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Detection template families for gravitational waves from the final stages
of binary —black-hole inspirals: Nonspinning case
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We investigate the problem of detecting gravitational waves from binaries of nonspinning black holes with
massean=5-2M, moving on quasicircular orbits, which are arguably the most promising sources for
first-generation ground-based detectors. We analyze and compare all the currently available post-Newtonian
approximations for the relativistic two-body dynamics; for these binaries, different approximations predict
different waveforms. We then construct examples of detection template families that embed all the approximate
models and that could be used to detect the true gravitational-wave digimalot to characterize accurately its
physical parameteysWe estimate that the fitting factor for our detection familiesi8.95 (corresponding to
an event rate loss 15%) and we estimate that the discretization of the template family;-fd* templates,
increases the loss te 20%.
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[. INTRODUCTION rate scales as the third power of the probed distance, al-
though of course it depends also on the system’s coalescence
A network of broadband ground-based laser interferom+ate per unit volume in the universe. To give some figures,
eters, aimed at detecting gravitational wav€Vs) in the  computed using LIGO-I's sensitivity specifications, if we as-
frequency band 10—£Hz, is currently beginning operation sume that BBHs originate from main-sequence binditds
and, hopefully, will start the first science runs within this the estimated detection rate per yearsigx10 3-0.6 at
year (2002. This network consists of the British-German 100 Mpc[7,8], while if globular clusters are considered as
GEO, the American Laser Interferometer Gravitational-Wavancubators of BBH4$9] the estimated detection rate per year
Observatory(LIGO), the Japanese TAMA and the ltalian- is ~0.04—0.6 at 100 Mp€7,8]; by contrast, the BNS detec-
French VIRGO(which will begin operating in 20041]. tion rate per year is in the rangex30 %-0.3 at 20 Mpc
The first detection of gravitational waves with LIGO and [7,8]. The very large cited ranges for the measured-event
VIRGO interferometers is likely to come from binary black- rates reflect the uncertainty implicit in using population-
hole systems where each black hole has a rfigssf a few  synthesis techniques and extrapolations from the few known
Mg, and the total mass is roughly in the range 10M40 galactic BNSs to evaluate the coalescence rates of binary
[3], and where the orbit is quasicirculéit is generally as- systems[In a recent articl¢10], Miller and Hamilton sug-
sumed that gravitational radiation reaction will circularize gest that four-body effects in globular clusters might enhance
the orbit by the time the binary is close to the final coales-considerably the BBH coalescence rate, brightening the pros-
cencg4)). It is easy to see why. Assuming for simplicity that pects for detection with first-generation interferometers; the
the GW signal comes from a quadrupole-governed, NewtonBBHs involved might have relatively high BH masses
ian inspiral that ends at a frequency outside the range of~100M ) and eccentric orbits, and they will not be con-
good interferometer sensitivity, the signal-to-noise ratiosidered in this papér.
(SIN) is <M ¥f/d (see, e.g., Ref5]), whereM=M *®is The GW signals from standard comparable-mass BBHs
the chirp mass(with M=m;+m, the total mass and;  with M=10-4M . contain only a few (50—800) cycles in
=m;m,/M?), andd is the distance between the binary andthe LIGO-VIRGO frequency band, so we might expect that
the Earth. Therefore, for a given signal-to-noise detectiorthe task of modeling the signals for the purpose of data
threshold (see Sec. )l and for equal-mass binariesy( analysis could be accomplished easily. However, the fre-
=1/4), the larger is the total mass, the larger is the distancquencies of best interferometer sensitivity correspond to
d that we are able to probén Sec. V we shall see how this GWs emitted during the final stages of the inspiral, where the
result is modified when we relax the assumption that thgpost—Newtonian(PN) expansion[11], which for compact
signal ends outside the range of good interferometer sensbodies is essentially an expansion in the characteristic orbital
tivity.) velocity v/c, begins to fail. It follows that these sources
For example, a black-hole—black-hole bindBBH) of  require a very careful analysis. As the two bodies draw
total massM =20M g at 100 Mpc giveqroughly) the same closer, and enter the nonlinear, strong-curvature phase, the
S/IN as a neutron-star—neutron-star bindBNS) of total motion becomes relativistic, and it becomes harder and
massM =2.8M at 20 Mpc. The expected measured-eventharder to extract reliable information from the PN series. For
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example, using the Keplerian formu|a:(7TMfGW)1/3 inspiral for nonspinning BHs, and the possible ways to deal
(wheref gy is the GW frequencyand takingfgy=153 Hz  With this failure. This problem is known in the literature as
(the LIGO-I peak-sensitivity frequengywe get v(M) the intermediate binary black hol{(BBH) problem[23]. De-
=0.14M/M)Y3 hence, for BNS®(2.8V1 ;) =0.2, but for ~ Spite the considerable progress made by the numerical-
BBHs v(20M ) =0.38 andv (40M o) = 0.48. relativity community in recent yearsl4,24—286, a reliable
The final phase of the inspiréit least when BH spins are estimate of the waveforms emitted by BBHSs is still some
negligible includes the transition from the adiabatic inspiral time away(some results for the plunge and ringdown wave-
to the plunge, beyond which the motion of the bodies isforms were obtained very recenfl$9], but they are not very
driven (almost only by the conservative part of the dynam- useful for our purposes because they do not include the last
ics. Beyond the plunge, the two BHs merge, forming a singléstages of the inspiral before the plunge, and their initial data

rotating BH in a very excited state; this BH then eases intd*® €ndowed with large amounts of spurious G\We tackle
the delicate issue of the late orbital evolution of BBHSs, vari-

its final stationary Kerr state, as the oscillations of its quasi- i ; )
normal modes die out. In this phase the gravitational signa us nonperturbative analytlcal_approaches to that evolution
also known as PN resummation methptisve been pro-

will be a superposition of exponentially damped sinusoids osed[15-17,21
(ringdown waveform For nonspinning BBHs, the plunge P The main 'fea.tures of PN resummation methods can be
starts roughly at the innermost stable circular oft8CO) of

) summarized as followdi) they provide an analytiégauge-
the BBH. At the ISCO, the GW frequendgvaluated in the 4 iany resummation of the orbital energy function and

Slcs:ggvarzschlld test-mass II?S]éto afgw (M)=0.022M] is gravitational flux functionwhich, as we shall see in Sec. Il
fow (20M)=220 Hz andfgy (30M)=167 Hz. These gare the two crucial ingredients to compute the gravitational
frequencies are well inside the LIGO and VIRGO bands. waveforms in the adiabatic limit(ii) they can describe the
The data analysis of inspiral, mergéor plunge, and  motion of the bodiegand provide the gravitational wave-
ringdown of compact binaries was first investigated byform) beyond the adiabatic approximation; afiid) in prin-
Flanagan and Hughd42], and more recently by Damour, ciple they can be extended to higher PN orders. More impor-
lyer and Sathyaprakasfl3]. Flanagan and Hughegl2] tantly, they can provide initial dynamical data for the two
model the inspiral using the standard quadrupole predictioBHs at the beginning of the plungsuch as their positions
(see, e.g., Ref[5]), and assume an ending frequency ofand momentg which can be use@n principle) in numerical
0.02M (the point where, they argue, PN and numerical-relativity to help build the initial gravitational dafghe met-
relativity predictions start to deviate by 5% [14]). They ric and its time derivativeand then to evolve the full Ein-
then use a crude argument to estimate upper limits for thetein equations through the merger phase. However, these
total energy radiated in the merger phase0(IM) and in  resummation methods are based on some assumptions that,
the ringdown phase~0.03V) of maximally spinning BBH  although plausible, have not been proved: for example, when
coalescences. Damour, lyer and Sathyapraki3}study the  the orbital energy and the gravitational flux functions are
nonadiabatic PN-resummed model for nonspinning BBHs otlerived in the comparable-mass case, it is assumed that they
Refs.[15-17, where the plunge can be seen as a naturahre smooth deformations of the analogous quantities in the
continuation of the inspirdl16] rather than a separate phase;test-mass limit. Moreover, in the absence of both exact solu-
the total radiated energy is 0.0d7 in the merger and tions and experimental data, we can test the robustness and
0.00M in the ringdown[18]. (All these values for the en- reliability of the resummation methods only by internal con-
ergy should be also compared with the value, 0.25M0.3 vergence tests.
estimated recently in Ref19] for the plunge and ringdown In this paper we follow a more conservative point of view.
for nonspinning BBH9. When we deal with nonadiabatic We shall maintain skepticism about waveforms emitted by
models, we too shall choose not to separate the variouBBH with M=10-4M g and evaluated from PN calcula-
phases. Moreover, because the ringdown phase does not gitiens, as well as all other waveforms ever computed for the
a significant contribution to the signal-to-noise ratio fdr  late BBH inspiral and plunge, and we shall develop families
<200M4 [12,13, we shall not include it in our investiga- of search templates that incorporate this skepticism. More
tions. specifically, we shall be concerned only with detecting BBH
BHs could have large spins: various studi28,21] have = GWSs, and not with extracting physical parameters, such as
shown that when this is the case, the time evolution of thenasses and spins, from the measured GWs. The rationale for
GW phase and amplitude during the inspiral will be signifi- this choice is twofold. First, detection is the more urgent
cantly affected by spin-induced modulations and irregulariproblem at a time when GW interferometers are about to
ties. These effects can become dramatic if the two BH spinstart their science runs; second, a viable detection strategy
are large and are not aligned or antialigned with the orbitamust be constrained by the computing power available to
angular momentum. There is a considerable chance that th@ocess a very long stream of data, while the study of de-
analysis of interferometer data, carried out without takingtected signals to evaluate physical parameters can concen-
into account spin effects, could miss the signals from spintrate many resources on a small stretch of detector output. In
ning BBHs altogether. We shall tackle the crucial issue ofaddition, as we shall see in Sec. VI, and briefly discuss in
spin in a separate papg22]. Sec. VI D, the different PN methods will give different pa-
The purpose of the present paper is to discuss the problerameter estimations for the same waveform, making a full
of the failure of the PN expansion during the last stages oparameter extraction fundamentally difficult.
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1023 . ——— — g Because the noise curve anticipated for VIR@&®@e Fig. 1

3 ] is quite different(both at low frequencies, and in the location
of its peak-sensitivity frequengyour results cannot be ap-
plied naively to VIRGO. We plan to repeat our study for
VIRGO in the near future.

II. THE THEORY OF MATCHED-FILTERING SIGNAL
DETECTION

S, @z
8

The technique of matched-filtering detection for GW sig-
nals is based on the systematic comparison of the measured
L e g detector outpus with a bank of theoreticadignal templates
10 10 {u;} that represent a good approximation to the class of
physical signals that we seek to measure. This theory was
FIG. 1. Square root of the noise spectral densi(f) versus ~ developed by many authors over the years, who have pub-
frequencyf, for LIGO-I [Eq. (28)], and VIRGO(from Table IV of  lished excellent expositiorj29-40,12,27. In the following,
Ref. [13]). we summarize the main results and equations that are rel-
evant to our purposes, and we establish our notation.

This is the strategy that we propose: we gu@ssl hopg
that the conjunction of the waveforms from all the post-
Newtonian models computed to date spans a region in signal
space that include®r almost includesthe true signal. We The detector output consists of noise and possibly of a
then choose aletection(or effectiveé template family that true gravitational signah; (part of a family{h;} of signals
approximates very well all the PN expanded and resummegenerated by different sources for different source param-
models(henceforth denoted aarget models If our guess is ~ eters, detector orientations, and sg.dkithough we may be
correct, theeffectualnes$27] of the effective model in ap- able to characterize the properties of the noise in several
proximating the targetsi.e., its capability of reproducing ways, each separatealizationof the noise is unpredictable,
their signal shapésshould be indicative of its effectualness and it might in principle fool us by hiding a physical signal
in approximating the true signals. Because our goal is théhence the risk of dalse dismissalor by simulating one
detectionof BBH GWSs, we shall not require the detection (false alarm. Thus, the problem of signal detection is essen-
template family to bdaithful [27] (i.e., to have a small bias tially probabilistic. In principle, we could try to evaluate the
in the estimation of the masges conditional probabilityP(h|s) that the measured signal

As a backup strategy, we require the detection templat@ctually contains one of thie; . In practice, this is inconve-
family to embed the targets in a signal space of higher dinient because the evaluation B{h|s) requires the knowl-
mension(i.e., with more parametexstrying to guess the edge of thea priori probability that a signal belonging to the
functional directions in which the true signals might lie with family {h;} is present irs.
respect to the targetsf course, this guess is rather deligate What we can do, instead, is to work withsgatistic (a
So, the detection template families constructed in this papeiunctional ofs and of theh;) that (for different realizations
cannot be guaranteed to capture the true signal, but theyf the nois¢ will be distributed around low values if the
should be considered as indications. physical signalh; is absent, and around high value if the

This paper is organized as follows. In Sec. Il we briefly signal is present. Thus, we shall establistieision ruleas
review the theory of matched-filtering GW detections, whichfollows [33]: we will claim a detection if the value of a
underlies the searches for GWs from inspiraling binariesstatistic (for a given instance o§ and for a specifid;) is
Then in Secs. lll, IV, and V we present the target models andhigher than a predefined threshold. We can then study the
give a detailed analysis of the differences between thenprobability distribution of the statistic to estimate the prob-
both from the point of view of the orbital dynamics and of ability of false alarm and of false dismissal. The steps in-
the gravitational waveforms. More specifically, in Sec. Ill we volved in this statistical study are easily laid down for a
introduce the two-body adiabatic models, both PN expandedeneric model of noise, but it is only in the much simplified
and resummed; in Sec. IV we introduce nonadiabatic apease ofnormal noisethat it is possible to obtain manageable
proximations to the two-body dynamics; and in Sec. V weformulas; while noise will definitelynot be normal in a real
discuss the signal-to-noise ratios obtained for the variousletector, the Gaussian formulas can still provide useful
two-body models. Our proposals for the detection templatguidelines for the detection problems. Eventually, the statis-
families are discussed in the Fourier domain in Sec. VI, andical analysis of detector search runs will be carried out with
in the time domain in Sec. VII, where we also build the numerical Monte Carlo techniques that make use of the mea-
mismatch metri¢28,29 for the template banks and use it to sured characteristics of the noise. So throughout this paper
evaluate the number of templates needed for detection. Seee shall always assume Gaussian noise.
tion VIII summarizes our conclusions. The statistic that is generally used is based on the sym-

Throughout this paper we adopt the LIGO noise curvemetric inner productg,h) between two real signatsandh,
given in Fig. 1 and Eq(28), and used also in Refl13].  which represents essentially the cross-correlation betwgeen

A. The statistical theory of signal detection
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andh, weighted to emphasize the correlation at the frequenupper limit on the false alarm rate. However, we first need to
cies where the detector sensitivity is better. We follow Cutlemote that, for any template, , there are a few obvious ways

and Flanagan’s conventiof36] and define (parametrized by the so-calledxtrinsic parameteps of
L L changing the signal shape that do not warrant the inclusion
+=g* (f)h(f) +=g* (f)h(f) of the modified signals as separate templtes.
(g,h>=2f_w wdf:‘l Refo Wdf’ The extrinsic parameters are the sigaaiplitude phase

(1) andtime of arrival Any true signalh can be written in all
generality as

where S, (f), the one-sidedhoise power spectral densjtis
given by h(t)=Anan[t—tp]cog Pp(t—ty) + Pp], (6)

wherea(t) =0 for t<0, whered,,(0)=0, and wherea,(t)
is normalized so thath,h)=A47%. While the template bank
{u;} must contain signal shapes that represent all the physi-
andS,(f,) =0 for f;<0. We then define thsignal-to-noise  cally possible functional forma(t) and®(t), it is possible
ratio p (for the measured signalafter filtering byh;), as to modify our search strategy so that the variability.4p,
¢, andty, is automatically taken into account without creat-
(h)= (shi) _ (s,hy) 3) ing additional templates.
PRt rms(n,h;) \/W The signal amplitude is the simplest extrinsic parameter.
It is expedient tonormalizethe templates); so that(u;,u;)
where the equality follows becausé; ,n)(n,h;)=(h;,h;) =1, andp(u;)=(s,u;). Indeed, throughout the rest of this
(see, e.g.[33]). In the case of Gaussian noise, it can bepaper we shall always assume normalized templates. If
proved that this filtering technique isptimal in the sense contains a scaled versitn=Au; of a templatey; (here A is
that it maximizes the probability of correct detection for aknown as the signatrength, thenp(u;) =.A. However, the
given probability of false detection. statistical distribution op is the samen the absence of the
In the case whes=n, and when noise is Gaussian, it is signal Then the problem of detection signals of known
easy to prove that is a normal variable with a mean of zero shape and unknown amplitude is easily solved by using a
and a variance of one. If insteae-h;+n, thenp isanormal  single normalized template and the same threshgldas
variable with mean/(h; ,h;) and unit variance. Thénhresh-  used for the detection of completely known signgds].
old p, for detection is set as a tradeoff between the resultinguite simply, the stronger an actual signal, the easier it will
false-alarm probability, be to reach the threshold.
We now look at phase, and we try to mathhwith a

1 (+= 1 continuous one-parameter subfamily of templat€g; ;t)
F=y Ef e "dp= EerfC(P* I\2) (4 —a,(t)cogd(t)+A]. It turns out that for each time signal
Px shape{a(t),®(t)}, we need to keep in our template bank
(where erfc is thecomplementary error functiofd1]), and  ©nly two copies of the corresponding, for ¢=0 and ¢

the probability of correct detection =m/2, and that the signal to noise of the detector output
againsty; , for the best possible value @, is automatically

— 1
”*(fl)n(fz)255(f1—fz)5n(f1) for f,>0, (2

1 found as[33]
D= serfd (p, — V(hi ,h))/ V2] (5)
pg=max(s,ui( b)) = I(s,ui(0))[*+[(s,u;i(7/2))[?,
(the probability of false dismissal is just-1D). bt

(7)
B. Template families and extrinsic parameters .
P o P ~ whereu;(0) andu;(7/2) have been orthonormalized. The

We can now go back to the initial strategy of comparingstatistical distribution of the phase-maximized statigtjg,

the measured signal against a bank\oftemplategu;} that  for the case ofnorma) noise alone, is thaleigh distribu-
represent a plurality of sources of different types and physition [33]

cal parameters. For each strewtif detector output, we shall
compute the signal-to-noise raf{s,u;)/{u; ,u;) for all the

u;, and then apply our rule to decide whether the physical
signal corresponding to any one of theis actually present
within s[5]. Of course, the threshole, needs to be adjusted
so that the probabilityF,, of false alarmover all the tem- )
platesis still acceptable. Under the assumption that all the F=e Pnl2, 9
inner productsn,u;) of the templates with noise alone are

statistically independent variabldshis hypothesis entails Throughout this paper, we will find it useful to consider
(uj,u;)=0], Fyy is just 1- (1—-AM~N,F. If the tem- inner products that are maximizeédr minimized with re-
plates are not statistically independent, this number is aspect to the phases bbth templates and reference signals.

2
Po(py) = P(z;e_pd’/z, (8

and the false-alarm probability for a threshelg, is just
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In particular, we shall follow Damour, lyer
Sathyaprakash in making a distinction between Hesst
matchor maxmax match

maxmaxh,u;) =maxmaxh(¢p),ui(¢y)),
bn Py

(10

and

PHYSICAL REVIEW D 67, 024016 (2003

Px= \/2(Iog Niimest 109 Nshapes_ log Fio)- (18)

It is generally assumed th&d,.s~ 3% 10 (equivalent to
templates displaced by 0.01 s over one \{ddr;12) and that
the false-alarm probability,,,~ 10 3. Using these values,
we find that an increase pf, by about~3% is needed each

which represents the most favorable combination of phasegme we increas®lgnapeby One order of magnitude. So there

between the signals andu;, and theminmax match

minmax h,u;)=minmaxh(¢y),u;(¢y)),
bn Pt

(11)

is a tradeoff between the improvement in signal-to-noise ra-
tio obtained by using more signal shapes and the correspond-
ing increase in the detection threshold for a fixed false-alarm
probability.

which represents the safest estimate in the realistic situation,
where we cannot choose the phase of the physical measured ¢ |mperfect detection and discrete families of templates
signal, but only of the template used to match the signal.

Damour, lyer and Sathyaprakagsee Appendix B of Ref.
[27]) show that both quantities are easily computed as

(maxma)j_ A+B+ A—B 2 ) 1/2) 1/2
minmax/ | 2 ( > | *C ] » 12
where
A=(h(0),u;(0))+(h(0),u;(7/2))?, (13)
B={(h(#/2),u;(0))2+(h(m/2),u;(7/2))?, (14)
C=(h(0),u;(0)){h(7/2),u;(0))
+(h(0),u;(7/2)){h(7/2),u;(7/2)). (15)

There are two distinct reasons why the detection of a
physical signah by matched filtering with a template bank
{u;} might result in signal-to-noise ratios lower than the op-
timal signal-to-noise ratio,

Popt™ V(h,h).

First, the templates, understood ascantinuous family
{u(\"™)} of functional shapes indexed by one or margin-

sic parameters\” (such as the masses, spins, Jetmight
give an unfaithful representation &f introducing errors in

the representation of the phasing or the amplitude. The loss
of signal to noise due to unfaithful templates is quantified by
the fitting factor (FF), introduced by Apostolatog45], and
defined by

(19

In these formulas we have assumed that the two bases

{h(0),h(7/2)} and{u;(0),u;(7/2)} have been orthonormal-

ized.

The time of arrival t, is an extrinsic parameter because

maxa(h,u(\?))

FR(h,u(\)= \/W

(20)

the signal to noise for the normalized, time-shifted template

u(t—ty) against the signa is just

+e5* (F)u(f)
(s,u(tg))=4 Refo W

eiwatod f, (16)

In general, we will be interested in the FF of the continuous
template bank in representingfamily of physical signals
{h(6%}, dependent upon one or more physical parameters
0*: so we shall write FF¢") = FF(h(6*),u(\*)). Although
it is convenient to index the template family by the same

where we have used a well-known property of the Fouriephysical parameterg* that characteriz&(6”), this is by no
transform of time-shifted signals. These integrals can béneans necessary; the template paramexérsmight be a

computed at the same time for all the time of arrivglg,

using a fast Fourier transformtechnique that requires

~NglogNs operations (where Ng is the number of the
samples that describe the signais opposed to~N? re-
quired to compute all the integrals separafelg]. Then we

can look for the optimal, that yields the maximum signal to

noise.

We now go back to adjusting the threshpld for a search
over a vast template bank, using the estimge for the
false-alarm probability. Assuming that the statistjggs for

each signal shapand starting time are independent, we re-

quire that

Frot

2
— 2
e p¢* ==
Ntimesthapes

17

or

different number than the physical parametg@ngeed, this is
desirable when thé” get to be very many and they might

not carry any direct physical meaning. Notice also that the
value of the FF will depend on the parameter range chosen to
maximize thex”,

The second reason why the signal-to-noise will be de-
graded with respect to its optimal value is that, even if our
templates are perfect representations of the physical signals,
in practice we will not adopt a continuous family of tem-
plates, but we will be limited to using a discrete bajnk
Eu()\iA)}. This loss of signal to noise depends on how finely
templates are laid down over parameter spgg&-39; a
notion of metric in template spacghe mismatch metric
[28,29,48) can be used to guide the disposition of templates
so that the los§in the perfect-template abstractiaa limited
to a fixed, predetermined value, th@nimum matcHMM),
introduced in Refs[29,37), and defined by
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MM = min max(u(A*),u(\)) segments that joil( ") to its projectionu(A*) andu(A*)
MR to the nearest discrete templa,teA\iA) can be considered or-
. . thogonal:
=min maxu(A%),u(A\A+AND)), (21)
M A (h(8*) —u(A™),u(A™ —u( %)) =0. (26)

whereANA=\A—\A. Themismatch metric gc(\*) for the ~ This assumption is generally very accurate if FF and MM are

template spacéu(\”)} is obtained by expanding the inner Small enough, as in this paper; so we will adopt this estimate.
product (or match (u(XA),u(XA+A)\A)> about its maxi- However, it is possible to be more precise, by defining an

mum of 1 atANA=0- external metric §g [28,47 that characterizes directly the
mismatch betweeh(#*) and a template(A*+ANA) that is
(UM, u(NA+ ANY) displaced with respect to the templaté\”) that is yields

the maximum match witi(6%).

— TASA A
=M%+ AN Since the strength of gravity-wave signals scales as the

1 92 inverse of the distancg48], the matched-filtering scheme,
=1+-———| ANBANC+..., (22) with a chosen signal-to-noise threshgig , will allow the
2 GJANBIANC N reliable detection of a signdl, characterized by the signal

A strengthAy = (h,h) at the distancely, out to a maximum
so themismatchl—M betweenu(\?) and the nearby tem- distance

plate u(A*+AX*?) can be seen as the square of the proper

distance in a differential manifold indexed by the coordinates dmax_ -Ado )
A [29), A pe 0
1—M(A AN+ AN =g cANBANCS, (23 If we assume that the measured GW events happen with a
homogeneous event rate throughout the accessible portion of
where the universe, then the detection rate will scaledds,. It

) follows that the use of unfaithful, discrete templafes} to

1 M (24 detect the signah will effectively reduce the signal strength,

2 JANBIANC XA. and thereforel,,,,,, by a factor FF-MM — 1. This loss in the
signal-to-noise ratio can also be seen as an increase in the

If, for simplicity, we lay down then-dimensional discrete detection thresholg, necessary to achieve the required

template banKu(A?)} along a hypercubical grid of cell-size false-alarm rate, because the imperfect templates introduce

dl in the metricgag (a grid in which all the templates on an element of uncertainty. In either case, the detection rate

nearby corners have a mismatchdifwith each other the ~ Will be reduced by a factor (FFMM —1)°.

minimum match occurs whex?* lies exactly at the center of o _
one of the hypercubes: ther-MM =n(d1/2)?. Conversely, D. Approximations for detector noise spectrum
given MM, the volume of the corresponding hypercubes is and gravitational-wave signal
given by Vyy=[2y(1—MM)/n]". The number of tem- For LIGO-I we use the analytic fit to the noise power
plates required to achieve a certain MM is obtained by intespectral density given in Ref13], and plotted in Fig. 1:
grating the proper volume of parameter space within the re-

f —56 f —4.52

|aasr| “vo1q |
fo fo

gion of physical interest, and then dividing M : S, (f)
AR (25) fy?
= . 25 _
NG +o.52+o.32(f0) } (28)

Hz !
IREES

In practice, if the metric is not constant over parameter spaceheref,=150 Hz. The first term in the square brackets rep-
it will not be possible to lay down the templates on an exactesents seismic noise, the second and third, thermal noise,
hypercubical grid of cell-sizall, so N will be somewhat and the fourth, photon shot noise.
higher than predicted by ER5). However, we estimate that Throughout this paper, we shall compute BBH waveforms
this number should be correct within a factor of two, whichin the quadrupole approximatiofwe shall compute the
is adequate for our purposes. phase evolution of the GWs with the highest possible accu-

In the worst possible case, the combined effect of unfaithracy, but we shall omit all harmonics higher than the quad-
ful modeling (F<1) and discrete template family (MM rupole, and we shall omit post-Newtonian corrections to the
<1) will degrade the optimal signal to noise by a factor of amplitude; this is a standard approach in the field, see, e.g.,
about FF-MM —1. This estimate for the total signal-to- [11]). The signal received at the interferometer can then be
noise loss is exact when, in the space of signals, the twaritten as[5,32]

Ogc™ —

9.00< 1049

Mg,MM]
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TABLE I. Post-Newtonian models of two-body dynamics defined in this paper. The nobé(tith,mPN;@) denotes the mode{, with
terms up to ordenPN for the conservative dynamics, and with terms up to onaeN for radiation-reaction effects; fon=3 we also need

to specify the arbitrary flux parametér(see Sec. Il A; for n=3, the effective-one-body models need also two additional paranmtars
Z, (see Sec. IV ¢

Model Shorthand Evolution equation Section
Adiabatic model with Taylor-expanded T(nPN,mPN;b) energy-balance equation Sec. Il A
energy&(v) and flux 7(v)

Adiabatic model with Padexpanded p(npN,mpN;fg) energy-balance equation Sec. Il B
energy&(v) and flux 7(v)

Adiabatic model with Taylor-expanded enerév) SPANPN=mMPN) energy-balance equation in Sec. VIF
and flux F(v) in the stationary-phase approximation the frequency domain

Nonadiabatic Hamiltonian model with HT(nPN,mPN;@) Hamilton equations Sec. IVA
Taylor-expanded GW flux

Nonadiabatic Hamiltonian model with Hp(npN,mpN;?p) Hamilton equations Sec. IVA
Padeexpanded GW flux

Nonadiabatic Lagrangian model L(nPN,mPN) F=ma Sec. IVB
Nonadiabatic effective-one-body model ET(nPN,mPN;@;El ,“22) effective Hamilton equations Sec. IVC
with Taylor-expanded GW flux

Nonadiabatic effective-one-body model Ep(npN,mpN;fg;El Z,) effective Hamilton equations Sec. IVC

with Padeexpanded GW flux

This equation relates the time derivative of the energy func-
h()=5-M n(mMfgw)?%cosecw, (29 tion &) (which is given in terms of the total relativistic
- energy&, by £=Eq—m;—m,, and which is conserved in
wheref and Qew are the instantaneous GW frequency andabsence of radiation reactipmo the gravitational flux(or
phase at the timg d, is the luminosity distanceM and 7 luminosity) function F(v). Both functions are known for
are, respectively, the BBH total mass;+m, and the di- quasicircular orbits as a PN expansiondn It is easily
mensionless mass ratin;m,/M?2, and where we have taken shown that Eq(31) is equivalent to the systertsee, e.g.,
G=c=1. The coefficien® depends on the inclination of the Ref.[27])
BBH _orb_it with respect to the plane 01_‘ the sky, and on t_he 3
polarization and direction of propagation of the GWs with quGW: ZL d_U: _ Fv)
respect to the orientation of the interferometer. Finn and dt M ' dt M d&(v)/dv
Chernoff[32] examine the distribution of), and show that
O max=4, while rms®=8/5. We shall use this last value In accord with the discussion around Eg9), we shall only
when we compute optimal signal-to-noise ratios. The waveconsider thaestricted waveform (t) =v*cosegw(t), where
form given by Eq.(29), after dropping the facto®M »/d,,  the GW phasepcyy is twice the orbital phase.
is known asrestricted waveform

(32

A. Adiabatic PN expanded models

lll. ADIABATIC MODELS The equations of motion for two compact bodies at 2.5PN
We turn, now, to a discussion of the currently availableorder were first derived in Refs49]. The 3PN equations of
mathematical models for the inspiral of BBHs. Table | showsMotion have been obtained by two separate groups of re-
a list of the models that we shall consider in this paperS€archers: Damour, Jaranowski and 3ehg50] used the
together with the shorthands that we shall use to denot@rmowitt-Deser-Misner(ADM) canonical approach, while
them. We begin in this section with adiabatic models. BBHBlanchet, Faye and de Andradl] worked with the PN
adiabatic models treat the orbital inspiral as aquasistationar‘é‘”at'On of the Einstein equations in the harmonic gauge.
sequence of circular orbits, indexed by the invariantly de-R€cently Damour and colleagug], working in the ADM
fined velocity formalism and applying dimensional regularization, deter-

mined uniquely thestatic parameterthat enters the 3PN
v=(Me)¥3=(7Mfg) '~ (30)  equations of motior{50,51] and that was until then un-
known. In this paper we shall adopt their value for the static
The evolution of the inspiraland in particular of the orbital parameter. Thus at present the energy funcfissmknown up
phase¢) is completely determined by thenergy-balance to 3PN order.
equation The gravitational flux emitted by compact binaries was
first computed at 1PN order in R¢63]. It was subsequently
dév) ~ Ho) (37 determined at 2PN order with a formalism based on multi-
dt vl polar and post—Minkowskian approximations, and, indepen-
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dently, with the direct integration of the relaxed Einstein
equationg54]. Nonlinear effects of tails at 2.5PN and 3.5PN
orders were computed in Ref&5]. More recently, Blanchet
and colleagues derived the gravitational-flux function for
quasicircular orbits up to 3.5PN ordgs6,57. However, at
3PN order{56,57] the gravitational-flux function depends on

an arbitrary paramete# that could not be fixed in the regu-

larization scheme used by these authors.

1. PN energy and flux

Denoting by€TN and Fr, the N'"-order Taylor approxi-
mants [ approximantsto the energy and the flux functions,

we have

N
Er (V)= Eneudv) 2, E v

N
fTN(U)E]:NeWI(U)gO Fmo,

(33

(34

PHYSICAL REVIEW D67, 024016 (2003
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FIG. 2. Normalized flux functiot, /Fyew versusv, at differ-
ent PN orders for equal-mass binaries=0.25. Note that the
1.5PN and 2PN flux, and the 3PN and 3.5PN flux, are so close that
they cannot be distinguished in these plots. The two long-dashed
vertical lines correspond t0=0.18 andv=0.53; they show the
velocity range that corresponds to the LIGO frequency band 40
<fow=240 Hz for BBHs with total mass in the range 10-Mg.

Here p=m;m,/(m;+m,)?, vg is Euler's gamma, and is

where “Newt” stands for Newtonian order, and the sub-tne arbitrary 3PN flux parametgb6,57. From Table | of
scripts. N and N stand for _pos”*l!“-Nevvtoman and  Ref.[56] we read that the extra number of GW cycles accu-
post'-Newtonian order. The quantities in these equations argnylated by the PN terms of a given order decreases

1 2 32 2..10
ENewt(v)=—§77v , J’”Newt(v)=g77v , (39
3 7 27 19 9?
S(mM=1 &(n==7-15 &m=—g+gn 5,
(36)
o, 075, (34445 205 ) 155 . 35
sM="%2"1 576 967 |7 96" 51847
(37
1247 35
Fo(n)=1, Fi(n)=0, fz(ﬂ)z—%—l—zn,
Fs(n)=4m, (38
44711 9271 65
Fam== 9072 " 504 7 187"
(8191 535 .
Fs(n)=— 72t o™ (39
6643739519 16 , 1712 856 ,
Fo(n)= 5954400 "3 " 105 7€ 1050918
2013613 41 , 88, 94403
~ 272160 28" 3%|" 30247
775 40
3247 (40
| 16285 176419 19897 "
M=\~ 504 T2 7T 37 7™ (4D

(roughly) by an order of magnitude when we increase the PN
order by one. Hence, we find it reasonable to expect that at

3PN order the parameteérshould be of order unity, and we

choose as typical values=0,+ 2.
In Fig. 2 we plot the normalized qusz—'TN/J-'NeWt as a

function of v at various PN orders for the equal mass case
7=0.25. To conver to a GW frequency we can use

20M ¢,

fow=3.2x 10 v, (42

The two long-dashed vertical lines in Fig. 2 correspond to
v=0.18 andv=0.53; they show the velocity range that cor-
responds to the LIGO frequency band<df},, <240 Hz for
BBHs with total mass in the range 10-M@,. At the
LIGO-I peak-sensitivity frequency, which is 153 Hz accord-
ing to our noise curve, and for a (+@0)M  BBH, we have
v=0.362; and the percentage difference between subsequent
PN orders is Newt:1PN:—58%; 1PN-1.5PN:+142%;
1.5PN—2PN:-0.2%; 2PN-2.5PN:—34%; 2.5PN
—3PN(0=0):+43%; 3PN-3.5PN@=0):+0.04%. The
percentage difference between the 3PN fluxes Witht2 is
~7%. It is interesting to notice that while there is a big
difference between the 1PN and 1.5PN orders, and between
the 2PN and 2.5PN orders, the 3PN and 3.5PN fluxes are
rather close. Of course this observation is insufficient to con-
clude that the PN sequence is converging at 3.5PN order.

In the left panel of Fig. 3, we plot th€ approximants for
the energy function versus at different PN orders, while in
the right panel we plotas a function of the total mass, and
at the LIGO-I peak-sensitivity GW frequencyf peqx
=153 Hz) the percentage difference of the energy function
betweenT approximants to the energy function of successive
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FIG. 3. In the left panel, we plot the energy functiﬁm versus, at different PN orders, fop=0.25. The two long-dashed vertical lines
in the left figure correspond to=0.18 andv=0.53; they show the velocity range that corresponds to the LIGO frequency band 40
<few=240 Hz, for BBHs with total mass in the range 10M9. In the right panel, we plot the percentage differert%rN
:1Oq(5TN+1_5TN)/STN| versus the total madl, for N=1,2, at the LIGO-I peak-sensitivity GW frequendy,,= 153 Hz[note: v peax

=(7M fpealglla]-

PN orders. We note that the 1PN and 2PN energies are di&*N order of the terms included for the eneigye flux. We
tant, but the 2PN and 3PN energies are quite close. shall consider ®PN,mPN)=(1,1.5,(2,2),2,2.5) and

(3,3.50) (at 3PN order we need to indicate also a choice of

2. Definition of the models the arbitrary flux parametef).
The evolution equation$32) for the adiabatic inspiral

lose validity (the inspiral ceases to be adiabaticlittle be-

T .
fore v reachea)M“l‘ECO, where MECO stands for maximum-

binding-energy circular orbif58,59. This UI,,NECO is com-
puted as the value of at wh|chd8TN(v)/dv:O. In building (Tn,Tus)—1 asN—ce. One requirement of this criterion

our adiabatic models we evolve Eq82) right up tovveco s that(Ty, Ty.1)—1 asN—oo, and this is what we test in
and. stop there. We shall refer to the frequency computed bygple |11, settingTy=T(N,N+0.5). The values quoted as-
settingv =vveco in Eq. (42) as theending frequencyor  syme maximization on the extrinsic parameters but not on
these waveforms, and in Table Il we show this frequency fokne intrinsic parameterdFor the case (1810)My, we
some BH masses. However, for certain b|nar|e§, the 1PN anghow in parentheses the maxmax matches obtained by maxi-
2.5PN flux functions can go to zero befave=v L., (Se€  mizing with respect to the intrinsic and extrinsic parameters,
Fig. 2). In those cases we choose as the ending frequency thegether with the intrinsic parameteM and n of Ty,
value of f=v%(7M) where F(v) becomes 10% of where the maxima are attaing@hese results suggest that
Frnewt(V). (When using the 2.5PN flux, our choice of the the PN expansion is far from converging. However, the very
ending frequency differs from the one used in REf3], low matches betweeN=1 andN=2, and betweelN=2
where the authors stopped the evolution at the GW frequencgndN = 3, are due to the fact that the 2.5PN flux goes to zero
corresponding to the Schwarzschild innermost stable circuldbefore the MECO can be reached. If we redefihg as
orbit. For this reason there are some differences between od(2,2) instead ofT(2,2.5), we obtain the higher values
overlaps and theirs. shown in brackets is Table Il

We shall refer to the models discussed in this section as In Fig. 4 we plot the frequency-domain amplitude of the
T(nPN,mPN), wherenPN (mPN) denotes the maximum T-approximated waveforms, at different PN orders, for a

3. Waveforms and matches

In Table Ill, for three typical choices of BBH masses, we
perform a convergence test using Cauchy’s critefiai],
namely, the sequencl, converges if and only if for eack

TABLE Il. Location of the MECO/ISCO. The first six columns show the GW frequency at the maximum binding energy for circular
orbits (MECO), computed using th& and P approximants to the energy function; the remaining columns show the GW frequency at the
innermost stable circular orhitSCO), computed using thel approximant to the energy, and using the EOB improved Hamiltai@®arwith

2,=7,=0. For theH approximant the ISCO exists only at 1PN order.

fow (Hz) at MECO fow (Hz) at ISCO
M T(PN) T@PN) T@PN) P(2PN) P@PN) | H(IPN) E(PN) E (2PN) E (3PN)
(5+5)Mg 3376 886 832 572 866 183 446 473 570
(10+100M 1688 442 416 286 433 92 223 236 285
(I5+15M 1125 295 277 191 289 61 149 158 190
(20+200M 844 221 208 143 216 46 112 118 143
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TABLE lIl. Test for the Cauchy convergence of tfleapproximants. The values quoted are maxmax
matches obtained by maximizing with respect to the extrinsic parameters, but not to the intrinsic parameters
(i.e., the matches are computed bwaveforms with the same masses, but different PN ojdétsre we
define Ty=T(0,0), T;=T(1,1.5) T,=T(2,2.5), T3=T(3,3.56). In the Newtonian casel,=(0,0), the
MECO does not exist and we stop the integration of the balance equation latThe values in brackets,
“[---],” are obtained by setting,=T(2,2) instead ofT(2,2.5); the values in parentheses; “(),” are
obtained by maximizing with respect to the extrinaid intrinsic parameters, and they are shown together
with the Ty, parameterdM and » where the maxima are achieved. In all cases the integration of the
equations is started at a GW frequency of 20 Hz.

(Tno e
N (5+20)M, (10+10)M ¢, (15+15)M,
0 0.432 0.5530.861, 19.1, 0.241 0.617
1 0.528[0.639 0.550(0.884, 22.0, 0.237 0.645[0.717
2(h=+2) 0.482[0.952 0.547(0.841, 18.5, 0.25 0.563[0.917]
2(h=—-2) 0.457[0.975 0.509(0.821, 18.7, 0.241 0.524[0.986]

(15+15)M, BBH. The Newtonian amplitude,Ayewdf) parameters. Therefore, in the following we shall consider

=f776 is also shown for comparison. In tfg(1,1) and only the case ob=0.

T(2,25) cases, the flux function goes to zero before A quantitative measure of the difference between the

this means that the radiation-reaction effects be-1 (2:2), T(2,2.5) andT(3,3.5) waveforms can be seen in

TN .
=U y . 4 .
MECO Table V in the intersection between the rows and columns

come negligible during the last phase of evolution, so thqabeledT( ... ). Forfour choices of BBH masses, this table

binary is able to spend many cycles at those final frequen§hows the maxmax matches between the search models in

cies, skewing the amplitude with respect to the N?Wto_nithe columns and the target models in the rows, maximized
result. ForT(2,2T), T(3.3), andT(3,3.22A,l the evolution IS er the search-model parametdtsand ; in the searchy
stopped at =v o, and, althoughfyeco=270-300 Hz s restricted to its physical range<Op<1/4, where 0 corre-
(see Table Il the amplitude starts to deviate frofi ”®  sponds to the test-mass limit, while 1/4 is obtained in the
around 100 Hz. This is a consequence of the abrupt termiequal-mass case. These matches can be interpreted as the
nation of the signal in the time domain. fitting factors[see Eq.(20)] for the projection of the target
The effect of the arbitrary parametéron the T wave- models onto the search models. For the c&g22.5) the
forms can be seen in Table 1V in the intersection between thgalues are quite low: if th&(3,3.5) waveforms turned out to
rows and columns labeled(3,3.542) andT(3,3.5-2). give the true physical signals and if we used &,2.5)
For three choices of BBH masses, this table shows the maxvaveforms to detect them, we would lose€32—-49 % of the
max matches between tleearchmodels at the top of the events. The modéll(2,2) would do match better, although it
columns and the¢arget models at the left end of the rows, would still not be very faithful. Once more, the difference
maximized over the mass parameters of the search models retweenT(2,2) andT(2,2.5) is due to the fact that the
the columnsThese matches are rather high, suggesting tha2.5PN flux goes to zero before the BHs reach the MECO.
for the range of BBH masses we are concerned with, the

effect of changingg is just a remapping of the BBH mass  p_Adiabatic PN resummed methods: Padepproximants

The PN approximation outlined above can be used quite

102 ' ' ' generally to compute the shape of the GWs emitted by BNSs
N or BBHSs, but itcannot be trustech the case of binaries with
comparable masses in the rarige=10—4M , because for
S 10°F these sources LIGO and VIRGO will detect the GWs emitted
< — T4, 1 when the motion is strongly relativistic, and the convergence
4 :g ;')5) : of the PN series is very slow. To cope with this problem,
o - T(2: 25) Damour, lyer and Sathyaprakag?i7] proposed a new class
T3, 3, 6=0) of models based on the systematic application of Pade
10° : ' : summation to the PN expansions&fv) and F(v). This is
20 40 100 200 400 ; ;
f(Hz) a standard mathematical technique used to accelerate the

convergence of poorly converging or even divergent power
FIG. 4. Frequency-domain amplitude versus frequency for theseries.

T-approximatedrestricted waveforms at different PN orders for a If we know the functiong(v) only through its Taylor
(15+15)M, BBH. The T(3,3.59=0) curve, not plotted, is almost approximant Gy(v)=go+gv+ - - - + g N=Tn[9(v)],
identical to the T(3,3)=0) curve. the central idea of Padesummatio60] is the replacement
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TABLE IV. Fitting factors betweem andET models, at 2PN and 3PN orders, and for different choices of the arbitrary flux para@nﬁmthree choices of BBH masses, this table <
shows the maxmax matchgsee Eq(10)] between thesearchmodels at the top of the columns and taeget models at the left end of the rowmsiaximized over the mass parameters 2

of the models in the columnBor each intersection, the three numbers riMmand » denote the maximized match and the search-model mass parameters at which the maximui
attained. The matches can be interpreted as the fitting factors for the projection of the target models onto the search models. See the captithftr TatteMdetails. m
>
<
T(2,2.5) ET(2,2.5) T(3,3.5;+2) T(3,3.5-2) ET(3,3.5;+2) ET(3,3.5--2) [
mm M 7 mm M 7 mm M 7 mm M 7 mm M 7 mm E
s
(15+15)M o 0.914 27.58 0.248 9
T(2,2.5) (15-5)Mg 0.916 16.81 0.249
(5+5)Mg 0.900 10.13 0.241
(15+15My 0.922 33.93 0.241
ET(2,2.5) (15+5)My 0.971 33.17 0.076
(5+5)Mgy 0.984 13.57 0.147
(15+15)M o 0.995 29.83 0.243 0.963 30.52 0.240 0.974 30.32 0.240
T(3,3.5:+2) (15+5)M¢o 1.000 19.06 0.204 0.984 20.03 0.186 0.974 20.09 0.182
(5+5)Mg 0.981 9.96 0.250 0.991 10.16 0.242 0.972 9.94 0.250
(15+15)M o 0.998 30.94 0.242 0.951 31.27 0.239 0.960 30.59 0.241
T(3,3.5-2) (15+5)Mg 1.000 20.93 0.173 0.985 20.89 0.173 0.983 20.27 0.181
(5+5)Mg 0.999 10.61 0.226 0.994 10.26 0.240 0.993 10.19 0.241
(15+15)M o 0.951 30.39 0.240 0.931 29.76 0.241 0.994 30.06 0.241%
ET(3,3.5+2) (15+5)Mg 0.981 20.16 0.186 0.985 18.97 0.207 1.000 19.23 0.201£
(5+5)Mg 0.996 10.22 0.240 0.985 9.96 0.250 0.979 9.95 0.250>
(15+15)M o 0.963 30.94 0.240 0.953 30.30 0.241 0.999 31.07 0.238
ET(3,3.5-2) (15+5)Mg 0.983 20.65 0.179 0.980 20.32 0.182 1.000 20.83 0.175
(5+5)Mg 0.987 10.27 0.240 0.996 10.21 0.241 1.000 10.51 0.230
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TABLE V. (Continued in Table VI Fitting factors between several PN models, at 2PN and 3PN orders. For three choices of BBH
masses, this table shows the maxmax mat¢bes Eq(10)] between thesearchmodels at the top of the columns and taeget models at
the left end of the rowsmaximized over the intrinsic parameters of the search models in the callfon®ach intersection, the three
numbers mmM =m;, +m, and »=m;m,/M? denote the maximized match and the search-model mass parameters at which the maximum
is attained. In computing these matches, the paramgtdrthe search models was restricted to its physical range & 1/4. The arbitrary
flux parameterd was always set equal to zero. These matches represent the fitting faeter&q.(20)] for the projection of the target
models onto the search models. The reader will notice that the values shown are not symmetric across the diagonal: for instance, the match
for the search modédl(2,2.5) against the target mode(2,2.5) is higher than the converse. This is because the matches represent the inner
product (1) between two different pairs of model parameters: in the first case, the target parameters5M ,m,=15Mg)p=(M
=30M¢ ,7=0.25), are mapped to the maximum-match search parametérs39.™ . , = 0.24); ; in the second case, the target param-
eters ;=15Mg,m,=15M)1=(M=30M,7=0.25); are mapped to the maximum-match paramet&s=25.3M  ,7=0.24), [so
the symmetry of the inner produt) is reflected by the fact that the search parametdrs- 5.3V , 7=0.24), are mapped into the target
parametersN1 =30M g , n=0.25)].

T(2,2) T(2,2.5) T(3,3.5,0) P(2,2.5) P(3,3.5,0)
mm M n mm M 7 mm M 7 mm M n mm M 7
T(2,2) (20+20)M g 0.924 54.47 0.23 0.999 40.47 0.24 0.977 39.13 0.25 0.999 4193 0.24
(15+15)M o 0.873 39.46 0.24 0.999 30.35 0.24 0.980 29.69 0.25 0.998 31.54 0.23
(15+5)Mg 0.885 29.45 0.10 0.998 19.64 0.19 0.992 18.07 0.22 0.998 20.23 0.18
(5+5)Mg 0.988 21.28 0.06 0.998 10.61 0.22 0.994 10.54 0.22 0.999 11.16 0.20
T(2,2.5) (20+20)My 0.882 31.44 0.25 0.870 31.54 0.25 0.824 30.25 0.25 0.893 33.09 0.25
(15+15)My 0.845 24.85 0.25 0.835 25.21 0.25 0.796 25.35 0.25 0.863 26.20 0.25
(15+5)My 0.848 15.34 0.25 0.865 15.74 0.25 0.870 15.85 0.25 0.894 15.90 0.25
(5+5)Mgy 0.801 941 0.25 0.823 951 0.25 0.826 9.51 0.25 0.849 9.61 0.25
T(3,3.5,0) (26-r200My 0.999 39.57 0.24 0.916 54.63 0.23 0.989 39.03 0.24 0.997 4156 0.23
(15+15My 0.999 29.71 0.24 0.855 39.46 0.24 0.992 29.25 0.25 1.000 31.97 0.21
(15+5)Mg 0.999 20.98 0.16 0.877 29.20 0.10 0.997 18.82 0.20 1.000 20.81 0.17
(5+5)Mgy 0991 9.67 0.25 0.986 19.49 0.07 0.998 9.90 0.24 1.000 10.57 0.22
P(2,2.5) (20+20)M, 0.970 40.47 0.24 0.879 56.77 0.23 0.991 41.80 0.22 0.999 46.01 0.18
(15+15My 0.967 30.15 0.24 0.816 39.66 0.24 0.998 32.66 0.20 0.999 34.02 0.19
(15+5)Mg 0989 23.77 0.12 0.792 20.56 0.20 0.996 21.55 0.15 0.998 21.83 0.15
(5+5)My 0.989 9.67 0.25 0.882 13.04 0.15 0.998 10.08 0.24 0.997 10.75 0.21

P(3,3.5,0) (26-r20)My 0.999 38.33 0.24 0.923 5151 0.24 0.997 38.97 0.24 0971 37.70 0.25
(15+15Mp 0.997 28.47 0.25 0.979 51.01 0.10 0.997 28.96 0.25 0.961 28.88 0.25
(15+5)Mg 0.997 19.53 0.18 0.825 20.89 0.19 1.000 19.12 0.19 0.998 18.32 0.21
(5+5)Mg 0949 980 0.24 0.988 17.70 0.09 0.993 9.75 0.25 0.991 9.75 0.25

EP(2,2.5) (206+20)M 0.954 38.10 0.25 0.936 51.14 0.24 0.933 39.10 0.25 0.878 38.22 0.25 0.962 39.94 0.25
(15+15My 0.965 29.34 0.25 0.895 37.45 0.25 0.960 29.60 0.25 0.903 29.56 0.25 0.975 30.15 0.25
(15+5)Mgy 0.988 20.79 0.16 0.769 21.97 0.19 0.983 20.22 0.18 0.969 19.54 0.19 0.980 20.85 0.17
(5+5)Mgy 0996 9.70 0.25 0.980 20.46 0.07 0.997 10.29 0.23 0.995 10.22 0.23 0.997 10.83 0.21

EP(3,3.50) (26-200My 0.946 37.11 0.25 0.949 48.90 0.24 0.930 37.84 0.25 0.867 36.72 0.25 0.954 38.80 0.24
(15+15My 0.955 28.78 0.24 0.913 35.38 0.24 0.948 28.89 0.25 0.893 28.82 0.25 0.968 29.50 0.25
(15+5)My 0.992 1851 0.20 0.808 22.15 0.18 0.985 18.92 0.20 0.970 18.34 0.21 0.983 19.63 0.19
(5+5)My 0.968 9.65 0.25 0.985 18.41 0.08 0.994 9.76 0.25 0.992 9.77 0.25 0.998 10.16 0.23

HT(2,2) (20+20)My 0.777 21.39 0.25 0.890 27.58 0.25 0.768 21.61 0.25 0.732 21.63 0.25 0.789 22.57 0.25
(15+15My 0.674 20.20 0.24 0.780 21.83 0.25 0.673 21.02 0.25 0.657 21.03 0.25 0.687 21.07 0.25
(15+5)My 0.616 15.88 0.20 0.666 18.84 0.18 0.625 17.37 0.18 0.645 16.10 0.22 0.631 17.14 0.18
(5+5)Mgy 0.796 9.62 0.25 0.935 10.00 0.25 0.833 9.73 0.25 0.834 9.74 0.25 0.856 9.75 0.25

HT(3,3.50) (26r200M, 0.812 32.35 0.25 0.925 4491 0.24 0.795 34.76 0.25 0.737 3298 0.25 0.812 37.10 0.24
(15+15M, 0.848 27.97 0.25 0.919 33.30 0.25 0.835 28.70 0.25 0.788 28.78 0.25 0.875 29.07 0.25
(15+5)Mg 0.998 23.08 0.13 0.788 21.15 0.20 0.999 21.25 0.16 0.994 19.77 0.18 0.999 21.81 0.15
(5+5)My 0952 9.65 0.25 0.828 10.36 0.24 0.984 9.76 0.25 0.984 9.77 0.25 0.992 9.99 0.24

HP(2,2.5) (20+r200My 0.756 18.71 0.25 0.853 23.74 0.24 0.752 18.96 0.25 0.725 19.09 0.25 0.769 19.70 0.25
(15+15M, 0.631 17.87 0.24 0.714 18.06 0.25 0.634 17.86 0.25 0.630 18.46 0.25 0.642 18.53 0.25
(15+5)My 0.582 14.33 0.25 0.631 16.88 0.20 0.587 1454 0.25 0.600 16.40 0.18 0.589 17.88 0.15
(5+5)My 0.731 941 0.25 0.869 9.75 0.25 0.755 9.51 0.25 0.755 9.54 0.25 0.765 9.54 0.25

HP(3,3.5,0) (26r200My 0.748 32.36 0.25 0.879 4253 0.25 0.733 3251 0.25 0.679 30.72 0.25 0.756 34.48 0.25
(15+15My 0.789 27.41 0.24 0915 31.80 0.25 0.782 27.43 0.25 0.741 27.43 0.25 0.817 28.60 0.25
(15+5)Mgy 0.998 21.75 0.15 0.792 20.41 0.21 1.000 20.57 0.17 0.995 19.29 0.19 0.999 21.17 0.16
(5+5)Mgy 0912 962 0.25 0.990 16.20 0.10 0.959 9.73 0.25 0.961 9.76 0.25 0.982 9.76 0.25
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of the power serie§y(v) by the sequence of rational func- Padeapproximated P-approximatey EPN(v) and J—'pN(v)

tions (for N=2,3):
M
auv _ 1
" _AM(v)_,Zo v s Ep, \/1+2nw/1+epN(u) 1-1, (44)
K[g(v)]_ BK(U) — K ] jl
. iv 32 1
i=o fPN=€7I2v101 / s fey(vam), (45
— vl
with M+K=N andT . «[P¥(v)]=Gn(v) (without loss of pole
generality, we can sdiy=1). We expect that foM,K— Where
+oo, Pw[g(u)] will converge tog(v) more rapidly than
Tnl[g(v)] converges tag(v) for N— +o. 1 9 1
1+-9p—|4——-n+= ﬂ 2
1. PN energy and flux e (1) ) 3" ( 479" |v (46)
V)=~V
Damour, lyer and Sathyaprakag®i7], and then Damouir, k 1+ = _(3_ 3_5 )vz
Schder and Jaranowski[17], proposed the following 37 12"
|
1 ’ 35 1 4
(0)= o2 3 12 3 @
e vV)=—V ’
& 1—-wa( )
_ 40 27Jr 1/41 ) 430 N 103 ’ 1 3 48
Ws=36-35,10 16/ 4 " 157 120”7 2707 | 49
Cv -1
fp(v)=[ 1+ (up to cg), (49
14 2
1+ ...
f (4 1712 610" L Cyv -1 50
po(V)=| 1= 7550 OQUT +—C2v (upto cv). (50)
MECO 1+
1+ ...
|
Here the dimensionless coefficients depend only ong. F s
The c,’s are explicit functions of the coefficientf, (k fr="Tv— P, - (54
:11'-'15)1 vale
fy f1f3—f§ Here F, is given by Eqgs.(38)—(41) [for k=6 and k=7,

ci=-f1, C=fi—¢ cs=———— (D the term —856/105log162 should be replaced by
1 fi(f1—"12)

—856/105 log 161(;5,'7)EC 2], The coefficientsc, and cg are

straightforward to compute, but we do not show them be-
fal 3+ o+ f2f,—fo(2F f3+f,)] - cause they involve rather long expressions. The quantity
Cp=— , 2 . . .
4 (P 1,)(ffs—12) Uyieco IS the MECO of the ene;gy functioep, [defined by

depz(v)/dv:0]. The quantityup given by

ole’

(F2—f,)(—f3+2f,f5f ,— F f2—f3f 5+ f5f5)
(fofa— D[ F3+ 5+ 11— f5(2F1f5+1,)]

Cs=

53
(53 (55

where
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limit it is known that theP-approximants converge quite well

2.5 to the known exact flux functiofsee Fig. 3 of Ref[27]), in
20 the equal-mass case we cannot be sure that the same is hap-
pening, because the exact flux function is unkno@hwe
é 15 assume that the equal-mass flux function is a smooth defor-
;:. 1.0 mation of the test-mass flux function, withthe deformation
. parameter, then we could expect that Ehepproximants are

converging). In the left panel of Fig. 6, we plot the ap-

proximants to the energy function as a functiorvofat 2PN

05 and 3PN orders; in the right panel, we plot the percentage
01 02 03 04 05 06 difference between 2PN and 3HNapproximants to the en-

ergy function, as a function of the total mads evaluated at
FIG. 5. Normalized flux functions / Fye versusv at differ-  the LIGO-I peak-sensitivity GW frequendy,eq= 153 Hz.

ent PN orders. The two long-dashed vertical lines give0.18 and

v=0.53; they show the velocity range that corresponds to the LIGO 2. Definition of the models

frequency band 48 f ;\y=<240 Hz for BBHs with total mass in the . . .
range 10—4M . Compare with Fig. 2. When computing the waveforms f@-approximant adia-

batic models, the integration of Eq&2) is stopped awv
is the pole ofep,, which plays an important role in the =u;N o, which is the solution of the equation

scheme proposed by Damour, lyer and Sathyapraiz@ghit ~ d&p (v)/dv=0. The corresponding GW frequency will be
is used to augment the Padesummation of the PN ex- theending frequencfor these waveforms, and in Table Il we
panded energy and flux with information taken from the testshow this frequency for typical BBH masses. Henceforth, we
mass case, where the flyknown analytically up to 5.5PN shall refer to theP-approximant models aB(nPN,mPN),
ordep has a pole at the light ring. Under the hypothesis ofgnd we shall considemPN,mPN)=(2,2.5,(3,3.56). [Re-
structural stability[27], the flux should have a pole at the call thatnPN andmPN are the maximum post-Newtonian
light ring also in the comparable-mass case. In the test-massider of the terms included, respectively, in the energy and
limit, the light ring corresponds to the pole of the energy, soflyx functions&(v) and F(v); at 3PN order we need to in-
the analytic structure of _the ﬂFl,JX is modified in the dicate also a choice of the arbitrary flux parame&e]r
comparable-mass case to mcludggle( 7). At 3PN order,
where the energy has no pole, we cho¢gsemewhat arbi-
trarily) to keep using the valueggle( 7); the resulting 3PN _ )
approximation to the test-mass flux is still very good. In Table VI, for three typical choices of BBH masses, we
In Fig. 5 we plot theP approximants for the flux function Perform a convergence test using Cauchy’s critefif.
Fe_(v), at different PN orders. Note that at 1PN order Ehe The values are qum_e high, especially if compareq to the same
apgroximant has a pole. At the LIGO-I peak-sensitivity fre_test for theT approximants when the 2.5PN flux is used; see
quency, 153 Hz, for a (1010)M o BBH, the value ofy is Table Ill. However, as we already remarked, we do not have

- ¢ a way of testing whether they are converging to the true
=0.362, and the percentage d|ﬁerenceﬁpN(0.362), be- limit. In Fig. 7 we plot the frequency-domain amplitude of

tween successive PN orders is 1.5BRPN:~8%; 2PN  the P-approximated(restricted waveform, at different PN

—2.5PN:+2.2%; 2.5PN-3PN(6=-2):+3.6%; 3PN orders, for a (15 15)M, BBH. The Newtonian amplitude,

—.3.5PN@=—2):+0.58%. So the percentage difference Anewf)=f""" is also shown for comparison. At 2.5PN
decreases as we increase the PN order. While in the test-maasd 3.5PN orders, the evolution is stoppedvaiv,ZNEco;

0.0

3. Waveforms and matches

0.00 T T T T 16 T T T T T

1 I

: — P-model 2PN /| — P-model 2PN — 3PN

! -~ P-model 3PN | !

1 I
-0.01 : |

i i

W i |

: T < - %,
-0.02 ! =T I

1 I

1 I

1 I

1 [}

1 I
_0'03 11 1 L 1 1

0.

0.1

[V
=)
w
1
H
=}
wn
=3
o

10 15 20 25 30 35 40
M

FIG. 6. In the left panel, we plot the energy functiépN versusy at different PN orders. In the right panel, we plot the percentage
difference between 2PN and 3PN approximants,ﬁé’p(vpeag=1OQ[8P3(vpeaQ—Epz(upeag]/gpz(vpeam versus the total magsl, again
evaluated at the LIGO-I peak-sensitivity GW frequerfgy,= 153 Hz[note: v pea= (7M f pead 3.
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TABLE VI. Test for the Cauchy convergence of tReapproxi-
mants. The values quoted are maxmax matches obtained by maxi-
mizing with respect to the extrinsic parameters, but not to the in-
trinsic parameter§.e., the matches are computed Pmwaveforms
with the same masses, but different PN orjlekere we define
P,=P(2,2.5), P;=P(3,3.5). The values in parentheses are the

maxmax matches obtained by maximizing with respect to the ex- 10*F — Newtonian R
trinsic and intrinsic parameters, shown together with fag,, pa- | == P(2,2.5)
rametersM and » where the maxima are attained. In all cases the sl P(3,3.5, 8=0) . .
integration of the equations is started at a GW frequency of 20 Hz. 1075, 40 100 200 200
f(Hz)

<PN rPN+l> . .

N (20+5)Mg (10+10)M, (15+ 15)M FIG. 7 Frequenc_y-domaln amplltude_ versus frequency for the
P-approximatedrestricted waveform at different PN orders for a

2 (§=+2) 0.902 0.9150.973,20.5,0.242  0.868 (15+15)M, BBH.

2 (@: -2) 0.931 0.955(0.982, 20.7, 0.236 0.923 ) o
stood from Fig. 8 by noticing that at 3PN order the percent-

age difference between theT-approximated and

. P-approximated binding energies is rather sma#l0(5%),

GW __

althoughfyeco=190-290 Hz(see Table )i, the amplitude 504" that  the percentage difference  between the

starts to deviate froni~ "6 around 100 Hz, well inside the T-approximated an@-approximated fluxes at 3PN ordél-
LIGO frequency band. Again, this is a consequence of th‘?hough still~10%) is much smaller than at 2PN order.
abrupt termination of the signal in the time domain.

A quantitative measure of the difference between the
P(2,2.5) andP(3,3.5) waveforms can be seen in Table V in IV. NONADIABATIC MODELS
the intersection between the rows and columns labeled gy contrast with the models discussed in Sec. I, in nona-
P(...). Forthree choices of BBH masses, this table showsyiapatic models we solve equations of motions that involve
the maxmax matches between the search models in the cqlyimosy all the degrees of freedom of the BBH systems.
umns and the target models in the rows, maximized over thgynce again, all waveforms are computed in the restricted

search-model parametel and », with the restriction 0 gnproximation of Eq.(29), taking the GW phasesgy, as
<7=1/4. These matches are quite high, but the models argyice the orbital phase.

not very faithful to each other. The same table shows also the
maximized matchesi.e., fitting factor$ between T and P
models These matches are low betwedr(2,2.5) and
P(2,2.5) (and vice versp betweenT(2,2.5) andP(3,3.5)
(and vice versp but they are high between(2,2), T(3,3.5) Working in the ADM gauge, Damour, Jaranowski and G.
and 3PNP approximantgalthough the estimation of mass Schder have derived a PN expanded Hamiltonian for the
parameters is impreciseWhy this happens can be under- general-relativistic two-body dynami¢47,50,52:

A. Nonadiabatic PN expanded methods:
Hamiltonian formalism

H(q;p):HNewt(qyp)+H1Pl\(q1p)+H2PN(q;p)+H3PN(qyp)y (56)
where
T T T T T 50 T T 7T T T
12 | - P-model vs. T-model 2PN el / P
— P-model vs. T-model 3PN/ 40 | TS
7 ,/ —— Pvs.T,35PN,0=0
€ st P
£ -
4r e 1
0 E-—~ L L

FIG. 8. In the left panel, we plot the percentage diﬁereﬁEQT(vpeak):1OQ[€PN(upea,)—STN(vpeaQ]IEPN(vpeam versus the total mass
M, for N=2,3, at the LIGO-I peak-sensitivity GW frequentyey= 153 Hz [note: v pea= (M fpea) ¥ In the right panel, we plot the
percentage difference between 2PN and IPa&pproximants §7p(v peay = 10(1[]-‘p3(vpea,)—fpz(vpeaQ]/fpz(vpeaQ| versus the total mass
M, again evaluated at the LIGO-I peak-sensitivity GW frequefigy= 153 Hz.
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. p? 1
HNewt(q,p)Zj—a. (57)
H —13 1)(p?)? 13+ 24 21+1 58
1pM,P) =g (37— 1)(p)*~ 5 [(3+ 7)p°+ 7(n-p) ]a 2_qz’ (58)
x 1 2 2,3 1 2 2\2 2 22 2 4 1
Haen(0,P) = 76(1 =57+ 577)(p9)"+ g[(5—207—3%%)(p")*~27°(n-p)*p*=37"(n-p) ]a
1 ) ,101 1
+5[(5+87)p+3n(n-p)°l—— 7 (1+37) —, (59
q q
. 1 1
Hspm(q,p)=@(—5+35n—70n2+35773)(p2)4+ E[(_7+42’7_53”2_57’3)(p2)3

1
+(2-3n)9%(n-p)4(p»)?+3(1—n) n*(n-p)*p?>~57%(n- p)6]a

1 1 1 1
+| == (—27+ 1369+ 1097%) (p?)?+ ——=(17+30%) n(n-p)?p?>+ —(5+437n) n(n-p)*|—= (60)
16 16 12 92
25 (1 , 335 23 ], 85 3 , 7 L1 1
B R T 3 T e B T K R KA i
1 (109 21 .\ |1 61
+ §+ §_3_27T n E ( )

Here the reduced nonrelativistic Hamiltonian in the centerywhere t=t/M, @=wM; and whereF*=F¢/yx and E'

of-mass frameH=HNR/., is written as a function of the =F"/u are the reduced angular and radial components of the
reduced canonical variablgs=p,/u=—p,/u, andq=(x; RR force. Assuming="<F¢ [16], averaging over an orbit,
—X,)/M, wherex; andx, are the positions of the BH cen- and using the balance equatit8i), we can express the an-
ters of mass in quasi-Cartesian ADM coordinatese Refs. gular component of the radiation-reaction force in terms of
[17,50,52); the scalars) and p are the(coordinate lengths  the GW flux at infinity[16]. More explicitly, if we use the

of the two vectors; and the vectaris justg/q. P-approximated flux, we have
. . . 1
- 1. Equatlo-ns of motion | F(PEFPN[U(U]: _ 3]:PN[Uw]

We now restrict the motion to a plane, and we introduce NV,
radiation-reactiofRR) effects as in Ref16]. The equations
of motion then readusing polar coordinates and ¢ ob- 32 fPN(UwiW)
tained from theq with the usual Cartesian-to-polar transfor- T 5 MV o (64
mation 1 Uw/vpole( 7)

while if we use theT-approximated flux we have

dr oA ( : de . oH ( . (62 L
—=—(rpr,Py)y, —==0=—(I,p;,Ps), a
gt ap, PP g T e T gp (PP Ee=Fr [v,]=——5Fr [v,], (65
ﬂvw
dp,  df i wherev = o*=(d¢/dt)*3 Thisv, is used in Eq(29) to
— == &—r(f,pr Pp) +F(r,pr,py), compute the restricted waveform. Note that at each PN order,
dt saynPN, we define our Hamiltonian model by evolving the

Egs.(62) and(63) without truncating the partial derivatives
d at thenPN order(differentiation with respect to the canoni-
&: Fela(r,p,,po)], (63  cal variables can introduce terms of order higher thRi).
t ¢ Because of this choice, and because of the approximation
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used to incorporate radiation-reaction effects, these nonadia- A(o)=A[r(®) p,=0,p (@)]. (70)
batic models are not, strictly speaking, purely post- e
Newtonian.

ThenH(w=0%)=¢&; (v) as given by Eq(33), if and only if
2. Innermost stable circular orbit in this procedure we are careful to eliminate all terms of
order higher thamPN (see, e.g., Ref58]).

Circular orbits are defined by setting=const while ne- In the context of nonadiabatic models, the MECO is then

glecting radiation-reaction effects. In our PN Hamiltonian

models, this impliesH/ap, =0 through Eq(62); because at defined by

all PN orders the Hamiltoniail [Egs. (56)—(61)] is qua- dE

dratic inp,, this condition is satisfied fqu,=0; in turn, this — =0, (7D
implies alsodH/dr=0 [through Eq.(63)], which can be d

solved forp,. The orbital frequency is then given by , . . .

=(9I:|/ap4,. and it also characterizes the end of adiabatic sequences of

circular orbits. Computing the variation of E(/.0) between

The stability of circular orbits under radial perturbations nearby circular orbits, and settiqg=0, dp,=0, we get

depends on the second derivative of the Hamiltonian:

20 20 i 7 i A . J°H ars J°H 4o —0
o i : w= r+ — , ——dr =0,
(9r2>04:>stable orbit; §r2<04:>unstable orbit. arap, o2 Per — 2 arap, Py
(66) (72)
For a test particle in Schwarzschild geomettye »—0 of a  and combining these two equations we get
BBH), an innermost stable circular orgiSCO) always ex-
ists, and it is defined by dp¢,_ A ( A )2 2 2a17t s
JHSen G2 Sen do  ar2[\rdp,/  gp? or?
= =0, (67)
o | _g  or? . .
Pr= Pr=0 So finally we can write

"1 Sch H iviati _ ~ N ~ ~ —
where H>*"(r,p, ,p,) is the (reduced nonrelativistic test dfl oA dp, 20 a0 1

particle Hamiltonian in the Schwarzschild geometry. Simi- —_ -

( 7R )2 A #%A

larly, if such an ISCO exists for theeduced nonrelativistc ~ do  9Pe da gr2 | \rdp,)  gp2 ar?
PN HamiltonianH [Eq. (56)], it is defined by (74)
oA 92H Not surprisingly, Eqs{(74) and (70) together are formally
3 =— =0. (68 equivalent to the definition of the ISCO, E@8) [note that
p=0 I p,=0 the second and third terms on the right-hand side of(E4).

N . ) . o are never zerp Therefore, if we knew the HamiltoniaH
Any inspiral built as an adiabatic sequence of quasmlrcula@xacﬂy we would find that the MECO defined by E) is
orbits cannot be extended to orbital separations smaller thafmerically the same as the ISCO defined by &&). Un-
the ISCO. In our model we integrate the Hamiltonian equafortunately, we are working only up to a finite PN ordsay
tions (62) and(63), including terms up to a given PN order, npN): thus, to recover the MECO as given by E8g), all
without retruncating the equations to exclude terms of highefhree terms on the right-hand side of E@4) must be written
order that have been generated by differentiation with respe% terms ofée, truncated anPN order, then combined and

to the canonical variables. Consistently, the value of the . 4 again atPN order. This value of the MECO, how-

ISCO that is relevant to our model should be derived by : :
) i : ever, will no longerbe the same as the ISCO obtained by
solving Eq.(68) without any further PN truncation. solving Eq.(68) exactly without truncation

How is the ISCO related to the maximum binding energy . : . "
for circular orbit(MECO), used above for nonadiabatic mod- fergr:cr:]g E gvsggr?r;ﬁgr:gvgé ?nndvfﬂgemﬂé%%d%otfﬁnggemdi;g-
els such asT? The PN expanded energy for circular orbits but for the range of BH masses that we consider the PN

&r (w) at ordernPN can be recovered by solving the equa-conyvergence is bad, and the discrepancy is rather important.
tions The ISCO is present only at 1PN order, witRco=9.907

and[u,scoz 0.02833. The corresponding GW frequencies are
given in Table Il for a few BBHs with equal masses. At 3PN
order we find the formal solution'S“°=1.033 andp>“°
=0.355, but since we do not trust the PN expanded Hamil-
for r andp, as functions ofv, and by using the solutions to tonian when the radial coordinate gets so small, we conclude

define that there is no ISCO at 3PN order.

(5>I:|(r,pr=0,p(p):O aﬂ(r,pr=0,p¢):A ©9
or I} ap(p w,
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TABLE VII. Test for the Cauchy convergence of theT andHP approximants. The values quoted are maxmax matches obtained by
maximizing with respect to the extrinsic parameters, but not to the intrinsic pararfigterthe matches are computed Fbrvaveforms with
the same masses, but different PN orglerkere we defined To=HT(0,0), HT,=HT(1,1.5),HT,=HT(2,2) [because the 2.5PN flux goes
to zero before the MECO is reached, so we use the 2PN, ftiX;=HT(3,3.54); we also defineHPy,=HP(0,0), HP;=HP(1,1.5),
HP,=HP(2,2.5), andHP;=HP(3,3.56). The values in parentheses are the maxmax matches obtained by maximizing with respect to the
extrinsic and intrinsic parameters, shown together with thg H parameterdV and » where the maxima are attained. In all cases the
integration of the equations is started at a GW frequency of 20 Hz.

N (HTy HTy 1) (HPy HP )
(5+20M o (10+10)M ¢ (15+15Mg | (5+20M¢ (10+ 10)M o (15+15)Mo
0 0.118 0.191 (0.553, 13.7, 0.243) 0.206 0.253 0.431 (0.586, 16.7, 0.242) 0316
1 0.102 0.174 (0.643, 61.0, 0.240) 0.170 0.096 0.161 (0.623, 17.4, 0.239) 0.151
2(H=+2) 0.292 0.476 (0.656, 18.6, 0.241) 0.377 0.266 0.369 (0.618, 17.6, 0.240) 0.325
2(h=-2) 0.287 0.431 (0.671,19.0,0.241) 0.377 0.252 0.354 (0.622, 17.4, 0.239) 0.312
3. Definition of the models (when theP approximant is used for the fluxwherenPN

In order to build a quasicircular orbit with initial Gw (MPN) denotes the maximum PN order of the terms included
frequencyfo, our initial conditions €it,Pr initsPeint) are N the Hamiltonian (the fluxy. We shaJI consider
set by impOSing Q'Dinit:ﬂ-foa br init=0 and drinit/df= (nPN!mPN):(l!l31(212)1(2125)! and (313$1) (a-t 3PN
— FI(5dFi/dr) 4., as in Ref[40]. The initial orbital phase order we need to indicate also a choice of the arbitrary flux

circ» . " ~
®init Femains a free parameter. For these models, the criterioparametern).
used to stop the integration of Eq$2), (63) is rather arbi-
trary. We decided to push the integrafcion of the dynamica_l 4. Waveforms and matches
equations up to the time when we begin to observe unphysi- ] )
cal effects due to the failure of the PN expansion, or when In Table VI, for three typical choices of BBH masses, we
the assumptions that underlie Eq83) [such as,“:r<|§¢], perform a convergence test using Cauchy’s critefidi].
cease to be valid. When the 2.5PN flux is used, we stop th&ne values are very low. F&i=0 andN =1, the low values
integration whenZ;  equals 10% 0fFye., and we define are explained by the fact that at 1PN order there is an ISCO

N 1 . . . .

the ending frequencyor these waveforms as the instanta- [see the discussion below EF4)], while at Newtonian and

neous GW frequency at that time. To be consistent with tthN’ 3PN order there is not. Because of the ISCO, the stop-

assumption of quasicircular motion, we require also that theing criterion[|r|>0.3(r£p) or &)=0] is satisfied at a much
radial velocity be always much smaller than the orbital ve-lower frequency, hence at 1PN order the evolution ends

locity, and we stop the integration whér>0.3(r ¢) if this ~ much earlier than in the Newtonian and 2PN order cases. In

occurs beforeF; equals 10% 0fFye,. In SOme cases, dur- Fig. 9 we show the inspiraling orb|ts in the,) plane for

, N A , equal-mass BBHs, computed using th&(1,1.5) modekin

ing the Ia§t stages of inspiral regches a maximum and then he |eft panel and the HT(3,3.5,0) model(in the right

drops quickly to zerdsee the dlscus§|0n in Sec).When  nane). For N=2, the low values are due mainly to differ-

this happens, we stop the evolutionat 0. ences in the conservative dynamics, that is, to differences
We shall refer to these models as HiIFN,mPN) (when  between the 2PN and 3PN Hamiltonians. Indeed, for a (10

the T approximant is used for the flisor HP(NPN,mPN)  +10)Ms BBH we find (HT(2,2) HT(3,2))=0.396, still

20 L T Y T ! T . 20 T T T T T T

FIG. 9. Inspiraling orbits in
the (x,y) plane whenn=0.25 for
HT(1,1.5) (in the left panel and
HT(3,3.5,0) (in the right panel
For a (15+ 15)M BBH the evo-
lution starts atfgy=34 Hz and
ends at fgw=97Hz for
HT(1,1.5) panel and atfgy
=447 Hz for the HT(3,3.5,0).
The dynamical evolution is rather
different because at 1PN order
there is an ISCO r(gco=9.9M),

while at 3PN order it does not ex-
20 ist.

x/M x/M
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10” 10” _
FIG. 10. Frequency-domain
amplitude versus frequency for
10° 10° . theHT andHP (restricted wave-
§ — Newtonian _ 3 - {_‘II‘;,?’;"'ZI;““ forms at different PN orders for a
ol gg ;.)5) S o] a2 ] (15+15Me  BBH.  The
_ HT(2, 25) Mg —— HPG, 3, 6=0) HT(3_,3.5;9=0) curve, not plot-
d . 1 HP(3, 3.5 é:o) ted, is almost identical to the
10° HIG,3=5:5, 0=0) . 10° AR . . HT(3,3,6=0) curve.
20 40 100 200 400 20 40 100 200 400
f(Hz) f(Hz)

low, while (HT(2,2)HT(2,3.5)=0.662, considerably rows, maximized over the search-model paramekérand
higher than the values in Table VII. 7, with the restriction &< »<1/4. The matches between the

In Fig. 10 we plot the frequency-domain amplitude of theH(2,2) and theH(3,3.5) waveforms are surprisingly low.
HT-approximatedrestricted waveforms, at different PN or- More generally, theH(2,2) models have low matches with
ders, for a (15 15M, BBH. The Newtonian amplitude, all the other PN models. We consider these facts as an indi-
Anen(F)=1"7% is also shown for comparison. For cation of the unreliability of thed models. In the following
HT(1,1.5), because the ISCO is &=9.9M, the stopping we shall not give much credit to thid(2,2) models, and
criterion|r|>0.3p r is reached at a very low frequency and When we discuss the construction of detection template fami-

the amplitude deviates from the Newtonian prediction al-lies we shall consider only thel(3,3.5) models[We will,
ready atf~50 Hz. ForHT(2,2.5), the integration of the however, comment on the projection of thi2,2) models
dynamical equation is stopped as the flux function goes t@nto the detection template space.
zero; just before this happens, the RR effects become weaker As for theH(3,3.5) models, their matches with the 2PN
and weaker, and in the absence of an ISCO the two BHs dadiabatic models are low; but their matches with the 3PN
not plunge, but continue on a quasicircular orbit uf{v)  adiabatic models are high, at least fdr<30M¢ . For M
equals 10% OfF .. SO the binary spends many cycles at=40Me (as shown in Tables V and V)il the matches can
high frequencies, skewing the amplitude with respect to thé€ quite low, as the differences in the late dynamical evolu-
Newtonian result, and producing the oscillations seen in Figtion become significant.
10. We consider this behavior rather unphysical, and in the
following we shall no longer take into account tHa'(2,2.5) B. Nonadiabatic PN expanded methods:
model, but at 2PN order we shall ukel(2,2). Lagrangian formalism
The situation is similar for thel P models. Except at 1PN
order, theHT and HP models do not end their evolution
with a plunge. As a result, the frequency-domain amplitude In the harmonic gauge, the equations of motion for the
of theHT andH P waveforms does not decrease markedly atgeneral-relativistic two-body dynamics in the Lagrangian
high frequencies, as seen in Fig. 10, and in fact it does ndormalism read 49,61,63
deviate much from the Newtonian resiétspecially at 3PN
ordey. X=ay+ apn+ 8opnt 82 5rRT 83 5RR 75
Quantitative measures of the difference betweghand O EpNT B2PNT A2 SRR 83 SRR 73
HP models at 2PN and 3PN orders, and of the differencgynere
between the Hamiltonian models and the adiabatic models,
can be seen in Tables V, VIII. For some choices of BBH

1. Equations of motion

masses, these tables show the maxmax matches between the ay=— Mﬁ’ (76)
search models in the columns and the target models in the r2
M. ) M 3 ., )
aPN:_r_2 n (1+3nv-—2(2+79 e —2(2—m)rvy, (77
M(.[3 M2 ., 15 ., 3 i, 1 M,
apny=— | N —(12+299)| —| +n(3—4n)v*+ = n(1-3nr*—=n(3—4n)vr°— z9(13—47n)—v
r 4 r 8 2 2 r
M. 1. » M L,
—(2+2577+2772)Tr2 -5tV 7(15+4n)v2—(4+419p+87y )= 3n(3+2m)r? |, (79
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TABLE VIII. (Continued from Table V.Fitting factors between several PN models, at 2PN and 3PN orders. Please see the caption to Table V.
EP(2,2.5) EP(3,3.5,0) HT(2,2) HT(3,3.5,0) HP(2,2.5) HP(3,3.5,0)
mm M 7 mm M 7 mm M mm M 7 mm M 7 mm M 7
T(2,2) (20+20)0My 0.953 41.67 0.24 0.952 43.00 0.24 0951 8034 0.24 0855 56.69 0.24 0965 90.12 024 0.859 74.80
(15+15My 0962 3041 0.24 0991 3532 0.17 0.899 5893 0.24 0997 33.03 020 0922 67.38 0.24 0.998 33.67
(15+5)My 0.988 19.11 0.20 0.992 20.93 0.17 0.924 69.96 0.05 0998 19.38 0.19 0.876 5794 0.07 0.999 19.81
(5+5)Mg 0.997 1033 0.23 0.998 11.09 0.20 0.788 9.93 025 0.998 1092 0.21 0.727 1019 0.25 0.999 11.19
T(2,2.5) (206+20)0M, 0.908 31.37 0.25 0.929 3298 025 0959 5839 024 0928 3574 024 0955 67.85 0.24 0.892 36.87
(15+15M, 0.861 2452 0.25 0.893 2558 0.25 0932 5346 0.17 0926 26.82 025 0920 5138 0.24 0.921 27.99
(15+5)My 0.822 1540 0.25 0.867 1581 0.25 0.790 16,59 0.25 0.903 1581 0.25 0.839 5191 0.07 0.955 16.03
(5+5)Mg 0.814 952 025 0839 959 025 0941 963 025 0.838 952 025 0872 9.80 025 0.866 9.61
T(3,3.5,0) (26-r200M, 0.925 40.09 0.24 0918 4290 0.24 0940 80.76 0.24 0.833 57.71 024 0958 8985 0.24 0.840 73.84
(15+15My 0955 29.98 0.24 0937 30.78 0.24 0.887 5883 024 099 3267 020 0914 66.56 0.24 0.758 31.32
(15+5)My 0.983 19.68 0.18 0.985 2097 0.16 0926 69.81 0.05 0999 1947 0.19 0.887 60.02 0.07 1.000 19.79
(5+5)Mg 0992 999 0.24 0997 1040 0.22 0.826 983 0.25 0.993 1048 0.22 0.749 1007 0.25 0.995 10.81
P(2,2.5) (206+20)0M, 0.866 41.72 0.24 0.859 4314 0.24 0912 83.09 024 0.795 6545 024 0934 9291 0.24 0.805 8271
(15+15M, 0.898 30.06 0.24 0.963 3821 0.14 0857 62.07 0.24 0.992 3328 019 0.890 69.31 0.24 0.709 59.88
(15+5)My 0.966 20.48 0.17 0966 2186 0.15 0.907 7042 0.05 0.993 20.08 0.17 0904 64.71 0.06 0.997 20.29
(5+5)Mg 0995 9.79 0.25 0994 1043 022 0.825 981 0.25 0.990 1051 0.22 0.748 10.05 0.25 0.992 10.83
P(3,3.5,0) (26-20)M; 0.960 40.10 0.23 0.953 41.06 024 0943 76.61 0.24 0.835 5385 024 0961 86.56 0.24 0.842 70.76
(15+15My 0965 29.33 0.24 0966 30.14 024 0.893 56.29 024 0993 3183 020 0920 6391 0.24 0.996 3241
(15+5)My 0.982 18.87 0.20 0.983 20.29 0.17 0926 6898 0.05 0996 19.15 0.19 0.886 5897 0.07 0.999 19.45
(5+5)Mg 0973 9.74 025 0998 985 025 0849 981 025 0.992 10.02 0.24 0.761 10.04 0.25 0.993 10.46
EP(2,2.5) (26+20)M 0.996 4172 0.24 0953 7509 024 0929 4751 0.24 0948 84.61 0.24 0.907 59.72
(15+15)M¢o 0.999 32.66 0.21 0908 56.68 0.24 0.889 32.89 0.24 0915 6487 024 0.997 33.00
(15+5)Mg 0999 2135 016 0909 7041 005 0.992 1952 0.19 0858 64.23 0.06 0.986 20.00
(5+5)Mg 0.999 10.75 0.21 0.807 9.84 025 0.997 1069 0.21 0.733 10.08 0.25 0.998 10.99
EP(3,3.50) (20r200My 0.995 38.25 0.25 0.958 7299 0.24 0918 4574 024 0956 81.66 0.24 0.896 59.30
(15+15My 0.992 28.77 0.25 0.938 70.37 0.14 0999 3141 021 0922 6177 024 1000 3211
(15+5)My  0.999 1853 0.20 0.905 69.04 0.05 0.998 1897 0.20 0.858 61.43 0.06 0.994 19.26
(5+5)Mg 0982 9.74 0.25 0.832 10.00 0.24 0.996 10.24 0.23 0.748 10.06 0.25 0.997 10.61
HT(2,2) (20+20)My 0.794 2134 0.25 0.815 2235 0.25 0.840 2431 0.25 0.968 46.75 0.25 0.835 25.77
(15+15M, 0.651 18.40 0.24 0.674 19.03 0.24 0.377 3758 0.25 0.936 36.99 0.24 0.392 47.22
(15+5)My 0.624 1496 0.25 0.632 1515 0.25 0.608 17.70 0.17 0.965 1785 0.22 0.612 17.35
(5+5)Mg 0.817 9.72 025 0845 9.74 0.25 0.845 9.74 025 0841 997 0.25 0.865 9.76
HT(3,3.5,0) (26-r200My 0.904 3461 0.24 0.920 37.64 0.24 0.903 65.68 0.24 0.873 74.44 0.25 0.999 4141
(15+15M 0.891 27.49 0.25 0.926 2859 0.25 0.883 4956 0.24 0.867 59.23 0.24 1.000 31.02
(15+5)My 0.986 20.73 0.16 0986 2199 0.15 0919 71.02 0.05 0.886 61.90 0.07 1.000 20.34
(5+5)Mg 0964 975 025 0993 979 025 0834 983 0.25 0.749 10.07 0.25 1.000 10.35
HP(2,2.5) (206+20)0M, 0.762 18.74 0.25 0.784 1944 0.25 0.973 36.64 0.21 0.794 20.75 0.24 0.801 2153
(15+15M, 0595 16.37 0.24 0.617 16.40 0.24 0931 2784 0.21 0.329 40.09 0.25 0.343  48.60
(15+5)My 0577 16.04 0.20 0.599 1432 0.25 0.957 2210 0.14 0589 1553 0.21 0.593 15.59
(5+5)Mg 0.741 950 0.25 0.754 953 025 0975 1146 0.18 0.755 952 0.25 0.770 9.61
HP(3,3.5,0) (26r200M, 0.832 3143 0.25 0.840 3515 0.25 0.850 60.63 0.25 0974 37,71 025 0.806 7261 0.25
(15+15M 0.831 26.96 0.25 0.860 28.03 0.25 0.852 46.65 0.24 0.975 2895 0.25 0.842 5571 0.24
(15+5)My 0.986 20.13 0.17 0986 2150 0.15 0.922 70.24 0.05 1000 19.64 0.18 0.884 60.67 0.07
(5+5)Mg 0933 972 025 0971 975 025 0857 9.80 025 0991 975 025 0.758 10.038 0.25
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For the sake of convenience, in this section we are using theifferent PN orders, for a (1615)M, BBH. The amplitude
same symbols as Sec. IV A to denote different physicabeviates from the Newtonian prediction slightly before
quantities(such as coordinates in different gaugésere the 100 Hz. Indeed, the GW ending frequencies are 116 Hz and
vectorx=x; — X, is the difference, in pseudo—Cartesian har-107 Hz for theL(2,0) andL(2,1) models, respectively.
monic coordinateg49], between the positions of the BH These frequencies are quite low, because the unphysical be-
centers of mass; the vector=dx/dt is the corresponding havior of the PN-expanded center-of-mass binding energy
velocity; the scalam is the (coordinatg length of x; the  appears quite earfiat r o= 6.6 andr = 7.0 for theL (2,0)
vector n=x/r; and overdots denote time derivatives with and L(2,1) models, respectivelySo theL models do not
respect to the post—Newtonian time. We have included neiprovide waveforms for the last stage of inspirals and plunge.
ther the 3PN order correctiorsspy derived in Ref[51] nor Table IX shows the maxmax matches between Lthap-
the 4.5PN order terna, spy for the radiation-reaction force proximants and a few other selected PN models. The over-
computed in Ref.[63]. Unlike the Hamiltonian models, |aps are quite high, except with th&P(2,2.5) and
where the radiation-reaction effects were averaged over cilg p(3,3.5,0) at high masses, but extremely unfaithful. More-
cular orbits but were present up to 3PN order, here radiationover, we could expect the(2,0) andL(2,1) models to have
reaction effects are instantaneous, and can be used to Colifigh fitting factors with the adiabatic model§2,0) and
pute generic orbits, but are given only up to 1PN ordert(2 1). However, this is not the case. As Table X shows, the
beyond the leading quadrupole term. T models are neither effectual nor faithful in matching the
We compute waveforms in the quadrupole approximationmodels, and vice versa. This might be due to one of the
of Eq. (29), defining the orbital phase as the angle between fo|lowing factors:(i) the PN-expanded conservative dynam-
x and a fixed direction in the orbital plane, and the invari-ics in the adiabatic limit T model$ and in the nonadiabatic

antly defined velocity as (M ¢)*2. case [ models are rather different(ii) there is an important
effect due to the different criteria used to end the evolution in
2. Definition of the models the two models, which make the ending frequencies rather

. different. All in all, theL models do not seem very reliable,
For these models, just as for theT andHP models, the so we shall not give them much credit when we discuss

cho!ce of the endp0|.nt of eyolqun Is rather grbltrary. \.Nedetection template families. However, we shall investigate
decided to stop the integration of the dynamical equatlon\sNhere they lie in the detection template space

when we begin to observe unphysical effects due to the fail-
ure of the PN expansion. For mafif/not all) configurations,
the PN-expanded center-of-mass binding endajyen by
Eqgs.(2.79—(2.7¢ of Ref.[20]] begins to increase during the
late inspiral, instead of continuing to decrease. When this
happens, we stop the integration. The instantaneous GW fre- The basic idea of the effective-one-bod§OB) approach
quency at that time will then be thending frequencyor ~ [15] is to map thereal two-body conservative dynamics,
these waveforms. We shall refer to these models agenerated by the Hamiltoniai®6) and specified up to 3PN
L(nPN,mPN), wherenPN (nPN) denotes the maximum PN order, onto areffectiveone-body problem where a test par-

order of the terms included in the Hamiltoniéhe radiation-  ticle of massu=m;m,/M (with m; andm, the BH masses,
reaction force We shall consider PN,mPN) andM=m;+m,) moves in an effective background metric

C. Nonadiabatic PN resummed methods:
The effective-one-body approach

=(2,0),(2,1). g1, given by
3. Wi ff 2442 D(R) 2
. Waveforms and matches dsgﬁzgfwdxﬂdx”= —A(R)c?dt?+ de
In Fig. 11 we plot the frequency-domain amplitude versus
frequency for theL-approximatedrestricted waveforms, at +R2(d6?+sirfode?), (81)
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FIG. 11. Frequency-domain amplitude versus frequency for the
L-approximatedrestricted waveforms, at different PN orders, for a
(15+15)M BBH.

where
AR -1+ GM__[GM 2+ GM 3+ cm\*
=l+a,—+a,| —| +as| —| ta, —
YR Pl 2R | o2R | 2R
+... (82)
D(R)=1+d CM L a,|EM 2+d cm)*
'R 2R % e2R
(83

The motion of the particle is described by the action

Su=— ¢ [ ds. (84

For the sake of convenience, in this section we shall use the
same symbols of Secs. IV A and IV B 2 to denote different
physical quantitiegsuch as coordinates in different gauges
The mapping between the real and the effective dynamics is
worked out within the Hamilton-Jacobi formalism, by im-
posing that the action variables of the real and effective de-
scription coincide(i.e., Jiea= Jetts Zrea™= Zeii, WhereJ de-
notes the total angular momentum, ahdhe radial action
variable[15]), while allowing the energy to change,

2 3

R 5NR

real real

a;—— +ay| —;
mC uC

ENR

NR NR
geff 5real real

2 2

ag

uC uC ,uCz

(85

here £XF is the nonrelativisticeffectiveenergy, while is re-
lated to the relativistic effective enerdyy by the equation
ENR=Eo— uC?; Eo is itself defined uniquely by the action
(84). The nonrelativisticreal energy Exi=H(q,p), where
H(q,p) is given by Eq.(56) with H(q,p)=xH(q,p). From
now on, we shall relax our notation and $&tc=1.

1. Equations of motion

Damour, Jaranowski and Sdea[17] found that, at 3PN
order, this matching procedure contains more equations to
satisfy than free parameters to solve faj ( a,, az, dq, d,,

d;, andaq, a,, a3z). These authors suggested the following
two solutions to this conundrum. At the price of modifying

024016-22

TABLE IX. Fitting factors[see Eq(20)] for the projection of the.(2,1) (targe} waveforms onto thd, P, EP andHP (search models at 2PN and 3PN order. The values quoted

are obtained by maximizing the maxméxm) match over the search-model parametdrand 7.

PHYSICAL

P(2,2.5) P(3,3.5,0) EP(2,2.5) EP(3,3.5,0) HT(3,3.5,0)
mm

T(3,3.5,0)

T(2,2)

mm

14

(20+20)Mg 0.994 78.83 0.05 0.998 61.24 0.09 0.999 52.76 0.13 0.998 57.96 0.11 0.935 70.76 0.05 0.9446 72.04 0.06 0.994 4953 H

L(2,1)

415

0.981 3551 0.05 0.991 29.03 0.08 0.995 26.02 0.10 0.994 27.99 0.09 0.942 27.46 0.09 0.941 28.85 0.08 0.994 22.89 #.13

E

(15+15M, 0.991 55.16 0.06 0.995 4450 0.10 0.999 39.96 0.13 0.998 4357 0.11 0.912 46.67 0.09 0.916 50.90 0.07 0.994 37.08

(15+5)M¢p

E

18

7, 024016 (2003

11.69 0.17 0.966 11.32 8

0.956 10.68 0.20 0.965 11.49 0.18 0.971 11.33 0.19 0.964 11.89 0.17 0.964 11.03 0.19 0.960

(5+5)Mg
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TABLE X. Fitting factors[see Eq(20)] for the projection of the_(2,1) andL(2,0) (targe} waveforms
onto theT(2,0) andT(2,1) (search models. The values quoted are obtained by maximizing the maxmax
(mm) match over the search-model parametdrand 7.

L(2,0) T(2,0) L(2,1) T(2,1)
mm M n mm M n mm M n mm M n
(15+15)M¢o 0.884 42.02 0.237
L(2,0) (15+5)Mg 0.769 24.71 0.201
(5+5)Mg 0.996 21.70 0.068

(15+15)M,, 0.834 23.44 0.247
T(2,0) (15+5)M, 0.823 14.90 0.247
(5+5)My 0.745 9.11 0.250

(15+ 15)M, 0.837 60.52 0.236
L(2,1) (15+5)M 0.844 55.70 0.052
(5+5)Mg 0.626 11.47 0.238
(15+ 15)M, 0.663 19.38 0.250
T(2,1) (15+5)Mg 0.672 13.56 0.250
(5+5)Mg 0.631 9.22 0.243

the energy map and the coefficients of the effective metric atquation with(arbitrary) higher-derivative terms that provide
the 1PN and 2PN levels, it is still possible at 3PN order toenough coefficients to complete the matching. With this pro-
map uniquely the real two-body dynamics onto the dynamicgedure, the Hamilton-Jacobi equation reads

of a test mass moving on a geodefir details, see Appen-

dix A of Ref.[17]). However, this solution appears very com- 0=pu’+ 9Ef (X)P P, + ALTPI(X)P P PPt - - -

plicated; more importantly, it seems awkward to have to (86)
compute the 3PN Hamiltonian as a foundation for deriving

the matching at the 1PN and 2PN levels. The second solutioBecause of the quartic ternds*??°, the effective 3PN rela-

is to abandon the hypothesis that the effective test madivistic Hamiltonian is not uniquely fixed by the matching
moves along a geodesic, and to augment the Hamilton-Jacohiles defined above; the general expressidin:

1+p%+ A, (0 )2+ [ 23(p?) 2+ 2920 )%+ 2o(n-p)*] (87)
D(q) q°

Ear=Hen(a,p) = \/A(q)

here we use the reduced relativistic effective Hamiltonian 94 41 B

Her=Heg/ 1, andq andp are the reduced canonical vari- AN)=1-—+— +[(§ - 3—2772) -z
. . . . r

ables, obtained by rescaling the canonical variablels!land

u, respectively. The coefficients , z, andz; are arbitrary,

subject to the constraint

n
r4’

(89

6 -
D(N=1- 2 +[T21+ %+ (37— 2012,  (90)
8z, +4z,+323=6(4—37)7. (89 r r

Moreover, we slightly modify the EOB model at 3PN order where we setr =|q|. The authors of Ref[17] restricted

of Ref.[17] by requiring that in the test-mass limit the 3PN themselves to the cagg=2z,=0 (z,=2,=0). Indeed, they
EOB Hamiltonian equals the Schwarzschild Hamiltonian. In-observed that for quasicircular orbits the terms proportional
dEEd, one of the Original rationales of the PN resummatiorﬂo Z, and Z3 in Eq (87) are very Sma”, while for circular
methods was to recover known exact results in the test'maﬁﬁ'bits the term proportiona| tﬂl contributes to the coeffi-
limit. To achieve thisz;, z, andz; must go to zero as  cient A(r), as seen in Eq(89). So, if the coefficientz;

—0. A simple way to enforce this limit is to s@&=7z;,  =yz,#0, its value could be chosen such as to cancel the
Z,= 12z, andzz= nzz. With this choice the coefficient(r) 3PN contribution inA(r). To avoid this fact, which can be
andD(r) in Eq. (87) read also thought as a gauge effect due to the choice of the coor-
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FIG. 12. In the left panel we plot the binding energy evaluated using the improved Hamilt@iipas a function of the velocity
parameterv for equal-mass BBHsy=0.25. We plot different PN orders for tiiemodel varying also the parameEe._r. In the right panel
we plot the GW frequency at the ISCO at 3PN order as a function of the parameter(15+ 15)M, BBH.

dinate system in the effective description, the authors of Refwhere for thep component of the radiation-reaction force we
[17] decided to pose;=0 (z,=0). By contrast, in this pa- Use theT andP approximants to the flux functiofsee Egs.

per we prefer to explore the effect of haviag,#0. So we  (64), (65)]. Note that at each PN order, sapPN, we inte-
shall depart from the general philosophy followed by thedrate the Eqs92)—(95) without further truncating the partial
authors in Ref[17], pushing(or expandiny the EOB ap- derivatives of the Hamiltonian atPN order(differentiation
proach to more extreme regimes. with respect to the canonical variables can introduce terms of

Now, the reduction to the one-body dynamics fixes theorder higher thamPN).

arbitrary coefficients in Eq(85) uniquely to a;= 7/2, a,
=0, and a3=0, and provides theesummed(improved

Hamiltonian [obtained by solving fohy; in Eqg. (85) and

imposingHmProveds chR) -

Following the discussion around E(68), the ISCO of
these models is determined by settingH["""®Y or
= PHYPOveY gr2=0, where HE™"*{r,p; ,p,)
=HmProvedy 0 ). If we define

Her— 1

Himproved. \/ 1427 : (91) 2 4

1+ % + 7721%) , (96)

HEn(r.0py) =W, =A(r)
Including radiation-reaction effects, we can then write the
Hamilton equations in terms of the reduced quantities

"1 improved_ yimprove T R
H H T, 1=UM, 0=0 M [16], we extract the ISCO by imposing&pr(r)/&rzo

. =9*W, (r)/#*r. Damour, Jaranowski and Sd¢ba[17] no-
dr aHlmproved ¢

== (r.pr.py), (92)  ticed that at 3PN order, for,=z,=0, and using the PN
dt Pr expanded form foA(r) given by Eq.(89), there is no ISCO.
To improve the behavior of the PN expansionAfr) and
de . gRimeroved introduce an ISCO, they proposed replacifs¢r) with the
—=w= (r.pr.Py), (93)  Padeapproximants
dt Py
d [ (9|:| improved
Gt o PPy, (94) r(—4+2r+7)
P, (1) = —————, (97
2re+2n+ry
dp, . -
—=Fow(r,p,, , 95
= Fla(rppy)] ©9
r’[(ay(7,0)+87—16)+r(8—27)]
Ap,(1)= . (99)

r3(8—2n)+r2[a,(7,0)+47n]+r[2a,(7,0+87]+4[ 7’ +as7,0)]’
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0.00 . . detection template families in Sec. VI, we shall investigate
N also EOB models with PN-expandédr).]
In Fig. 12 we plot the binding energy as evaluated using
-0.01 . the improved Hamiltoniar{91), at different PN orders, for
“ equal-mass BBHs. At 3PN order, we use as typical values
T Trmodel 200 =0,*+4. (Forz,>4 the location of the ISCO is no longer
-0.02 - — P-model 2PN a monotomc function of;. So we sez;<4.) In the right
. g’;ﬁi;{,ﬁ panel of Fig. 12, we show the variation in the GW frequency
E-model 3PN at the ISCO as a function o, for a (15+15)M BBH.
-0.03 ' ' ' . Finally, in Fig. 13, we compare the binding energy for a few
01 02 03 04 05 06 L~ ~
v selected PN models, where for tBemodels we fixz;=2z,

FIG. 13. B =0 (see the left panel of Fig. 12 for the dependence of the
inding energy as a function of the velocity parameter

v for equal-mass BBHs. We plot different PN orders for selecteddinding energy on the coefficiert). Notice in the left panel

PN models. For th& model at 3PN order we fix,=0=2,. that the 2PN and 3PN energies are much closer to each
other than the 2PN and 3PRenergies are, and than the 2PN
and 3PNE energies are; notice also that the 3FNand P
energies are very close. The closeness of the binding ener-
gies (and of the MECOs and ISCQpredicted by PN ex-

(99) panded and resummed models at 3PN ofgéth z,=0),
and of the binding energy predicted by the numerical quasi-
equilibrium BBH models of Ref[26] was recently pointed

In Table II, we show the GW frequency at the ISCO for somePut in Refs[58,59. However, the EOB results are very close

typical choices of BBH masses, computed using the abovt® the numerical results of Ref26] only if the range of
expressions foA(r) in the improved Hamiltoniaf91) with ~ variation ofz, is restricted.
EleQZO.

We use the Padeesummation forA(r) of Ref.[17] also 2. Definition of the models
for the general case,#0, because for the PN expanded  For these models, we use the initial conditions laid down
form of ASr) the ISCO does not exist for a wide range of in Ref. [40], and also adopted in this paper for tHd and
values ofz;. [However, when we discuss Fourier-domain HP models(see Sec. IV A At 2PN order, we stop the inte-

where

~ [94 41 ~

a(n.2)=| 5~ 23721

3 32

7.

TABLE XI. Fitting factors for the projection oE P(3,3.5,0) templates onto themselves, for various choices of the parameterdz, .
The values quoted are obtained by maximizing the max(max) match over the mass parameters of thearch models in the columns,
while keeping the mass parameters of ttt@rge} models in the rows fixed to their quoted values, (IB)My, (15+5)My (5
+5)Mg . The three numbers shown at each intersection are the maximized match and the search parameters at which the maximum was

attained. In labeling rows and columns we use the notafiB(3,3.50,2,,2,). See the caption to Table VIII for further details.

EP(3,3.5,2-4,0) EP(3,3.5,2,0-4) EP(3,3.5,2,0,0) EP(3,3.5,2,0,4) EP(3,3.5,2,4,0)
mm M n mm M n mm M n mm M n mm M n

(15+15)M¢ 0.995 30.93 0.238 0.994 30.85 0.240 0.995 30.87 0.239 0.952 31.17 0.242
EP(3,3.5,2-4,0) (15+5)Mg 0.998 20.61 0.177 0.999 20.71 0.176 0.999 20.60 0.177 0.993 21.59 0.162
(5+5)Mg 0.999 10.22 0.240 0.999 10.22 0.240 0.999 10.22 0.240 0.996 10.46 0.231

(15+15)My 0.983 30.12 0.241 0.999 30.47 0.240 0.999 30.43 0.241 0.987 30.88 0.240
EP(3,3.5,2,0-4) (15+5)My 0.999 19.28 0.201 1.000 20.06 0.186 1.000 20.03 0.187 0.999 20.70 0.175
(5+5)Mg 0.993 10.01 0.249 0.996 10.19 0.241 0.996 10.19 0.241 0.998 10.22 0.240

(15+15)M 0.983 30.12 0.241 0.999 30.47 0.241 0.999 30.42 0.241 0.987 30.88 0.240
EP(3,3.5,2,0,0) (155)Mp 0.999 19.26 0.202 1.000 20.06 0.186 1.000 20.03 0.187 0.999 20.70 0.175
(5+5)Mg 0.993 9.99 0.250 1.000 10.00 0.250 0.996 10.19 0.241 0.998 10.22 0.240

(15+15My 0.982 30.12 0.241 0.999 30.54 0.240 0.999 30.54 0.240 0.987 30.88 0.240
EP(3,3.5,2,0,4) (155)Ms 0.999 19.35 0.200 1.000 20.05 0.187 1.000 19.98 0.188 0.998 20.73 0.175
(5+5)Mg 0.993 10.01 0.249 1.000 10.00 0.250 0.996 10.19 0.241 0.998 10.22 0.240

(15+15)My 0.929 29.60 0.240 0.968 30.11 0.242 0.968 30.16 0.240 0.967 30.15 0.240
EP(3,3.5,2,4,0) (155)My 0.992 18.42 0.219 0.998 19.29 0.201 0.998 19.36 0.199 0.998 19.29 0.201
(5+5)Mgy 0.970 10.17 0.241 0.993 9.99 0.250 0.993 9.99 0.250 0.993 9.99 0.250
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TABLE XII. Test for the Cauchy convergence of tieP ap-
proximants. The values quoted assume optimization on the extrinsic
parameters but the same intrinsic parametiees, they assume the
same massgsHere we defineEP,=EP(0,0), EP,=EP(1,1.5),
EP,=EP(2,2.5), andEP;=EP(3,3.50,2,=2,=0). The values
in parentheses are the maxmax matches obtained by maximizing

with respect to the extrinsiand intrinsic parameters, shown to- 10*F — Newtonian
gether with theE Py, ; parameterd! and » where the maxima are -- EP(2,25)
attained. In all cases the integration of the equations is started at a -+ EP(3,3.5, 6=0)
GW frequency of 20 Hz. 10°)5 20 00 200 400
f(Hz)
N (EPy,EPy. 1) . .
(5+20)Mg (10+10)M o, (15+15)M o FIG. 14.. Frequency-domam amplitude versus frequency for the
E P-approximatedrestricted waveform, at different PN orders, for
0 0.677 0.584 (0.769, 17.4, 0.246) 0.811  a (15+15)M, BBH.
1 0.766 0.771 (0.999, 21.8, 0.218) 0.871

2(0=+2) 0.862 0.858 (0.999, 21.3, 0.222) 0.898 ficients~zl and ~z2 are, in principle, completely arbitrary.
2(0=-2) 0.912  0.928 (0.999, 21.9, 0.211) 0.949  Whenz,#0, the location of the ISCO changes, as shown in
Fig. 12. Moreover, because in E@7) z, multiplies a term

_ . _ . _ _ that is not zero on circular orbits, the motion tends to become
gration of the Hamilton e_qu?tlonsz at the light ring given by noncircular much earlier, and the criteria for ending the in-
the solution of the equation®—3r°+57=0 [16]. At 3PN tegration of the Hamilton equations are satisfied earl&eze

order, the light ring is defined by the solution of the discussion of the ending frequency in the preceding sec-
tion.) This effect is much stronger in equal-mass BBHs with
i[uzAp (u)]=0 (100) high M. For example, for (1% 15)M, BBHs and forz,
du 3 ’ =0, the fitting factothe maxmax match, maximized ower

and ) between arE P target waveform witfz; =0 andEP
search waveforms with-40<Zz,< —4 can well be< 0.9.

S(?-|owever, if we restrictz; to the rangd —4,4], we get very
I(ﬁ)igh fitting factors, as shown in Table XI.

In Eq. (87), the coefficientz, andz; multiply terms that
re zero on circular orbit§The coefficientz, appears also in

with u=1/ andAPS is given by Eq.(98). For some configu-
rations, the orbital frequency and the binding energy start t
decrease before the binary can reach the 3PN light ring,

we stop the evolution Whe:D=0 (see the discussion in Sec.
IV D). For other configurations, it happens that the radial
velocity becomes comparable to the angular velocity befor X ) L
the binary reaches the light ring; in this case, the approxima- (r), given by Eq.(90).] Sof'thelrdegecaon the ﬂynﬁmlcs Ihs

tion used to introduce the RR effects into the conservativé'©t VEry Important, as confirmed by the very high matches

dynamics is no longer valid, and we stop the integration ofobtained in Table XI betwee P waveforms withz, =0 and
the Hamilton equations when/(r ¢)| reaches 0.3. For some EP waveforms withz,==4. It seems that the effect of
models, usually those witlz, ,#0, the quantity|r/(rg)|  changingz; is nearly the same as a remapping of the BBH
reaches a maximum during the last stages of evolution, thefass parameters.

it starts decreasing, andbecomes positive. In such cases, We investigated also' the case in which we use the PN
. S expanded form foA(r) given by Eq.(89). For example, for
we choose to stop at the maximum |of(r ¢)|. In any of

these cases, the instantaneous GW frequency at the tinté> 19)Mo BBHs andz,=0, the fitting factors between
when the integration is stopped defines émeling frequency ~EP target waveforms witfz; = —40,—4,4,40 ancEP search
for these waveforms. waveforms with  z,=0 are (maxma, n)

We shall refer to the EOB model€(approximantsas  =(0.767,39.55,0.240),(0.993,30.83,0.241 (0.970,30.03,
ET(nPN,mPN) (when theT approximant is used for the 0.241), and (0.915,28.23,0.242 respectively. So the over-
flux) or EP(nPN,mPN) (when theP approximant is used for laps can be quite low.
the flux), wherenPN (mPN) denotes the maximum PN order  In Table XlI, for three typical choices of BBH masses, we
of the terms included in the Hamiltoniafflux). We shall perform a convergence test using Cauchy’s criterion. The
consider APN,mPN)=(1,1.5), (2,2.5), and (3,35) [at Values are quite high. However, as for tReapproximants,

3PN order we need to indicate also a choice of the arbitraryve have no way to test whether tReapproximants are con-
flux parameter{?]. verging to the true limit. In Fig. 14 we plot the frequency-

domain amplitude of theEP-approximated (restricted

waveforms, at different PN orders, for a (£35)M  BBH.

The evolution of the EOB models contains a plunge charac-
In Table XI, we investigate the dependence offhwave-  terized by quasicircular motiofL6]. This plunge causes the

forms on the values of the unknown parametersandz,  amplitude to deviate from the Newtonian amplitudéyew:

that appear in the EOB Hamiltonian at 3PN order. The coef=f~ "% around 200 Hz, which is a higher frequency than we

3. Waveforms and matches
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FIG. 15. Ending points of thel models at 3PN order for low values gt In the left panel, we plot as a function othe Hamiltonian
l:|(r,pr= 0,p,) [given by Eq.(56)], evaluated ay=0.16 for a (5+ 20)M  BBH, for various values of th@¢educed angular momenturp,, .
The circular-orbit solutions are found at the values ahdH joined by the dashed line. At=4.524 there is a critical radius, below which
there is no circular orbit. In the right panel we plot as a functiomdhe orbital angular frequenc&ocm( 7) corresponding to the critical
radius, for 0. 7<<0.21(solid line). This curve agrees well with the ending frequencies offeandHP models at 3PN order, which are
shown as dotted and dashed lines in the figure.

found for the adiabatic modelsee Figs. 4 and)7 D. Features of the late dynamical evolution
In Table 1V, for some typical choices of the masses, we in nonadiabatic models

evaluate the fitting factors between tHeT(2,2.5) and While studying the numerical evolution of nonadiabatic
ET(3,3.5) waveformswith z; =z,=0) and theT(2,2.5) and models, we encounter two kinds of dynamical behavior that
T(3,3.5) waveforms. This comparison should emphasize thare inconsistent with the assumption of quasicircular motion
effect of moving from the adiabatic orbital evolution, ruled used to include the radiation-reaction effects, so when one of
by the energy-balance equation, to ifaémos} full Hamil-  these two behaviors occurs, we immediately stop the integra-
tonian dynamics, ruled by the Hamilton equations. More spetion of the equations of motion. First, in the late stage of

cifically, we see the effect of the differencesthe conser- g\ oytionw can reach a maximum, and then drop quickly to
vative dynamicdbetween the PN expandddmodel and the

PN resummedE model(the radiation-reaction effects are in- 2870; SO we stop the integrationdf=0. Second, the radial
troduced in the same way in both modelVhile the Vvelocityr can become a significant portion of the total speed,
matches are quite low at 2PN order, they are higld(95) at  so we stop the integration if= 0.3(r &»).

3PN order, at least fol <30M 4, but the estimation ofn, The first behavior is found mainly in the H models at 3PN
andm, is poor. This result suggests that, for the purpose obrder, wheny is relatively small £0.21). As we shall see
signal detection as opposed to parameter estimation, the cobelow, it is not characteristic of either the Schwarzschild
servative dynamics predicted by the EOB resummation anéfamiltonian or the EOB Hamiltonian. In the left panel of
by the PN expansion are very close at 3PN order, at least fqtjg 15 we plot the binding energy evaluated fréir, p,
M<=30My. Moreover, the results of 'I:able IV suggest also:o,pw) [given by Eq.(56)] as a function of at »=0.16, for
that the effect of the unknown parameteis rather small, at  various values of théreduced angular momentunp,,. As
least if & is of order unity, so in the following we shall this plot shows, there exists @itical radius, rq, below

always seth)=0. which no circular orbits exist. This.; can be derived as
In Tables V and VIl we study the difference between theollows. From Fig. 15(eft), we deduce that

EP(2,2.5) andEP(3,3.5) modelgwith z,=7,=0), and all dEy

the other adiabatic and nonadiabatic models. For some —| =0, =T (101

choices of BBH masses, these tables show the maxmax dr { g

matches between the search models in the columns and the

target models in the rows, maximized over the search-moddbecause circular orbits satisfy the conditions
parameterd! and », with the restriction < »<1/4. At 2PN

order, the matches with ther(2,2.5), HT(2,2) and ETa

HP(2,2.5) models are low, while with the matches with the p,=0, ——=0, (102
T(2,2) and P(2,2.5) models are high, at least fivl

<30M (but the estimation of the BH masses is podit

3PN order, the matches withr(3,3.50), P(3,3.56),

HP(3,3.50) and HT(3,3.56) are quite high if M dp 20 20 \ 7t
<30My. However, forM=40My, the matches can be — :——2< ) , (103
quite low. We expect that this happens because in this latter dr circ gre \ drop,

case the differences in the late dynamical evolution become
crucial. we get
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7 L ! ! ! L 4 14 T T T T T
= — HT(2,2) -

6r ST -7 127 HT3,35,6=0) ~ A FIG. 16. Signal-to-noise ratio
%5 L e ] Byl T HRR25) at 100 Mpc versus total masd
S | T E ~T HP@3,35,6=0) s for selected PN models. The S/N
%4 T T(3’35 6=0) | % 8 -2 Pt is computed for equal-mass BBHs
2 3 —-— P(2: 2:55 2 6 _/_f_f.‘-?-"" i using the LIGO-I noise curve2d)
@ ~--P(3, 3.5, 6=0) P ' and the waveform expressig@9)

2+ -—-- EP(2, 2-5)A . 4 i with the rms ® =8/5; for the E

. . T EPG3,35,0=0) ) . ‘ . . . model at 3PN we sét; =7,=0.
110 15 20 25 30 35 40 10 15 20 25 30 35 40
M M

di PTa T dp oA o2 ( prie )l cause the light ring is also a minimal radius for circular or-

— == = — — bits [the conditions(101) are satisfied also in this cdse

dr e " 9P dr circ IPg gr2 \ drap, However, the behavior of the energy is qualitatively different

(104 for the H and E models: in theE models(just as for a test
Particle in Schwarzchild spacetimthe circular-orbit energy

Combining these equations we obtain two conditions thagoes to infinity, while this is not the case for themodels.

definer i The second behavior is usually caused by radiation-
P 20 reaction effects, and accelerated by the presence of an ISCO
—| =0, =0. (105  (and therefore of plungg. However, it is worth mentioning
or Ferit arap, erit another interesting way in which the criterion=0.3(r »)

_ . - ~can be satisfied for sonte evolutions at 3PN order. During
In the right panel of Fig. 15, we plot the critical orbital ¢ |ate stages of evolution,sometimes increases suddenly
frequencyw;; as a function ofy in the rangd0.1, 0.21. In  and drastically, and the equations of motion become singular.
the same figure, we show also the ending frequencies for thehis behavior is quite different from a plunge due to the
HT(3,3.5+2) and HP(3,3.5x2) models. For 0.&7  presence of an ISC(n that case the equations of motion do
<0.21, these ending frequencies are in good agreement wifllot become singular The cause of this behavior is that at
the critical frequenciesyy;; for >0.21, the ending condi- 3PN order the coefficierd(r) [see Eq(90)] can go to zero
tion r=0.3(®) is satisfied beforew=0. For 0.k and become negative for a sufficiently smallForz;=7,
<0.21, this good agreement can be explained as follows: for 0, this occurs at the radiusg, given by
the H models at 3PN order witlpy=<0.21, the orbital evolu- 3 .
tion is almost quasicirculafi.e., r remains small and o= 6nrpt2(37—26)7=0; (108
keeps increasinguntil the critical point is reached; beyond rp can fall outside the light ring. For example, fg=0.25
this point, there is no way to keep the orbit quasicircular, agye haver ,=2.54, while the light rings sits at=2.31. On
the angular motion is converted significantly into radial Mo-iye transition fromD(r)>0 to D(r)<0, the effective EOB
tion, andw begins to decrease. This behaviar{0) is also  metric unphysical, and thE model then becomes invalid.

present in theE model in the vicinity of the light ring, be- Using the Hamiltonian equation of moti@82), it is straight-
forward to prove that a negative(r) causes the radial ve-

8 . . . . . locity to become very large:
o T2,2) y ylarg

7r— EP(2, 2.5) up to ISCO ] IR p
2 | -- EP2,25)uptolightring _.-~" | = ——ox—' s as r—rn. 10
=6 . 7, “D(1) “fo 107
g s
2 4 V. SIGNAL-TO-NOISE RATIO FOR THE TWO-BODY
& MODELS

3

. . . . . In Fig. 16 we plot the optimal signal-to-noise raig,, for
20 15 20 25 30 35 40 a few selected PN models. The value @f, is computed

M using Egs(1) and(19) with the waveform given by Eq29),
for a luminosity distance of 100 Mpc and the rrs=8/5

FIG. 17. Effect of the plunge on the signal-to-noise ratio. The . . .
SIN is computed at 100 Mpc for equal-mass BBHs as a function OFSEE the discussion around Eg9)]; for the EP model we

the total mass for th@(2,2) adiabatic modeffor comparisol, for ~ S€tZ;=z,=0. Notice that, because the models have a
the EP(2,2.5) model with ending frequency at the ISCO, and at thePlunge, their signal-to-noise ratios are much higtarleast
light ring (in this latter case the signal includes a plund¢ere we ~ for M=30M) than those for the adiabatic models, which
use the LIGO-I noise curv&8) and the waveform expressigp9) ~ we cut off at the MECO. See also Fig. 17, which compares
with the rms® = 8/5. the S/N for EP(2,2.5) waveforms with and without the
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plunge; forM=20M, excluding the plunge decreases the () =2mftg+ do+ 3 (ghot thujp FU3+ iy 123+ g f

S/N by ~ 4% (which corresponds to a decrease in the detec- 3

tion rate of 12% for a fixed detection threshplavhile for T ), (110

M=30M, excluding the plunge decreases the S/N-by _ )

22% (which corresponds to a decrease in the detection rate JfN€reto and ¢, are the time of arrival and the frequency-

549%). This result confirms the similar conclusion drawn in domain phase offset, and whe#¢. . .) is theHeaviside step

Ref.[13]. function. This detection template family is similar in some
Because at 2PN and 3PN order tianodels do not have 'espects to the template banks implicitly used in fast chirp

a plunge, but the two BHs continue to move on quasicirculaffansform technique§64]. However, because we consider

orbits even at close separations, the number of total GWBBHS with masses 10-40, the physical GW signal can

cycles is increased, and so is the signal-to-noise ratio, &&nd within the LIGO frequency band; and the predictions for

shown in the right panel of Fig. 16. However, we do not trustthe ending frequency given by different PN models can be

the H models much, because they show a very different beduite different. Thus, we modify also the Newtonian formula

havior at different PN orders, as already emphasized in Seéor the amplitude, by introducing the cutoff frequenty;
IV A. and the shape parameter

The significance of ., with respect to true physical sig-
nals deserves some discussion. If the best match for the
VI. PERFORMANCE OF FOURIER-DOMAIN physical signalg is the templateh; ., which ends at the
DETECTION TEMPLATES, AND CONSTRUCTION instantaneous GW frequendy, [so thath; (f)=g(f) for
OF A FOURIER-DOMAIN DETECTION-TEMPLATE BANK f<foy andhfcut(f) =0 for f>f], then we Cc“;m be certain to

In the previous sections we have seéor instance, in lose a fraction of the optimal that is given approximately
Table V) that the overlaps between the various PN waveby
forms are not very high, and that there could be an important

loss in the event rate if, for the purpose of detection, we ‘ |§(f)|2 . |§(f)|2
restricted ourselves tonly oneof the two-body modelésee f o df f d

Figs. 16 and 1) To cope with this problem we propose the Peut o Sy(f) 1 Jtg Sp(T)
following strategy. Weguessthat the conjunction of the s — = NN
waveforms from all the PN models spans a region in signal PPt [ r=la(f)[? J°°|g(f)| ¢
space that include®r almost includesthe true signals, and fo s.(f) 0 Sy(f)

we build adetectiontemplate family that embeds all the PN (111)

models in a higher-dimensional space. The PN models that

we have considere@expanded and resummed, adiabatic andon, the other hand, if we try to matchwith the same tem-
nonadiabatig rely on a wide variety of very different dy- plate family without cuts(and if indeed theh's are com-
namical equations, so the task of consolidating them under gietely inadequate at modeling the amplitude and phasing of
single set of generic equations seems arduous. On the othgrapovef ), then even the best-match templéatg .. [de-
hand, we have reason to_ susp_ect,_ from the values of thg,eq byhoo cu F) =g(f) for f<f, and by zero correlation,
matches, anc_i from direct investigations, tha'g the frequenc Rro ol F)g* (F)=0 for f>f.,] will yield an additional loss
domain ampht_ude_ and phasirithe very mgre_dlgnts that en- in p caused by the fact that we are spreading the power of the
ter the determination of the matchese, qualitatively, rather template beyond the range where it can successfully ngatch

similar fupctlg)lns 1f-_otr all Ithte Ptﬁ rtnode(lisj.r Wt? Stna”Fther.eforeMathematically, this loss comes from the different normal-
create a family of templates that moastectly the Fourier i, i tactor for the templatek; and hpg o @nd it is
transform of the GW signals, by writing the amplitude andgiven by cut

phasing as simple polynomials in the GW frequerigyy .

We shall build these polynomials with the specific powers of — _

fow that appear in the Fourier transform of PN expanded feu N(F)|? = [h(f)|?
adiabatic waveforms, as computed in the stationary-phase f ; df 1 f f df
approximation. However, we shall not constrain the coeffi- Pro °“t$ o Sa(f) —1—_ Feut Snl

cients of these powers to have the same functional depen-  p. [ °°|T1(f)|2 2 w|ﬁ(f)|2 '
dence on the physical parameters that they have in that f df j ——df
scheme. More specifically, we define our generic family of o Sy(f) 0 Sy(f)

Fourier-domain effective templates as (112

. If we assume thag andh, s have roughly the same ampli-
her(F) = Aer(f) €' Ve, (108 tude distribution,alfche two losses are similar.
In the end, we might be better off cutting templates if we
cannot be sure that their amplitude and phasing, beyond a
certain frequency, are faithful representations of the true sig-
nal. Doing so, we approximately halve thvrst-casdoss of
A £) =T 78(1— a 123 0(f ., — 1), (109  p, because instead of losing a factor

where
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TABLE XIII. Fitting factors for the projection of the target moddii® the rows onto the g, 3, a,f) Fourier-domain detection
template family. For ten choices of BBH masses, this table shows the minmax matches between thadimigmtic models and the
Fourier-domain search modehaximized over the intrinsic parametepg, ¢35, ande,f,, and over the extrinsic parameter For each
intersection, the six numbers shown reporténeling frequency.f,4 (defined in Sec. VI Bof the PN model for the BBH masses quoted, the
minmax FF mn, and the search parameters at which the maximum is attained.

2/3 2/3
PN model f end mn % ¢3/2 [24 c{n f cut f end mn lvbO ¢3/2 (,Yf c{n f cut

(20+20)M 221.4 0.983 23891. —554.63 0.949 240.7 | (20+5)M o 341.2 0992 77508. —1041.30 0.897 347.0
(20+15)M o 252.4 0.987 30200. —606.41 0.975 272.5((10+10)M 5 442.8 0.992 72639. —768.78 0.632 331.4
T(2,2) (15+15)M o 2952 0.989 38126. —653.61 0.968 313.5| (15+5)Me 431.3 0993 96191. —1030.20 0.831 440.8
(20+10)M 5 291.7 0.989 41735. —677.51 1.002 3142 (10+5)Ms 583.4 0.993 130600. —1019.10 1.001 805.3
(15+10)M 5 352.7 0.991 52565. —713.54 0.968 387.1| (5+5)M, 885.6 0.989 225060. —1056.80 0.531 894.4

(20+20)M 5 161.2 0.970 19807. 6232 0.691 2244 (20+5)M 281.6 0987 71552. —188.92 0.227 312.7
(20+15)M 5 1859 0.975 25398. 57.59 0.347 2203 ((10+10)M s 3224 0983 66783. —37.92 0490 630.9
T(22.5) (15+15)M 5 2149 0979 32787. 40.11 0.210 2450 (15+5)Mo 345.6 0988 89296. —166.70 0.107 373.8
(20+10)M o 2223 0.980 36540. 2823 0.160 2555 (10+5)Mo 443.3 0.989 123100. —159.28 0.379 746.0
(15+10)M 5 261.2 0.983 47008. 224 0.107 293.7| (5+5)Mo 6439 0.994 217090. —194.81 0.253 1033.1

(20+20)M 5 2079 0.983 25219. —575.44 1.002 265.8 | (20+5)M o 276.1 0.986 79630. —1095.00 0.743 238.3
(20+15)M o 234.5 0.984 31622. —623.54 1.005 268.5 [(10+10)M 5 4159 0988 73738. —701.48 0.923 437.8
T(3,35,+2) (15+15My 277.2 0987 38891. —612.96 0.990 306.3| (15+5)M 362.3 0990 97371. —988.17 0.617 277.0
(20+10)M 5 259.3 0.986 43944. —729.80 0.979 301.6( (10+5)Ms 518.5 0.990 131210. —899.96 0.642 392.3
(15+10)M 5 324.3 0.987 53869. —688.38 0.865 315.6| (5+5)Mo 831.7 0.985 224370. —826.19 0.563 886.2

(20+20)M 5 2079 0.981 24857. —603.44 0.983 2464 | (20+5)Mo 276.1 0.987 80359. —1188.90 0.825 257.0
(20+15)M 5 234.5 0.985 31773. —681.75 0.983 252.8((10+10)M 415.8 0988 74637. —810.89 0.750 350.3
T(3,35,—2) (15+15Ms 277.2 0.986 39565. —707.26 0.933 277.9| (15+5)M 362.3 0989 97861. —1070.50 0.661 267.7
(20+10)M 5 259.3 0.985 44027. —787.96 0.900 2519 (10+5)M, 518.5 0.988 131840. —992.35 0.901 553.3
(15+10)M 5 324.3 0.988 54194. —761.61 0984 341.1| (5+5)Mo 831.7 0.982 225550. —943.65 0.577 916.3

(20+20)M o 1429 0.972 27006. —743.88 0.991 208.5| (20+5)Me 207.8 0978 81397. —1244.40 0.698 192.4
(20+15)M o 1625 0.977 33307. —778.72 0.987 206.7 [(10+10)M 5 2859 0.985 73970. —743.09 0.681 245.7
P(225) (15+15)M 5 190.6 0.980 40486. —752.07 0.991 237.0| (15+5)Mo 267.5 0984 98390. —1074.60 0.709 231.8
(20+10)M 5 185.0 0.977 45403. —864.50 1.116 288.3 | (10+5)M s 370.0 0.985 131920. —961.15 0.758 346.4
(15+10)M 5 2263 0.981 54709. —771.73 0.867 2329 (5+5)Mo 571.8 0.983 224810. —867.58 0.813 764.5

(20+20)M 5 2164 0.984 24922. —523.74 0.995 2652 (20+5)M o 265.0 0.985 79624. —1070.20 0.830 258.4
(20+15)M 5 243.6 0.985 31204. —564.86 1.007 299.3 [(10+10)M 432.8 0.990 72663. —617.31 0.896 488.2
P(3,35,+2) (15+15My 288.5 0.987 38194. —541.27 0971 328.2| (15+5)Mo 359.2 0.990 96933. —935.65 0.619 279.6
(20+10)M 5 265.7 0.986 43280. —660.41 1.001 328.8| (10+5)Ms 531.3 0.991 130310. —827.00 0.843 588.6
(15+10)M 5 3362 0.987 52941. —605.52 0.902 356.7| (5+5)Mo 865.6 0.988 223830. —780.35 0.537 896.7

(20+20)M o 2164 0.984 24830. —545.66 1.062 2914 (20+5)Me 265.0 0.986 79956. —1114.80 0.831 259.7
(20+15)M 5 243.6 0.984 31086. —583.34 0.988 269.5(10+10)M 432.8 0.990 73167. —674.59 0.760 390.9
P(3,35,—2) (15+15Ms 288.5 0.988 38426. —581.05 0.994 326.6| (15+5)Mo 359.2 0.990 96850. —958.04 0.662 277.7
(20+10)M o 265.7 0.986 43464. —696.77 1.006 311.2| (10+5)Mo 531.3 0.990 130780. —881.70 0.810 539.0
(15+10)M 5 336.2 0.987 53475. —663.65 0.882 3334 (5+5)Ms 865.6 0.987 224210. —828.64 0.538 896.0

(20+20)M 5 231.0 0.991 22372. —258.47 0.935 477.8| (20+5)M o 359.4 0.995 79070. —857.02 0.748 519.2
(20+15)M o 263.5 0.992 28710. —302.99 0.770 425.5((10+10)M s 462.0 0.995 71411. —420.76 0.668 722.3
ET(2,2.5) (15+15)M 5 308.0 0.993 36351. —321.50 0.717 5123 (15+5)M o 452.7 0994 96788. —755.70 0.718 706.8
(20+10)M 5 305.1 0.993 41308. —423.25 0.756 473.1| (10+5)M5 610.1 0.993 129130. —607.98 0.665 910.1
(15+10)M o 368.3 0.995 51338. —393.70 0.769 764.8| (5+5)Ms 924.0 0.991 221910. —534.76 0424 920.4

(20+20)M o 212.1 0.990 22048. —356.02 0.997 367.7| (20+5)Mo 351.3 0.992 78355. —1057.40 0.763 402.3
(20+15)M 5 245.1 0.992 28516. —423.30 0.971 415.7 [(10+10)M 428.8 0.994 72187. —631.44 0.707 616.2
ET(3,3.5,+2) (15+15Mo 285.8 0.992 36119. —450.40 0.775 408.3| (15+5)Mo 433.7 0994 96772. —982.67 0.757 5724
(20+10)M 5 286.6 0.993 40717. —545.11 0.790 376.5| (10+5)Ms 573.1 0.995 130830. —899.77 0.686 856.6
(15+10)M 5 344.5 0.993 51507. —563.26 0.785 5152 (5+5)Mo 8479 0.986 225490. —892.59 0.552 914.8
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TABLE XIlll. (Continued.

2/3 2/3
PN model f end mn % ¢3/2 (,Yf C{]t f cut f end mn lﬂo ¢3/2 (64 c{n f cut

(20+20)M 5 207.1 0990 21818. —386.23 0.848 3004 | (20+5)M 3459 0991 78349. —1103.70 0.692 379.0
(20+15)M 5 2382 0992 28247. —451.93 0.884 347.0 |(10+10)M o 411.0 0.994 72645. —709.64 0.685 499.9
ET(3,3.5, (15+15My 274.0 0992 36218. —502.72 0.903 4524 | (15+5)My 4248 0993 97086. —1052.50 0.846 600.5
—-2) (20+10)M 5 277.0 0992 41148. —613.88 0.786 364.2 | (10+5)M5 5569 0.995 131730. —1003.30 0.699 821.5
(15+10)M 5 330.6 0992 51702. —623.17 0.822 5012 | (5+5)Mo 816.8 0.983 226430. —999.02 0.539 9004

(20+20)M, 218.1 0991 21315. —353.42 0.773 376.1 | (20+5)M 3458 0990 79526. —1167.70 0.709 366.2
(20+15)M 5 249.1 0.991 28013. —437.59 0.746 380.6 |(10+10)M 4362 0994 73183. —729.74 0.714 645.1
EP(225) (15+15Mg 290.8 0991 35947. —486.80 0.672 4322 (15+5)My 433.1 0.994 98170. —1099.60 0.630 460.4
(20+10)M 289.8 0.990 40730. —593.65 0.656 391.0|(10+5)M5 579.6 0.993 132250. —1014.20 0.691 868.7
(15+10)M 5 348.5 0991 51920. —632.99 0.637 451.6| (5+5)Mo 8725 0979 226910. —997.82 0.571 833.0

(20+20)M o 219.7 0990 22025. —329.13 0967 3983 | (20+5)Mo 354.0 0993 78344. —1027.30 0.668 376.6
(20+15)M 5 251.9 0991 27970. —368.53 0.888 386.4 |(10+10)M o 439.6 0994 71704. —579.45 0.719 658.8
EP(3,35, (15+15M; 293.1 0991 35861. —409.25 0.813 452.7 | (15+5)My 4449 0995 96416. —934.82 0.773 608.4
+2) (20+10)M 5 291.4 0.993 40598. —512.88 0.820 429.6 | (10+5)M 582.5 0.995 130480. —855.36 0.685 879.7
(15+10)M o 353.7 0993 51343. —527.79 0.731 4955| (5+5)Mo 8747 0989 224370. —820.10 0.488 916.2

(20+20)M o 214.4 0.990 22029. —349.92 0986 384.7|(20+5)Mo 353.0 0.992 78099. —1035.10 0.692 400.3
(20+15)M 5 248.3 0.992 28185. —400.30 0.849 3612 |(10+10)M 430.5 0994 71820. —613.97 0.718 642.1
EP(3,35, (15+15M; 287.0 0992 35793. —429.31 0.880 510.6 | (15+5)Ms 439.1 0994 96411. —960.71 0.770 591.0
—2) (20+10)M 289.1 0.993 40653. —537.88 0.869 4529 | (10+5)M, 5757 0995 130760. —899.02 0.696 877.1
(15+10)M 5 347.3 0993 51423. —558.41 0.779 4947 | (5+5)Ms 8649 0.988 225110. —886.01 0.501 909.7

(20+20)M 318.1 0.989 20061. —192.06 0.509 379.7|(20+5)Mo 4574 0987 76939. —936.06 0.683 450.0
(20+15)M 5 364.6 0.988 26379. —249.89 0437 385.7 |(10+10)M o 647.2 0990 70495. —502.74 0.585 666.7
EP(3,3.5, (15+15My 432.0 0987 34134. —293.98 0.321 4228 | (15+5)Mo 600.6 0.992 95378. —866.93 0.651 601.3
0,4,0) (20+10)M, 4204 0987 38610. —385.18 0455 446.0|(10+5)M 831.6 0.995 129410. —792.01 0.680 798.8
(15+10)M 5 510.8 0.988 49757. —426.26 0.515 4934 (5+5)Mo 12922 0992 223410. —772.85 0.339 1003.8

(20+20)M 1189 0.970 26410. —787.54 0.964 189.8|(20+5)Mo 215.1 0989 83591. —1452.50 1.087 364.1
(20+15)M 5 1369 0.983 33451. —868.80 1.010 2389 |(10+10)M 237.8 0983 76684. —970.56 1.074 373.8
EP(3,35, (15+15M; 158.5 0983 41909. —921.14 1.045 285.0|(15+5)M 258.0 0.984 101440. —1323.20 1.158 486.7
0,—20,0) (20+10)Mo 164.2 0985 46550. —1016.40 1.138 321.2 | (10+5)Mo 3279 0977 134130. —1142.10 1.157 589.3
(15+10)M 5 1924 0.985 56925. —986.07 1.096 339.8| (5+5)Ms 476.1 0.969 226450. —992.89 1.167 8442

(20+20)M 5 94.0 0947 29400. —1174.60 1.097 184.5]|(20+5)M 174.0 0972 88302. —1874.90 1.073 337.6
(20+15)M 5 108.2 0.962 36837. —1268.40 0.960 169.2 |(10+10)M 188.0 0.959 82469. —1437.30 1.059 411.8
EP(3,35, (15+15Mg 125.3 0969 45552. —1324.90 1.010 2284 | (15+5)My 206.7 0.967 105660. —1681.70 1.357 468.5
0,—40,0) (20+10)M 1304 0970 50375. —1423.70 1.048 252.8 | (10+5)Ms 260.8 0.957 137720. —1431.90 1.111 537.6
(15+10)M 5 152.5 0964 61789. —1428.90 1.077 3384 | (5+5)Ms 376.1 0.955 228960. —1185.20 1.122 8744

(20+20)M 5 349.5 0986 19559. —43.77 0483 374.1|(20+5)M, 5615 0981 72281. —54292 0.533 549.7
(20+15)M 5 399.4 0.989 25098. —58.70 0.387 384.9|(10+10)Ms 699.0 0988 67699. —246.28 0.166 463.5
EP(T3,3.5, (15+15)My 465.3 0987 32573. —86.76 0.155 341.5|(15+5)My 7049 0963 92003. —570.09 1.128 5223
0,+40,0) (20+10)M 468.3 0989 36812. —153.63 0.243 4302 | (10+5)Ms 9352 0.989 124940. —469.29 0458 787.7
(15+10)M 5 558.6 0.989 47015. —159.41 0316 6523 | (5+5)Ms 1398.0 0.989 219670. —517.04 0986 928.5

(20+20)M 5 95.0 0953 28875. —1038.40 0998 168.8|(20+5)M, 1752 0973 87007. —1721.30 1.072 348.7
(20+15)M 5 109.5 0.968 37319. —1203.50 1.186 244.7 |(10+10)M 190.3 0.975 77432. —1045.60 0.648 192.8
EP(T3,3.5, (15+15Mg 1269 0949 44601. —1160.40 1.069 3223 | (15+5)M 2084 0.975 102210. —1406.10 0.805 214.6
0,—40,0) (20+10)M 131.9 0978 49188. —1252.90 0.999 207.7 | (10+5)Ms 263.3 0.969 135110. —1218.00 1.231 548.3
(15+10)M 5 154.1 0.952 60648. —1255.90 1.017 4043 | (5+5)Ms 380.3 0.965 226990. —1027.60 0.960 883.4

(20+20)M, 87.0 0937 18859. —726.78 0997 175.1|(20+5)M, 1489 0987 72221. —1938.50 0.970 209.6
(20+15)M 5 99.7 0.953 26088. —939.25 1.005 175.0|(10+10)M o 174.0 0990 67126. —1420.30 0.986 252.5
L(2,0) (15+15)M 5 116.0 0972 34155. —1087.60 0.999 189.8 | (15+5)M, 181.6 0.991 89333. —1908.10 0.996 259.5
(20+10)M 5 118.0 0.974 38075. —1201.00 0.990 191.1 | (10+5)M 5 2359 0.991 120130. —1869.90 0.830 274.6
(15+10)M 5 140.0 0.985 48463. —1295.00 0.996 219.6| (5+5)Ms 348.0 0.994 207730. —2077.90 0.709 379.0
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PN model feng N o ap af 3(3 feur fena TN o ap af 3(3 feur
(20+20)M 80.3 0.935 33179. —1379.20 0.998 136.5 [ (20+5)M 140.1 0.968 99046. —2345.10 0.996 191.6
(20+15)Mg 92.1 0.960 41065. —1465.70 0.997 1523 [(10+10)M s 160.5 0.969 85317. —1293.90 0.707 167.5

L(2,1)  (15+15M; 107.0 0.969 50159. —1486.50 1.003 164.3| (15+5)M 169.6 0.966 114410. —1835.70 0.673 165.1
(20+10)M 109.4 0.970 55990. —1663.30 0.994 166.4| (10+5)M; 218.8 0.964 146040. —1373.00 0.402 194.6
(15+10)M 129.4 0.969 66431. —1519.40 0.998 187.9( (5+5)M 321.0 0.932 244970. —1159.90 0.743 4043
(20+20)M, 389.2 0.964 6138. 1091.40 —0.539 242.5( (20+5)M  733.9 0.928 31397. 1977.90 —0.634 981.8
(20+15)Mg 4512 0.937 10015. 1120.00 0.583 693.5[(10+10)M 758.8 0.868 34673. 1301.30 0.951 783.1

HT(22) (15+15Mg 507.1 0.961 12166. 1236.10 —1.842 322.1| (15+5)M 849.2 0.905 41087. 1898.60 —2.966 1192.5
(20+10)M ¢, 5362 0.960 13624. 1378.00 —0.711 334.7| (10+5)M 1057.3 0.870 109640.  351.04 0939 899.7
(15+10)M, 632.6 0.950 16662. 1468.50 —1.780 378.9( (5+5)M 15255 0.937 214890. —317.77 0.967 969.4
(20+20)M, 4039 0.923 2544. 1511.00 0547 459.7( (20+5)M 611.2 0.918 22867. 2595.60 —1.053 1200.0
(20+15)M¢, 459.0 0.961 1774. 1747.20 —1.790 279.7((10+10)M 816.6 0.901 10216. 2343.10 —1.861 509.6

HP(2, (15+15M 536.6 0.921 3321. 1853.80 0.063 1155.9| (15+5)M o 771.6 0.892 27498. 2640.30 —2.977 1200.0

25) (20+10)M, 530.3 0.958 6259. 1961.60 —1.844 331.6| (10+5)M 10502 0.850 107210.  707.41 0.893 918.8
(15+10)M s 638.8 0.914 7474.  2079.90 —1.449 1193.8( (5+5)M 1601.2 0.921 212810. 3393 0.694 916.8
(20+20)M, 358.4 0.977 16787. 81.92  0.187 346.4| (20+5 M 196.3 0.983 83529. —1429.20 0.856 232.3
(20+15)M ¢, 420.3 0.975 22751. 1330 0414 728.7|(10+10)My 726.0 0.964 67085. —285.69 0.594 9222

HT(3,  (15+15)M; 484.0 0.971 29634. 843 0016 417.1| (15+5)My 3033 0.992 98845. —1096.60 0.782 3959

35,+2) (20+10)M, 4958 0.983 37522. —309.28 0.693 731.8| (10+5)M 970.3 0.992 128810. —755.33 0.526 909.7
(15+10)Mg 586.9 0.967 46435. —210.60 0.586 916.7| (5+5)Mq 1433.6 0.992 221940. —679.22 0400 907.7
(20+20)M ¢, 316.4 0.981 17922. —37.78 0.640 498.6| (20+5)M; 196.1 0.984 83861. —1489.90 0.869 232.7
(20+15)M 3752 0.980 23737.  —95.75 0.603 618.2[(10+10)M 639.4 0.972 68270. —408.04 0.640 917.6

HT3, (15+15Mg 4263 0.975 31166. —123.77 0.506 587.6( (15+5)M s 303.1 0.993 98715. —1142.80 0.802 389.2

35,-2) (20+10)M 436.0 0.986 38125. —390.93 0.538 434.1| (10+5)M s 868.1 0.992 129460. —848.59 0.675 852.1
(15+10)Mg 5145 0.974 47366. —316.76 0.654 806.4( (5+5)Mc 1273.2 0.993 223420. —812.58 0.425 883.0
(20+20)M ¢, 474.6 0.968 14652. 23651 0215 863.4( (20+5)M; 1964 0.982 83872. —142120 0928 2614
(20+15)M ¢, 539.6 0.966 20205.  181.76  0.071 1076.9|(10+10)M 9522 0.948 66050. —202.66 0.548 898.9

HP(3, (15+15M; 634.8 0.955 27087.  170.17  0.009 1200.0| (15+5)M s 304.1 0.990 98220. —103520 0.796 405.4

35+2) (20+10)M 598.9 0.975 36238. —213.15 0.438 900.5| (10+5)M 5 1212.8 0.991 127870. —682.01 0555 621.0
(15+10)M 752.5 0.948 45078. —109.24 0.539 9112 (5+5)M 1921.0 0.989 220910. —608.88 0.313 925.7
(20+20)M, 3632 0.973 16421. 11338 0.384 5259| (20+5)M; 1963 0.983 83747. —1435.60 0.996 289.7
(20+15)M ¢, 421.8 0.972 21952. 62.83 0337 6909 [(10+10)M 734.7 0.958 66819. —271.94 0.680 893.8

HP(3, (15+15Mg 489.8 0.968 28632. 62.71  0.000 4227 (15+5)Mg 303.7 0.992 98202. —1060.60 0.749 368.8

35,-2) (20+10)M 510.0 0.982 36893. —272.30 0263 4632 (10+5)M5 9983 0.991 128060. —722.63 0491 887.7
(15+10)M 591.3 0.959 45653. —168.47 0469 924.6| (5+5)M 14459 0.991 221850. —685.53 0.390 930.8

w0 |F(f)|2 o |§(f)|2 we lose only the facto_pcut/popt. On the_ other hand, we do
f ———df J' ——df not want to lose the signal-to-noise ratio that is accumulated
ProcutPeut . } o Sn(F) _} o Sn(F) at high frequencies if our templates have a fighting chance of
Peut Popt 2 r=[h(f)? 2 r=[g(f)? matching t_he true signal there; so it ma_kes sense to_include in
f df J df the detection bank theametemplate with several different
o Sn(f) o Sn(f) values off .
~ It turns out that using only the two parameteksand i3/,
J’” |g(f)|2df in the phasingand setting all other) coefficients to zerp
four Sn(F) and the two amplitude parametefs,; and @, we obtain a
=1- (113  family that can already match all the PN models of Secs. IlI

and IV with high fitting factors FF. This is possible largely
because we restrict our focus to BBHs with relatively high

=[g(f)|?  ’
Jo s,n ¢t
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masses, where the number of GW cycles in the LIGO ranggy still works reasonably well. We usually have 5®.96,
[and thus the total range of the phasingf) that we need to  put there are several exceptions, with FF as low as 0.948. For
considet is small. these models, the overlaps are lower in the equal-mass cases,
In Table XIlII we list the minmaxsee Sec. Jifitting fac-  where the ending frequencies of the waveforms are much
tor for the projection of the PN models onto our frequency-higher than for the other models; it seems that the effective
domain effective templates, for a set of BBH masses rangingemplates are not able to reproduce this late portion of the
from (5+5)Mg to (20+20)Mg . In computing the fitting  waveforms(this might not be so bad, because it does not
factors, we used the simplicial search algoritmOEBA  seem likely that this part of the signal reflects the true be-
[65] to search for the optimal set of parametershavior of BBH waveforms
(%0, 3, four, @) (as always, the time of arrival and initial  (4) The Lagrangian modeld.) are matched a bit worse
phase of the templates were automatically optimized as dehan the Hamiltonian modeldH(T andHP) at 3PN, but they
scribed in Sec. )l From Table XIIl we draw the following still have FF higher than 0.95 in most cases, with several

conclusions: exceptions[at either (26-20)M or (5+5)Mg], which
(2) All the adiabatic modelsT and P) are matched with can be as low as 0.93.

fitting factors FE>0.97. Lower-mass BBHs are matched bet- (5 HT and HP models at 2PN are matched the worst,
ter than higher-mass BBHs, presumably because for the lafyith typical values lower than 0.95 and higher than 0.85.
ter the inspiral ends at lower frequencies within the LIGO Finally, we note that our amplitude functiofeu(f) is a
band, producing stronger edge effects, which the effectivginear combination of two terms, so we can search automati-
templates cannot capture fully. 3PN models are matched begz|ly over the correction coefficient, in essentially the
ter than 2PN models. same way as discussed in Sec. Il for the orbital phase. In
(2) The effective-one-body modelsET and EP) are  other words,« is anextrinsic parameter(Although we do
matched even better than the adiabatic models, presumabdarch over, it is only to show the required range, which
because they have longer inspirals and less severe edge gfij| be a useful piece of information when one is deciding

fects at the end of inspiral. Unlike the adiabatic modelsow to lay down a mesh of discrete templates on the con-
hOWeVer,ET and EP are matched better for higher-maSS tinuous detection_temp'a‘te Spa}:e_

BBHs. In fact, all the FFs are-0.99 except for (5-5)Mo

BBHSs, where FE0.979. The reason for this is probably that

this low-mass BBH has more GW cycles in the LIGO fre- A. Internal match and metric
guency band than any other one, and the two phasing param- . .
eters of our effective templates cannot quite model the evo- Tol unders;anhd tgﬁ ma'écr;es b(ejtween the Founer-doma;]n
lution of the phasing(In the adiabatic models, these effects templates and the models, and to prepare to compute the
may be overshadowed by the loss in signal to noise ratio du umber of templates needed to achieve a gitaterna)

to the edge effects at high frequencjé&hen the parameters M, we r_leed to d.erlve an expression for the match between
two Fourier-domain effective templates.

z, ; are allowed to be nonzero, the matches get worse, but not \ye ghall first restrict our consideration to effective tem-
by much. For all the plausible values of, the worst situa-  plates with the same amplitude functiére., the samer and
tion seems to happen aj=—40, where the overlaps are feon). The  overlap  (h(o,¥am), h(o+ A, sy
still higher than~0.95 (with minimum 0.947. +As,)) between templates with close values af and

(3) The Hamiltonian modelsHT andHP) at 3PN order 3, can be describetto second order itk iy andA ¢35) by
are not matched as precisely, but the detection template fanthe mismatch metrig;; [29]:

(h( o, ar2) (ot At ozt Arad)) =1~ 12203/2 giA gAY, (114

The metric coefficientg;; can be evaluated analytically from the overlap

A2 Ay,
(h(¢o,¥312),n(ho+ Ahg, Pzt Ahz))=| max jdf| Sl {E —nw_+A¢o+27rfAto)
Agg,Atg fhi

S <% 4

J Pk
|A<f>|2}
/Udf s )’

(116

L1
T2

|A<f>|2( Ay

2
max | df +Apy+2mfAL
A¢0,Atof Sn(f) f porET 0)

whereny=5/3 andn;,=2/3. Comparison with Eq(114) then gives
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FIG. 18. In the left panel, we plot the iso-match contours for the functigigy , 1) . h(Wo+ A g, a3+ Ahan) ); contours are given at
matches of 0.99, 0.975 and 0.95. Solid lines give the indications of the mismatch metric; dashed lines give actual values. Here we use a
Newtonian amplitude functiond(f)=f""6 (we seta=0 and we do not cut the template in the frequency domain. In fagt,
=400 Hz). In the right panel we plot the values/of (versusf ) required to obtain matché&(f,),h(fc+Afcy)) of 0.95(uppermost
curve, 0.975 and 0.99lowermosj. In the region below each contour the match is larger than the value quoted for the contour. Again, here
we use a Newtonian amplitude functiot(f)=f~"® (we seta=0).

1 Ay Ao
2 gj ApiAg=5 min | (AgoApaM)| \ | +2(Ado2mALMz)| (117
B Adbg,Atg b3 Y3r2
A g
|
where theM 4y (3) are the matrices the left panel of Fig. 18 we plot the iso-match conto(as
matches of 0.99, 0.975 and 0)98 the (A ¢y,A 35) plane,
| 3@2ng)  J(notngp) as given by the metri¢124) (solid ellipse, compared with
M= J(No+nsp)  JI(2nzn) |’ (119 the actual values obtained from the numerical computation

of the matchegdashed lines For our purposes, the second-
J(ng) J(Nap) order approximation given by the metric is quite acceptable.
(2)={ - B } (120 In this computation we use a Newtonian amplitude function
Jno=1)  J(ngp—1) A(f)=f"" (i.e., we seta=0 and we set our cutoff fre-
quency at 400 Hz).

We move now to the mismatch induced by different cutoff
frequencied ;. Unlike the case of th&y, 4, parameters,
this mismatch is first order i\ f.,, so it cannot be de-
and where scribed by a metric. Suppose that we have two effective tem-

platesh(f.,) andh(f.,+Af., with the same phasing and
f df |A(F)]? 1
Sn(f) fn

|A(F)]? amplitudeA f >0, but different cutoff frequencies. The match
df o8k (122
SinceM (3 describes the mismatch caused By, Aty), it

Sh( is then given by
must be positive definite; because the right-hand side of Eq.
(117) reaches its minimum with respect to variationsiab,
andAty when

JO)  J(—-1)
(3):{ } (121

J(-1) J(—2)

J(n)=

A Ao £ /107 .
+ = cut/10
2|\/|(2)<A¢3/2 2M(3)(277At0 0, (123 .
we obtain
1 ~
g”:E[M(l)_ MZ—Z)M(3%M(2)]|] . (124) ‘II3/2/102

FIG. 19. Projection of theET(2,2.5) waveforms onto the
We note also that the mismatcRh(#o,¥s2),n(¥  frequency-domain effective template space. Rowe choose the
+ Ao, h3pt Aigy)) is translationally invariant in the optimal value found by the search. The( s, fe) Surface is
(0,312 plane, so the metrig;; is constant everywhere. In interpolated from the then mass pairs shown in Table Iil.
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<h(fcut)rh(fcut+Afcut)> 1.0 (800 il
: \m——— w5
J’fcutd |«4(f)|2 \‘(M) "“‘-p{--__"__)03(200-_«2)______________cgongm
(20430) g (15+15) \ 1
0 Sh( f ) ool \“ 20+10) ISHD)“&HD]S&Q) ‘\ — \\\ E
= = “ - S E T e —— = 1
ffcutdf|A(f)|2 T ffcmmfmdf|,4(f)|2 e S |\ :
[ D ~ \ e 1
Jo T S(h) 0 Su(f) S0l N S DM ;
\ \ ]
N 11 v !
(129 N s 1500
ffCUtdf |A(f)|2 12 _20l \\\\\\‘bi,l(lzoooc, 1500)
—_— (95000, —2200)
0 Sh(f) . ‘
- ffcut+Afcut |A(f)|2 0.0 5.0 1.0 1.5 2.0 25
¥y/10°
L Jo Sh(f) 0
2 ¢ 211/2 FIG. 20. Projection of the PN waveforms onto thegq (i3
21_[M°utM}/ f A plane, for BBHs with masses 55)My, (10+5)Mg, ...,(20
2 Sy(few 0 Sh(f) +20)M (see Table Ill. The projection was computed by maxi-

(126) mizing the maxmax match over the parametggs 5, and f.;
the correction coefficiente was set to zero. The thin dotted and
This result depends strongly diny. In the right panel of dashed lines show the boundaries of the projected images for the
Fig. 18 we plot the values of\f, that correspond to models(from the top T(2,2.5), HT(3,3.5=2) and P(2,2.5).
matches of 0.95, 0.975 and 0.99, according to the first orde¥olid lines(theBH mass lineklink the images of the same BBH for
approx|mat|on(sol|d ||ne3, and to the exact numencal Cal_ dlffel’ent PN models. The en.dS of the BH mass |ineslal’e marked
culations(dashed lines both of which are given in the sec- With the BBH masses and with the minimum value {fify, feud
ond line of Eq.(126). In the region below each contour the across all the PN models. The thick dashed lines delimit the region
match is larger than the value that characterizes the contodfat Will be covered by the effective template bank; /g (/3/,)
As we can see from the graph, the linear approximation i§oord|nates are marked on the vertices. The region is further sub-

not very accurate, thus in the following we shall use thed'v'ded into four subregions I-1V that group the BH mass lines

with very similar ending frequenci in-
exact formula. y g freq €nd min

two-dimensional region in theng; ,m,) or (M, n) plane. Un-

der the mapping that takes each PN signal into the Fourier-

domain effective template that matches it best, this two-
All the PN target models are parametrized by two inde-dimensional region isprojected into a two-dimensional

pendent number.g., the two masses or the total mass andsurface in the ¢g,¢¥35,fe) parameter spacéwith the

the mass ratip if we select a range of interest for these fourth parameteer=0). As an example, we show in Fig. 19

parameters, the resulting set of PN signals can be seen aghe projection of thdeT(2,2.5) waveforms witl{single-BH

B. Construction of the effective template bank:
Parameter range

TABLE XIV. End-to-end matches and ending frequencies along the BH mass lines of Fig. 20. The first
three columns show the end-to-end matches and the corresponding number of te(fguididd =0.98)
along the BH mass lines; the remaining columns show the minimum ending frequencies of PN waveforms
along the BH mass lines, the match between the two effective templates at the ends of the range, and the
number of templates needed to step along the range while always maintaining a=aa&® between
neighboring templates. When computing these matches, we use a Newtonian amplitude fut{é)ion
=f~7% (we seta=0), and we maximize over the parametesand 5/, (which is equivalent to assuming
perfect phasing synchronizatipn

M End-to-end match /\/’end to end f cut min <h (f cut mj11)7h(+°o)> [Eztlss line
(5+5)Mg 0.478 37 572 1.00 0.2
(10+5)M ¢ 0.434 41 346 0.98 0.9
(I15+5)M¢ 0.398 46 232 0.94 3.1
(10+100M ¢ 0.449 40 246 0.95 2.6
(20+5)M 0.347 52 192 0.90 53
(15+10)M o 0.443 40 226 0.94 33
(20+100M 0.428 42 185 0.89 5.9
(15+15M o 0.482 36 191 0.90 5.4
(20+15M o 0.464 38 162 0.84 85
(20+200M ¢ 0.438 41 143 0.79 11.9
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masses 5—20 M. The 26 models tested in Secs. lll and IV the BH mass line in either direction. For this reason we shall

would be projected into 26 similar surfaces. In constructingay down our effective templates in the region traced out by
the detection template families, we shall first focus on 17 ofthe thick dashed lines in Fig. 20, which was determined by
the 26 models, namely the adiabafi@ndP models at 2PN  extending the BH mass lines in both directions by half of

and 3PN, theE models at 2PN and at 3PN but with ,  their length.

=0, and theH models at 3PN. We will comment on tte We move on to specifying the required rangefgf; for
models withz; ,#0, on theL models, and on theiT and €3N @o.#3,). For a given PN model and BBH mass pa-
HP models at 2PN order at the end of this section. rameters, we have defined tkeeding frequency ¢fq as the

It is hard to visualize all three parameters at once, so wéhStantaneous GW frequency at which we stop the integra-
shall start with the phasing parametets and ¢5,. In Fig.  tion of the _PN orbital equations. We find that usually fhg .
20 we plot the (o, r3/,) section of the PN-model projections Of the optimally matched projection of a PN template is
into the o, Y3/, feutor) SPace, with solid diamonds showing arger than thefe,q of the PN template. This is because the
the projected points corresponding to BBHs with the samebrupt termination of the PN waveforms in the time domain
set of ten mass pairs as in Table Xlll. Each PN model iscreates a tail in the spectrum for frequencies higher than
projected to a curved-triangular region, with boundariesfq,q. With f.>feng @and a>0, the effective templates can
given by the sequences of BBHs with massas-(m) (equal  mimic this tail and gain a higher match with the PN models.
mas$, (20+m) and (m+5). In Fig. 20 these boundaries are In some cases, however, the optinfig); can be smaller than
plotted using thin dashed lines, for the mod€(®,2.5) (the  f.,q[for example,P(2,2.5) with (10+5)Mg, (15+5)Mg
uppermost in the plotHT(3,3.59=2) (in the middle, and  and (10-10)M¢] suggesting that the match of the phasing
P(2,2.5) (lowes. in the entire frequency band up fg,qis not very good and

As we can see, different PN models can occupy region¥/e have to shorten the Fourier-domain template. Now, since
with very different areas, and thus require a very differentwe do not know the details of the plunge for true BBH in-
number of effective templates to match them with a givenspiral, it is hard to estimate where the optinfig}, might lie,
MM+ . Among these three modelB(2,2.5) requires the least except perhaps imposing that it should be larger than
number of templatesP(2,2.5) requires a few times more, MiN(feny,feud. A possibility is to set the range df; to be

andHT(3,3.5)=2) requires many more. This is consistent 200V€ feutmir=miNifeur, fend, With the minimum evaluated
with the result by Portef66] who found that, for the same among all the PN models.
range of physical parametefBwaveforms are more closely In Table XIV we show thef ¢ min found across the PN

spaced tha® waveforms, so fewer are needed to achieve 4"°d€!s for given BBH mass parameters. We have also
tmarked this minimum frequency in Fig. 20 under the corre-

certain MM. In this plot we have also linked the points tha ) .
correspond to the same BBH parameters in different pppPonding BH mass lines. In the table we also show the match

models. In Fig. 20 these lindsve shall call thenBH mass ~©f the two detection templtatdqfcut_:fcut min) @nd h(fc,=
lines lie all roughly along one direction. +), and the numMbeN T ine O intermediate templates

A simple way to characterize the difference between thevith different ., needed to move fromh(fcy¢min) 0 h
PN target models is to evaluate the maxmend-to-end (+°) while maintaining at each step a mate0.98 be-
matchbetween effective templates at the two ends of the BHWeen neighboring templates. It is easy to see that this num-
mass lines(i.e., the match between the effective templatesPer iSN fass iné= 109(n(feut min):h(+29))/10g(0.98) . The match
with the largest and smallest;;, among the projections of was computed using a Newtonian amplitude functié¢f)
PN waveforms with the same mass parametersm,); we =17 (we seta=0), and maximized over the parameters
wish to focus first on the effects of the phasing parametersyo and¢,. Under our previous hypothesis that the projec-
so we do not cut the templates in the frequency domain antion of a true BBH waveform would lie near the correspond-
we seta=0. We compute also a naive end-to-end number ofng BH mass line, we can use the numbers in Table XIV to
templates,NVongoens Dy counting the templates required provide a rough estimate of the rangefef; that should be
to step all along the BH mass line while maintaining attaken at each pointy,,3,) within the dashed contour of
each step a match-0.98 between neighboring templates. Fig. 20. We trace out four subregions I, II, 1ll, IV, such that
A simple computation yieldsNynq o end l0g(end-to-end  the BH mass lines of each subregion have approximately the
match/log(0.98). The results of this procedure are listed insame values of . yip; We then use these minimum ending
Table XIV. Notice that, as opposed to the fitting factors be-frequencies to set a lower limit for the valuesfgf; required
tween template families computed elsewhere in this papeh each subregion: fo,mifl) =143, feymidll) =192,
(which are maximized over the BBH mass parameters of onécut min(!ll) =232, f ¢y mi(IV) =346. The maximuni . is ef-
of the families, these matches give a measure of the dissimifectively set by the detector noise curve, which limits the
larity between different PN modefer the same values of the highest frequency at which signal to noise can be still accu-
BBH parametersthus, they provide a crude estimate of how mulated.
much the effective template bank must be enlarged to embed Moving on to the last parametes, we note that it is
all the various PN models. probably only meaningful to havefZ3<1, so thatA.(f)

We expect that the projection of a true BBH waveform cannot become negative fé f . (A negative amplitude
onto the g, 3 plane will lie near the BH mass line with in the detection template will usually give a negative contri-
the true BBH parameters, or perhaps near the extension dution to the overlap, unless the phasing mismatch is larger
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than 7r/2, which does not seem plausible in our casés.  then™'s. Note that the choice of cutoff frequencies does not
deed, the optimized values found ferin Table Xlll seemto  depend on the values of the phasing parameters. This allows
follow this rule, except for a few slight violations that are ys to have a single set of cutoff frequencies for all points in
probably due to numerical err¢since we had performed a one subregion. For subregionwe denote this set bl .

search to find the optimal value af). For the 17 models (3) The final step is to include the effect afandf, on
considered here, the optimal is always positive(Table  the computation of/g. For simplicity, we shoot for an upper
XIIl') which means that, due to cutoff effects, the amplitudejp,j by maximizing \/g with respect toa. (Becausew is

at high frequencies becomes always lower than fihé® essentially an extrinsic parameter, we do not multiffjby

powerZII?w. So for the 17 models considered in this sectionne nymber of its discrete values: the matches are automati-
O<afg;=1. (Note that this range will have to be extended ¢5)1y maximized on the continuous range@<f_23.) Our
to include negativer's if we want to incorporate the models final estimate for the total number of templates is

discussed in Sec. VI E.

1
C. Construction of the effective template bank: N=or——— E S 2 max \/6]. (129
2(1-MM,) 4

Parameter density foweFi a

At this stage, we have completed the specification of the
region in the (g, 3, fcu, @) parameter space where we

shall lay down our bank of templates. We expect that the F . = ) = o
for the projection of the true physical signalemitted by subregions, forMM = 0.96 (taking MM ,=MM ,,=0.98),
nonspinningBBHs with M =10-4M ) onto this template are (1) =6,410, MII) =2,170, N(.”I) =1,380, MIV)

© =1,230, for a total of A’/=11,190. This number scales ap-

bank should be very good. We now wish to evaluate the total ~'% ) .
number of templatey:A% needed to achieve a certain MM. proximately as{0.04/(1-MM) J2. Notice that subregion I,

We shall find it convenient to separate the mismatch dug\'hICh contains all the BBHs with total mass abovevgs,

; - equires by far the largest number of templates. This is
Et?netrgzazmg mgq r;hiﬁirrr?ll,lsr;n?}:[l(;t]cﬂusggrt: :tef:(:qllejT\Zﬁ)é Cut%'nostly because these waveforms end in the LIGO band, and

MM with MM=MM - MM - ~MM .+ MM ..—1. As Many values off . are needed to match different ending
menctlijgned at the beginxing o?‘mthis sgction, ?F\te correctiorireauencies. Remember that the optimal signal-to-noise ratio

coefficienta is essentially arextrinsic parameter(see Sec. g forro)f(lil;crelgtr:aglg tr&i trrgse(gr\]/vtﬁégr\:\?g?;};;;imﬁféef;);gl: IS
I B): we do not need to discretize the template bank with pp y deg y

) ) MM = FF+MM —1 [67].
respect tow, and there is no corresponding MM parameter. T
We evaluateVin three refinement steps: While MM depends on the geometry of the template

(1) We start by considering only the phasing parameterspank’ we can only guess at the fitting factor FF for the pro-

: ection of the true signal onto the template space. In this
and we compute the parameter agalin the (g3 Jecti .
pland for each of the subregioris= I, II, I, IV of Fig. 20. section we have seen that all PN models can be projected

. . onto the effective frequency-domain templates with a good
\r/ive tk;edn driT:/liJét'pB’ bg/ tlhelaetermmar?gnof EheEC(zgz)ta?t mett— FF: for a vast majority of the waveforms EM.96 (and the
¢a e by 2(1-MVj)), according to Eq(25), to ge few exceptions can be explainedt is therefore reasonable
N=2

Si\/a to hope that the FF for the true GW signals-9.96, so the
T 2(1-MM )"

We have evaluated this/ numerically. We find that the
I{:ontributions to the total number of templates from the four

(127  total degradation from the optimgh will be MM1=0.92,
corresponding to a loss £ 22% in event rate This number

This expression is for the moment only formal, because wean be improved by scaling up the number of templates, but

. o . of course the actual FF represents an upper limit for MM
cannot compute/g without considering the amplitude pa- For instance, about 47,600 templates should get us;MM
rametersae and f ..

= 1 0% i
(2) Next, we include the effect of .. In the preceding =0.94, corresponding to a loss sf17% in event rate.
section we have set,,;, . for each of the subregions by

considering the range swept Hy,4 along the mass lines. D. Parameter estimation with the detection
Recalling our discussion oV .. e WE approximate the template family
number of distinct values df., that we need to include for  Although our family of effective templates was built for
each parameter paiijp, #3) as the main purpose of detecting BBHs, we can still ugeiice
U a detection is madeo extract partial information about the
(o, a2, @) BH masses. It is obvious from Fig. 20 that the masses cannot
log(h( . af (i, _a@.nocu in general be de_termlned upamb|guously from the best-
n oo, P12 Tmin cud (o, Va2, @ b>_ match parameterf.e., the projection of the true waveform

logMM onto the @, pland, because the images of different

(128 PN models in the plane have overlaps. Therefore different

PN models will have different ideas, as it were, about the

For « in the physical range € a<f_Z*this match is mini-  true masses. Another way of saying this is that the BH mass
mized for =0, so this is the value that we use to evaluatelines can cross.
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1.0 TABLE XV. Estimation of the chirp masse$1 from the pro-
i - gg3§3;560;1;‘0’ O jections of the PN target models onto the Fourier-domain effective
\ TS, e - = template space. The numbers in the second col(laeled “M”)
o 00t | give the values of the chirp mass corresponding to the BH masses to
2 \ - | their left; the numbers in the third and fourth columns give the
?\1 \ s O A | range of estimates obtained from E30) for the values ofy, at
=10 NS | the projections of the target models shown in Fig. 20. The last
> T column shows the percentage erese (M 20— MR/ M.
i 3 EP(3, 3.5, 0, —20)
-2.0 N EP(T3, 3.5, 0, —40, 0)| M M MERRIOX A qampiox ¢ (04)
Wi UL bl (5+5)M 4.35 4.16 4.27 2.6
5+5)Mg . . . .
0.0 50 10 15 20 25 (w05Mm, 6.08 5.75 6.00 4.2
\|’0/105 (15+5)Mg 7.33 6.85 7.28 5.9
(10+10)M¢ 8.71 8.10 8.72 7.1
FIG. 21. Projection of thé&€ models with nonzera, into the (20+5)Mo 8.33 7.55 8.31 9.1
(9,3 plane(shown in black dots The new points sit quite well (15+10)Mo 10.62 9.76 10.96 11.3
along the BH mass lines of the 17 models investigated in Secq20+10)M¢ 12.17 10.92 12.50 13.0
VI B, VIC and VI D. We use the notatio& P(3,3.50,2,,2,) and  (15+15Mg 13.06 11.69 14.88 24.4
denote byEP(T3,...) the tvo-body model in which the coeffi- (20+15M¢ 15.05 13.15 17.74 30.6
cientA(r) is PN expandedisee Eq.(89)]. (20+20)M o 17.41 14.91 21.52 38.0

However, it still seems possible to extract at least one

mass parameter, the chirp mas$=M %5, with some ac- BH mass lines by a factor of two in the effective template

curacy. Since the phasing is dominated by the teigh >3 bank, we should double theof the table.

at low frequencies, we can use the leading Newtonian term It seems quite possible that a more detailed investigation

In(F) = 225(MF) 58 obtained for a PN expanded adia- of the geometry of the projections into the effective template

batic model in the stationary-phase approximation to infer space(and especially of the BH mass linesould produce

better algorithms to estimate binary parameters. But again,
31 139  Probably only one parameter can be estimated with certain
Yo~ 128\ M (130 accuracy.

3/5

5/3 1
approx_
=M ( 12844

If this correspondence was exact, the BH mass lines in Fig.
20 would all be vertical. They are not, so this estimation has
an error that gets larger for smallgyp, (i.e., for binaries with ) )
higher mass@és In Table XV we show the range of chirp- !N our construction of the effective template bank, we
mass estimates obtained from E30) for the values ofy,  Nave been focusing until now on a subset of 17 models. The
at the projections of the PN models in Fig. 20, together withmodels we left out ar& models at 3PN witfe, , nonzero,

their percentage erroe= (M 3% MEPN/M. In this HT andHP models at 2PN, antl models.

table, Max @and M i, correspond to the end points of the ~ As we can see from Fig. 2E models with’ily2 nonzero
BH mass lines. If we take into account the extension of thehave a very similar behavior to the 17 models investigated
above. Indeed(i) the projection of the PN waveforms from

E. Extension of the two-dimensional Fourier-domain
detection template

3.0 the same model occupy regions that are triangular, (@nd
the projections of PN waveforms of a given mass lies on the
2.0 BH mass line spanned by the previous 17 models. In addi-
& tion, their projections lie roughly in the region we have al-
S 10 ready defined in Secs. VIB, VIC and VI D. However, the
& ending frequencies of these models can be much lower than
§ 0.0 the values we have set for the detection templates: the detec-
-1.0 tion templategin all four subregionsshould be extended to
: lower cutoff frequencies if we decide to match these models,
-2.0 up to FF~0.95. A rough estimate shows that this increases
the number of templates to about twice the original value.
0.0 5.0 1.0 1.5 2.0 2.5 In Fig. 22 we plot the projections of the(2,0), L(2,1),
\|;0/105 HT(2,2) and HP(2,2.5) waveforms into the ;,s)

plane. As we already know, these models are not matched by

FIG. 22. Projections oHT andHP models at 2PN antl mod-  the detection templates as well as the other 17 models. Here
els into the (4,3, plane(shown in black dot$.The projections ~We can see that their projections onto thig (¢3,) plane are
of the previous 17 models are shown in gray dots. also quite dissimilar from those models. Homodels, al-
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0.00
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FIG. 24. (X,Z) section of Fig. 23. Comparison with Fig. 23
shows that all the projections lie near th¢,0,2) plane.

amplitude becomes higher than the”’® power law at higher
frequencies. This expansion of the rangeaofffects both

the choice of the discrete cutoff frequencies and the place-
ment of (Yo, i30) lattices. This effect is yet to be estimated.
Finally, we notice that if these extensions are made, then the

FIG. 23. Projection of the model$(2,2.5), ET(2,2.5),
ET(3,3.5,0), andSPA(1.5) onto the three-parameter Fourier-
domain detection template, for many BBH masses that lie within

the same ranges taken in Fig. 20. The variab}&'(Z) are related . . - -
10 (0,11, 112) by a linear transformation, constructed so that the EStimation of the chirp mass from the coefficiggtbecomes

mismatch metric is jusé;; and that the ¢,0,i3,,) plane is mapped less accurate than the one given in Table XV.

to the (X,Y,0) plane. The dots show the value of the parameters

(X,Y,Z) where the match with one of the PN waveforms is maxi- F. Extension of the Fourier-domain detection template family
mum. to more than two phasing parameters

] o ] ] It might seem an accident that by using only two phasing
though different masses project into a triangular region, theysrametersy, andi,, we are able to match very precisely
projection of each mass configuration does not align alonghe wide variety of PN waveforms that we have considered.
the corresponding BH mass line generated by the 17 modelﬁﬂdeed, since the waveforms predicted by each PN model
In order to cover thé. models up to FF0.93, we need t0  gpan a two-dimensional manifoldenerated by varying the
expand the ¢, 43) region only slightly. However, as we o BH massesn, andm, or equivalently the mass param-

read from Table XIll, the cutoff frequencies need to be eX-gtersM and ), we could naturally expect that third pa-
tended to even lower values than for tenodels with non-  rameteris required to incorporate all the PN models in a

zeroz; ,. Luckily, this expansion will not cost much. In the more general family, and to add even more signal shapes that
end the total number of templates needed should be abogktrapolate beyond the phasings and amplitudes seen in the
three times the original value. PN models.

ForHT andHP models at 2PN, the projections almost lie  In particular, because the accumulation of signal-to-noise
along the BH mass lines, but the regions occupied by thesgatio is more sensitive to how well we can matble phasing
projections have weird shapes. We have to extend théather than the amplitugleof PN templates, such a third
(40,1310 region by a factor~2 in order to cover the phas- parameter should probably interpolate between phasings pre-
ings. (The ending/cutoff frequencies for these models aredicted by different PN models. As a consequence, the ampli-
higher than for the previous two types of mode/sn addi-  tude parameter$., and .4 do not generate a real dimen-
tional subtlety in this case is that, as we can read from Tablgional extension of our detection template family. In this
XIll, the optimal values ofa are often negative, since the section we present a qualitative study of the extension of our

0.00 0.00
-025 -025
-0.50 _ =050
m% -0.75 2 -075
£ -1.00 £ -1.00
-125 el -125
~1.50 S -1.50
“LB00 05 10 15 20 130 05 10 15 20
Yo /10° Yo /10°

FIG. 25. In this figure we compare the projection of the PN models onto the three-dimensignél (/5,,) Fourier-domain detection
template family{shown by the dots as a two-dimensional section in #hg {5,) submanifold with the projection of the PN models in the
two-dimensional {,, ¢3,) template family(shown by the lines In the left panel, we us@ =0 andf.,=400 Hz to maximize the matches;
in the right panel we usgl=0 andf.,=200 Hz.
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detection template family obtained by adding one phasing We can study the relation between this three-dimensional
parameter, the parametéy of Eq. (110). family of templates and the two-dimensional family consid-
We use the ¢, 4,13, Fourier-domain detection tem- ered earlier by projecting the points of Fig. 23 onto the
plates to match the PN waveforms from the models(X,Y,0) plane[which corresponds to the/,0,5,) pland.
P(2,2.5), ET(2,2.5), andET(3,3.5,0); these models were The resulting images resemble closely the projections of the
chosen because their projections onto tig,{/3,) detection PN models onto theuy, ;) parameter space of the two-
templates were rather distant in the( s, parameter dimensional family, as seen in the left panel of Fig. 25. How-
space. Throughout this sectidand unlike the rest of this ever, the agreement is poor f8(2,2.5) because of the rela-
papej, we use an approximated search procedure wherebyvely high cut frequencyf =400 Hz. The right panel of
we essentially replace the amplitude of the target modelsig. 25 was obtained by takinig,= 200 Hz. The agreement
with the Newtonian amplitudel(f) = f ~"® with a cutoff fre-  is much better. This result goes some way toward explaining
quencyfq, (we always assumedi=0 andf.,=400 Hz). why using only two phasing parameters was enough to
As expected, the matches increase, and indeed they are afatch most PN models in a satisfactory way.
most perfect: always higher than 0.9@#should be remem- As stated at the beginning of this section, the paraniter
bered, however, that these should be considered as matchesn indeed be used to expand the dimensionality of our de-
of the PN phasingsather than as matches of the PN wave-tection template family, because it appears to interpolate be-
forms; especially for high masses, the frequency dependenageen different PN models. It is possible that the number of
of the amplitude is likely to change these values Z values needed when laying down a discrete template fam-
If we plot the projections of the PN waveforms in the ily might not be too large, because the PN models do not
(o, 41,¢3) space, we find that the clusters of points cor-seem to lie very far from th&=0 plane[remember that
responding to each PN target model look quite different fromdistances in theX,Y,Z) parameter space are approximately
the projectiongonto the (g, 3, template spadeshown in  mismatch distancés
Fig. 20; but this is just an artifact of the parametrization. We The good performance that we find for the two- and three-
can perform a linear transformation ¥d, ¥ ,¥zp) dimensional Fourier-domain families confirms the results ob-
—(X,Y,2), defined in such a way that) in the (X,Y,Z2) tained in Refs[13,47 and[68]. In Ref.[13], the authors
parameters, the mismatch metric is jat, and that(ii) the  point out that the waveforms obtained from the stationary
(0,030 plane is mapped to theX(Y,0) plane. These con- phase approximation at 2PN and 2.5PN order are able to
ditions define the linear transformation up to a translatiorapproximate theE models, throughout most of the LIGO
and a rotation along th2 axis; to specify the transformation band, by maximizing over the mass paramet@se Ref.
completely we require also that all the projections of the PN'13], in particular the discussion of their model “Tf2,” and
models lie near the origin, and be concentrated aroun&the the discussion around their Fig).2
axis. Figure 23 shows the projection of the PN models In Ref. [47], Chronopolous and Apostolatos show that
P(2,2.5), ET(2,2.5), and ET(3,3.50) onto the whatwould be inour notationth&@PA2) model(where the
(o, 1,447 detection template family, as parametrized byphasing is described by a fourth-order polynomial in the
the (X,Y,Z) coordinate system, for many BBH masses thatvariablef®) can be approximated very well, at least for the
lie within the same ranges of Fig. 20. Each dot marks thepurpose of signal detection, by t8 A(1.5) model, with the
parametersX,Y,Z) that best match the phasing of one of theadvantage of having a much lower number of templates. In
PN waveforms. We include also the projection of a furtherRef.[68], the authors go even further, investigating the pos-
PN model,SPA(1.5), obtained by solving the frequency- sibility of approximating theSPA(2) phasing with a poly-
domain version of the balance equation, obtained in theomial of third, second and even first degree obtained using
stationary-phase approximation from oliimodel. The ex- Chebyshev approximants.
pression of theSPA(1.5) phasing as a function df coin- It is important to underline that in all of these analyses the
cides with our Eq(110), but the coefficients that correspond coefficients that appear in the expression of the phdsiog
to (g, W1, 13 are functions of the two mass parameters Mresponding to outyg, 4, ... in Eq.(110] depend on only
and 7. two BBH mass parameters, either direcfy3,47], or indi-
By construction, the match between nearby detection temrectly [68] through specific PN relations at each PN order. As
plates is related to their Euclidian distance in tle¥,Z) by  a consequence, the phasings assumed in these references are
confined to a two-dimensional submanifold analog to the sur-
1—overlap= AX?+AY2+AZ2. (131 face labeled SPA1.5)" in Fig. 23.
In this paper we follow a more general approach, because
We see immediately that all the PN models are not veryhe phasing coefficientg; are initially left completely arbi-
distant from the X,Y,0) plane(also shown in the figude trary. Only after studying systematically the projection of the
which coincides with the g,¢3,) plane. The farthest PN models onto the template bank we have determined the
model isP(2,2.5), with a maximum distance-0.18. It is  region where a possible detection template bank would be
important to notice that, since this number is obtained byaid down. The high matches that we find between detection
assumingf ;=400 Hz andA=0, it tends to underestimate templates and the various PN models depend crucially on
the true overlaps for models that end below 400 Hz, such athis assumption. As a consequence, our parameitet® not
the P models at higher masses. See also Fig. 24 foxg@)  have a direct physical meaning, and they cannot easily be
section of Fig. 23. traced back to specific functions of the BBH masses, except
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TABLE XVI. Fitting factors for the projection of the target modedlia the rows onto theP(2,2.5) detection template family. For ten
choices of BBH masses, this table shows the maxtmax) and minmax(mn) matches between the target models andR(2,2.5) search
model,maximized over the intrinsic parameters of the search mdetal each intersection, the tripl@sam, M, ») and(mn, M, z) denote
the maximized matches and the mass paraméfersn, + m, and »=m;m,/M? at which the maxima are attainéghaxmax and minmax
matches give rise to slightly different optimal valueshdfand 7). In computing these matches, the search paramgteasnot restricted
to its physical range € »=<1/4, but it was allowed to move in the range<@<1, for which the energy-balance equati1) is still
formally integrable. With few exceptions, this table shows that maxmax and minmax matches are very similar, so we generally use the more
conservative minmax matches.

mm M n mn M n mm M n mn M n

(20+20)M 0997 3553 035 0994 3555 035 | (20+5)M, 0988 2204 021 0979 2251 0.20
(20+15M5 0997 3243 031 0994 31.69 0.32 | (10+10)My 0996 1929 0.28 0990 1874 0.30
T(2,2) (15+15M5 0997 2845 029 0993 2754 032 | (15+5)Ms 0993 1831 0.23 0985 1794 0.24
(20+10)M5 0996 27.72 027 0992 2683 030 | (10+5M, 0992 1455 024 0989 14.86 0.23
(15+10)M5 0995 23.68 028 0988 2295 030 | (5+5My 0994 1060 0.23 0992 1073 0.22

(20+20)M, 0.821 1877 094 0962 2259 0.65 | (20+5)M, 0958 11.66 0.63 0987 12.81 0.53
(20+15M5 0862 16.60 094 0966 1940 0.68 | (10+10)M 0948 996 0.89 0984 1071 0.77
T(22.5) (15+15M5 0.891 1426 097 0969 16.61 0.71 | (15+5)M5 0965 9.72 0.69 0989 1026 0.62
(20+10)M 0905 13.67 094 0974 1595 0.69 | (10+5)M, 0971 858 0.60 0987 8.67 0.59
(15+100M, 0929 11.89 093 0978 1343 073 | (5+5)Ms 0981 655 052 0985 652 0.53

(20+20)M 0997 37.04 031 0994 3696 031 | (20+5)M5 0996 23.66 0.18 0990 2328 0.19
(20+15M5 0997 3262 029 0995 32.69 029 | (10+10)Ms 0998 19.70 0.26 0993 19.24 0.27
7(3,3.5,0) (I15+15Ms 0998 2889 028 0994 28.07 030 | (15+5M5 0997 19.18 021 0993 18.82 0.21
(20+10)M, 0997 2869 025 0995 28.00 026 | (10+5Ms 0997 1489 0.23 0993 14.67 0.23
(I15+10)M5 0998 2435 026 0994 2372 027 | (5+5Ms 0999 10.16 024 0997 1027 0.24

(20+20)M 5 0999 3620 031 0995 3537 033 | (20+5)Mg 0997 2295 0.19 0993 2253 0.20
(20+15M5 0999 3140 031 0997 3122 0.31 |(10+10)Ms 0999 18.67 0.29 0995 1820 0.30
7(3,3.5,0) (I5+15M5 0999 27.63 029 0997 2696 031 | (15+5)M, 0997 1861 0.22 0995 18.15 0.23
(20+10)M5 0999 2742 027 099 2684 028 | (10+5)Ms 0998 14.13 0.25 0994 13.87 0.26
(I15+10)Me 0998 2320 028 0996 2260 029 | (5+5Mc 0998 957 027 099 9.71 0.26

(20+20)M 0998 3530 033 099 34.73 034 | (20+5)Me 0998 23.03 0.19 0995 2262 0.20
(20+15Me 0999 3084 032 0996 30.65 032 | (10+10)Me 0998 18.11 031 0994 17.86 0.31
P(3,35,-2) (I5+15M¢e 0999 27.01 031 0996 2638 033 | (15+5)Ms 0997 1843 022 0994 1796 0.23
(20+10)Me 0999 2690 028 0996 2648 029 | (10+5)Ms 0998 1399 0.25 0993 1375 0.26
(I15+10)Me 0998 2276 029 0995 2218 031 | (5+5Me 0997 950 027 0996 9.63 0.27

(20+20)M 0999 3358 036 0996 3342 037 | (20+5)Mp 0998 2271 0.19 0996 2242 0.20
(20+15M5 0999 30.03 033 0997 29.70 0.34 | (10+10)Mo 0999 17.87 031 0995 17.36 0.33
P(3,35,+2) (I15+15M5 0998 26.12 033 0997 2559 034 | (15+5)M5 0998 18.15 0.23 0996 17.77 0.24
(20+10)M5 0999 2638 029 0997 2584 030 | (10+5)Ms 0998 1359 0.27 0994 1331 0.28
(I5+100Ms 0997 21.62 032 0995 2153 032 | (5+5Mg 0998 925 029 099 934 0.28

(20+20)M 0994 2675 056 0989 2510 0.65 | (20+5)Ms 0979 19.87 0.24 0970 19.27 0.26
(20+15Mo 0993 2377 052 0962 2526 045 [ (10+10)Mo 0989 1475 043 0983 1493 043
ET(2,2.5) (15+15M5 0991 2087 0.50 0970 21.86 045 | (15+5)M, 0987 1581 0.28 0982 1542 0.30
(20+10)M, 0988 2135 042 0973 2026 047 | (10+5)Ms5 0994 1198 0.33 0990 11.70 0.34
(15+10)M, 0987 1799 044 0969 1728 048 | (5+5Ms 0997 8.04 036 0995 8.18 0.35

(20+20)M 0991 3138 046 0986 2996 0.53 | (20+5)M, 0952 2275 0.20 0941 2333 0.19
(20+15M; 0989 2848 040 0978 2683 047 |(10+10)M, 0977 18.69 0.29 0971 18.03 0.32
ET(3,3.5,—2) (15+15M, 0985 2524 038 0970 23.83 043 | (15+5)My 0972 1853 022 0964 19.03 0.21
(20+10)M 0977 25.09 034 0955 23.62 039 | (10+5M; 0983 1504 022 0979 1479 0.23
(I15+100M5 0974 21.65 033 0963 2239 031 | (5+5Ms 0994 1038 0.23 0992 1039 0.23

(20+20)M 0993 30.84 046 0989 2951 051 | (20+5)Ms 0957 2228 0.20 0946 2287 0.19
(20+15M5 0991 2738 043 0981 2594 048 | (10+10)Mo 0983 1695 035 0976 17.42 0.33
ET(3,3.5,+2) (15+15My 0986 24.02 041 0973 22.67 047 | (15+5M 0974 1792 024 0967 1849 022
(20+10)M, 0981 24.19 036 0963 22.66 042 | (10+5)Ms5 0984 1443 0.24 0982 1428 0.24
(15+100Mo5 0977 2084 035 0966 2146 033 | (5+5Ms 0995 980 026 0993 9.89 0.25
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TABLE XVI. (Continued.

mm M n mn M n mm M n mn M n

(20+20)M, 0988 3091 048 0977 28.86 058 | (20+5)Mo 0947 24.15 0.17 0940 23.60 0.18
(20+15M5 0980 27.79 043 0963 2585 052 | (10+10)M 0975 1850 030 0964 1790 0.32
EP(2,2.5) (15+15M5 0972 2447 040 0947 2277 049 | (15+5)Ms 0970 1873 022 0963 19.16 0.21
(20+10)Me 0965 2497 034 0938 2229 047 | (10+5)Me 0984 1515 022 0980 14.80 0.23
(15+100M5 0963 23.00 029 0951 2193 032 | (5+5)Ms 0995 1024 024 0993 1029 0.24

(20+20)M 5 0993 30.25 048 0990 29.04 053 | (20+5)Mo 0958 2190 021 0947 2261 0.20
(20+15M5 0990 2686 045 0981 2554 050 | (10+10)M 0983 1674 036 0976 1726 0.34
EP(3,35,—2) (15+15Ms 0986 2398 041 0974 2236 048 | (15+5)Mo 0975 1783 024 0967 1824 0.23
(20+10)M, 0982 2379 037 0964 2256 042 | (10+5)My 0984 1434 024 0982 14.12 0.25
(15+100M5 0977 2049 036 0966 2121 034 | (5+5Ms 0994 974 026 0993 9.84 0.26

(20+20)M 5 0994 2947 050 0991 2839 055 | (20+5)Mo 0960 21.84 021 0948 2230 0.20
(20+15M5 0991 2646 045 0983 2497 052 | (10+10)M 0983 16.14 039 0976 16.75 0.36
EP(3,35,+2) (15+15Ms 0986 2297 044 0975 21.73 050 | (15+5)Me 0977 1752 024 0968 18.08 0.23
(20+10)Me 0982 23.18 039 0966 22.14 043 | (10+5)Me 0985 1353 027 0983 1379 0.26
(15+100M5 0978 1994 038 0968 2058 036 | (5+5)Ms 0994 954 027 0993 955 0.27

(20+20)M, 0993 2145 098 0991 21.03 1.00 | (20+5)Ms 0995 2636 0.15 0986 2579 0.15
(20+15Ms 0986 19.86 0.84 0982 1848 1.00 | (10+10)M 0964 1524 043 0958 1457 0.48
HT(335,-2) (15+15M, 0978 1727 081 0972 16.19 094 | (15+5)M 0988 19.17 021 0980 19.60 0.20
(20+10)M5 0965 20.87 049 0949 18.74 0.66 | (10+5)Mo 0978 14.07 025 0975 1393 0.26
(15+100M5 0952 17.74 049 0944 1636 059 | (5+5)Ms 0987 9.61 027 0986 955 0.27

(20+20)M, 0982 20.21 1.00 0960 20.04 1.00 | (20+5)Mo 0997 2594 0.15 0990 2548 0.16
(20+15Ms 0984 1781 098 0967 17.53 1.00 | (10+10)M 0965 1339 055 0959 1395 0.51
HT(335,+2) (15+15My 0977 1520 1.00 0962 16.06 0.89 | (15+5)My 0991 1863 022 0984 19.08 021
(20+10)M5 0964 19.18 057 0950 17.04 0.77 | (10+5)M 0980 1323 028 0975 1351 0.27
(15+100M5 0954 15.66 061 0943 1670 054 | (5+5My 0986 9.03 030 0985 893 0.31

(20+200)M, 0962 19.87 1.00 0946 20.16 1.00 | (20+5)Mo 0997 2587 0.15 0990 2526 0.16
(20+15Ms 0971 1746 1.00 0960 17.69 1.00 | (10+10)M 0962 1292 059 0957 13.34 0.55
HP(33.5,-2) (15+15Mg 0963 1566 093 0960 15.14 1.00 [ (15+5)M 0992 1851 022 0982 1798 023
(20+10)M, 0961 1781 0.69 0950 1945 055 | (10+5)Mo 0978 13.04 029 0975 1327 0.28
(15+100M5 0947 1631 056 0941 1577 060 | (5+5)M, 0984 897 030 0982 9.02 0.30

(20+20)M, 0915 1933 1.00 0.887 20.18 094 | (20+5)Mo 0998 2569 0.15 0992 2521 0.16
(20+15Ms 0942 1726 1.00 0921 17.71 096 | (10+10)My 0957 12.04 0.67 0953 11.32 0.76
HP(33.5,+2) (15+15My 0938 1503 099 0933 1489 1.00 | (15+5Ms 0993 1825 023 0985 1861 022
(20+10)M5 0959 1640 081 0947 1794 0.65 | (10+5)Ms 0978 1290 029 0976 12.65 0.31
(15+100M5 0949 1243 099 0937 1330 086 | (5+5)Mo 0982 862 033 0982 870 032

for the chirp mass, as seen in Sec. VID. This is naturaljs, that thetarget models span the region in signal space
because our detection templates are built to interpolate bavhere the true physical signals residi¢ we find that one of
tween different PN models, each of which has, as it were, ghe target models matches all the others very well, we can
different idea of what the waveform for a BBH of given use it as the effective model; and we can estimate its effec-
masses should be. tualness in matching the true physical signal from its effec-
tualness in matching all the other models.

As shown in Tables V, VIII and discussed in Sec. V, the
fitting factors FF for the projection of the PN models onto
each other are lowat least for PN orden<2.5 or for high
massef in other words, the models appear to be quite dis-

Another possibility of building a detection-template fam- tant in signal space. This conclusion is overturned, however,
ily is to adopt one or more of the physical models discussedf we let the dimensionless mass ratip move beyond its
in Secs. IV as the effective template bank used for detectiomphysical range & »<1/4. For instance, th€(2,2.5) and
Under the general hypothesis that underlies this widhkt  EP(3,3.5,0) models can be extended formally to the range

VII. PERFORMANCE OF THE TIME-DOMAIN
DETECTION TEMPLATES AND CONSTRUCTION
OF THE DETECTION BANK IN TIME DOMAIN
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TABLE XVII. Fitting factors for the projection of the target modéla the rows onto theE P(3,3.5,0) detection template family. For ten
choices of BBH masses, this table shows the maxmax matches between the target modelg &8,§8,0) search modekith (mmc) and
without(mm) the time-domain cut discussed in Sec. VII. The matchesmadmized over the intrinsic parameters of the search m@ledr
M and # for the mm values; oveM, » andf, for the mmc values For each intersection, the triplenm, M, ) and the quadruplénm,

M, 7, f.» denote the maximized matches and the ntasd cuj parameters at which the maxima are attained. In computing these matches,
the search parameter wasnot restricted to its physical range<On=<1/4, but it was allowed to move in the range.@<1 for which the
energy-balance equatidB) is still formally integrable. This table shows that the addition of the time-domain cut can improve the fitting
factors considerably, especially for the highMis in the in the left half of the table, and for the models whose orbital evolution is ended
within the range of good interferometer sensitivity.

mm M n mmc M 7 feu mm M n mmc M 7 feu

(20+20)M, 0984 51.05 0.14 0984 51.38 0.14 171.7| (20+5)M 0981 2534 0.16 0981 2532 0.16 347.1
(20+15)M5 0981 44.12 0.14 0.981 44.11 0.15 199.7|(10+10)M 0984 22.16 0.21 0.985 22.15 0.21 395.5
T(2,2) (15+15M5 0977 37.15 0.16 0.978 37.16 0.16 236.7| (15+5)Ms 0986 20.90 0.18 0.987 20.89 0.18 424.3
(20+10)M5 0974 3585 0.15 0974 35.62 0.16 246.7| (10+5)Mo 0992 16.17 020 0.999 16.20 0.20 368.4
(15+10)Mo 0976 2795 0.20 0.976 27.82 0.20 316.6| (5+5)Me 0996 11.05 0.21 0.999 11.12 021 553.1

(20+20)M 5 0.948 2494 0.57 0985 24.09 0.60 202.5| (20+5)Ms 0975 14.60 0.41 0975 14.52 042 567.2
(20+15)M5 0956 21.50 0.58 0.990 20.77 0.62 2419 |(10+10)Ms 0983 11.72 0.65 0.995 11.48 0.69 415.0
T(22.5) (15+15)M5 0.965 18.08 0.62 0.986 18.76 0.57 279.0| (15+5)M 0983 11.38 0.51 0.994 11.50 0.50 448.1
(20+10)Mo 0965 17.57 0.58 0.992 17.00 0.62 285.7| (10+5)Me 0986 9.44 0.50 0.993 923 053 629.2
(15+10)M5 0974 14.85 0.61 0.994 1428 0.66 329.9| (5+5)My 0989 6.89 048 0.990 693 047 787.5

(20+20)M 5 0979 53.09 0.12 0.979 52.83 0.12 166.4| (20+5)M 0965 27.22 0.13 0.966 27.27 0.13 322.7
(20+15)M5 0971 4536 0.13 0.972 4528 0.13 194.2|(10+100M5 0979 2277 0.19 0979 22.79 0.19 384.8
7(3,3.5,0) (15+15Ms 0969 37.79 0.15 0.969 37.79 0.15 232.8| (15+5)Ms 0976 21.94 0.16 0.978 22.09 0.15 398.7
(20+10)M 5 0961 3457 0.17 0.963 34.57 0.16 254.3| (10+5)Mo 0985 16.47 0.19 0985 16.47 0.19 533.1
(15+10)M5 0971 28.74 0.18 0.971 28.63 0.18 306.5| (5+5)Mg 0994 10.69 022 0.999 10.66 0.22 474.6

(20+20)M 5 0948 5247 0.11 0979 5043 0.13 1743 | (20+5)Mo 0956 25.06 0.16 0.963 26.47 0.14 3324
(20+15)M 5 0.967 43.35 0.14 0.968 4341 0.14 202.7 |(10+10)M 0977 21.88 0.21 0.980 21.59 0.21 408.5
7(3,3.5,0) (15+15)M5 0.963 3341 0.20 0.966 36.09 0.16 243.5| (15+5)Ms 0973 1998 0.19 0976 21.32 0.16 411.8
(20+10)M5 0.963 33.33 0.17 0.964 33.17 0.18 267.0| (10+5)M 0985 1521 022 0.998 15.38 0.21 346.9
(15+10)M5 0971 27.25 020 0.972 2725 020 3214| (5+5)Mg 0994 10.14 024 0.999 10.13 0.24 522.3

(20+20)M 5 0941 5520 0.11 0.956 56.36 0.10 152.1| (20+5)Mo 0937 2797 0.13 0.938 27.93 0.13 315.3
(20+15)M5 0940 44.34 0.14 0.940 4434 0.14 198.2|(10+10)M 0958 2226 0.20 0.958 22.20 0.20 395.3
P(225) (15+15)M5 0946 37.08 0.16 0.948 37.27 0.15 236.2| (15+5)Mo 0959 22.06 0.15 0961 22.26 0.15 395.1
(20+10)Mp 0943 37.06 0.14 0.943 37.13 0.14 236.9| (10+5)Me 0977 1553 0.21 0.998 15.83 0.20 284.1
(15+10)M5 0945 30.16 0.16 0.948 3040 0.16 289.2| (5+5)Mo 0992 10.42 0.23 0.999 10.37 0.23 408.0

(20+20)M 5 0979 49.53 0.14 0.979 49.58 0.14 179.2| (20+5)M 0955 2530 0.16 0.959 26.63 0.14 330.9
(20+15)M5 0972 4249 0.15 0972 4249 0.15 206.8 |(10+10)M5 0982 21.04 022 0982 21.04 022 416.3
P(335,—2) (15+15Ms 0962 33.09 0.20 0.970 35.17 0.17 250.1| (15+5)Mo 0977 21.04 0.17 0978 21.07 0.17 416.6
(20+10)M5 0965 3249 0.18 0.964 32.67 0.18 273.4| (10+5)Mo 0987 1539 0.21 0.998 15.27 021 356.4
(15+10)M5 0974 26.67 021 0.974 26.65 0.21 3284 | (5+5)Mg 0996 10.10 025 0.996 10.11 0.25 795.8

(20+20)M 5 0976 49.06 0.14 0.980 48.36 0.15 181.7| (20+5)Mo 0956 26.37 0.14 0.957 26.37 0.14 333.4
(20+15Mo 0972 41.31 0.16 0974 4127 0.16 213.0|(10+10)Ms 0983 20.41 0.24 0.983 20.41 024 4292
P(335,+2) (15+15Ms 0971 33.77 0.19 0971 33.77 0.19 259.5| (15+5)Mo 0976 20.81 0.17 0976 20.72 0.17 423.6
(20+10)M5 0966 31.61 0.19 0.966 31.66 0.19 277.0| (10+5)M, 0988 15.07 0.22 0.988 15.07 0.22 580.0
(15+10)M5 0975 25.80 0.22 0.975 25.81 0.22 3384 | (5+5)Mg 0996 9.84 026 1.000 9.81 026 566.3

(20+20)M 5 0.998 3541 0.31 0.999 35.10 031 244.8| (20+5)Mo 0995 2257 0.19 0.995 22.62 0.18 392.5
(20+15)M5 0.999 30.78 0.30 0.999 30.78 0.30 280.3 |(10+10)Ms 0999 17.42 032 0999 17.42 032 4924
ET(2,2.5) (15+15)M5 0.998 26.43 0.31 0.998 26.53 030 324.7| (15+5)Mo 0996 17.89 0.22 0.996 17.93 0.22 488.0
(20+10)M5 0998 27.01 0.26 0.998 27.04 0.26 324.1| (10+5)Ms 0997 13.19 027 0.997 13.09 0.28 658.5
(15+10)M5 0.998 22.16 0.29 0.998 22.17 0.29 393.8| (5+5)Mgy 0999 8.61 032 0.999 8.60 0.32 996.6

(20+20)M 5 0.999 43.15 0.22 0.999 43.17 0.22 2032 | (20+5)Mo 0999 26.22 0.15 1.000 26.22 0.15 341.0
(20+15)M5 0999 38.02 0.21 1.000 38.04 0.21 230.5|(10+10)Ms 1.000 21.64 0.22 1.000 21.76 022 407.4
ET(3,3.5,—2) (15+15Ms 0999 3270 0.21 0.999 32.65 0.22 269.6 | (15+5)Me 1.000 21.23 0.17 1.000 21.22 0.17 419.1
(20+10)M5 1.000 32.17 0.20 1.000 32.17 0.20 276.3| (10+5)Ms 0999 16.14 020 1.000 16.08 0.20 544.9
(15+10)M5 0999 2696 0.21 0.999 27.00 0.21 327.5| (5+5)Ms 0999 10.81 022 0.999 10.72 0.22 819.3
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TABLE XVII. (Continued.

mm M 7 mmc M 7 fou mm M 7 mmc M 7 few

(20+20)M 5 0999 41.85 0.23 0999 41.69 0.23 211.1 | (20+5)Ms 0.999 2548 0.15 1.000 2545 0.16 345.7
(20+15M5 0999 3632 023 1.000 36.11 0.23 2442 [(10+10)M 5 0.999 20.75 0.23 0.999 20.69 0.23 421.9
ET(3,3.5,+2) (15+15M 0999 31.11 023 1.000 31.01 0.24 284.6| (15+5)Ms 1.000 20.51 0.18 1.000 20.50 0.18 4354
(20+10)M 0998 31.06 0.21 0.999 3098 0.21 286.8 | (10+5)Ms 0.999 1540 0.21 0999 1538 0.21 572.7
(15+10)M 5 0999 2595 022 0999 25.85 0.23 339.7| (5+5)Mg 0999 1025 0.24 0.999 10.25 0.24 853.6

(20+20)M 5 0993 41.79 0.24 0993 41.77 0.24 211.0 | (20+5)Ms 0.997 2639 0.15 0.998 26.57 0.14 3357
(20+15M 5 0994 37.13 023 0994 37.60 0.22 236.5 [(10+10)M 5 0.997 21.68 0.22 0.998 21.65 0.22 409.6
EP(2,2.5) (15+15M5 0992 31.60 023 0.994 32.01 0.23 2769 | (15+5)Ms 0.998 21.37 0.17 0999 2142 0.17 417.6
(20+10)M 5 0996 32.19 020 0996 32.14 0.20 276.8 | (10+5)M5 0.998 16.06 020 0.998 16.10 0.20 545.1
(15+10)M 5 0996 27.04 021 0.996 27.04 021 327.8| (5+5)My 0998 10.75 0.22 0.998 10.76 0.22 817.3

(20+20)M 5 0.997 41.49 023 1.000 40.88 0.24 2155 | (20+5)M, 1.000 2525 0.16 1.000 2526 0.16 352.1
(20+15M 5 0997 35.06 025 1.000 35.64 0.24 2459 |[(10+10)M 5 1.000 20.56 0.24 1.000 20.51 0.24 4249
EP(3,35,—2) (15+15Ms 1.000 30.73 0.24 1.000 30.70 0.24 2869 | (15+5)M 1.000 20.33 0.18 1.000 20.30 0.18 433.1
(20+10)M 1.000 30.64 0.21 1.000 30.63 0.21 287.1 | (10+5)M 1.000 1528 0.22 1.000 15.32 0.21 5729
(15+10)M 5 1.000 2558 0.23 1.000 25.58 0.23 3449 | (5+5)Ms 1.000 1021 0.24 1.000 10.22 0.24 8544

(20+20)M 5 0.998 40.05 0.25 1.000 39.87 0.25 219.8 | (20+5)Ms 0.999 2498 0.16 1.000 2493 0.16 353.0
(20+15M 5 0998 3491 0.24 1.000 34.92 0.25 252.7 [(10+10)M 5 1.000 19.92 0.25 1.000 19.85 0.25 441.6
EP(3,35,+2) (15+15M 1.000 29.87 0.25 1.000 29.87 0.25 290.6 | (15+5)Ms 1.000 19.98 0.19 1.000 1991 0.19 4444
(20+10)M 5 0.999 29.99 0.22 1.000 29.86 0.22 2925 | (10+5)Ms 1.000 14.98 0.22 0999 1496 0.22 584.0
(15+10)M 5 1.000 24.83 0.24 1.000 24.83 0.24 3554 | (5+5)My 0999 999 025 1.000 998 025 877.7

(20+20)M 5 0.988 26.79 0.62 0.990 24.74 0.76 290.7 | (20+5)Ms 0.941 31.21 0.10 0962 30.26 0.11 287.2
(20+15M 5 0982 2390 0.59 0982 2391 0.59 322.7 [(10+10)M, 0980 17.14 0.35 0.982 17.25 0.34 493.8
HT(335,-2) (15+15Ms 0976 20.86 0.56 0.979 21.27 0.54 3722 | (15+5)Mo 0.988 21.56 0.16 0.988 21.56 0.16 407.3
(20+10)M, 0985 27.05 029 0986 27.08 0.28 321.0 | (10+5)M5 0991 15.05 022 0993 15.02 0.22 582.1
(15+10)M, 0978 2228 031 0978 2232 0.31 3893 | (5+5)My 0991 9.81 026 0992 9.83 0.26 798.6

(20+20)M 5 0.987 2090 1.00 0.988 20.93 1.00 319.4| (20+5)M 0.932 30.88 0.10 0.955 2995 0.11 2925
(20+15M 5 0979 1872 0.96 0979 18.72 0.96 3602 [(10+10)M, 0.973 14.84 045 0974 14.74 0.46 5532
HT(335,+2) (15+15Ms 0970 1693 0.83 0970 16.93 0.83 4149 [ (15+5)M, 0.987 21.20 0.17 0987 21.15 0.17 416.8
(20+10)M 0977 25.19 032 0977 2451 035 349.6 | (10+5)Ms 0992 14.15 025 0992 14.15 0.25 615.7
(15+10)M 5 0973 19.43 0.40 0973 1946 040 4282 | (5+5)My 0989 923 029 0989 928 029 754.7

(20+20)M 0973 20.64 1.00 0.973 20.64 1.00 3232 | (20+5)M 0.930 30.83 0.10 0.953 29.87 0.11 294.6
(20+15M o 0965 21.55 0.69 0966 21.79 0.67 340.8 [(10+10)M o 0.970 1551 0.41 0970 1554 041 531.0
HP(33.5,-2) (15+15M¢p 0963 19.64 059 0966 18.72 0.66 3989 [ (15+5)Ms 0986 21.04 0.17 0.987 2098 0.17 420.3
(20+10)M 0974 26.00 030 0.975 26.27 0.29 331.0| (10+5)Ms 0991 13.83 0.26 0.991 13.85 0.26 633.8
(15+10)M5 0963 1792 048 0964 18.16 046 4515 (5+5)My 0987 920 029 0987 923 0.29 6409

(20+20)M 0.938 19.98 1.00 0.938 19.98 1.00 335.0| (20+5)M 0951 29.72 0.11 0951 29.70 0.11 2964
(20+15M 5 0957 17.71 1.00 0.957 17.71 1.00 377.3 [(10+10)M 5 0.964 14.15 0.49 0964 14.28 048 559.8
HP(33.5,+2) (15+15My 0950 15.18 1.00 0.950 15.18 1.00 4394 [ (15+5)M, 0986 20.84 0.17 0987 20.76 0.17 423.1
(20+10)M 0972 2434 034 0973 2452 0.34 3483 | (10+5)M, 0.988 13.44 0.27 0988 13.65 0.26 6344
(15+10)M 0954 18.03 0.46 0955 17.83 047 4528 | (5+5)My 0985 8.86 031 0986 899 030 7244

0= #n=1. Beyond those ranges, either the equati@in-  the other models, with minmax EF0.95, for almost all the
ergy balance, or motigrbecome singular, or the determina- masses in our range, and in any case with much improved FF
tion of the MECO or light rindthe evolutionary end point of for most masses; see Tables XVI and XVII. Apparently, part
the inspiral for theP(2,2.5) model and th&eP(3,3.5,0) of the effect of the different resummation and approximation
model, respectivelyfails. schemes is just to modulate the strength of the PN effects in
When the models are extended ta@=<1, they appearto a way that can be simulated by changingo nonphysical
lie much closer to each other in signal space. In particularyalues in any one model. This fact can be appreciated by
the P(2,2.5) andEP(3,3.5,0) models are able to match all looking at Figs. 26, 27 and 28, 29 which show the projection
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FIG. 26. Projection of 2PN waveforms onto tR¢2,2.5) effec- FIG. 28. Projection of 2PN waveforms onto tEé>(3,3.5) ef-

tive template space. Dots are shown for the same BBH masses chtive template space. This projection includes the effect of the
Table 1II, and for PN modeld (2,2.5), P(2,2.5), ET(2,2.5), and frequency cut. Dots are shown for the same BBH masses of Table

EP(2,2.5). The thin solid lines show ti&H mass linegintroduced !l and for PN modelsT(2,2.5), P(2,2.5), ET(2,2.5), and
in Sec. VI B), while the dashed and dotted lines show the contoursE P(2:2:5). The thin solid lines show ttgH mass linegintroduced
of the projections of selected PN models. in Sec. VI B, while the dashed and dotted lines show the contours

of the projections of selected PN models.

of several models onto the(2,2.5) andeP(3,3.5,0) effec-
tive template spaces, respectively. For instance, in comparP(2,2.5) andEP(3,3.5) at comparable’s.
son with T(2,2.5), the modeP(2,2.5) seems to underesti-  Because for th&P model the frequency at the light ring
mate systematically the effect of, so a satisfactory FF for is already quite high, we cannot simply operatespto im-
7+=0.25 can be obtained only if we lefp>0.25 [quite ~ Prove the match between tHeP model and other models
consistently, in the comparison of Tables V, VIII, whepe that end at much lower frequenciesee the values of min-
was confined to its physical rang&(2,2.5) could match Max matches in Table XVJI Thus, we shall enhance the
P(2,2.5) effectively, but the reverse was not ffue effectualness o P by adding an arbitrargut parameter that
The other(and perhaps crucipkffect of raisingz is to ~ modifies the radius (usually the light-ring radiysat which
change the location of the MECO for tHe-approximant ~We stop the integration of the Hamilton equati¢88)—(95);
model (or the light ring, for theEP mode), where orbital ~ the effect is to modify the final instantaneous GW frequency
evolution ends(Remember that one of the differences be-Of the waveform. This is therefore me-domain cytas
tween the Padand the EOB models is that the latter in- OPposed to the frequency-domain cuts of the frequency-
cludes a plunge part between the ISCO and the Iight)ring,d_omain effective templates examined in the preceding sec-
More specifically, forP(2,2.5)[ E P(3,3.5,0) the position of ~ tion. _ .
the MECO (light ring) is pushed to smaller radii ag is We can then compute the FF by searching olgf in
increased. This effect can increase the FF for target modeRddition toM and 7, and we shall correspondingly account
that have very different ending frequencies from those of

e e« T(3,3.5,0) (15415) @

=== P(3,3.5) (15.15) » (20,20) = = EP(3,35,0)
= = EP(3,3.5,0) ; -
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& (1020)
= 06 _ - b4
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0.4 | = 0.2} ( Y g -
NS S o o 2 B G: - a0
TH5.5) " 415510 (20,15) 205) ’
0.2} G5 “&" 0
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M = Mn3/5

FIG. 29. Projection of 3PN waveforms onto tBd(3,3.5) ef-

FIG. 27. Projection of 3PN waveforms onto tR¢2,2.5) effec-  fective template space. This projection includes the effect of the
tive template space. Dots are shown for the same BBH masses friequency cut. Dots are shown for the same BBH masses of Table
Table XV, and for PN modelsT(3,3.5/+2), P(3,3.5+2), II, and for PN modelsT(3,3.5+2), P(3,3.5+2), ET(3,3.5,
ET(3,3.5/+2), EP(3,3.5+2), HT(3,3.5;+2), andHP(3,3.5,0). +2), EP(3,3.5+2), HT(3,3.5+2), and HP(3,3.5;+2). The
The dots ford=—2 are only slightly displaced, and they are not dots ford=—2 are only slightly displaced, and they are not shown.
shown. The thin solid lines show tlgH mass linegintroduced in  The thin solid lines show th8H mass lineqintroduced in Sec.
Sec. VI B), while the dashed and dotted lines show the contours oI B), while the dashed and dotted lines show the contours of the
the projections of selected PN models. projections of selected PN models.
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FIG. 30. Determinant of the mismatch metric for tR€2,2.5) modelgleft pane) and for theEP(3,3.5,0) modelgright pane). The
determinanty[g[ is shown as a function of and 3=M 7%".

for the required number of distinét,, when we estimate the points alongl's, but the two ellipses were given different
number of templates required to give a certain (jMEven fitting weights to cancel the quartic correction terms in the
so, if we are unsure whether we can model successfully daylor expansion of the match aroung, 7o) (the cubic
given source over a certain range of frequencies that fall§erms were canceled automatically by taking symmetric
within the LIGO ranggas it is the case for the heavy BBHs points along the ellips¢sThe rms error of the fit was in all
with MECOs at frequencies. 200 H2, the correct way to cases very good, establishing that the quadratic approxima-
estimate the optima (and therefore the expected detectiontion held in the close vicinitymatches~0.95) of each point.
rate is to include only the signal power in the frequency —We estimate that the numerical erre20% is in any case
range that we know well. less than the error associated with using &%) to evaluate

The best matches shown in Tables XVI and XVII, and inthe required number of templates, instead of laying down a
Figs. 26—29, were obtained by searching over the targdgttice of templates more accurately.
model parameter space with the simplicialoEBA algo- The resulting/|g| for P(2,2.5) andE P(3,3.5,0) is shown
rithm [65]. We found(empirically) that it was expedient to in Fig. 30. It is evident that most of the mismatch volume is
conduct the searches on the paramef@ssM »?®> and concentrated near the smalle8ts and »’s in parameter
rather than orM and ». This is because iso-match surfacesspace. This is encouraging, because it means that the exten-
tend to look like thin ellipses clustered around the best matclsion of the effective template family to high masses and high
parameter pair, with principal axes along theand » direc-  #'s (necessary, as we have seen, to match several target mod-
tions. As shown in Table XVI, the values of the maxmax andels with very high FF will be relatively cheap with respect
minmax FFs are very close to each other for #@,2.5) to the size of the template banfthis picture, however,
model; the same is true for theP(3,3.5) modelso in Table changes when we introduce frequency-domain cuts for the
XVII we do not show both For EP(3,3.5), the search over EP models. With the \[g[’s we then computed the number
the three parameters3(7n,f.) was performed as a refine- of P and EP templates necessary to cover the parameter
ment step after a first search of, ). rangesB: (4,24), »: (0.15,1.00, andg: (4,24, »: (0.1,1.00)

We have evaluated the mismatch mef@8] g;; (see Sec. which span comfortably all the projected images of the target
II) with respect to the parameterg,(;) for the models spaces onto thé® and EP template spaces, respectively.
P(2,2.5) andEP(3,3.5,0) (while evaluatingg;;, the EP  (Note the ranges include also BBHs where one of the BHs
waveforms were not cut The metric components at the has a mass less thaiMg, .) We obtained
point (Bq, 79) were obtained by first determining the ranges

(Bmin Bmaxds (7min»max for which 0.02 0.02
Np:326c< ), NE:67OC( ), (134

(U(Bo. 70).U( Brain . 70)) = (U(Bo. 70),U( Binax. 70)) 1=MM 1=MM
=1-0.05 (132 where MM is the required minimum matdfanalog to the
B parameter MN} of the preceding sectionBy comparison,
(U(Bo,10):U(Bo Mmin)) ={U(Bo, 70),U( Bo, Tmax)) these numbers are reduced to, respectively, 1230 and 3415 if
=1-0.05; (133  We restricty to the physical range.

The numberNg does not include the effect of multiple
then a quadratic form was least-squares fit to 16 values of thending frequencieguty. We estimate the number of distinct
match along the ellips€&'; with axes given by Bmin:Bmax f.ut Needed for eackB by an argument similar to the one
and (7min,7may- The first quadratic form was used only to used for the Fourier-domain effective templaisge Sec.
determine the principal axes of two further ellipdésand  VI); it turns out that more cuts are required for higher
I'5, at projected matches 0f-10.025 and 3-0.0125. An- masses. The resulting number of templatesdVis=51,000
other quadratic forn{giving the final result for the metric  for MM =0.98, which is comparable to the result for the
was then fit at the same time to 16 points aldiygand to 16  effective Fourier-domain templates.
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If we assume that the distance between the time-domair:0.9; the matches were much better only PmgainstE
templates and the target models is representative of the disand vice versa However, if the 2PN Taylor flux is used the
tance to the true physical signal, we can guess that Flyerlaps are rather high. At 3PN order we found much higher
=0.95 for P and FF=0.97 for EP with cuts. Under these matches betwee, P, andE, and also with the nonadiabatic

hypotheses, 6508 templates can buy us évorst-casg  model H, at least for massd8<30M,, and restricting to
MM +=0.94, corresponding to a loss in event rate-df7%. ~

For 51,000EP templates, we get Mi=0.95, correspond- tzﬁe: O:r.Zg'STgesfor?;L;:% :;aif tSheenSb?nE?ncauesr?e?t 322' dotrr(]j:r
ing to a loss in event rate of 14%. various approximatl inding 9y

Before ending this section we would like to point out flux seem to be much closer to each other than at lower

another time-domain detection-template family which can berders. This “closeness” of the different analytical ap-
consider kindred of the Fourier-domain detection-templatd®"0@ches, which at 3PN order are also much closer to some
family introduced in Sec. VI, see E¢LO9. We can use, for €xamples of numerical quasiequilibrium BBH modg2$],

example, the following expression suggested by PN calculaas recently pointed out in Ref58,59. On the other hand,
tions (see, e.g., Ref69)): the extraction of BBH parameters from a true measured sig-

nal, if done using the 3PN models, would still give a range of
her(t) = A Ty(t) € e, (135 rather different estimates. However, we want to point out that
for quite high masses, e.dl =40M , the 3PN models can
where have again lower overlaps, also from the point of view of
detection.
AL(O=(t—0)"1—a" (t;—t) ¥ 6(tey—1), In addition, by studying the frequency-domain amplitude
(136) of the GW signals that end inside the LIGO frequency band
(see Figs. 4, 7, 10, 14we understood that if high matches
B Tt ) e oy
ol (te—1) 3B gl (t—t) V24, (137  the Newtonian formula seems relatively adequate to model
the PN amplitude for GW frequencies below the instanta-
whereg. .te,a’, l/,g,,ﬂ,(/,;z and lﬁg are arbitrary parameters neous GW frequency at the end point of orbital evolution
whose range of values are determined maximizing the Finally, the introduction of théiT, HP andL models in

matches with the target two-body models. Secs. IV Aand IV B provided another example of two-body
nonadiabatic dynamics, quite different from tBenodels. In
VIIl. SUMMARY the H models, the conservative dynamics does not have an

ISCO [see the discussion below E4)] at 2PN and 3PN

This paper deals with the problem of detecting GWs fromorders. As a consequence, the transition to the plunge is due
the most promising sources for ground-based GW interferto secular radiation-reaction effects, and it is pushed to much
ometers: comparable-mass BBHs with total mak  higher frequencies. This means that, for tiemodels, the
=10-4MM, moving on quasicircular orbits. The detection GW signals for BBHs of total maddl =10-4M ¢ end out-
of these sources poses a delicate problem, because their traide the LIGO frequency band, and the frequency-domain
sition from the adiabatic phase to the plunge, at least in theamplitude does not deviate much from the Newtonian result,
nonspinning case, is expected to occur in the LIGO andt least until very high frequenciésee Fig. 10 TheL mod-
VIRGO frequency bands. Of course, the true GW signalsls do not provide the waveforms during the late inspiral and
from these inspirals should be obtained from exact solutionplunge. This is due to the fact that because of the appearance
of the Einstein equations for two bodies of comparable massf unphysical effects, e.g., the binding energy starts to in-
However, the theoretical templates used to search for thesgease with time instead of continuing decreasing, we are
signals will be, at best, finite-order approximations to theobliged to stop the evolution before the two BHs enter the
exact solutions, usually derived in the PN formalism. Be-last stages of inspiral. It is important to point out that differ-
cause the perturbative PN approach begins to fail during thently from the nonadiabati& models, the nonadiabatid
final stages of the inspiral, when strong curvature and nonandL models give rather different predictions when used at
linear effects can no longer be neglected, various PN resunvarious PN orders. So, from these point of view they are less
mation methods have been introduddd—17 to improve reliable and robust than tHe models.
the convergence of the PN series. In the second part of this papésecs. VI and VI] we

In the first part of this papdisee Secs. I, IV and Ywe  pursued the following strategy. We assumed that the target
studied and compared in detail all the PN models of thenodels spanned a region in signal space tladhos) in-
relativistic two-body dynamics currently available, including cluded the true GW signal. We were then able to provide a
PN Taylor-expanded and resummed models both in the adidew detection template familieeither chosen among the
batic approximation and in the nonadiabatic case. We noticetime-domain target models, or built directly from polynomial
the following featureqsee Tables IX, Xl At least for PN  amplitude and phasings in the frequency domairat ap-
ordersn=<2.5, thetargetmodelsT, P, andE have low cross proximate quite well all the targets (EF0.95 for almost all
matches if the 2.5PN Taylor flux is used. For example, forthe masses in our range, with much better FFs for most
almost all the masses in our range, we found maxmax Fifhasses We speculate that the effectualness of the detection
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model in approximating the targets is indicative of its effec-considerably higher for most models and masses. We have
tualness in approximating the true signals. computed the number d? templates needed to obtain a

The Fourier-domain detection template family, discussedMM =0.99 (about 6,500 and of EP templates to obtain a
in Sec. VI, is simple and versatile. It uses a PN polynomialMM =0.98 (about 51,000 The expected total MMis then,
structure for the frequency-domain amplitude and phasingespectively,=0.94 and=0.95, corresponding to losses in
but it does not constrain the coefficients to the PN functionaBvent rates o 17% and<14%. The MMs scale roughly as
dependencies on the physical parameters. In this sense tti@.01/(1-~MM) ] for P and[0.02/(1~MM) ]? for EP (be-
bank follows the basic idea that underlies the fast chirp transcause of the additional frequency-cut parameter
form [64]. However, because for the masses that we consider We notice that the number of templates that we estimate
the GW signal can end within the LIGO frequency band, wefor the Fourier- and time-domain detection template families
were forced to modify the Newtonian-order formula for the is higher than the number of templates we would obtain us-
amplitude, introducing a cutoff frequency and a parameter téng only one PN model. However, the numberinflepen-
modify the shape of the amplitude cur(the parametet). dent shapeghat enters the expression for thg threshold
As discussed at the end of Sec. VI F the good performance dfee Eq.(18)] does not coincide with the number of tem-
the two and three-dimensional families confirms also resultplates that are laid down within a discrete template bank to
obtained in Refs[13,47] and[68]. achieve a given MM; indeed, if MM is close to one, these are

We showed that our Fourier-domain detection templatélmost guaranteed to be to yield S/N statistics that are
space has a FF higher than 0.97 for The® andE models,  strongly correlated. A rough estimate of the number of inde-
and=0.96 for most of the 3PMI T andHP models; we then Pendent shapes can be obtained taking a coarse-grained grid
speculate that it will match true BBH waveforms with FF in template space. For example, by setting MBlin Eq.
~0.96. We have computed the number of templates requiret®5), the number of independent shapes would be given
to give MM =0.96 (about 16). The total MM, should be  roughly by the volume of the template space. As explained at
larger than FFMM ~0.92, which corresponds to a loss of the end of Sec. Il B, if we wish to keep the same false-alarm
event rate of +MM3~22%. This performance could be Probability, we have to increase the threshold-b§% if we
improved at the price of introducing a larger number of tem-increase the number of independent shapes by one order of
plates, with the rough scaling law of/=10%0.04/(0.96 rr;z(a)]gnltude. This effect will cause a further loss in event rates
— MM 2_ .

In %c]ac. VI E we investigated where the less reliable 2PN Finally, in Sec. VIF we extended the detection template

H and L models. and theeE models at 3PN order further family in the Fourier domain by requiring that it embeds the
’ targets in a signal space of higher dimensigvith more

arameters We investigated the three-dimensional case and
e found, as expected, the maxmax matches increase. In

expanded considering;#0, lie in the detection template
space. The Fourier-domain template family has FF in th

range[0.85,0.95 with the 2PNH models, and FF mostly . : )
higher than 0.95, but with several exceptions which can be agartlculgr, the match of the phasings are nearly penfect. al-
; o~ ways higher than 0.994 for the two-body models which are
low as 0.93 with the. models. The= models withz,#0 are  tarthest apart in the detection template space. Moreover, by
matched by the detection template family with FF almostyrgjecting the points in the three-dimensional space back to
always higher than 0.95. Tremodels withz;#0 and theL  the two-dimensional space, we can get nearly the same pro-
models are(almos} covered by the region delimiting the jections we would have got from matching directly the PN
adiabatic models and thE models withz,=0. However, waveforms with the two-parameter—phasing model. The
these models require lower cutoff frequencies, which willanalysis done in Sec. VI F could suggest ways of systemati-
increase the number of templates up to a factor of 3. Th&ally expand the Fourier-domain templates. Trying to guess
2PN H models sit outside this region and if we want to the functional directions in which the true signals might lie
include them the number of templates should be doubled. With respect to the targets was the most delicate challenge of
The time-domain detection template families, discussed iur investigation. However, our suggestions are not guaran-
Sec. VII, followed a slightly different philosophy. The idea in teed to produce templates that will capture the true signal,
this case was to provide a template bank that, for som@énd they should be considered as indications. When numeri-
choices of the parameters, could coincide with one of thecal relativity provides the first good examples of waveforms
approximate two-body models. Quite interestingly, this caremitted in the last stages of the binary inspiral and plunge, it
be achieved by relaxing the physical hypothesis thatz0 Will be very interesting to investigate whether the
=<0.25. However, the good performances of these banks am@atcheswith our detection template families are high and in
less systematic, and harder to generalize than the perfowhich region of the detection template space do they sit.
mance of the Fourier-domain effective bank. As suggested at
the end of Sec. Vl[see Eq.(135], the time-domain bank
could be improved by using a parametrization of the time-
domain amplitude and phase similar to the one used for the We wish to thank Kashif Alvi, Luc Blanchet, David Cher-
Fourier-domain templates. The detection template familiesioff, Teviet Creighton, Thibault Damour, Scott Hughes, Al-
based on the extension of ti®2,2.5) andEP(3,3.5) to  bert Lazzarini, Bangalore Sathyaprakash, Kip Thorne,
nonphysical values of; were shown to have FF, respec- Massimo Tinto and Andrea Vicertor very useful discus-
tively, =0.95 and=0.97 for all the PN target models, and sions and interactions. We also thank Thibault Damour, Ban-
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