contain only even powers inand we have f“”?"of‘ is droppeliand the work given in Refl18]. Th?
main difference between these two classes of models is that

p(r)=po+por 2+ par®+---. with the scaling of coordinates given BR(0,r)=r, the den-

sity and other functions such as Kretschmann’s scalar are
Since the first derivative of density at the centeris absent  smooth on thea=0 hypersurface in the case of our models
in the above analytic density profile, there could not be avhereas in the models considered in Ref7], there is a
naked singularity in spacetimes where the dimensions arsingularity atr =0 on this surface. It thus follows that the
greater than or equal to 6. Thus one may argue that in thes#ass being treated here is different from the models treated
spacetimes(for D=6) the cosmic censorship hypothesis by Ghosh and Beeshafd7]. This is discussed in detail in
holds, if the analytic density function is chosen as an initialRef. [19] (while making the comparison with Newman'’s

data. work) in the case of 4D spacetime.
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