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Detection template families for gravitational waves from the final stages
of binary –black-hole inspirals: Nonspinning case
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We investigate the problem of detecting gravitational waves from binaries of nonspinning black holes with
massesm55 –20M ( , moving on quasicircular orbits, which are arguably the most promising sources for
first-generation ground-based detectors. We analyze and compare all the currently available post-Newtonian
approximations for the relativistic two-body dynamics; for these binaries, different approximations predict
different waveforms. We then construct examples of detection template families that embed all the approximate
models and that could be used to detect the true gravitational-wave signal~but not to characterize accurately its
physical parameters!. We estimate that the fitting factor for our detection families is*0.95 ~corresponding to
an event rate loss&15%) and we estimate that the discretization of the template family, for;104 templates,
increases the loss to&20%.
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I. INTRODUCTION

A network of broadband ground-based laser interfero
eters, aimed at detecting gravitational waves~GWs! in the
frequency band 10–103 Hz, is currently beginning operatio
and, hopefully, will start the first science runs within th
year ~2002!. This network consists of the British-Germa
GEO, the American Laser Interferometer Gravitational-Wa
Observatory~LIGO!, the Japanese TAMA and the Italian
French VIRGO~which will begin operating in 2004! @1#.

The first detection of gravitational waves with LIGO an
VIRGO interferometers is likely to come from binary blac
hole systems where each black hole has a mass@2# of a few
M ( , and the total mass is roughly in the range 10–40M (

@3#, and where the orbit is quasicircular~it is generally as-
sumed that gravitational radiation reaction will circulari
the orbit by the time the binary is close to the final coal
cence@4#!. It is easy to see why. Assuming for simplicity th
the GW signal comes from a quadrupole-governed, Newt
ian inspiral that ends at a frequency outside the range
good interferometer sensitivity, the signal-to-noise ra
~S/N! is }M 5/6/d ~see, e.g., Ref.@5#!, whereM5Mh3/5 is
the chirp mass~with M5m11m2 the total mass andh
5m1m2 /M2), andd is the distance between the binary a
the Earth. Therefore, for a given signal-to-noise detect
threshold ~see Sec. II! and for equal-mass binaries (h
51/4), the larger is the total mass, the larger is the dista
d that we are able to probe.~In Sec. V we shall see how thi
result is modified when we relax the assumption that
signal ends outside the range of good interferometer se
tivity.!

For example, a black-hole–black-hole binary~BBH! of
total massM520M ( at 100 Mpc gives~roughly! the same
S/N as a neutron-star–neutron-star binary~BNS! of total
massM52.8M ( at 20 Mpc. The expected measured-eve
0556-2821/2003/67~2!/024016~50!/$20.00 67 0240
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rate scales as the third power of the probed distance,
though of course it depends also on the system’s coalesc
rate per unit volume in the universe. To give some figur
computed using LIGO-I’s sensitivity specifications, if we a
sume that BBHs originate from main-sequence binaries@6#,
the estimated detection rate per year is&431023–0.6 at
100 Mpc @7,8#, while if globular clusters are considered a
incubators of BBHs@9# the estimated detection rate per ye
is ;0.04–0.6 at 100 Mpc@7,8#; by contrast, the BNS detec
tion rate per year is in the range 331024–0.3 at 20 Mpc
@7,8#. The very large cited ranges for the measured-ev
rates reflect the uncertainty implicit in using populatio
synthesis techniques and extrapolations from the few kno
galactic BNSs to evaluate the coalescence rates of bin
systems.@In a recent article@10#, Miller and Hamilton sug-
gest that four-body effects in globular clusters might enha
considerably the BBH coalescence rate, brightening the p
pects for detection with first-generation interferometers;
BBHs involved might have relatively high BH masse
(;100M () and eccentric orbits, and they will not be co
sidered in this paper.#

The GW signals from standard comparable-mass BB
with M510–40M ( contain only a few (50–800) cycles i
the LIGO-VIRGO frequency band, so we might expect th
the task of modeling the signals for the purpose of d
analysis could be accomplished easily. However, the
quencies of best interferometer sensitivity correspond
GWs emitted during the final stages of the inspiral, where
post–Newtonian~PN! expansion@11#, which for compact
bodies is essentially an expansion in the characteristic orb
velocity v/c, begins to fail. It follows that these source
require a very careful analysis. As the two bodies dr
closer, and enter the nonlinear, strong-curvature phase
motion becomes relativistic, and it becomes harder a
harder to extract reliable information from the PN series. F
©2003 The American Physical Society16-1
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example, using the Keplerian formulav5(pM f GW)1/3

~where f GW is the GW frequency! and takingf GW5153 Hz
~the LIGO-I peak-sensitivity frequency! we get v(M )
50.14(M /M ()1/3; hence, for BNSsv(2.8M ()50.2, but for
BBHs v(20M ()50.38 andv(40M ()50.48.

The final phase of the inspiral~at least when BH spins ar
negligible! includes the transition from the adiabatic inspir
to the plunge, beyond which the motion of the bodies
driven ~almost! only by the conservative part of the dynam
ics. Beyond the plunge, the two BHs merge, forming a sin
rotating BH in a very excited state; this BH then eases i
its final stationary Kerr state, as the oscillations of its qua
normal modes die out. In this phase the gravitational sig
will be a superposition of exponentially damped sinuso
~ringdown waveform!. For nonspinning BBHs, the plung
starts roughly at the innermost stable circular orbit~ISCO! of
the BBH. At the ISCO, the GW frequency@evaluated in the
Schwarzschild test-mass limit asf GW

ISCO(M ).0.022/M ] is
f GW

ISCO(20M ().220 Hz and f GW
ISCO(30M ().167 Hz. These

frequencies are well inside the LIGO and VIRGO bands.
The data analysis of inspiral, merger~or plunge!, and

ringdown of compact binaries was first investigated
Flanagan and Hughes@12#, and more recently by Damou
Iyer and Sathyaprakash@13#. Flanagan and Hughes@12#
model the inspiral using the standard quadrupole predic
~see, e.g., Ref.@5#!, and assume an ending frequency
0.02/M ~the point where, they argue, PN and numeric
relativity predictions start to deviate by;5% @14#!. They
then use a crude argument to estimate upper limits for
total energy radiated in the merger phase (;0.1M ) and in
the ringdown phase (;0.03M ) of maximally spinning BBH
coalescences. Damour, Iyer and Sathyaprakash@13# study the
nonadiabatic PN-resummed model for nonspinning BBHs
Refs. @15–17#, where the plunge can be seen as a natu
continuation of the inspiral@16# rather than a separate phas
the total radiated energy is 0.007M in the merger and
0.007M in the ringdown@18#. ~All these values for the en
ergy should be also compared with the value, 0.25–0.3M ,
estimated recently in Ref.@19# for the plunge and ringdown
for nonspinning BBHs.! When we deal with nonadiabati
models, we too shall choose not to separate the var
phases. Moreover, because the ringdown phase does no
a significant contribution to the signal-to-noise ratio forM
<200M ( @12,13#, we shall not include it in our investiga
tions.

BHs could have large spins: various studies@20,21# have
shown that when this is the case, the time evolution of
GW phase and amplitude during the inspiral will be sign
cantly affected by spin-induced modulations and irregula
ties. These effects can become dramatic if the two BH sp
are large and are not aligned or antialigned with the orb
angular momentum. There is a considerable chance tha
analysis of interferometer data, carried out without tak
into account spin effects, could miss the signals from sp
ning BBHs altogether. We shall tackle the crucial issue
spin in a separate paper@22#.

The purpose of the present paper is to discuss the prob
of the failure of the PN expansion during the last stages
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inspiral for nonspinning BHs, and the possible ways to d
with this failure. This problem is known in the literature a
the intermediate binary black hole~IBBH! problem@23#. De-
spite the considerable progress made by the numer
relativity community in recent years@14,24–26#, a reliable
estimate of the waveforms emitted by BBHs is still som
time away~some results for the plunge and ringdown wav
forms were obtained very recently@19#, but they are not very
useful for our purposes because they do not include the
stages of the inspiral before the plunge, and their initial d
are endowed with large amounts of spurious GWs!. To tackle
the delicate issue of the late orbital evolution of BBHs, va
ous nonperturbative analytical approaches to that evolu
~also known as PN resummation methods! have been pro-
posed@15–17,27#.

The main features of PN resummation methods can
summarized as follows:~i! they provide an analytic~gauge-
invariant! resummation of the orbital energy function an
gravitational flux function~which, as we shall see in Sec. II
are the two crucial ingredients to compute the gravitatio
waveforms in the adiabatic limit!; ~ii ! they can describe the
motion of the bodies~and provide the gravitational wave
form! beyond the adiabatic approximation; and~iii ! in prin-
ciple they can be extended to higher PN orders. More imp
tantly, they can provide initial dynamical data for the tw
BHs at the beginning of the plunge~such as their positions
and momenta!, which can be used~in principle! in numerical
relativity to help build the initial gravitational data~the met-
ric and its time derivative! and then to evolve the full Ein-
stein equations through the merger phase. However, th
resummation methods are based on some assumptions
although plausible, have not been proved: for example, w
the orbital energy and the gravitational flux functions a
derived in the comparable-mass case, it is assumed that
are smooth deformations of the analogous quantities in
test-mass limit. Moreover, in the absence of both exact s
tions and experimental data, we can test the robustness
reliability of the resummation methods only by internal co
vergence tests.

In this paper we follow a more conservative point of vie
We shall maintain skepticism about waveforms emitted
BBH with M510–40M ( and evaluated from PN calcula
tions, as well as all other waveforms ever computed for
late BBH inspiral and plunge, and we shall develop famil
of search templates that incorporate this skepticism. M
specifically, we shall be concerned only with detecting BB
GWs, and not with extracting physical parameters, such
masses and spins, from the measured GWs. The rational
this choice is twofold. First, detection is the more urge
problem at a time when GW interferometers are about
start their science runs; second, a viable detection stra
must be constrained by the computing power available
process a very long stream of data, while the study of
tected signals to evaluate physical parameters can con
trate many resources on a small stretch of detector outpu
addition, as we shall see in Sec. VI, and briefly discuss
Sec. VI D, the different PN methods will give different pa
rameter estimations for the same waveform, making a
parameter extraction fundamentally difficult.
6-2
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This is the strategy that we propose: we guess~and hope!
that the conjunction of the waveforms from all the po
Newtonian models computed to date spans a region in si
space that includes~or almost includes! the true signal. We
then choose adetection~or effective! template family that
approximates very well all the PN expanded and resumm
models~henceforth denoted astarget models!. If our guess is
correct, theeffectualness@27# of the effective model in ap-
proximating the targets~i.e., its capability of reproducing
their signal shapes! should be indicative of its effectualnes
in approximating the true signals. Because our goal is
detectionof BBH GWs, we shall not require the detectio
template family to befaithful @27# ~i.e., to have a small bias
in the estimation of the masses!.

As a backup strategy, we require the detection temp
family to embed the targets in a signal space of higher
mension ~i.e., with more parameters!, trying to guess the
functional directions in which the true signals might lie wi
respect to the targets~of course, this guess is rather delicat!.
So, the detection template families constructed in this pa
cannot be guaranteed to capture the true signal, but
should be considered as indications.

This paper is organized as follows. In Sec. II we brie
review the theory of matched-filtering GW detections, whi
underlies the searches for GWs from inspiraling binari
Then in Secs. III, IV, and V we present the target models a
give a detailed analysis of the differences between th
both from the point of view of the orbital dynamics and
the gravitational waveforms. More specifically, in Sec. III w
introduce the two-body adiabatic models, both PN expan
and resummed; in Sec. IV we introduce nonadiabatic
proximations to the two-body dynamics; and in Sec. V
discuss the signal-to-noise ratios obtained for the vari
two-body models. Our proposals for the detection temp
families are discussed in the Fourier domain in Sec. VI, a
in the time domain in Sec. VII, where we also build th
mismatch metric@28,29# for the template banks and use it
evaluate the number of templates needed for detection.
tion VIII summarizes our conclusions.

Throughout this paper we adopt the LIGO noise cu
given in Fig. 1 and Eq.~28!, and used also in Ref.@13#.

FIG. 1. Square root of the noise spectral densityASn( f ) versus
frequencyf, for LIGO-I @Eq. ~28!#, and VIRGO~from Table IV of
Ref. @13#!.
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Because the noise curve anticipated for VIRGO~see Fig. 1!
is quite different~both at low frequencies, and in the locatio
of its peak-sensitivity frequency! our results cannot be ap
plied naively to VIRGO. We plan to repeat our study f
VIRGO in the near future.

II. THE THEORY OF MATCHED-FILTERING SIGNAL
DETECTION

The technique of matched-filtering detection for GW s
nals is based on the systematic comparison of the meas
detector outputs with a bank of theoreticalsignal templates
$ui% that represent a good approximation to the class
physical signals that we seek to measure. This theory
developed by many authors over the years, who have p
lished excellent expositions@29–40,12,27#. In the following,
we summarize the main results and equations that are
evant to our purposes, and we establish our notation.

A. The statistical theory of signal detection

The detector outputs consists of noisen and possibly of a
true gravitational signalhi ~part of a family$hi% of signals
generated by different sources for different source para
eters, detector orientations, and so on!. Although we may be
able to characterize the properties of the noise in sev
ways, each separaterealizationof the noise is unpredictable
and it might in principle fool us by hiding a physical sign
~hence the risk of afalse dismissal! or by simulating one
~false alarm!. Thus, the problem of signal detection is esse
tially probabilistic. In principle, we could try to evaluate th
conditional probabilityP(hus) that the measured signals
actually contains one of thehi . In practice, this is inconve-
nient because the evaluation ofP(hus) requires the knowl-
edge of thea priori probability that a signal belonging to th
family $hi% is present ins.

What we can do, instead, is to work with astatistic ~a
functional ofs and of thehi) that ~for different realizations
of the noise! will be distributed around low values if the
physical signalhi is absent, and around high value if th
signal is present. Thus, we shall establish adecision ruleas
follows @33#: we will claim a detection if the value of a
statistic ~for a given instance ofs and for a specifichi) is
higher than a predefined threshold. We can then study
probability distribution of the statistic to estimate the pro
ability of false alarm and of false dismissal. The steps
volved in this statistical study are easily laid down for
generic model of noise, but it is only in the much simplifie
case ofnormal noisethat it is possible to obtain manageab
formulas; while noise will definitelynot be normal in a real
detector, the Gaussian formulas can still provide use
guidelines for the detection problems. Eventually, the sta
tical analysis of detector search runs will be carried out w
numerical Monte Carlo techniques that make use of the m
sured characteristics of the noise. So throughout this pa
we shall always assume Gaussian noise.

The statistic that is generally used is based on the s
metric inner product̂g,h& between two real signalsg andh,
which represents essentially the cross-correlation betweeg
6-3
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andh, weighted to emphasize the correlation at the frequ
cies where the detector sensitivity is better. We follow Cut
and Flanagan’s conventions@36# and define

^g,h&52E
2`

1` g̃* ~ f !h̃~ f !

Sn~ u f u!
d f54 ReE

0

1` g̃* ~ f !h̃~ f !

Sn~ f !
d f ,

~1!

whereSn( f ), the one-sidednoise power spectral density, is
given by

ñ* ~ f 1!ñ~ f 2!5
1

2
d~ f 12 f 2!Sn~ f 1! for f 1.0, ~2!

andSn( f 1)50 for f 1,0. We then define thesignal-to-noise
ratio r ~for the measured signals after filtering byhi), as

r~hi !5
^s,hi&

rmŝ n,hi&
5

^s,hi&

A^hi ,hi&
, ~3!

where the equality follows because^hi ,n&^n,hi&5^hi ,hi&
~see, e.g.,@33#!. In the case of Gaussian noise, it can
proved that this filtering technique isoptimal, in the sense
that it maximizes the probability of correct detection for
given probability of false detection.

In the case whens5n, and when noise is Gaussian, it
easy to prove thatr is a normal variable with a mean of zer
and a variance of one. If insteads5hi1n, thenr is a normal
variable with meanA^hi ,hi& and unit variance. Thethresh-
old r* for detection is set as a tradeoff between the resul
false-alarm probability,

F5A 1

2pEr
*

1`

e2r2/2dr5
1

2
erfc~r* /A2! ~4!

~where erfc is thecomplementary error function@41#!, and
the probability of correct detection

D5
1

2
erfc@~r* 2A^hi ,hi&!/A2# ~5!

~the probability of false dismissal is just 12D).

B. Template families and extrinsic parameters

We can now go back to the initial strategy of compari
the measured signal against a bank ofNi templates$ui% that
represent a plurality of sources of different types and ph
cal parameters. For each stretchs of detector output, we shal
compute the signal-to-noise ratio^s,ui&/A^ui ,ui& for all the
ui , and then apply our rule to decide whether the phys
signal corresponding to any one of theui is actually present
within s @5#. Of course, the thresholdr* needs to be adjuste
so that the probabilityFtot of false alarmover all the tem-
plates is still acceptable. Under the assumption that all
inner productŝ n,ui& of the templates with noise alone a
statistically independent variables@this hypothesis entails
^ui ,uj&.0], Ftot is just 12(12F)Ni;NiF. If the tem-
plates are not statistically independent, this number is
02401
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upper limit on the false alarm rate. However, we first need
note that, for any templateui , there are a few obvious way
~parametrized by the so-calledextrinsic parameters! of
changing the signal shape that do not warrant the inclus
of the modified signals as separate templates@42#.

The extrinsic parameters are the signalamplitude, phase
and time of arrival. Any true signalh can be written in all
generality as

h~ t !5Ahah@ t2th#cos@Fh~ t2th!1fh#, ~6!

whereah(t)50 for t,0, whereFh(0)50, and whereah(t)
is normalized so that̂h,h&5A h

2 . While the template bank
$ui% must contain signal shapes that represent all the ph
cally possible functional formsa(t) andF(t), it is possible
to modify our search strategy so that the variability inAh ,
fh and th is automatically taken into account without crea
ing additional templates.

The signal amplitude is the simplest extrinsic parame
It is expedient tonormalizethe templatesui so that^ui ,ui&
51, andr(ui)5^s,ui&. Indeed, throughout the rest of th
paper we shall always assume normalized templates.s
contains a scaled versionhi5Aui of a templateui ~hereA is
known as the signalstrength!, thenr(ui)5A. However, the
statistical distribution ofr is the samein the absence of the
signal. Then the problem of detection signals of know
shape and unknown amplitude is easily solved by usin
single normalized template and the same thresholdr* as
used for the detection of completely known signals@33#.
Quite simply, the stronger an actual signal, the easier it w
be to reach the threshold.

We now look at phase, and we try to matchh with a
continuous one-parameter subfamily of templatesu(f t ;t)
5ah(t)cos@Fh(t)1ft#. It turns out that for each time signa
shape$a(t),F(t)%, we need to keep in our template ban
only two copies of the correspondingui , for f t50 andf t
5p/2, and that the signal to noise of the detector outpus
againstui , for the best possible value off t , is automatically
found as@33#

rf5max
f t

^s,ui~f t!&5Au^s,ui~0!&u21u^s,ui~p/2!&u2,

~7!

where ui(0) and ui(p/2) have been orthonormalized. Th
statistical distribution of the phase-maximized statisticrf ,
for the case of~normal! noise alone, is theRaleigh distribu-
tion @33#

p0~rf!5rfe2rf
2 /2, ~8!

and the false-alarm probability for a thresholdrf* is just

F5e2rf*
2 /2. ~9!

Throughout this paper, we will find it useful to consid
inner products that are maximized~or minimized! with re-
spect to the phases ofboth templates and reference signa
6-4
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In particular, we shall follow Damour, Iyer an
Sathyaprakash in making a distinction between thebest
matchor maxmax match

maxmax̂h,ui&5max
fh

max
f t

^h~fh!,ui~f t!&, ~10!

which represents the most favorable combination of pha
between the signalsh andui , and theminmax match

minmax̂ h,ui&5min
fh

max
f t

^h~fh!,ui~f t!&, ~11!

which represents the safest estimate in the realistic situa
where we cannot choose the phase of the physical meas
signal, but only of the template used to match the sign
Damour, Iyer and Sathyaprakash~see Appendix B of Ref.
@27#! show that both quantities are easily computed as

S maxmax

minmaxD 5H A1B

2
6F S A2B

2 D 2

1C2G1/2J 1/2

, ~12!

where

A5^h~0!,ui~0!&21^h~0!,ui~p/2!&2, ~13!

B5^h~p/2!,ui~0!&21^h~p/2!,ui~p/2!&2, ~14!

C5^h~0!,ui~0!&^h~p/2!,ui~0!&

1^h~0!,ui~p/2!&^h~p/2!,ui~p/2!&. ~15!

In these formulas we have assumed that the two ba
$h(0),h(p/2)% and$ui(0),ui(p/2)% have been orthonormal
ized.

The time of arrival th is an extrinsic parameter becau
the signal to noise for the normalized, time-shifted templ
u(t2t0) against the signals is just

^s,u~ t0!&54 ReE
0

1` s̃* ~ f !ũ~ f !

Sn~ f !
ei2p f t0d f , ~16!

where we have used a well-known property of the Fou
transform of time-shifted signals. These integrals can
computed at the same time for all the time of arrivals$t0%,
using a fast Fourier transform technique that require
;NslogNs operations ~where Ns is the number of the
samples that describe the signals! as opposed to;Ns

2 re-
quired to compute all the integrals separately@43#. Then we
can look for the optimalt0 that yields the maximum signal t
noise.

We now go back to adjusting the thresholdr* for a search
over a vast template bank, using the estimate~9! for the
false-alarm probability. Assuming that the statisticsrf for
each signal shapeand starting time are independent, we r
quire that

e2rf*
2 /2.

Ftot

NtimesNshapes
, ~17!

or
02401
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r* .A2~ logNtimes1 logNshapes2 logFtot!. ~18!

It is generally assumed thatNtimes;331010 ~equivalent to
templates displaced by 0.01 s over one year@44,12#! and that
the false-alarm probabilityFtot;1023. Using these values
we find that an increase ofr* by about;3% is needed each
time we increaseNshapesby one order of magnitude. So ther
is a tradeoff between the improvement in signal-to-noise
tio obtained by using more signal shapes and the corresp
ing increase in the detection threshold for a fixed false-ala
probability.

C. Imperfect detection and discrete families of templates

There are two distinct reasons why the detection o
physical signalh by matched filtering with a template ban
$ui% might result in signal-to-noise ratios lower than the o
timal signal-to-noise ratio,

ropt5A^h,h&. ~19!

First, the templates, understood as acontinuous family
$u(lA)% of functional shapes indexed by one or moreintrin-
sic parameterslA ~such as the masses, spins, etc.!, might
give an unfaithful representation ofh, introducing errors in
the representation of the phasing or the amplitude. The
of signal to noise due to unfaithful templates is quantified
the fitting factor ~FF!, introduced by Apostolatos@45#, and
defined by

FF„h,u~lA!…5
maxlA^h,u~lA!&

A^h,h&
. ~20!

In general, we will be interested in the FF of the continuo
template bank in representing afamily of physical signals
$h(uA)%, dependent upon one or more physical parame
uA: so we shall write FF(uA)5FF„h(uA),u(lA)…. Although
it is convenient to index the template family by the sam
physical parametersuA that characterizeh(uA), this is by no
means necessary; the template parameterslA might be a
different number than the physical parameters~indeed, this is
desirable when theuA get to be very many!, and they might
not carry any direct physical meaning. Notice also that
value of the FF will depend on the parameter range chose
maximize thelA.

The second reason why the signal-to-noise will be
graded with respect to its optimal value is that, even if o
templates are perfect representations of the physical sign
in practice we will not adopt a continuous family of tem
plates, but we will be limited to using a discrete bank$ui

[u(l i
A)%. This loss of signal to noise depends on how fine

templates are laid down over parameter space@37–39#; a
notion of metric in template space~the mismatch metric
@28,29,46#! can be used to guide the disposition of templa
so that the loss~in the perfect-template abstraction! is limited
to a fixed, predetermined value, theminimum match~MM !,
introduced in Refs.@29,37#, and defined by
6-5
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MM5min
l̂A

max
l i

A

^u~ l̂A!,u~l i
A!&

5min
l̂A

max
Dl i

A

^u~ l̂A!,u~ l̂A1Dl i
A!&, ~21!

whereDl i
A[l i

A2l̂A. Themismatch metric gBC(l̂A) for the
template space$u(lA)% is obtained by expanding the inne
product ~or match! ^u(l̂A),u(l̂A1DlA)& about its maxi-
mum of 1 atDlA50:

^u~ l̂A!,u~ l̂A1DlA!&

5M ~ l̂A,l̂A1DlA!

511
1

2

]2M

]DlB]DlCU
l̂A

DlBDlC1•••, ~22!

so themismatch12M betweenu(l̂A) and the nearby tem
plate u(l̂A1DlA) can be seen as the square of the pro
distance in a differential manifold indexed by the coordina
lA @29#,

12M ~ l̂A,l̂A1DlA!5gBCDlBDlC, ~23!

where

gBC52
1

2

]2M

]DlB]DlCU
l̂A

. ~24!

If, for simplicity, we lay down then-dimensional discrete
template bank$u(l i

A)% along a hypercubical grid of cell-siz
dl in the metricgAB ~a grid in which all the templates o
nearby corners have a mismatch ofdl with each other!, the
minimum match occurs whenl̂A lies exactly at the center o
one of the hypercubes: then 12MM5n(dl/2)2. Conversely,
given MM, the volume of the corresponding hypercubes
given by VMM5@2A(12MM)/ n#n. The number of tem-
plates required to achieve a certain MM is obtained by in
grating the proper volume of parameter space within the
gion of physical interest, and then dividing byVMM :

N@g,MM#5

E AugudlA

~2A@12MM #/n!n
. ~25!

In practice, if the metric is not constant over parameter sp
it will not be possible to lay down the templates on an ex
hypercubical grid of cell-sizedl, so N will be somewhat
higher than predicted by Eq.~25!. However, we estimate tha
this number should be correct within a factor of two, whi
is adequate for our purposes.

In the worst possible case, the combined effect of unfa
ful modeling (FF,1) and discrete template family (MM
,1) will degrade the optimal signal to noise by a factor
about FF1MM21. This estimate for the total signal-to
noise loss is exact when, in the space of signals, the
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segments that joinh( ûA) to its projectionu(l̂A) andu(l̂A)
to the nearest discrete templateu(l̂ i

A) can be considered or
thogonal:

^h~uA!2u~ l̂A!,u~ l̂A!2u~ l̂ i
A!&.0. ~26!

This assumption is generally very accurate if FF and MM
small enough, as in this paper; so we will adopt this estim
However, it is possible to be more precise, by defining
external metric gAB

E @28,47# that characterizes directly th

mismatch betweenh( ûA) and a templateu(l̂A1DlA) that is
displaced with respect to the templateu(l̂A) that is yields
the maximum match withh( ûA).

Since the strength of gravity-wave signals scales as
inverse of the distance@48#, the matched-filtering scheme
with a chosen signal-to-noise thresholdr* , will allow the
reliable detection of a signalh, characterized by the signa
strengthAd0

5A^h,h& at the distanced0 , out to a maximum
distance

dmax

d0
5

Ad0

r*
. ~27!

If we assume that the measured GW events happen w
homogeneous event rate throughout the accessible portio
the universe, then the detection rate will scale asdmax

3 . It
follows that the use of unfaithful, discrete templates$ui% to
detect the signalh will effectively reduce the signal strength
and thereforedmax, by a factor FF1MM21. This loss in the
signal-to-noise ratio can also be seen as an increase in
detection thresholdr* necessary to achieve the require
false-alarm rate, because the imperfect templates introd
an element of uncertainty. In either case, the detection
will be reduced by a factor (FF1MM21)3.

D. Approximations for detector noise spectrum
and gravitational-wave signal

For LIGO-I we use the analytic fit to the noise pow
spectral density given in Ref.@13#, and plotted in Fig. 1:

Sn~ f !

Hz21
59.00310246F S 4.49

f

f 0
D 256

10.16S f

f 0
D 24.52

10.5210.32S f

f 0
D 2G , ~28!

wheref 05150 Hz. The first term in the square brackets re
resents seismic noise, the second and third, thermal no
and the fourth, photon shot noise.

Throughout this paper, we shall compute BBH wavefor
in the quadrupole approximation~we shall compute the
phase evolution of the GWs with the highest possible ac
racy, but we shall omit all harmonics higher than the qua
rupole, and we shall omit post-Newtonian corrections to
amplitude; this is a standard approach in the field, see, e
@11#!. The signal received at the interferometer can then
written as@5,32#
6-6
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TABLE I. Post-Newtonian models of two-body dynamics defined in this paper. The notationX(nPN,mPN;û) denotes the modelX, with
terms up to ordernPN for the conservative dynamics, and with terms up to ordermPN for radiation-reaction effects; form>3 we also need

to specify the arbitrary flux parameterû ~see Sec. III A!; for n>3, the effective-one-body models need also two additional parametersz̃1 and

z̃2 ~see Sec. IV C!.

Model Shorthand Evolution equation Section

Adiabatic model with Taylor-expanded
energyE(v) and fluxF(v)

T(nPN,mPN;û) energy-balance equation Sec. III A

Adiabatic model with Pade´-expanded
energyE(v) and fluxF(v)

P(nPN,mPN;û) energy-balance equation Sec. III B

Adiabatic model with Taylor-expanded energyE(v)
and fluxF(v) in the stationary-phase approximation

SPA(nPN[mPN) energy-balance equation in
the frequency domain

Sec. VI F

Nonadiabatic Hamiltonian model with
Taylor-expanded GW flux

HT(nPN,mPN;û) Hamilton equations Sec. IV A

Nonadiabatic Hamiltonian model with
Padé-expanded GW flux

HP(nPN,mPN;û) Hamilton equations Sec. IV A

Nonadiabatic Lagrangian model L(nPN,mPN) F5ma Sec. IV B
Nonadiabatic effective-one-body model
with Taylor-expanded GW flux

ET(nPN,mPN;û; z̃1 ,z̃2) effective Hamilton equations Sec. IV C

Nonadiabatic effective-one-body model
with Padé-expanded GW flux

EP(nPN,mPN;û; z̃1 ,z̃2) effective Hamilton equations Sec. IV C
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h~ t !5
Q

dL
Mh~pM f GW!2/3coswGW, ~29!

where f and wGW are the instantaneous GW frequency a
phase at the timet, dL is the luminosity distance, M and h
are, respectively, the BBH total massm11m2 and the di-
mensionless mass ratiom1m2 /M2, and where we have take
G5c51. The coefficientQ depends on the inclination of th
BBH orbit with respect to the plane of the sky, and on t
polarization and direction of propagation of the GWs w
respect to the orientation of the interferometer. Finn a
Chernoff @32# examine the distribution ofQ, and show that
Qmax54, while rmsQ58/5. We shall use this last valu
when we compute optimal signal-to-noise ratios. The wa
form given by Eq.~29!, after dropping the factorQMh/dL ,
is known asrestricted waveform.

III. ADIABATIC MODELS

We turn, now, to a discussion of the currently availab
mathematical models for the inspiral of BBHs. Table I sho
a list of the models that we shall consider in this pap
together with the shorthands that we shall use to den
them. We begin in this section with adiabatic models. BB
adiabatic models treat the orbital inspiral as a quasistation
sequence of circular orbits, indexed by the invariantly d
fined velocity

v5~M ẇ !1/35~pM f GW!1/3. ~30!

The evolution of the inspiral~and in particular of the orbita
phasew) is completely determined by theenergy-balance
equation

dE~v !

dt
52F~v !. ~31!
02401
d

-

s
r,
te

ry
-

This equation relates the time derivative of the energy fu
tion E(v) ~which is given in terms of the total relativisti
energyEtot by E5Etot2m12m2 , and which is conserved in
absence of radiation reaction! to the gravitational flux~or
luminosity! function F(v). Both functions are known for
quasicircular orbits as a PN expansion inv. It is easily
shown that Eq.~31! is equivalent to the system~see, e.g.,
Ref. @27#!

dwGW

dt
5

2v3

M
,

dv
dt

52
F~v !

M dE~v !/dv
. ~32!

In accord with the discussion around Eq.~29!, we shall only
consider therestricted waveform h(t)5v2coswGW(t), where
the GW phasewGW is twice the orbital phasew.

A. Adiabatic PN expanded models

The equations of motion for two compact bodies at 2.5
order were first derived in Refs.@49#. The 3PN equations o
motion have been obtained by two separate groups of
searchers: Damour, Jaranowski and Scha¨fer @50# used the
Arnowitt-Deser-Misner~ADM ! canonical approach, while
Blanchet, Faye and de Andrade@51# worked with the PN
iteration of the Einstein equations in the harmonic gau
Recently Damour and colleagues@52#, working in the ADM
formalism and applying dimensional regularization, det
mined uniquely thestatic parameterthat enters the 3PN
equations of motion@50,51# and that was until then un
known. In this paper we shall adopt their value for the sta
parameter. Thus at present the energy functionE is known up
to 3PN order.

The gravitational flux emitted by compact binaries w
first computed at 1PN order in Ref.@53#. It was subsequently
determined at 2PN order with a formalism based on mu
polar and post–Minkowskian approximations, and, indep
6-7
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BUONANNO, CHEN, AND VALLISNERI PHYSICAL REVIEW D 67, 024016 ~2003!
dently, with the direct integration of the relaxed Einste
equations@54#. Nonlinear effects of tails at 2.5PN and 3.5P
orders were computed in Refs.@55#. More recently, Blanche
and colleagues derived the gravitational-flux function
quasicircular orbits up to 3.5PN order@56,57#. However, at
3PN order@56,57# the gravitational-flux function depends o
an arbitrary parameterû that could not be fixed in the regu
larization scheme used by these authors.

1. PN energy and flux

Denoting byETN
and FTN

the Nth-order Taylor approxi-

mants (T approximants! to the energy and the flux functions
we have

ET2N
~v ![ENewt~v !(

k50

N

Ek~h!v2k, ~33!

FTN
~v ![FNewt~v !(

k50

N

Fk~h!vk, ~34!

where ‘‘Newt’’ stands for Newtonian order, and the su
scripts 2N and N stand for post2N-Newtonian and
postN-Newtonian order. The quantities in these equations

ENewt~v !52
1

2
hv2, FNewt~v !5

32

5
h2v10, ~35!

E0~h!51, E1~h!52
3

4
2

h

12
, E2~h!52

27

8
1

19

8
h2

h2

24
,

~36!

E3~h!52
675

64
1S 34445

576
2

205

96
p2Dh2

155

96
h22

35

5184
h3,

~37!

F0~h!51, F1~h!50, F2~h!52
1247

336
2

35

12
h,

F3~h!54p, ~38!

F4~h!52
44711

9072
1

9271

504
h1

65

18
h2,

F5~h!52S 8191

672
1

535

24
h Dp, ~39!

F6~h!5
6643739519

69854400
1

16

3
p22

1712

105
gE2

856

105
log~16v2!

1S 2
2913613

272160
1

41

48
p22

88

3
û Dh2

94403

3024
h2

2
775

324
h3, ~40!

F7~h!5S 2
16285

504
1

176419

1512
h1

19897

378
h2Dp. ~41!
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Hereh5m1m2 /(m11m2)2, gE is Euler’s gamma, andû is
the arbitrary 3PN flux parameter@56,57#. From Table I of
Ref. @56# we read that the extra number of GW cycles acc
mulated by the PN terms of a given order decrea
~roughly! by an order of magnitude when we increase the
order by one. Hence, we find it reasonable to expect tha
3PN order the parameterû should be of order unity, and we
choose as typical valuesû50,62.

In Fig. 2 we plot the normalized fluxFTN
/FNewt as a

function of v at various PN orders for the equal mass ca
h50.25. To convertv to a GW frequency we can use

f GW.3.23104S 20M (

M D v3. ~42!

The two long-dashed vertical lines in Fig. 2 correspond
v.0.18 andv.0.53; they show the velocity range that co
responds to the LIGO frequency band 40< f GW<240 Hz for
BBHs with total mass in the range 10–40M ( . At the
LIGO-I peak-sensitivity frequency, which is 153 Hz accor
ing to our noise curve, and for a (10110)M ( BBH, we have
v.0.362; and the percentage difference between subseq
PN orders is Newt→1PN:258%; 1PN→1.5PN:1142%;
1.5PN→2PN:20.2%; 2PN→2.5PN:234%; 2.5PN
→3PN(û50):143%; 3PN→3.5PN(û50):10.04%. The
percentage difference between the 3PN fluxes withû562 is
;7%. It is interesting to notice that while there is a b
difference between the 1PN and 1.5PN orders, and betw
the 2PN and 2.5PN orders, the 3PN and 3.5PN fluxes
rather close. Of course this observation is insufficient to c
clude that the PN sequence is converging at 3.5PN orde

In the left panel of Fig. 3, we plot theT approximants for
the energy function versusv, at different PN orders, while in
the right panel we plot~as a function of the total massM, and
at the LIGO-I peak-sensitivity GW frequencyf peak
5153 Hz) the percentage difference of the energy funct
betweenT approximants to the energy function of success

FIG. 2. Normalized flux functionFTN
/FNewt versusv, at differ-

ent PN orders for equal-mass binaries,h50.25. Note that the
1.5PN and 2PN flux, and the 3PN and 3.5PN flux, are so close
they cannot be distinguished in these plots. The two long-das
vertical lines correspond tov.0.18 andv.0.53; they show the
velocity range that corresponds to the LIGO frequency band
< f GW<240 Hz for BBHs with total mass in the range 10–40M ( .
6-8
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FIG. 3. In the left panel, we plot the energy functionETN
versusv, at different PN orders, forh50.25. The two long-dashed vertical line

in the left figure correspond tov.0.18 andv.0.53; they show the velocity range that corresponds to the LIGO frequency ban
< f GW<240 Hz, for BBHs with total mass in the range 10–40M ( . In the right panel, we plot the percentage differencedETN

5100u(ETN11
2ETN

)/ETN
u versus the total massM, for N51,2, at the LIGO-I peak-sensitivity GW frequency,f peak5153 Hz @note: vpeak

5(pM f peak)
1/3].
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PN orders. We note that the 1PN and 2PN energies are
tant, but the 2PN and 3PN energies are quite close.

2. Definition of the models

The evolution equations~32! for the adiabatic inspira
lose validity ~the inspiral ceases to be adiabatic! a little be-
fore v reachesvMECO

TN , where MECO stands for maximum

binding-energy circular orbit@58,59#. This vMECO
TN is com-

puted as the value ofv at whichdETN
(v)/dv50. In building

our adiabatic models we evolve Eqs.~32! right up tovMECO
and stop there. We shall refer to the frequency computed
setting v5vMECO in Eq. ~42! as theending frequencyfor
these waveforms, and in Table II we show this frequency
some BH masses. However, for certain binaries, the 1PN
2.5PN flux functions can go to zero beforev5vMECO

TN ~see
Fig. 2!. In those cases we choose as the ending frequenc
value of f 5v3/(pM ) where F(v) becomes 10% of
FNewt(v). ~When using the 2.5PN flux, our choice of th
ending frequency differs from the one used in Ref.@13#,
where the authors stopped the evolution at the GW freque
corresponding to the Schwarzschild innermost stable circ
orbit. For this reason there are some differences between
overlaps and theirs.!

We shall refer to the models discussed in this section
T(nPN,mPN), wherenPN (mPN) denotes the maximum
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PN order of the terms included for the energy~the flux!. We
shall consider (nPN,mPN)5(1,1.5),(2,2),(2,2.5) and
(3,3.5,û) ~at 3PN order we need to indicate also a choice
the arbitrary flux parameterû).

3. Waveforms and matches

In Table III, for three typical choices of BBH masses, w
perform a convergence test using Cauchy’s criterion@27#,
namely, the sequenceTN converges if and only if for eachk
^TN ,TN1k&→1 asN→`. One requirement of this criterion
is that^TN ,TN11&→1 asN→`, and this is what we test in
Table III, settingTN[T(N,N10.5). The values quoted as
sume maximization on the extrinsic parameters but not
the intrinsic parameters.@For the case (10110)M ( , we
show in parentheses the maxmax matches obtained by m
mizing with respect to the intrinsic and extrinsic paramete
together with the intrinsic parametersM and h of TN11
where the maxima are attained.# These results suggest th
the PN expansion is far from converging. However, the v
low matches betweenN51 and N52, and betweenN52
andN53, are due to the fact that the 2.5PN flux goes to z
before the MECO can be reached. If we redefineT2 as
T(2,2) instead ofT(2,2.5), we obtain the higher value
shown in brackets is Table III.

In Fig. 4 we plot the frequency-domain amplitude of th
T-approximated waveforms, at different PN orders, for
rcular
at the
TABLE II. Location of the MECO/ISCO. The first six columns show the GW frequency at the maximum binding energy for ci
orbits ~MECO!, computed using theT andP approximants to the energy function; the remaining columns show the GW frequency
innermost stable circular orbit~ISCO!, computed using theH approximant to the energy, and using the EOB improved Hamiltonian~91! with

z̃15 z̃250. For theH approximant the ISCO exists only at 1PN order.
6-9



ax
meters

,

her
the

BUONANNO, CHEN, AND VALLISNERI PHYSICAL REVIEW D 67, 024016 ~2003!
TABLE III. Test for the Cauchy convergence of theT approximants. The values quoted are maxm
matches obtained by maximizing with respect to the extrinsic parameters, but not to the intrinsic para
~i.e., the matches are computed forT waveforms with the same masses, but different PN orders!. Here we

define T05T(0,0), T15T(1,1.5) T25T(2,2.5), T35T(3,3.5,û). In the Newtonian case,T05(0,0), the
MECO does not exist and we stop the integration of the balance equation atv51. The values in brackets
‘‘ @•••#, ’’ are obtained by settingT25T(2,2) instead ofT(2,2.5); the values in parentheses, ‘‘(•••), ’’ are
obtained by maximizing with respect to the extrinsicand intrinsic parameters, and they are shown toget
with the TN11 parametersM and h where the maxima are achieved. In all cases the integration of
equations is started at a GW frequency of 20 Hz.

^TN ,TN11&
N (5120)M ( (10110)M ( (15115)M (

0 0.432 0.553~0.861, 19.1, 0.241! 0.617
1 0.528@0.638# 0.550~0.884, 22.0, 0.237! 0.645@0.712#

2(û512) 0.482@0.952# 0.547~0.841, 18.5, 0.25! 0.563@0.917#

2(û522) 0.457@0.975# 0.509~0.821, 18.7, 0.241! 0.524@0.986#
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(15115)M ( BBH. The Newtonian amplitude,ANewt( f )
5 f 27/6, is also shown for comparison. In theT(1,1) and
T(2,2.5) cases, the flux function goes to zero beforev
5vMECO

TN ; this means that the radiation-reaction effects
come negligible during the last phase of evolution, so
binary is able to spend many cycles at those final frequ
cies, skewing the amplitude with respect to the Newton
result. ForT(2,2), T(3,3), andT(3,3.5), the evolution is
stopped atv5vMECO

TN , and, althoughf MECO
GW .270–300 Hz

~see Table II! the amplitude starts to deviate fromf 27/6

around 100 Hz. This is a consequence of the abrupt te
nation of the signal in the time domain.

The effect of the arbitrary parameterû on the T wave-
forms can be seen in Table IV in the intersection between
rows and columns labeledT(3,3.5,12) and T(3,3.5,22).
For three choices of BBH masses, this table shows the m
max matches between thesearchmodels at the top of the
columns and thetarget models at the left end of the rows
maximized over the mass parameters of the search mode
the columns. These matches are rather high, suggesting
for the range of BBH masses we are concerned with,
effect of changingû is just a remapping of the BBH mas

FIG. 4. Frequency-domain amplitude versus frequency for
T-approximated~restricted! waveforms at different PN orders for

(15115)M ( BBH. The T(3,3.5,û50) curve, not plotted, is almos

identical to the T(3,3,û50) curve.
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parameters. Therefore, in the following we shall consid
only the case ofû50.

A quantitative measure of the difference between
T(2,2), T(2,2.5) andT(3,3.5) waveforms can be seen
Table V in the intersection between the rows and colum
labeledT( . . . ). Forfour choices of BBH masses, this tab
shows the maxmax matches between the search mode
the columns and the target models in the rows, maximi
over the search-model parametersM andh; in the search,h
is restricted to its physical range 0,h<1/4, where 0 corre-
sponds to the test-mass limit, while 1/4 is obtained in
equal-mass case. These matches can be interpreted a
fitting factors@see Eq.~20!# for the projection of the targe
models onto the search models. For the caseT(2,2.5) the
values are quite low: if theT(3,3.5) waveforms turned out to
give the true physical signals and if we used theT(2,2.5)
waveforms to detect them, we would lose;32–49 % of the
events. The modelT(2,2) would do match better, although
would still not be very faithful. Once more, the differenc
betweenT(2,2) and T(2,2.5) is due to the fact that th
2.5PN flux goes to zero before the BHs reach the MECO

B. Adiabatic PN resummed methods: Pade´ approximants

The PN approximation outlined above can be used q
generally to compute the shape of the GWs emitted by BN
or BBHs, but itcannot be trustedin the case of binaries with
comparable masses in the rangeM.10–40M ( , because for
these sources LIGO and VIRGO will detect the GWs emit
when the motion is strongly relativistic, and the convergen
of the PN series is very slow. To cope with this proble
Damour, Iyer and Sathyaprakash@27# proposed a new clas
of models based on the systematic application of Pade´ re-
summation to the PN expansions ofE(v) andF(v). This is
a standard mathematical technique used to accelerate
convergence of poorly converging or even divergent pow
series.

If we know the functiong(v) only through its Taylor
approximant GN(v)5g01g1v1•••1gNvN[TN@g(v)#,
the central idea of Pade´ resummation@60# is the replacemen

e
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meter. For three choices of BBH masses, this table
the rows,maximized over the mass parameters
model mass parameters at which the maximum is
See the caption to Table VIII for further details.

ET(3,3.5,12) ET(3,3.5,22)

m M h mm M h

.963 30.52 0.240 0.974 30.32 0.240

.984 20.03 0.186 0.974 20.09 0.182

.991 10.16 0.242 0.972 9.94 0.250

.951 31.27 0.239 0.960 30.59 0.241

.985 20.89 0.173 0.983 20.27 0.181

.994 10.26 0.240 0.993 10.19 0.241

0.994 30.06 0.241

1.000 19.23 0.201

0.979 9.95 0.250

0.999 31.07 0.238

1.000 20.83 0.175

1.000 10.51 0.230
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024016-11
TABLE IV. Fitting factors betweenT andET models, at 2PN and 3PN orders, and for different choices of the arbitrary flux paraû
shows the maxmax matches@see Eq.~10!# between thesearchmodels at the top of the columns and thetargetmodels at the left end of
of the models in the columns. For each intersection, the three numbers mm,M andh denote the maximized match and the search-
attained. The matches can be interpreted as the fitting factors for the projection of the target models onto the search models.

T(2,2.5) ET(2,2.5) T(3,3.5,12) T(3,3.5,22)

mm M h mm M h mm M h mm M h m

(15115)M ( 0.914 27.58 0.248

T(2,2.5) (1515)M ( 0.916 16.81 0.249

(515)M ( 0.900 10.13 0.241

(15115)M ( 0.922 33.93 0.241

ET(2,2.5) (1515)M ( 0.971 33.17 0.076

(515)M ( 0.984 13.57 0.147

(15115)M ( 0.995 29.83 0.243 0

T(3,3.5,12) (1515)M ( 1.000 19.06 0.204 0

(515)M ( 0.981 9.96 0.250 0

(15115)M ( 0.998 30.94 0.242 0

T(3,3.5,22) (1515)M ( 1.000 20.93 0.173 0

(515)M ( 0.999 10.61 0.226 0

(15115)M ( 0.951 30.39 0.240 0.931 29.76 0.241

ET(3,3.5,12) (1515)M ( 0.981 20.16 0.186 0.985 18.97 0.207

(515)M ( 0.996 10.22 0.240 0.985 9.96 0.250

(15115)M ( 0.963 30.94 0.240 0.953 30.30 0.241

ET(3,3.5,22) (1515)M ( 0.983 20.65 0.179 0.980 20.32 0.182

(515)M ( 0.987 10.27 0.240 0.996 10.21 0.241
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0.24
0.23
0.18
0.20

0.25
0.25
0.25
.25

0.23
0.21
0.17
0.22

0.18
0.19
0.15
0.21

0.25
0.25
0.17
0.21

0.24
0.25
0.19
0.23

0.25
0.25
0.18
0.25

0.24
0.25
0.15
0.24

0.25
0.25
0.15

0.25

0.25
0.25
0.16
0.25
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TABLE V. ~Continued in Table VIII.! Fitting factors between several PN models, at 2PN and 3PN orders. For three choices o
masses, this table shows the maxmax matches@see Eq.~10!# between thesearchmodels at the top of the columns and thetarget models at
the left end of the rows,maximized over the intrinsic parameters of the search models in the columns. For each intersection, the thre
numbers mm,M5m11m2 andh5m1m2 /M2 denote the maximized match and the search-model mass parameters at which the ma
is attained. In computing these matches, the parameterh of the search models was restricted to its physical range 0,h<1/4. The arbitrary

flux parameterû was always set equal to zero. These matches represent the fitting factors@see Eq.~20!# for the projection of the targe
models onto the search models. The reader will notice that the values shown are not symmetric across the diagonal: for instance,
for the search modelT(2,2.5) against the target modelP(2,2.5) is higher than the converse. This is because the matches represent th
product ~1! between two different pairs of model parameters: in the first case, the target parameters (m1515M ( ,m2515M ()P[(M
530M ( ,h50.25)P are mapped to the maximum-match search parameters (M539.7M ( ,h50.24)T ; in the second case, the target para
eters (m1515M ( ,m2515M ()T[(M530M ( ,h50.25)T are mapped to the maximum-match parameters (M525.37M ( ,h50.24)P @so
the symmetry of the inner product~1! is reflected by the fact that the search parameters (M525.3M ( ,h50.24)P are mapped into the targe
parameters (M530M ( ,h50.25)T].

T(2,2) T(2,2.5) T(3,3.5,0) P(2,2.5) P(3,3.5,0)
mm M h mm M h mm M h mm M h mm M h

T(2,2) (20120)M ( 0.924 54.47 0.23 0.999 40.47 0.24 0.977 39.13 0.25 0.999 41.93
(15115)M ( 0.873 39.46 0.24 0.999 30.35 0.24 0.980 29.69 0.25 0.998 31.54
(1515)M ( 0.885 29.45 0.10 0.998 19.64 0.19 0.992 18.07 0.22 0.998 20.23
(515)M ( 0.988 21.28 0.06 0.998 10.61 0.22 0.994 10.54 0.22 0.999 11.16

T(2,2.5) (20120)M ( 0.882 31.44 0.25 0.870 31.54 0.25 0.824 30.25 0.25 0.893 33.09
(15115)M ( 0.845 24.85 0.25 0.835 25.21 0.25 0.796 25.35 0.25 0.863 26.20
(1515)M ( 0.848 15.34 0.25 0.865 15.74 0.25 0.870 15.85 0.25 0.894 15.90
(515)M ( 0.801 9.41 0.25 0.823 9.51 0.25 0.826 9.51 0.25 0.849 9.61 0

T(3,3.5,0) (20120)M ( 0.999 39.57 0.24 0.916 54.63 0.23 0.989 39.03 0.24 0.997 41.56
(15115)M ( 0.999 29.71 0.24 0.855 39.46 0.24 0.992 29.25 0.25 1.000 31.97
(1515)M ( 0.999 20.98 0.16 0.877 29.20 0.10 0.997 18.82 0.20 1.000 20.81
(515)M ( 0.991 9.67 0.25 0.986 19.49 0.07 0.998 9.90 0.24 1.000 10.57

P(2,2.5) (20120)M ( 0.970 40.47 0.24 0.879 56.77 0.23 0.991 41.80 0.22 0.999 46.01
(15115)M ( 0.967 30.15 0.24 0.816 39.66 0.24 0.998 32.66 0.20 0.999 34.02
(1515)M ( 0.989 23.77 0.12 0.792 20.56 0.20 0.996 21.55 0.15 0.998 21.83
(515)M ( 0.989 9.67 0.25 0.882 13.04 0.15 0.998 10.08 0.24 0.997 10.75

P(3,3.5,0) (20120)M ( 0.999 38.33 0.24 0.923 51.51 0.24 0.997 38.97 0.24 0.971 37.70 0.25
(15115)M ( 0.997 28.47 0.25 0.979 51.01 0.10 0.997 28.96 0.25 0.961 28.88 0.25
(1515)M ( 0.997 19.53 0.18 0.825 20.89 0.19 1.000 19.12 0.19 0.998 18.32 0.21
(515)M ( 0.949 9.80 0.24 0.988 17.70 0.09 0.993 9.75 0.25 0.991 9.75 0.25

EP(2,2.5) (20120)M ( 0.954 38.10 0.25 0.936 51.14 0.24 0.933 39.10 0.25 0.878 38.22 0.25 0.962 39.94
(15115)M ( 0.965 29.34 0.25 0.895 37.45 0.25 0.960 29.60 0.25 0.903 29.56 0.25 0.975 30.15
(1515)M ( 0.988 20.79 0.16 0.769 21.97 0.19 0.983 20.22 0.18 0.969 19.54 0.19 0.980 20.85
(515)M ( 0.996 9.70 0.25 0.980 20.46 0.07 0.997 10.29 0.23 0.995 10.22 0.23 0.997 10.83

EP(3,3.5,0) (20120)M ( 0.946 37.11 0.25 0.949 48.90 0.24 0.930 37.84 0.25 0.867 36.72 0.25 0.954 38.80
(15115)M ( 0.955 28.78 0.24 0.913 35.38 0.24 0.948 28.89 0.25 0.893 28.82 0.25 0.968 29.50
(1515)M ( 0.992 18.51 0.20 0.808 22.15 0.18 0.985 18.92 0.20 0.970 18.34 0.21 0.983 19.63
(515)M ( 0.968 9.65 0.25 0.985 18.41 0.08 0.994 9.76 0.25 0.992 9.77 0.25 0.998 10.16

HT(2,2) (20120)M ( 0.777 21.39 0.25 0.890 27.58 0.25 0.768 21.61 0.25 0.732 21.63 0.25 0.789 22.57
(15115)M ( 0.674 20.20 0.24 0.780 21.83 0.25 0.673 21.02 0.25 0.657 21.03 0.25 0.687 21.07
(1515)M ( 0.616 15.88 0.20 0.666 18.84 0.18 0.625 17.37 0.18 0.645 16.10 0.22 0.631 17.14
(515)M ( 0.796 9.62 0.25 0.935 10.00 0.25 0.833 9.73 0.25 0.834 9.74 0.25 0.856 9.75

HT(3,3.5,0) (20120)M ( 0.812 32.35 0.25 0.925 44.91 0.24 0.795 34.76 0.25 0.737 32.98 0.25 0.812 37.10
(15115)M ( 0.848 27.97 0.25 0.919 33.30 0.25 0.835 28.70 0.25 0.788 28.78 0.25 0.875 29.07
(1515)M ( 0.998 23.08 0.13 0.788 21.15 0.20 0.999 21.25 0.16 0.994 19.77 0.18 0.999 21.81
(515)M ( 0.952 9.65 0.25 0.828 10.36 0.24 0.984 9.76 0.25 0.984 9.77 0.25 0.992 9.99

HP(2,2.5) (20120)M ( 0.756 18.71 0.25 0.853 23.74 0.24 0.752 18.96 0.25 0.725 19.09 0.25 0.769 19.70
(15115)M ( 0.631 17.87 0.24 0.714 18.06 0.25 0.634 17.86 0.25 0.630 18.46 0.25 0.642 18.53
(1515)M ( 0.582 14.33 0.25 0.631 16.88 0.20 0.587 14.54 0.25 0.600 16.40 0.18 0.589 17.88
(515)M ( 0.731 9.41 0.25 0.869 9.75 0.25 0.755 9.51 0.25 0.755 9.54 0.25 0.765 9.54

HP(3,3.5,0) (20120)M ( 0.748 32.36 0.25 0.879 42.53 0.25 0.733 32.51 0.25 0.679 30.72 0.25 0.756 34.48
(15115)M ( 0.789 27.41 0.24 0.915 31.80 0.25 0.782 27.43 0.25 0.741 27.43 0.25 0.817 28.60
(1515)M ( 0.998 21.75 0.15 0.792 20.41 0.21 1.000 20.57 0.17 0.995 19.29 0.19 0.999 21.17
(515)M ( 0.912 9.62 0.25 0.990 16.20 0.10 0.959 9.73 0.25 0.961 9.76 0.25 0.982 9.76
024016-12



-

,

DETECTION TEMPLATE FAMILIES FOR . . . PHYSICAL REVIEW D 67, 024016 ~2003!
of the power seriesGN(v) by the sequence of rational func
tions

PK
M@g~v !#5

AM~v !

BK~v !
[

(
j 50

M

ajv
j

(
j 50

K

bjv
j

, ~43!

with M1K5N andTM1K@PK
M(v)#5GN(v) ~without loss of

generality, we can setb051). We expect that forM ,K→
1`, PK

M@g(v)# will converge to g(v) more rapidly than
TN@g(v)# converges tog(v) for N→1`.

1. PN energy and flux

Damour, Iyer and Sathyaprakash@27#, and then Damour
Schäfer and Jaranowski@17#, proposed the following
02401
Padé-approximated (P-approximated! EPN
(v) and FPN

(v)

~for N52,3):

EP
N
5A112hA11eP

N
~v !2121, ~44!

FPN
5

32

5
h2v10

1

12v/vpole
PN

f PN
~v,h!, ~45!

where

eP2
~v !52v2

11
1

3
h2S 42

9

4
h1

1

9
h2D v2

11
1

3
h2S 32

35

12
h D v2

, ~46!
eP3
~v !52v2

12F11
1

3
h1w3~h!Gv22F32

35

12
h2S 11

1

3
h Dw3~h!Gv4

12w3~h!v2
, ~47!

w35
40

36235h F27

10
1

1

16S 41

4
p22

4309

15 Dh1
103

120
h22

1

270
h3G , ~48!

f P2
~v !5S 11

c1v

11
c2v

11 . . .
D 21

~up to c5), ~49!

f P3
~v !5S 12

1712

105
v6log

v

vMECO
P2 D S 11

c1v

11
c2v

11 . . .
D 21

~up to c7). ~50!
e-
tity
Here the dimensionless coefficientsci depend only onh.
The ck’s are explicit functions of the coefficientsf k (k
51, . . . ,5),

c152 f 1 , c25 f 12
f 2

f 1
, c35

f 1f 32 f 2
2

f 1~ f 1
22 f 2!

, ~51!

c452
f 1@ f 2

31 f 3
21 f 1

2f 42 f 2~2 f 1f 31 f 4!#

~ f 1
22 f 2!~ f 1f 32 f 2

2!
, ~52!

c552
~ f 1

22 f 2!~2 f 3
312 f 2f 3f 42 f 1f 4

22 f 2
2f 51 f 1f 3f 5!

~ f 1f 32 f 2
2!@ f 2

31 f 3
21 f 1

2f 42 f 2~2 f 1f 31 f 4!#
,

~53!

where
f k5Fk2
Fk21

vpole
P2

. ~54!

Here Fk is given by Eqs.~38!–~41! @for k56 and k57,
the term 2856/105 log 16v2 should be replaced by
2856/105 log 16(vMECO

P2 )2]. The coefficientsc7 and c8 are
straightforward to compute, but we do not show them b
cause they involve rather long expressions. The quan
vMECO

P2 is the MECO of the energy functioneP2
@defined by

deP2
(v)/dv50]. The quantityvpole

P2 , given by

vpole
P2 5

1

A3A 11
1

3
h

12
35

36
h

, ~55!
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is the pole ofeP2
, which plays an important role in th

scheme proposed by Damour, Iyer and Sathyaprakash@27#. It
is used to augment the Pade´ resummation of the PN ex
panded energy and flux with information taken from the te
mass case, where the flux~known analytically up to 5.5PN
order! has a pole at the light ring. Under the hypothesis
structural stability @27#, the flux should have a pole at th
light ring also in the comparable-mass case. In the test-m
limit, the light ring corresponds to the pole of the energy,
the analytic structure of the flux is modified in th
comparable-mass case to includevpole

P2 (h). At 3PN order,
where the energy has no pole, we choose~somewhat arbi-
trarily! to keep using the valuevpole

P2 (h); the resulting 3PN
approximation to the test-mass flux is still very good.

In Fig. 5 we plot theP approximants for the flux function
FPN

(v), at different PN orders. Note that at 1PN order theP

approximant has a pole. At the LIGO-I peak-sensitivity fr
quency, 153 Hz, for a (10110)M ( BBH, the value ofv is
.0.362, and the percentage difference inFPN

(0.362), be-

tween successive PN orders is 1.5PN→2PN:28%; 2PN
→2.5PN:12.2%; 2.5PN→3PN(û522):13.6%; 3PN
→3.5PN(û522):10.58%. So the percentage differen
decreases as we increase the PN order. While in the test-

FIG. 5. Normalized flux functionFPN
/FNewt versusv at differ-

ent PN orders. The two long-dashed vertical lines givev.0.18 and
v.0.53; they show the velocity range that corresponds to the LI
frequency band 40< f GW<240 Hz for BBHs with total mass in the
range 10–40M ( . Compare with Fig. 2.
02401
t-

f

ss
o

-

ass

limit it is known that theP-approximants converge quite we
to the known exact flux function~see Fig. 3 of Ref.@27#!, in
the equal-mass case we cannot be sure that the same is
pening, because the exact flux function is unknown.~If we
assume that the equal-mass flux function is a smooth de
mation of the test-mass flux function, withh the deformation
parameter, then we could expect that theP approximants are
converging.! In the left panel of Fig. 6, we plot theP ap-
proximants to the energy function as a function ofv, at 2PN
and 3PN orders; in the right panel, we plot the percent
difference between 2PN and 3PNP approximants to the en
ergy function, as a function of the total massM, evaluated at
the LIGO-I peak-sensitivity GW frequencyf peak5153 Hz.

2. Definition of the models

When computing the waveforms forP-approximant adia-
batic models, the integration of Eqs.~32! is stopped atv
5vMECO

PN , which is the solution of the equatio
dEPN

(v)/dv50. The corresponding GW frequency will b
theending frequencyfor these waveforms, and in Table II w
show this frequency for typical BBH masses. Henceforth,
shall refer to theP-approximant models asP(nPN,mPN),
and we shall consider (nPN,mPN)5(2,2.5),(3,3.5,û). @Re-
call that nPN andmPN are the maximum post-Newtonia
order of the terms included, respectively, in the energy a
flux functionsE(v) andF(v); at 3PN order we need to in
dicate also a choice of the arbitrary flux parameterû.]

3. Waveforms and matches

In Table VI, for three typical choices of BBH masses, w
perform a convergence test using Cauchy’s criterion@27#.
The values are quite high, especially if compared to the sa
test for theT approximants when the 2.5PN flux is used; s
Table III. However, as we already remarked, we do not ha
a way of testing whether they are converging to the t
limit. In Fig. 7 we plot the frequency-domain amplitude
the P-approximated~restricted! waveform, at different PN
orders, for a (15115)M ( BBH. The Newtonian amplitude
ANewt( f )5 f 27/6, is also shown for comparison. At 2.5P
and 3.5PN orders, the evolution is stopped atv5vMECO

PN ;

O

age
FIG. 6. In the left panel, we plot the energy functionEPN
versusv at different PN orders. In the right panel, we plot the percent

difference between 2PN and 3PNP approximants,dEP(vpeak)5100u@EP3
(vpeak)2EP2

(vpeak)#/EP2
(vpeak)u versus the total massM, again

evaluated at the LIGO-I peak-sensitivity GW frequencyf peak5153 Hz @note:vpeak5(pM f peak)
1/3].
6-14
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althoughf MECO
GW .1902290 Hz ~see Table II!, the amplitude

starts to deviate fromf 27/6 around 100 Hz, well inside the
LIGO frequency band. Again, this is a consequence of
abrupt termination of the signal in the time domain.

A quantitative measure of the difference between
P(2,2.5) andP(3,3.5) waveforms can be seen in Table V
the intersection between the rows and columns labe
P( . . . ). Forthree choices of BBH masses, this table sho
the maxmax matches between the search models in the
umns and the target models in the rows, maximized over
search-model parametersM and h, with the restriction 0
,h<1/4. These matches are quite high, but the models
not very faithful to each other. The same table shows also
maximized matches~i.e., fitting factors! between T and P
models. These matches are low betweenT(2,2.5) and
P(2,2.5) ~and vice versa!, betweenT(2,2.5) andP(3,3.5)
~and vice versa!, but they are high betweenT(2,2), T(3,3.5)
and 3PNP approximants~although the estimation of mas
parameters is imprecise!. Why this happens can be unde

TABLE VI. Test for the Cauchy convergence of theP approxi-
mants. The values quoted are maxmax matches obtained by m
mizing with respect to the extrinsic parameters, but not to the
trinsic parameters~i.e., the matches are computed forP waveforms
with the same masses, but different PN orders!. Here we define
P25P(2,2.5), P35P(3,3.5). The values in parentheses are
maxmax matches obtained by maximizing with respect to the
trinsic and intrinsic parameters, shown together with thePN11 pa-
rametersM andh where the maxima are attained. In all cases
integration of the equations is started at a GW frequency of 20

^PN ,PN11&
N (2015)M ( (10110)M ( (15115)M (

2 (û512) 0.902 0.915~0.973, 20.5, 0.242! 0.868

2 (û522) 0.931 0.955~0.982, 20.7, 0.236! 0.923
02401
e

e

d
s
ol-
e

re
e

stood from Fig. 8 by noticing that at 3PN order the perce
age difference between theT-approximated and
P-approximated binding energies is rather small (<0.5%),
and that the percentage difference between
T-approximated andP-approximated fluxes at 3PN order~al-
though still;10%) is much smaller than at 2PN order.

IV. NONADIABATIC MODELS

By contrast with the models discussed in Sec. III, in non
diabatic models we solve equations of motions that invo
~almost! all the degrees of freedom of the BBH system
Once again, all waveforms are computed in the restric
approximation of Eq.~29!, taking the GW phasewGW as
twice the orbital phasew.

A. Nonadiabatic PN expanded methods:
Hamiltonian formalism

Working in the ADM gauge, Damour, Jaranowski and
Schäfer have derived a PN expanded Hamiltonian for t
general-relativistic two-body dynamics@17,50,52#:

FIG. 7. Frequency-domain amplitude versus frequency for
P-approximated~restricted! waveform at different PN orders for a
(15115)M ( BBH.

xi-
-

x-

e
z.
Ĥ~q,p!5ĤNewt~q,p!1Ĥ1PN~q,p!1Ĥ2PN~q,p!1Ĥ3PN~q,p!, ~56!

where

FIG. 8. In the left panel, we plot the percentage differencedEPT(vpeak)5100u@EPN
(vpeak)2ETN

(vpeak)#/EPN
(vpeak)u versus the total mass

M, for N52,3, at the LIGO-I peak-sensitivity GW frequencyf peak5153 Hz @note: vpeak5(pM f peak)
1/3]. In the right panel, we plot the

percentage difference between 2PN and 3PNP approximants,dFP(vpeak)5100u@FP3
(vpeak)2FP2

(vpeak)#/FP2
(vpeak)u versus the total mass

M, again evaluated at the LIGO-I peak-sensitivity GW frequencyf peak5153 Hz.
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ĤNewt~q,p!5
p2

2
2

1

q
, ~57!

Ĥ1PN~q,p!5
1

8
~3h21!~p2!22

1

2
@~31h!p21h~n•p!2#

1

q
1

1

2q2
, ~58!

Ĥ2PN~q,p!5
1

16
~125h15h2!~p2!31

1

8
@~5220h23h2!~p2!222h2~n•p!2p223h2~n•p!4#

1

q

1
1

2
@~518h!p213h~n•p!2#

1

q2
2

1

4
~113h!

1

q3
, ~59!

Ĥ3PN~q,p!5
1

128
~25135h270h2135h3!~p2!41

1

16
@~27142h253h225h3!~p2!3

1~223h!h2~n•p!2~p2!213~12h!h2~n•p!4p225h3~n•p!6#
1

q

1F 1

16
~2271136h1109h2!~p2!21

1

16
~17130h!h~n•p!2p21

1

12
~5143h!h~n•p!4G 1

q2
~60!

1H F2
25

8
1S 1

64
p22

335

48 Dh2
23

8
h2Gp21S 2

85

16
2

3

64
p22

7

4
h Dh~n•p!2J 1

q3

1F1

8
1S 109

12
2

21

32
p2DhG 1

q4
. ~61!
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Here the reduced nonrelativistic Hamiltonian in the cent
of-mass frame,Ĥ[HNR/m, is written as a function of the
reduced canonical variablesp[p1 /m52p2 /m, andq[(x1
2x2)/M , wherex1 andx2 are the positions of the BH cen
ters of mass in quasi-Cartesian ADM coordinates~see Refs.
@17,50,52#!; the scalarsq andp are the~coordinate! lengths
of the two vectors; and the vectorn is just q/q.

1. Equations of motion

We now restrict the motion to a plane, and we introdu
radiation-reaction~RR! effects as in Ref.@16#. The equations
of motion then read~using polar coordinatesr and w ob-
tained from theq with the usual Cartesian-to-polar transfo
mation!

dr

d t̂
5

]Ĥ

]pr
~r ,pr ,pw!,

dw

d t̂
[v̂5

]Ĥ

]pw
~r ,pr ,pw!, ~62!

dpr

d t̂
52

]Ĥ

]r
~r ,pr ,pw!1F̂r~r ,pr ,pw!,

dpw

d t̂
5F̂w@v̂~r ,pr ,pw!#, ~63!
02401
r-

e

where t̂5t/M , v̂5vM ; and where F̂w[Fw/m and F̂r

[Fr /m are the reduced angular and radial components of
RR force. AssumingFr!Fw @16#, averaging over an orbit
and using the balance equation~31!, we can express the an
gular component of the radiation-reaction force in terms
the GW flux at infinity@16#. More explicitly, if we use the
P-approximated flux, we have

F̂w[FPN
@vv#52

1

h vv
3
FPN

@vv#

52
32

5
h vv

7
f PN

~vv ;h!

12vv /vpole
P2 ~h!

, ~64!

while if we use theT-approximated flux we have

F̂w[FTN
@vv#52

1

h vv
3
FTN

@vv#, ~65!

wherevv[v̂1/3[(dw/d t̂)1/3. This vv is used in Eq.~29! to
compute the restricted waveform. Note that at each PN or
saynPN, we define our Hamiltonian model by evolving th
Eqs.~62! and ~63! without truncating the partial derivative
at thenPN order~differentiation with respect to the canon
cal variables can introduce terms of order higher thannPN).
Because of this choice, and because of the approxima
6-16
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used to incorporate radiation-reaction effects, these nona
batic models are not, strictly speaking, purely po
Newtonian.

2. Innermost stable circular orbit

Circular orbits are defined by settingr 5const while ne-
glecting radiation-reaction effects. In our PN Hamiltoni
models, this implies]Ĥ/]pr50 through Eq.~62!; because at
all PN orders the HamiltonianĤ @Eqs. ~56!–~61!# is qua-
dratic inpr , this condition is satisfied forpr50; in turn, this
implies also]Ĥ/]r 50 @through Eq.~63!#, which can be
solved for pw . The orbital frequency is then given byv̂
5]Ĥ/]pw .

The stability of circular orbits under radial perturbatio
depends on the second derivative of the Hamiltonian:

]2Ĥ

]r 2
.0⇔stable orbit;

]2Ĥ

]r 2
,0⇔unstable orbit.

~66!

For a test particle in Schwarzschild geometry~theh→0 of a
BBH!, an innermost stable circular orbit~ISCO! always ex-
ists, and it is defined by

]ĤSchw

]r
U

pr50

5
]2ĤSchw

]r 2 U
pr50

50, ~67!

where ĤSchw(r ,pr ,pw) is the ~reduced! nonrelativistic test-
particle Hamiltonian in the Schwarzschild geometry. Sim
larly, if such an ISCO exists for the~reduced! nonrelativistic
PN HamiltonianĤ @Eq. ~56!#, it is defined by

]Ĥ

]r
U

pr50

5
]2Ĥ

]r 2 U
pr50

50. ~68!

Any inspiral built as an adiabatic sequence of quasicircu
orbits cannot be extended to orbital separations smaller
the ISCO. In our model we integrate the Hamiltonian eq
tions ~62! and ~63!, including terms up to a given PN orde
without retruncating the equations to exclude terms of hig
order that have been generated by differentiation with res
to the canonical variables. Consistently, the value of
ISCO that is relevant to our model should be derived
solving Eq.~68! without any further PN truncation.

How is the ISCO related to the maximum binding ener
for circular orbit~MECO!, used above for nonadiabatic mo
els such asT? The PN expanded energy for circular orb
ETn

(v̂) at ordernPN can be recovered by solving the equ
tions

]Ĥ~r ,pr50,pw!

]r
50,

]Ĥ~r ,pr50,pw!

]pw
5v̂, ~69!

for r andpw as functions ofv̂, and by using the solutions t
define
02401
ia-
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r
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Ĥ~v̂ ![Ĥ@r ~v̂ !,pr50,pw~v̂ !#. ~70!

ThenĤ(v̂[v3)5ETn
(v) as given by Eq.~33!, if and only if

in this procedure we are careful to eliminate all terms
order higher thannPN ~see, e.g., Ref.@58#!.

In the context of nonadiabatic models, the MECO is th
defined by

dĤ

dv̂
50, ~71!

and it also characterizes the end of adiabatic sequence
circular orbits. Computing the variation of Eq.~70! between
nearby circular orbits, and settingpr50, dpr50, we get

dv̂5
]2Ĥ

]r ]pw
dr1

]2Ĥ

]pw
2

dpw ,
]2Ĥ

]r 2
dr1

]2Ĥ

]r ]pw
dpw50,

~72!

and combining these two equations we get

dpw

dv̂
52

]2Ĥ

]r 2 F S ]2Ĥ

]r ]pw
D 2

2
]2Ĥ

]pw
2

]2Ĥ

]r 2 G21

. ~73!

So finally we can write

dĤ

dv̂
5

]Ĥ

]pw

dpw

dv̂
52

]2Ĥ

]r 2

]Ĥ

]pw
F S ]2Ĥ

]r ]pw
D 2

2
]2Ĥ

]pw
2

]2Ĥ

]r 2 G21

.

~74!

Not surprisingly, Eqs.~74! and ~70! together are formally
equivalent to the definition of the ISCO, Eq.~68! @note that
the second and third terms on the right-hand side of Eq.~74!

are never zero#. Therefore, if we knew the HamiltonianĤ
exactly, we would find that the MECO defined by Eq.~71! is
numerically the same as the ISCO defined by Eq.~68!. Un-
fortunately, we are working only up to a finite PN order~say
nPN); thus, to recover the MECO as given by Eq.~33!, all
three terms on the right-hand side of Eq.~74! must be written
in terms of v̂, truncated atnPN order, then combined an
truncated again atnPN order. This value of the MECO, how
ever, will no longerbe the same as the ISCO obtained
solving Eq.~68! exactly without truncation.

If the PN expansion was converging rapidly, then the d
ference between the ISCO and the MECO would be m
but for the range of BH masses that we consider the
convergence is bad, and the discrepancy is rather impor
The ISCO is present only at 1PN order, withr ISCO59.907
andv̂ ISCO50.02833. The corresponding GW frequencies
given in Table II for a few BBHs with equal masses. At 3P
order we find the formal solutionr ISCO51.033 andpw

ISCO

50.355, but since we do not trust the PN expanded Ham
tonian when the radial coordinate gets so small, we concl
that there is no ISCO at 3PN order.
6-17
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TABLE VII. Test for the Cauchy convergence of theHT andHP approximants. The values quoted are maxmax matches obtaine
maximizing with respect to the extrinsic parameters, but not to the intrinsic parameters~i.e., the matches are computed forH waveforms with
the same masses, but different PN orders!. Here we defineHT05HT(0,0), HT15HT(1,1.5),HT25HT(2,2) @because the 2.5PN flux goe

to zero before the MECO is reached, so we use the 2PN flux#, HT35HT(3,3.5,û); we also defineHP05HP(0,0), HP15HP(1,1.5),

HP25HP(2,2.5), andHP35HP(3,3.5,û). The values in parentheses are the maxmax matches obtained by maximizing with respec
extrinsic and intrinsic parameters, shown together with the HN11 parametersM and h where the maxima are attained. In all cases
integration of the equations is started at a GW frequency of 20 Hz.
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3. Definition of the models

In order to build a quasicircular orbit with initial GW
frequency f 0 , our initial conditions (r init ,pr init ,pw init) are
set by imposing ẇ init5p f 0 , ṗr init50 and dr init /d t̂5

2F/(hdĤ/dr)circ , as in Ref.@40#. The initial orbital phase
w init remains a free parameter. For these models, the crite
used to stop the integration of Eqs.~62!, ~63! is rather arbi-
trary. We decided to push the integration of the dynami
equations up to the time when we begin to observe unph
cal effects due to the failure of the PN expansion, or wh
the assumptions that underlie Eqs.~63! @such asF̂r!F̂w],
cease to be valid. When the 2.5PN flux is used, we stop
integration whenFTN

equals 10% ofFNewt, and we define
the ending frequencyfor these waveforms as the instant
neous GW frequency at that time. To be consistent with
assumption of quasicircular motion, we require also that
radial velocity be always much smaller than the orbital v
locity, and we stop the integration whenu ṙ u.0.3(r ẇ) if this
occurs beforeFTN

equals 10% ofFNewt. In some cases, dur

ing the last stages of inspiralv̂ reaches a maximum and the
drops quickly to zero~see the discussion in Sec. V!. When

this happens, we stop the evolution atv̇̂50.
We shall refer to these models as HT(nPN,mPN) ~when

the T approximant is used for the flux! or HP(nPN,mPN)
02401
on

l
i-
n

e

e
e
-

~when theP approximant is used for the flux!, wherenPN
(mPN) denotes the maximum PN order of the terms includ
in the Hamiltonian ~the flux!. We shall consider

(nPN,mPN)5(1,1.5),(2,2),(2,2.5), and (3,3.5,û) ~at 3PN
order we need to indicate also a choice of the arbitrary fl

parameterû).

4. Waveforms and matches

In Table VII, for three typical choices of BBH masses, w
perform a convergence test using Cauchy’s criterion@27#.
The values are very low. ForN50 andN51, the low values
are explained by the fact that at 1PN order there is an IS
@see the discussion below Eq.~74!#, while at Newtonian and
2PN, 3PN order there is not. Because of the ISCO, the s

ping criterion@ u ṙ u.0.3(r ẇ) or v̇̂50] is satisfied at a much
lower frequency, hence at 1PN order the evolution en
much earlier than in the Newtonian and 2PN order cases
Fig. 9 we show the inspiraling orbits in the (x,y) plane for
equal-mass BBHs, computed using theHT(1,1.5) model~in
the left panel! and the HT(3,3.5,0) model~in the right
panel!. For N52, the low values are due mainly to diffe
ences in the conservative dynamics, that is, to differen
between the 2PN and 3PN Hamiltonians. Indeed, for a
110)M ( BBH we find ^HT(2,2),HT(3,2)&50.396, still
r
r

-

FIG. 9. Inspiraling orbits in
the (x,y) plane whenh50.25 for
HT(1,1.5) ~in the left panel! and
HT(3,3.5,0) ~in the right panel!.
For a (15115)M ( BBH the evo-
lution starts at f GW534 Hz and
ends at f GW597 Hz for
HT(1,1.5) panel and at f GW

5447 Hz for the HT(3,3.5,0).
The dynamical evolution is rathe
different because at 1PN orde
there is an ISCO (r ISCO.9.9M ),
while at 3PN order it does not ex
ist.
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FIG. 10. Frequency-domain
amplitude versus frequency fo
theHT andHP ~restricted! wave-
forms at different PN orders for a
(15115)M ( BBH. The

HT(3,3.5,û50) curve, not plot-
ted, is almost identical to the

HT(3,3,û50) curve.
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low, while ^HT(2,2),HT(2,3.5)&50.662, considerably
higher than the values in Table VII.

In Fig. 10 we plot the frequency-domain amplitude of t
HT-approximated~restricted! waveforms, at different PN or
ders, for a (15115)M ( BBH. The Newtonian amplitude
ANewt( f )5 f 27/6, is also shown for comparison. Fo
HT(1,1.5), because the ISCO is atr .9.9M , the stopping
criterion u ṙ u.0.3ẇ r is reached at a very low frequency an
the amplitude deviates from the Newtonian prediction
ready at f ;50 Hz. For HT(2,2.5), the integration of the
dynamical equation is stopped as the flux function goes
zero; just before this happens, the RR effects become we
and weaker, and in the absence of an ISCO the two BHs
not plunge, but continue on a quasicircular orbit untilFT(v)
equals 10% ofFNewt. So the binary spends many cycles
high frequencies, skewing the amplitude with respect to
Newtonian result, and producing the oscillations seen in F
10. We consider this behavior rather unphysical, and in
following we shall no longer take into account theHT(2,2.5)
model, but at 2PN order we shall useHT(2,2).

The situation is similar for theHP models. Except at 1PN
order, theHT and HP models do not end their evolutio
with a plunge. As a result, the frequency-domain amplitu
of theHT andHP waveforms does not decrease markedly
high frequencies, as seen in Fig. 10, and in fact it does
deviate much from the Newtonian result~especially at 3PN
order!.

Quantitative measures of the difference betweenHT and
HP models at 2PN and 3PN orders, and of the differen
between the Hamiltonian models and the adiabatic mod
can be seen in Tables V, VIII. For some choices of BB
masses, these tables show the maxmax matches betwee
search models in the columns and the target models in
02401
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rows, maximized over the search-model parametersM and
h, with the restriction 0,h<1/4. The matches between th
H(2,2) and theH(3,3.5) waveforms are surprisingly low
More generally, theH(2,2) models have low matches wit
all the other PN models. We consider these facts as an i
cation of the unreliability of theH models. In the following
we shall not give much credit to theH(2,2) models, and
when we discuss the construction of detection template fa
lies we shall consider only theH(3,3.5) models.@We will,
however, comment on the projection of theH(2,2) models
onto the detection template space.#

As for theH(3,3.5) models, their matches with the 2P
adiabatic models are low; but their matches with the 3
adiabatic models are high, at least forM<30M ( . For M
540M ( ~as shown in Tables V and VIII!, the matches can
be quite low, as the differences in the late dynamical evo
tion become significant.

B. Nonadiabatic PN expanded methods:
Lagrangian formalism

1. Equations of motion

In the harmonic gauge, the equations of motion for t
general-relativistic two-body dynamics in the Lagrangi
formalism read@49,61,62#

ẍ5aN1aPN1a2PN1a2.5RR1a3.5RR, ~75!

where

aN52
M

r 2
n̂, ~76!
aPN52
M

r 2 H n̂F ~113h!v222~21h!
M

r
2

3

2
h ṙ 2G22~22h! ṙvJ , ~77!

a2PN52
M

r 2 H n̂F3

4
~12129h!S M

r D 2

1h~324h!v41
15

8
h~123h! ṙ 42

3

2
h~324h!v2ṙ 22

1

2
h~1324h!

M

r
v2

2~2125h12h2!
M

r
ṙ 2G2

1

2
ṙvFh~1514h!v22~4141h18h2!

M

r
23h~312h! ṙ 2G J , ~78!
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lease see the caption to Table V.

HP(2,2.5) HP(3,3.5,0)
m M h mm M h

0.965 90.12 0.24 0.859 74.80 0.25
0.922 67.38 0.24 0.998 33.67 0.20
0.876 57.94 0.07 0.999 19.81 0.18
0.727 10.19 0.25 0.999 11.19 0.20

0.955 67.85 0.24 0.892 36.87 0.23
0.920 51.38 0.24 0.921 27.99 0.24
0.839 51.91 0.07 0.955 16.03 0.25
0.872 9.80 0.25 0.866 9.61 0.25

0.958 89.85 0.24 0.840 73.84 0.25
0.914 66.56 0.24 0.758 31.32 0.24
0.887 60.02 0.07 1.000 19.79 0.18
0.749 10.07 0.25 0.995 10.81 0.21

0.934 92.91 0.24 0.805 82.71 0.25
0.890 69.31 0.24 0.709 59.88 0.25
0.904 64.71 0.06 0.997 20.29 0.17
0.748 10.05 0.25 0.992 10.83 0.21

0.961 86.56 0.24 0.842 70.76 0.25
0.920 63.91 0.24 0.996 32.41 0.20
0.886 58.97 0.07 0.999 19.45 0.19
0.761 10.04 0.25 0.993 10.46 0.22

0.948 84.61 0.24 0.907 59.72 0.24
0.915 64.87 0.24 0.997 33.00 0.20
0.858 64.23 0.06 0.986 20.00 0.18
0.733 10.08 0.25 0.998 10.99 0.20

0.956 81.66 0.24 0.896 59.30 0.25
0.922 61.77 0.24 1.000 32.11 0.21
0.858 61.43 0.06 0.994 19.26 0.19
0.748 10.06 0.25 0.997 10.61 0.22

0.968 46.75 0.25 0.835 25.77 0.25
0.936 36.99 0.24 0.392 47.22 0.25
0.965 17.85 0.22 0.612 17.35 0.18
0.841 9.97 0.25 0.865 9.76 0.25

0.873 74.44 0.25 0.999 41.41 0.23
0.867 59.23 0.24 1.000 31.02 0.23
0.886 61.90 0.07 1.000 20.34 0.17
0.749 10.07 0.25 1.000 10.35 0.23

0.801 21.53 0.25
0.343 48.60 0.25
0.593 15.59 0.21
0.770 9.61 0.25

0.806 72.61 0.25
0.842 55.71 0.24
0.884 60.67 0.07
0.758 10.03 0.25
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TABLE VIII. ~Continued from Table V.! Fitting factors between several PN models, at 2PN and 3PN orders. P

EP(2,2.5) EP(3,3.5,0) HT(2,2) HT(3,3.5,0)
mm M h mm M h mm M h mm M h m

T(2,2) (20120)M ( 0.953 41.67 0.24 0.952 43.00 0.24 0.951 80.34 0.24 0.855 56.69 0.24
(15115)M ( 0.962 30.41 0.24 0.991 35.32 0.17 0.899 58.93 0.24 0.997 33.03 0.20
(1515)M ( 0.988 19.11 0.20 0.992 20.93 0.17 0.924 69.96 0.05 0.998 19.38 0.19
(515)M ( 0.997 10.33 0.23 0.998 11.09 0.20 0.788 9.93 0.25 0.998 10.92 0.21

T(2,2.5) (20120)M ( 0.908 31.37 0.25 0.929 32.98 0.25 0.959 58.39 0.24 0.928 35.74 0.24
(15115)M ( 0.861 24.52 0.25 0.893 25.58 0.25 0.932 53.46 0.17 0.926 26.82 0.25
(1515)M ( 0.822 15.40 0.25 0.867 15.81 0.25 0.790 16.59 0.25 0.903 15.81 0.25
(515)M ( 0.814 9.52 0.25 0.839 9.59 0.25 0.941 9.63 0.25 0.838 9.52 0.25

T(3,3.5,0) (20120)M ( 0.925 40.09 0.24 0.918 42.90 0.24 0.940 80.76 0.24 0.833 57.71 0.24
(15115)M ( 0.955 29.98 0.24 0.937 30.78 0.24 0.887 58.83 0.24 0.996 32.67 0.20
(1515)M ( 0.983 19.68 0.18 0.985 20.97 0.16 0.926 69.81 0.05 0.999 19.47 0.19
(515)M ( 0.992 9.99 0.24 0.997 10.40 0.22 0.826 9.83 0.25 0.993 10.48 0.22

P(2,2.5) (20120)M ( 0.866 41.72 0.24 0.859 43.14 0.24 0.912 83.09 0.24 0.795 65.45 0.24
(15115)M ( 0.898 30.06 0.24 0.963 38.21 0.14 0.857 62.07 0.24 0.992 33.28 0.19
(1515)M ( 0.966 20.48 0.17 0.966 21.86 0.15 0.907 70.42 0.05 0.993 20.08 0.17
(515)M ( 0.995 9.79 0.25 0.994 10.43 0.22 0.825 9.81 0.25 0.990 10.51 0.22

P(3,3.5,0) (20120)M ( 0.960 40.10 0.23 0.953 41.06 0.24 0.943 76.61 0.24 0.835 53.85 0.24
(15115)M ( 0.965 29.33 0.24 0.966 30.14 0.24 0.893 56.29 0.24 0.993 31.83 0.20
(1515)M ( 0.982 18.87 0.20 0.983 20.29 0.17 0.926 68.98 0.05 0.996 19.15 0.19
(515)M ( 0.973 9.74 0.25 0.998 9.85 0.25 0.849 9.81 0.25 0.992 10.02 0.24

EP(2,2.5) (20120)M ( 0.996 41.72 0.24 0.953 75.09 0.24 0.929 47.51 0.24
(15115)M ( 0.999 32.66 0.21 0.908 56.68 0.24 0.889 32.89 0.24
(1515)M ( 0.999 21.35 0.16 0.909 70.41 0.05 0.992 19.52 0.19
(515)M ( 0.999 10.75 0.21 0.807 9.84 0.25 0.997 10.69 0.21

EP(3,3.5,0) (20120)M ( 0.995 38.25 0.25 0.958 72.99 0.24 0.918 45.74 0.24
(15115)M ( 0.992 28.77 0.25 0.938 70.37 0.14 0.999 31.41 0.21
(1515)M ( 0.999 18.53 0.20 0.905 69.04 0.05 0.998 18.97 0.20
(515)M ( 0.982 9.74 0.25 0.832 10.00 0.24 0.996 10.24 0.23

HT(2,2) (20120)M ( 0.794 21.34 0.25 0.815 22.35 0.25 0.840 24.31 0.25
(15115)M ( 0.651 18.40 0.24 0.674 19.03 0.24 0.377 37.58 0.25
(1515)M ( 0.624 14.96 0.25 0.632 15.15 0.25 0.608 17.70 0.17
(515)M ( 0.817 9.72 0.25 0.845 9.74 0.25 0.845 9.74 0.25

HT(3,3.5,0) (20120)M ( 0.904 34.61 0.24 0.920 37.64 0.24 0.903 65.68 0.24
(15115)M ( 0.891 27.49 0.25 0.926 28.59 0.25 0.883 49.56 0.24
(1515)M ( 0.986 20.73 0.16 0.986 21.99 0.15 0.919 71.02 0.05
(515)M ( 0.964 9.75 0.25 0.993 9.79 0.25 0.834 9.83 0.25

HP(2,2.5) (20120)M ( 0.762 18.74 0.25 0.784 19.44 0.25 0.973 36.64 0.21 0.794 20.75 0.24
(15115)M ( 0.595 16.37 0.24 0.617 16.40 0.24 0.931 27.84 0.21 0.329 40.09 0.25
(1515)M ( 0.577 16.04 0.20 0.599 14.32 0.25 0.957 22.10 0.14 0.589 15.53 0.21
(515)M ( 0.741 9.50 0.25 0.754 9.53 0.25 0.975 11.46 0.18 0.755 9.52 0.25

HP(3,3.5,0) (20120)M ( 0.832 31.43 0.25 0.840 35.15 0.25 0.850 60.63 0.25 0.974 37.71 0.25
(15115)M ( 0.831 26.96 0.25 0.860 28.03 0.25 0.852 46.65 0.24 0.975 28.95 0.25
(1515)M ( 0.986 20.13 0.17 0.986 21.50 0.15 0.922 70.24 0.05 1.000 19.64 0.18
(515)M ( 0.933 9.72 0.25 0.971 9.75 0.25 0.857 9.80 0.25 0.991 9.75 0.25
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r 3 H ṙ n̂F S 87

14
248h D v42S 5379

28
1

136

3
h D v2

M

r
1

25

2
~115h!v2ṙ 21S 1353
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For the sake of convenience, in this section we are using
same symbols as Sec. IV A to denote different physi
quantities~such as coordinates in different gauges!. Here the
vectorx[x12x2 is the difference, in pseudo–Cartesian h
monic coordinates@49#, between the positions of the BH
centers of mass; the vectorv5dx/dt is the corresponding
velocity; the scalarr is the ~coordinate! length of x; the
vector n̂[x/r ; and overdots denote time derivatives wi
respect to the post–Newtonian time. We have included
ther the 3PN order correctionsa3PN derived in Ref.@51# nor
the 4.5PN order terma4.5PN for the radiation-reaction force
computed in Ref.@63#. Unlike the Hamiltonian models
where the radiation-reaction effects were averaged over
cular orbits but were present up to 3PN order, here radiat
reaction effects are instantaneous, and can be used to
pute generic orbits, but are given only up to 1PN ord
beyond the leading quadrupole term.

We compute waveforms in the quadrupole approximat
of Eq. ~29!, defining the orbital phasew as the angle betwee
x and a fixed direction in the orbital plane, and the inva
antly defined velocityv as (M ẇ)1/3.

2. Definition of the models

For these models, just as for theHT andHP models, the
choice of the endpoint of evolution is rather arbitrary. W
decided to stop the integration of the dynamical equati
when we begin to observe unphysical effects due to the
ure of the PN expansion. For many~if not all! configurations,
the PN-expanded center-of-mass binding energy@given by
Eqs.~2.7a!–~2.7e! of Ref. @20## begins to increase during th
late inspiral, instead of continuing to decrease. When
happens, we stop the integration. The instantaneous GW
quency at that time will then be theending frequencyfor
these waveforms. We shall refer to these models
L(nPN,mPN), wherenPN (nPN) denotes the maximum PN
order of the terms included in the Hamiltonian~the radiation-
reaction force!. We shall consider (nPN,mPN)
5(2,0),(2,1).

3. Waveforms and matches

In Fig. 11 we plot the frequency-domain amplitude vers
frequency for theL-approximated~restricted! waveforms, at
02401
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different PN orders, for a (15115)M ( BBH. The amplitude
deviates from the Newtonian prediction slightly befo
100 Hz. Indeed, the GW ending frequencies are 116 Hz
107 Hz for the L(2,0) and L(2,1) models, respectively
These frequencies are quite low, because the unphysica
havior of the PN-expanded center-of-mass binding ene
appears quite early@at r end56.6 andr end57.0 for theL(2,0)
and L(2,1) models, respectively#. So theL models do not
provide waveforms for the last stage of inspirals and plun

Table IX shows the maxmax matches between theL ap-
proximants and a few other selected PN models. The o
laps are quite high, except with theEP(2,2.5) and
EP(3,3.5,0) at high masses, but extremely unfaithful. Mo
over, we could expect theL(2,0) andL(2,1) models to have
high fitting factors with the adiabatic modelsT(2,0) and
T(2,1). However, this is not the case. As Table X shows,
T models are neither effectual nor faithful in matching theL
models, and vice versa. This might be due to one of
following factors:~i! the PN-expanded conservative dynam
ics in the adiabatic limit (T models! and in the nonadiabatic
case (L models! are rather different;~ii ! there is an important
effect due to the different criteria used to end the evolution
the two models, which make the ending frequencies rat
different. All in all, theL models do not seem very reliable
so we shall not give them much credit when we discu
detection template families. However, we shall investig
where they lie in the detection template space.

C. Nonadiabatic PN resummed methods:
The effective-one-body approach

The basic idea of the effective-one-body~EOB! approach
@15# is to map thereal two-body conservative dynamics
generated by the Hamiltonian~56! and specified up to 3PN
order, onto aneffectiveone-body problem where a test pa
ticle of massm5m1m2 /M ~with m1 andm2 the BH masses,
and M5m11m2) moves in an effective background metr
gmn

eff given by

dseff
2 [gmn

eff dxmdxn52A~R!c2dt21
D~R!

A~R!
dR2

1R2~du21sin2u dw2!, ~81!
6-21
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where

A~R!511a1

GM

c2R
1a2S GM

c2R
D 2

1a3S GM

c2R
D 3

1a4S GM

c2R
D 4

1•••, ~82!

D~R!511d1

GM

c2R
1d2S GM

c2R
D 2

1d3S GM

c2R
D 3

1•••.

~83!

The motion of the particle is described by the action

Seff52mcE dseff . ~84!

For the sake of convenience, in this section we shall use
same symbols of Secs. IV A and IV B 2 to denote differe
physical quantities~such as coordinates in different gauge!.
The mapping between the real and the effective dynamic
worked out within the Hamilton-Jacobi formalism, by im
posing that the action variables of the real and effective
scription coincide~i.e., Jreal5Jeff , Ireal5Ieff , where J de-
notes the total angular momentum, andI the radial action
variable@15#!, while allowing the energy to change,

Eeff
NR

mc2
5

Ereal
NR

mc2 F11a1

Ereal
NR

mc2
1a2S Ereal

NR

mc2D 2

1a3S Ereal
NR

mc2D 3

1•••G ,

~85!

hereE eff
NR is the nonrelativisticeffectiveenergy, while is re-

lated to the relativistic effective energyEeff by the equation
E eff

NR5Eeff2mc2; Eeff is itself defined uniquely by the actio
~84!. The nonrelativisticreal energyEreal

NR[H(q,p), where

H(q,p) is given by Eq.~56! with H(q,p)5mĤ(q,p). From
now on, we shall relax our notation and setG5c51.

1. Equations of motion

Damour, Jaranowski and Scha¨fer @17# found that, at 3PN
order, this matching procedure contains more equation
satisfy than free parameters to solve for (a1 , a2 , a3 , d1 , d2 ,
d3 , anda1 , a2 , a3). These authors suggested the followi
two solutions to this conundrum. At the price of modifyin

FIG. 11. Frequency-domain amplitude versus frequency for
L-approximated~restricted! waveforms, at different PN orders, for
(15115)M ( BBH.
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TABLE X. Fitting factors@see Eq.~20!# for the projection of theL(2,1) andL(2,0) ~target! waveforms
onto theT(2,0) andT(2,1) ~search! models. The values quoted are obtained by maximizing the max
~mm! match over the search-model parametersM andh.

L(2,0) T(2,0) L(2,1) T(2,1)
mm M h mm M h mm M h mm M h

(15115)M ( 0.884 42.02 0.237
L(2,0) (1515)M ( 0.769 24.71 0.201

(515)M ( 0.996 21.70 0.068

(15115)M ( 0.834 23.44 0.247
T(2,0) (1515)M ( 0.823 14.90 0.247

(515)M ( 0.745 9.11 0.250

(15115)M ( 0.837 60.52 0.236
L(2,1) (1515)M ( 0.844 55.70 0.052

(515)M ( 0.626 11.47 0.238

(15115)M ( 0.663 19.38 0.250
T(2,1) (1515)M ( 0.672 13.56 0.250

(515)M ( 0.631 9.22 0.243
c
t
ic
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-
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e
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g

the energy map and the coefficients of the effective metri
the 1PN and 2PN levels, it is still possible at 3PN order
map uniquely the real two-body dynamics onto the dynam
of a test mass moving on a geodesic~for details, see Appen
dix A of Ref. @17#!. However, this solution appears very com
plicated; more importantly, it seems awkward to have
compute the 3PN Hamiltonian as a foundation for deriv
the matching at the 1PN and 2PN levels. The second solu
is to abandon the hypothesis that the effective test m
moves along a geodesic, and to augment the Hamilton-Ja
ia
i-

er
N
In
tio
a

02401
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o
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equation with~arbitrary! higher-derivative terms that provid
enough coefficients to complete the matching. With this p
cedure, the Hamilton-Jacobi equation reads

05m21geff
mh~x!pmph1Amhrs~x!pmphprps1•••.

~86!

Because of the quartic termsAabgd, the effective 3PN rela-
tivistic Hamiltonian is not uniquely fixed by the matchin
rules defined above; the general expression is@17#:
E eff
NR[Ĥeff~q,p!5AA~q!F11p21S A~q!

D~q!
21D ~n•p!21

1

q2
@z1~p2!21z2p2~n•p!21z3~n•p!4#G , ~87!
nal

the

oor-
here we use the reduced relativistic effective Hamilton
Ĥeff5Heff /m, and q and p are the reduced canonical var
ables, obtained by rescaling the canonical variables byM and
m, respectively. The coefficientsz1 , z2 andz3 are arbitrary,
subject to the constraint

8z114z213z356~423h!h. ~88!

Moreover, we slightly modify the EOB model at 3PN ord
of Ref. @17# by requiring that in the test-mass limit the 3P
EOB Hamiltonian equals the Schwarzschild Hamiltonian.
deed, one of the original rationales of the PN resumma
methods was to recover known exact results in the test-m
limit. To achieve this,z1 , z2 and z3 must go to zero ash
→0. A simple way to enforce this limit is to setz15h z̃1 ,
z25h z̃2 andz35h z̃3 . With this choice the coefficientsA(r )
andD(r ) in Eq. ~87! read
n

-
n
ss

A~r !512
2

r
1

2h

r 3
1F S 94

3
2

41

32
p2D2 z̃1G h

r 4
, ~89!

D~r !512
6h

r 2
1@7z̃11 z̃21~3h226!#

h

r 3
, ~90!

where we setr 5uqu. The authors of Ref.@17# restricted
themselves to the casez15z250 (z̃15 z̃250). Indeed, they
observed that for quasicircular orbits the terms proportio
to z2 and z3 in Eq. ~87! are very small, while for circular
orbits the term proportional toz1 contributes to the coeffi-
cient A(r ), as seen in Eq.~89!. So, if the coefficientz1

5h z̃1Þ0, its value could be chosen such as to cancel
3PN contribution inA(r ). To avoid this fact, which can be
also thought as a gauge effect due to the choice of the c
6-23
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FIG. 12. In the left panel we plot the binding energy evaluated using the improved Hamiltonian~91! as a function of the velocity

parameterv for equal-mass BBHs,h50.25. We plot different PN orders for theE model varying also the parameterz̃1 . In the right panel

we plot the GW frequency at the ISCO at 3PN order as a function of the parameterz̃1 for (15115)M ( BBH.
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dinate system in the effective description, the authors of R
@17# decided to posez150 (z̃150). By contrast, in this pa-
per we prefer to explore the effect of havingz1,2Þ0. So we
shall depart from the general philosophy followed by t
authors in Ref.@17#, pushing~or expanding! the EOB ap-
proach to more extreme regimes.

Now, the reduction to the one-body dynamics fixes
arbitrary coefficients in Eq.~85! uniquely to a15h/2, a2
50, and a350, and provides theresummed~improved!
Hamiltonian @obtained by solving forEreal

NR in Eq. ~85! and
imposingH improved[Ereal

NR]:

H improved5M A112h S Heff2m

m D . ~91!

Including radiation-reaction effects, we can then write t
Hamilton equations in terms of the reduced quantit
Ĥ improved5H improved/m, t̂5t/M , v̂5v M @16#,

dr

d t̂
5

]Ĥ improved

]pr
~r ,pr ,pw!, ~92!

dw

d t̂
[v̂5

]Ĥ improved

]pw
~r ,pr ,pw!, ~93!

dpr

dt
52

]Ĥ improved

]r
~r ,pr ,pw!, ~94!

dpw

d t̂
5F̂w@v̂~r ,pr ,pw!#, ~95!
02401
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where for thew component of the radiation-reaction force w
use theT andP approximants to the flux function@see Eqs.
~64!, ~65!#. Note that at each PN order, saynPN, we inte-
grate the Eqs.~92!–~95! without further truncating the partia
derivatives of the Hamiltonian atnPN order~differentiation
with respect to the canonical variables can introduce term
order higher thannPN).

Following the discussion around Eq.~68!, the ISCO of
these models is determined by setting]H0

improved/]r
5]2H0

improved/]r 250, where H0
improved(r ,pr ,pw)

5H improved(r ,0,pw). If we define

Ĥeff
2 ~r ,0,pw![Wpw

5A~r !S 11
pw

2

r 2
1h z̃1

pw
4

r 6 D , ~96!

we extract the ISCO by imposing]Wpw
(r )/]r 50

5]2Wpw
(r )/]2r . Damour, Jaranowski and Scha¨fer @17# no-

ticed that at 3PN order, forz̃15 z̃250, and using the PN
expanded form forA(r ) given by Eq.~89!, there is no ISCO.
To improve the behavior of the PN expansion ofA(r ) and
introduce an ISCO, they proposed replacingA(r ) with the
Padéapproximants

AP2
~r !5

r ~2412r 1h!

2r 212h1rh
, ~97!

and
AP3
~r !5

r 2@~a4~h,0!18h216!1r ~822h!#

r 3 ~822h!1r 2 @a4~h,0!14h#1r @2a4~h,0!18h#14@h21a4~h,0!#
, ~98!
6-24
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where

a4~h,z̃1!5F94

3
2

41

32
p22 z̃1G h. ~99!

In Table II, we show the GW frequency at the ISCO for som
typical choices of BBH masses, computed using the ab
expressions forA(r ) in the improved Hamiltonian~91! with
z̃15 z̃250.

We use the Pade´ resummation forA(r ) of Ref. @17# also
for the general casez̃1Þ0, because for the PN expande
form of A(r ) the ISCO does not exist for a wide range
values of z̃1 . @However, when we discuss Fourier-doma

FIG. 13. Binding energy as a function of the velocity parame
v for equal-mass BBHs. We plot different PN orders for selec

PN models. For theE model at 3PN order we fixz̃1505 z̃2 .
02401
e
e

detection template families in Sec. VI, we shall investiga
also EOB models with PN-expandedA(r ).]

In Fig. 12 we plot the binding energy as evaluated us
the improved Hamiltonian~91!, at different PN orders, for
equal-mass BBHs. At 3PN order, we use as typical val
z̃150,64. ~For z̃1.4 the location of the ISCO is no longe
a monotonic function ofz̃1 . So we setz̃1<4.) In the right
panel of Fig. 12, we show the variation in the GW frequen
at the ISCO as a function ofz̃1 for a (15115)M ( BBH.
Finally, in Fig. 13, we compare the binding energy for a fe
selected PN models, where for theE models we fixz̃15 z̃2
50 ~see the left panel of Fig. 12 for the dependence of
binding energy on the coefficientz̃1). Notice in the left panel
that the 2PN and 3PNT energies are much closer to ea
other than the 2PN and 3PNP energies are, and than the 2P
and 3PNE energies are; notice also that the 3PNT and P
energies are very close. The closeness of the binding e
gies ~and of the MECOs and ISCOs! predicted by PN ex-
panded and resummed models at 3PN order~with z̃150),
and of the binding energy predicted by the numerical qua
equilibrium BBH models of Ref.@26# was recently pointed
out in Refs.@58,59#. However, the EOB results are very clos
to the numerical results of Ref.@26# only if the range of
variation of z̃1 is restricted.

2. Definition of the models

For these models, we use the initial conditions laid do
in Ref. @40#, and also adopted in this paper for theHT and
HP models~see Sec. IV A!. At 2PN order, we stop the inte

r
d

imum was

.242

.162

.231

.240

.175

.240

.240

.175

.240

.240

.175

.240
TABLE XI. Fitting factors for the projection ofEP(3,3.5,0) templates onto themselves, for various choices of the parametersz1 andz2 .
The values quoted are obtained by maximizing the maxmax~mm! match over the mass parameters of the~search! models in the columns,
while keeping the mass parameters of the~target! models in the rows fixed to their quoted values, (15115)M ( , (1515)M ( (5
15)M ( . The three numbers shown at each intersection are the maximized match and the search parameters at which the max

attained. In labeling rows and columns we use the notationEP(3,3.5,û,z1 ,z2). See the caption to Table VIII for further details.

EP(3,3.5,2,24,0) EP(3,3.5,2,0,24) EP(3,3.5,2,0,0) EP(3,3.5,2,0,4) EP(3,3.5,2,4,0)
mm M h mm M h mm M h mm M h mm M h

(15115)M ( 0.995 30.93 0.238 0.994 30.85 0.240 0.995 30.87 0.239 0.952 31.17 0
EP(3,3.5,2,24,0) (1515)M ( 0.998 20.61 0.177 0.999 20.71 0.176 0.999 20.60 0.177 0.993 21.59 0

(515)M ( 0.999 10.22 0.240 0.999 10.22 0.240 0.999 10.22 0.240 0.996 10.46 0

(15115)M ( 0.983 30.12 0.241 0.999 30.47 0.240 0.999 30.43 0.241 0.987 30.88 0
EP(3,3.5,2,0,24) (1515)M ( 0.999 19.28 0.201 1.000 20.06 0.186 1.000 20.03 0.187 0.999 20.70 0

(515)M ( 0.993 10.01 0.249 0.996 10.19 0.241 0.996 10.19 0.241 0.998 10.22 0

(15115)M ( 0.983 30.12 0.241 0.999 30.47 0.241 0.999 30.42 0.241 0.987 30.88 0
EP(3,3.5,2,0,0) (1515)M ( 0.999 19.26 0.202 1.000 20.06 0.186 1.000 20.03 0.187 0.999 20.70 0

(515)M ( 0.993 9.99 0.250 1.000 10.00 0.250 0.996 10.19 0.241 0.998 10.22 0

(15115)M ( 0.982 30.12 0.241 0.999 30.54 0.240 0.999 30.54 0.240 0.987 30.88 0
EP(3,3.5,2,0,4) (1515)M ( 0.999 19.35 0.200 1.000 20.05 0.187 1.000 19.98 0.188 0.998 20.73 0

(515)M ( 0.993 10.01 0.249 1.000 10.00 0.250 0.996 10.19 0.241 0.998 10.22 0

(15115)M ( 0.929 29.60 0.240 0.968 30.11 0.242 0.968 30.16 0.240 0.967 30.15 0.240
EP(3,3.5,2,4,0) (1515)M ( 0.992 18.42 0.219 0.998 19.29 0.201 0.998 19.36 0.199 0.998 19.29 0.201

(515)M ( 0.970 10.17 0.241 0.993 9.99 0.250 0.993 9.99 0.250 0.993 9.99 0.250
6-25
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BUONANNO, CHEN, AND VALLISNERI PHYSICAL REVIEW D 67, 024016 ~2003!
gration of the Hamilton equations at the light ring given
the solution of the equationr 323r 215h50 @16#. At 3PN
order, the light ring is defined by the solution of

d

du
@u2 AP3

~u!#50, ~100!

with u51/r andAP3
is given by Eq.~98!. For some configu-

rations, the orbital frequency and the binding energy star
decrease before the binary can reach the 3PN light ring

we stop the evolution whenv̇̂50 ~see the discussion in Se
IV D !. For other configurations, it happens that the rad
velocity becomes comparable to the angular velocity bef
the binary reaches the light ring; in this case, the approxim
tion used to introduce the RR effects into the conserva
dynamics is no longer valid, and we stop the integration
the Hamilton equations whenu ṙ /(r ẇ)u reaches 0.3. For som
models, usually those withz̃1,2Þ0, the quantityu ṙ /(r ẇ)u
reaches a maximum during the last stages of evolution, t
it starts decreasing, andṙ becomes positive. In such case
we choose to stop at the maximum ofu ṙ /(r ẇ)u. In any of
these cases, the instantaneous GW frequency at the
when the integration is stopped defines theending frequency
for these waveforms.

We shall refer to the EOB models (E approximants! as
ET(nPN,mPN) ~when theT approximant is used for the
flux! or EP(nPN,mPN) ~when theP approximant is used fo
the flux!, wherenPN (mPN) denotes the maximum PN ord
of the terms included in the Hamiltonian~flux!. We shall
consider (nPN,mPN)5(1,1.5), (2,2.5), and (3,3.5,û) @at
3PN order we need to indicate also a choice of the arbitr
flux parameterû].

3. Waveforms and matches

In Table XI, we investigate the dependence of theE wave-
forms on the values of the unknown parametersz̃1 and z̃2
that appear in the EOB Hamiltonian at 3PN order. The co

TABLE XII. Test for the Cauchy convergence of theEP ap-
proximants. The values quoted assume optimization on the extr
parameters but the same intrinsic parameters~i.e., they assume the
same masses!. Here we defineEP05EP(0,0), EP15EP(1,1.5),

EP25EP(2,2.5), andEP35EP(3,3.5,û,z̃15 z̃250). The values
in parentheses are the maxmax matches obtained by maxim
with respect to the extrinsicand intrinsic parameters, shown to
gether with theEPN11 parametersM andh where the maxima are
attained. In all cases the integration of the equations is started
GW frequency of 20 Hz.

N ^EPN ,EPN11&
(5120)M ( (10110)M ( (15115)M (

0 0.677 0.584 (0.769, 17.4, 0.246) 0.811
1 0.766 0.771 (0.999, 21.8, 0.218) 0.871

2(û512) 0.862 0.858 (0.999, 21.3, 0.222) 0.898

2(û522) 0.912 0.928 (0.999, 21.9, 0.211) 0.949
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ficients z̃1 and z̃2 are, in principle, completely arbitrary
When z̃1Þ0, the location of the ISCO changes, as shown
Fig. 12. Moreover, because in Eq.~87! z̃1 multiplies a term
that is not zero on circular orbits, the motion tends to beco
noncircular much earlier, and the criteria for ending the
tegration of the Hamilton equations are satisfied earlier.~See
the discussion of the ending frequency in the preceding s
tion.! This effect is much stronger in equal-mass BBHs w
high M. For example, for (15115)M ( BBHs and for z̃2
50, the fitting factor~the maxmax match, maximized overM

andh) between anEP target waveform withz̃150 andEP

search waveforms with240& z̃1,24 can well be< 0.9.
However, if we restrictz̃1 to the range@24,4#, we get very
high fitting factors, as shown in Table XI.

In Eq. ~87!, the coefficientsz̃2 and z̃3 multiply terms that
are zero on circular orbits.@The coefficientz̃2 appears also in
D(r ), given by Eq.~90!.# So their effect on the dynamics i
not very important, as confirmed by the very high match
obtained in Table XI betweenEP waveforms withz̃250 and
EP waveforms with z̃2564. It seems that the effect o
changingz̃2 is nearly the same as a remapping of the BB
mass parameters.

We investigated also the case in which we use the
expanded form forA(r ) given by Eq.~89!. For example, for
(15115)M ( BBHs and z̃250, the fitting factors between
EP target waveforms withz̃15240,24,4,40 andEP search
waveforms with z̃150 are (maxmax,M ,h)
5(0.767,39.55,0.240), ~0.993,30.83,0.241!, ~0.970,30.03,
0.241!, and ~0.915,28.23,0.242!, respectively. So the over
laps can be quite low.

In Table XII, for three typical choices of BBH masses, w
perform a convergence test using Cauchy’s criterion. T
values are quite high. However, as for theP approximants,
we have no way to test whether theE approximants are con
verging to the true limit. In Fig. 14 we plot the frequenc
domain amplitude of theEP-approximated ~restricted!
waveforms, at different PN orders, for a (15115)M ( BBH.
The evolution of the EOB models contains a plunge char
terized by quasicircular motion@16#. This plunge causes th
amplitude to deviate from the Newtonian amplitude,ANewt
5 f 27/6 around 200 Hz, which is a higher frequency than w

FIG. 14. Frequency-domain amplitude versus frequency for
EP-approximated~restricted! waveform, at different PN orders, fo
a (15115)M ( BBH.
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FIG. 15. Ending points of theH models at 3PN order for low values ofh. In the left panel, we plot as a function ofr the Hamiltonian

Ĥ(r ,pr50,pw) @given by Eq.~56!#, evaluated ath50.16 for a (5120)M ( BBH, for various values of the~reduced! angular momentumpw .

The circular-orbit solutions are found at the values ofr andĤ joined by the dashed line. Atr crit54.524 there is a critical radius, below whic

there is no circular orbit. In the right panel we plot as a function ofh the orbital angular frequencyv̂crit(h) corresponding to the critica
radius, for 0.1,h,0.21~solid line!. This curve agrees well with the ending frequencies of theHT andHP models at 3PN order, which ar
shown as dotted and dashed lines in the figure.
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found for the adiabatic models~see Figs. 4 and 7!.
In Table IV, for some typical choices of the masses,

evaluate the fitting factors between theET(2,2.5) and
ET(3,3.5) waveforms~with z̃15 z̃250) and theT(2,2.5) and
T(3,3.5) waveforms. This comparison should emphasize
effect of moving from the adiabatic orbital evolution, rule
by the energy-balance equation, to the~almost! full Hamil-
tonian dynamics, ruled by the Hamilton equations. More s
cifically, we see the effect of the differencesin the conser-
vative dynamicsbetween the PN expandedT model and the
PN resummedE model~the radiation-reaction effects are in
troduced in the same way in both models!. While the
matches are quite low at 2PN order, they are high (>0.95) at
3PN order, at least forM<30M ( , but the estimation ofm1
andm2 is poor. This result suggests that, for the purpose
signal detection as opposed to parameter estimation, the
servative dynamics predicted by the EOB resummation
by the PN expansion are very close at 3PN order, at leas
M<30M ( . Moreover, the results of Table IV suggest al
that the effect of the unknown parameterû is rather small, at
least if û is of order unity, so in the following we sha
always setû50.

In Tables V and VIII we study the difference between t
EP(2,2.5) andEP(3,3.5) models~with z̃15 z̃250), and all
the other adiabatic and nonadiabatic models. For so
choices of BBH masses, these tables show the max
matches between the search models in the columns and
target models in the rows, maximized over the search-mo
parametersM andh, with the restriction 0,h<1/4. At 2PN
order, the matches with theT(2,2.5), HT(2,2) and
HP(2,2.5) models are low, while with the matches with t
T(2,2) and P(2,2.5) models are high, at least forM
<30M ( ~but the estimation of the BH masses is poor!. At
3PN order, the matches withT(3,3.5,û), P(3,3.5,û),
HP(3,3.5,û) and HT(3,3.5,û) are quite high if M
<30M ( . However, for M540M ( , the matches can b
quite low. We expect that this happens because in this la
case the differences in the late dynamical evolution beco
crucial.
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D. Features of the late dynamical evolution
in nonadiabatic models

While studying the numerical evolution of nonadiaba
models, we encounter two kinds of dynamical behavior t
are inconsistent with the assumption of quasicircular mot
used to include the radiation-reaction effects, so when on
these two behaviors occurs, we immediately stop the inte
tion of the equations of motion. First, in the late stage
evolutionv̂ can reach a maximum, and then drop quickly

zero; so we stop the integration ifv̇̂50. Second, the radia
velocity ṙ can become a significant portion of the total spe
so we stop the integration ifṙ 50.3(r v̂).

The first behavior is found mainly in the H models at 3P
order, whenh is relatively small (&0.21). As we shall see
below, it is not characteristic of either the Schwarzschi
Hamiltonian or the EOB Hamiltonian. In the left panel o
Fig. 15, we plot the binding energy evaluated fromĤ(r ,pr
50,pw) @given by Eq.~56!# as a function ofr at h50.16, for
various values of the~reduced! angular momentumpw . As
this plot shows, there exists acritical radius, r crit , below
which no circular orbits exist. Thisr crit can be derived as
follows. From Fig. 15~left!, we deduce that

dĤ

dr
U

circ

→`, r→r crit . ~101!

Because circular orbits satisfy the conditions

pr50,
]Ĥ

]r
50, ~102!

and

dpw

dr U
circ

52
]2Ĥ

]r 2 S ]2Ĥ

]r ]pw
D 21

, ~103!

we get
6-27
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FIG. 16. Signal-to-noise ratio
at 100 Mpc versus total massM
for selected PN models. The S/N
is computed for equal-mass BBH
using the LIGO-I noise curve~28!
and the waveform expression~29!
with the rms Q58/5; for the E

model at 3PN we setz̃15 z̃250.
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dĤ

dr
U

circ

5
]Ĥ

]r
1

]Ĥ

]pw

dpw

dr
U

circ

52
]Ĥ

]pw

]2Ĥ

]r 2 S ]2Ĥ

]r ]pw
D 21

.

~104!

Combining these equations we obtain two conditions t
definer crit :

]Ĥ

]r
U

r crit

50,
]2Ĥ

]r ]pw
U

r crit

50. ~105!

In the right panel of Fig. 15, we plot the critical orbita
frequencyv̂crit as a function ofh in the range@0.1, 0.21#. In
the same figure, we show also the ending frequencies for
HT(3,3.5,62) and HP(3,3.5,62) models. For 0.1,h
,0.21, these ending frequencies are in good agreement
the critical frequenciesv̂crit ; for h.0.21, the ending condi

tion ṙ 50.3(r v̂) is satisfied beforev̇̂50. For 0.1,h
,0.21, this good agreement can be explained as follows
the H models at 3PN order withh&0.21, the orbital evolu-
tion is almost quasicircular~i.e., ṙ remains small andv̂
keeps increasing! until the critical point is reached; beyon
this point, there is no way to keep the orbit quasicircular,
the angular motion is converted significantly into radial m

tion, andv̂ begins to decrease. This behavior (v̇̂→0) is also
present in theE model in the vicinity of the light ring, be-

FIG. 17. Effect of the plunge on the signal-to-noise ratio. T
S/N is computed at 100 Mpc for equal-mass BBHs as a functio
the total mass for theT(2,2) adiabatic model~for comparison!, for
theEP(2,2.5) model with ending frequency at the ISCO, and at
light ring ~in this latter case the signal includes a plunge!. Here we
use the LIGO-I noise curve~28! and the waveform expression~29!
with the rmsQ58/5.
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cause the light ring is also a minimal radius for circular o
bits @the conditions~101! are satisfied also in this case#.
However, the behavior of the energy is qualitatively differe
for the H and E models: in theE models~just as for a test
particle in Schwarzchild spacetime! the circular-orbit energy
goes to infinity, while this is not the case for theH models.

The second behavior is usually caused by radiati
reaction effects, and accelerated by the presence of an IS
~and therefore of aplunge!. However, it is worth mentioning
another interesting way in which the criterionṙ 50.3(r v̂)
can be satisfied for someE evolutions at 3PN order. During
the late stages of evolution,ṙ sometimes increases sudden
and drastically, and the equations of motion become singu
This behavior is quite different from a plunge due to t
presence of an ISCO~in that case the equations of motion d
not become singular!. The cause of this behavior is that
3PN order the coefficientD(r ) @see Eq.~90!# can go to zero
and become negative for a sufficiently smallr. For z̃15 z̃2
50, this occurs at the radiusr D given by

r D
3 26hr D12~3h226!h50; ~106!

r D can fall outside the light ring. For example, forh50.25
we haver D52.54, while the light rings sits atr 52.31. On
the transition fromD(r ).0 to D(r ),0, the effective EOB
metric unphysical, and theE model then becomes invalid
Using the Hamiltonian equation of motion~92!, it is straight-
forward to prove that a negativeD(r ) causes the radial ve
locity to become very large:

ṙ 5
]Ĥ

]pr
}

pr

D~r !
→` as r→r D . ~107!

V. SIGNAL-TO-NOISE RATIO FOR THE TWO-BODY
MODELS

In Fig. 16 we plot the optimal signal-to-noise ratioropt for
a few selected PN models. The value ofropt is computed
using Eqs.~1! and~19! with the waveform given by Eq.~29!,
for a luminosity distance of 100 Mpc and the rmsQ58/5
@see the discussion around Eq.~29!#; for the EP model we
set z̃15 z̃250. Notice that, because theE models have a
plunge, their signal-to-noise ratios are much higher~at least
for M>30M () than those for the adiabatic models, whic
we cut off at the MECO. See also Fig. 17, which compa
the S/N for EP(2,2.5) waveforms with and without th

f

e
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DETECTION TEMPLATE FAMILIES FOR . . . PHYSICAL REVIEW D 67, 024016 ~2003!
plunge; forM520M ( , excluding the plunge decreases t
S/N by; 4% ~which corresponds to a decrease in the det
tion rate of 12% for a fixed detection threshold!; while for
M530M ( , excluding the plunge decreases the S/N by;
22%~which corresponds to a decrease in the detection rat
54%!. This result confirms the similar conclusion drawn
Ref. @13#.

Because at 2PN and 3PN order theH models do not have
a plunge, but the two BHs continue to move on quasicircu
orbits even at close separations, the number of total
cycles is increased, and so is the signal-to-noise ratio
shown in the right panel of Fig. 16. However, we do not tru
the H models much, because they show a very different
havior at different PN orders, as already emphasized in S
IV A.

VI. PERFORMANCE OF FOURIER-DOMAIN
DETECTION TEMPLATES, AND CONSTRUCTION

OF A FOURIER-DOMAIN DETECTION-TEMPLATE BANK

In the previous sections we have seen~for instance, in
Table V! that the overlaps between the various PN wa
forms are not very high, and that there could be an impor
loss in the event rate if, for the purpose of detection,
restricted ourselves toonly oneof the two-body models~see
Figs. 16 and 17!. To cope with this problem we propose th
following strategy. Weguess that the conjunction of the
waveforms from all the PN models spans a region in sig
space that includes~or almost includes! the true signals, and
we build adetectiontemplate family that embeds all the P
models in a higher-dimensional space. The PN models
we have considered~expanded and resummed, adiabatic a
nonadiabatic! rely on a wide variety of very different dy
namical equations, so the task of consolidating them und
single set of generic equations seems arduous. On the o
hand, we have reason to suspect, from the values of
matches, and from direct investigations, that the frequen
domain amplitude and phasing~the very ingredients that en
ter the determination of the matches! are, qualitatively, rather
similar functions for all the PN models. We shall therefo
create a family of templates that modeldirectly the Fourier
transform of the GW signals, by writing the amplitude a
phasing as simple polynomials in the GW frequencyf GW.
We shall build these polynomials with the specific powers
f GW that appear in the Fourier transform of PN expand
adiabatic waveforms, as computed in the stationary-ph
approximation. However, we shall not constrain the coe
cients of these powers to have the same functional de
dence on the physical parameters that they have in
scheme. More specifically, we define our generic family
Fourier-domain effective templates as

heff~ f !5Aeff~ f !eiceff( f ), ~108!

where

Aeff~ f !5 f 27/6~12a f 2/3!u~ f cut2 f !, ~109!
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ceff~ f !52p f t01f01 f 25/3~c01c1/2 f 1/31c1 f 2/31c3/2 f

1c2 f 4/31••• !, ~110!

where t0 and f0 are the time of arrival and the frequenc
domain phase offset, and whereu( . . . ) is theHeaviside step
function. This detection template family is similar in som
respects to the template banks implicitly used in fast ch
transform techniques@64#. However, because we consid
BBHs with masses 10–40M ( , the physical GW signal can
end within the LIGO frequency band; and the predictions
the ending frequency given by different PN models can
quite different. Thus, we modify also the Newtonian formu
for the amplitude, by introducing the cutoff frequencyf cut
and the shape parametera.

The significance off cut with respect to true physical sig
nals deserves some discussion. If the best match for
physical signalg is the templatehf cut

, which ends at the

instantaneous GW frequencyf cut @so thathf cut
( f ).g( f ) for

f , f cut andhf cut
( f )50 for f . f cut], then we can be certain to

lose a fraction of the optimalr that is given approximately
by

rcut

ropt

<

AE
0

f cutug̃~ f !u2

Sn~ f !
d f

AE
0

` ug̃~ f !u2

Sn~ f !
d f

.12
1

2

E
f cut

` ug̃~ f !u2

Sn~ f !
d f

E
0

` ug̃~ f !u2

Sn~ f !
d f

.

~111!

On the other hand, if we try to matchg with the same tem-
plate family without cuts~and if indeed theh’s are com-
pletely inadequate at modeling the amplitude and phasin
g abovef cut), then even the best-match templatehno cut @de-
fined byhno cut( f ).g( f ) for f , f cut, and by zero correlation
hno cut( f )g* ( f ).0 for f . f cut] will yield an additional loss
in r caused by the fact that we are spreading the power of
template beyond the range where it can successfully matcg.
Mathematically, this loss comes from the different norm
ization factor for the templateshf cut

and hno cut, and it is
given by

rno cut

rcut

<

AE
0

f cutuh̃~ f !u2

Sn~ f !
d f

AE
0

` uh̃~ f !u2

Sn~ f !
d f

.12
1

2

E
f cut

` uh̃~ f !u2

Sn~ f !
d f

E
0

` uh̃~ f !u2

Sn~ f !
d f

.

~112!

If we assume thatg andhno cut have roughly the same ampl
tude distribution, the two losses are similar.

In the end, we might be better off cutting templates if w
cannot be sure that their amplitude and phasing, beyon
certain frequency, are faithful representations of the true
nal. Doing so, we approximately halve theworst-caseloss of
r, because instead of losing a factor
6-29
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TABLE XIII. Fitting factors for the projection of the target models~in the rows! onto the (c0 ,c3/2,a, f cut) Fourier-domain detection
template family. For ten choices of BBH masses, this table shows the minmax matches between the target~adiabatic! models and the
Fourier-domain search model,maximized over the intrinsic parametersc0 , c3/2, anda, f cut , and over the extrinsic parametera. For each
intersection, the six numbers shown report theending frequency fend ~defined in Sec. VI B! of the PN model for the BBH masses quoted, t
minmax FF mn, and the search parameters at which the maximum is attained.
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rno cut

rcut

rcut

ropt
.12

1

2

E
f cut

` uh̃~ f !u2

Sn~ f !
d f

E
0

` uh̃~ f !u2

Sn~ f !
d f

2
1

2

E
f cut

` ug̃~ f !u2

Sn~ f !
d f

E
0

` ug̃~ f !u2

Sn~ f !
d f

.12

E
f cut

` ug̃~ f !u2

Sn~ f !
d f

E
0

` ug̃~ f !u2

Sn~ f !
d f

, ~113!
02401
we lose only the factorrcut/ropt. On the other hand, we do
not want to lose the signal-to-noise ratio that is accumula
at high frequencies if our templates have a fighting chanc
matching the true signal there; so it makes sense to includ
the detection bank thesametemplate with several differen
values off cut.

It turns out that using only the two parametersc0 andc3/2
in the phasing~and setting all otherc coefficients to zero!
and the two amplitude parameters,f cut and a, we obtain a
family that can already match all the PN models of Secs.
and IV with high fitting factors FF. This is possible large
because we restrict our focus to BBHs with relatively hi
6-32
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DETECTION TEMPLATE FAMILIES FOR . . . PHYSICAL REVIEW D 67, 024016 ~2003!
masses, where the number of GW cycles in the LIGO ra
@and thus the total range of the phasingc( f ) that we need to
consider# is small.

In Table XIII we list the minmax~see Sec. II! fitting fac-
tor for the projection of the PN models onto our frequenc
domain effective templates, for a set of BBH masses rang
from (515)M ( to (20120)M ( . In computing the fitting
factors, we used the simplicial search algorithmAMOEBA

@65# to search for the optimal set of paramete
(c0 , c3/2, f cut, a) ~as always, the time of arrival and initia
phase of the templates were automatically optimized as
scribed in Sec. II!. From Table XIII we draw the following
conclusions:

~1! All the adiabatic models (T andP) are matched with
fitting factors FF.0.97. Lower-mass BBHs are matched b
ter than higher-mass BBHs, presumably because for the
ter the inspiral ends at lower frequencies within the LIG
band, producing stronger edge effects, which the effec
templates cannot capture fully. 3PN models are matched
ter than 2PN models.

~2! The effective-one-body models (ET and EP) are
matched even better than the adiabatic models, presum
because they have longer inspirals and less severe edg
fects at the end of inspiral. Unlike the adiabatic mode
however,ET and EP are matched better for higher-ma
BBHs. In fact, all the FFs are.0.99 except for (515)M (

BBHs, where FF*0.979. The reason for this is probably th
this low-mass BBH has more GW cycles in the LIGO fr
quency band than any other one, and the two phasing pa
eters of our effective templates cannot quite model the e
lution of the phasing.~In the adiabatic models, these effec
may be overshadowed by the loss in signal to noise ratio
to the edge effects at high frequencies.! When the parameter
z̃1,2 are allowed to be nonzero, the matches get worse, bu
by much. For all the plausible values ofz̃1 , the worst situa-
tion seems to happen atz̃15240, where the overlaps ar
still higher than;0.95 ~with minimum 0.947!.

~3! The Hamiltonian models (HT andHP) at 3PN order
are not matched as precisely, but the detection template
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ily still works reasonably well. We usually have FF.0.96,
but there are several exceptions, with FF as low as 0.948.
these models, the overlaps are lower in the equal-mass c
where the ending frequencies of the waveforms are m
higher than for the other models; it seems that the effec
templates are not able to reproduce this late portion of
waveforms~this might not be so bad, because it does n
seem likely that this part of the signal reflects the true
havior of BBH waveforms!.

~4! The Lagrangian models~L! are matched a bit worse
than the Hamiltonian models (HT andHP) at 3PN, but they
still have FF higher than 0.95 in most cases, with seve
exceptions@at either (20120)M ( or (515)M (], which
can be as low as 0.93.

~5! HT and HP models at 2PN are matched the wor
with typical values lower than 0.95 and higher than 0.85.

Finally, we note that our amplitude functionAeff( f ) is a
linear combination of two terms, so we can search autom
cally over the correction coefficienta, in essentially the
same way as discussed in Sec. II for the orbital phase
other words,a is an extrinsic parameter. ~Although we do
search overa, it is only to show the required range, whic
will be a useful piece of information when one is decidin
how to lay down a mesh of discrete templates on the c
tinuous detection-template space.!

A. Internal match and metric

To understand the matches between the Fourier-dom
templates and the PN models, and to prepare to compute
number of templates needed to achieve a given~internal!
MM, we need to derive an expression for the match betw
two Fourier-domain effective templates.

We shall first restrict our consideration to effective tem
plates with the same amplitude function~i.e., the samea and
f cutoff). The overlap ^h(c0 ,c3/2),h(c01Dc0 ,c3/2
1Dc3/2)& between templates with close values ofc0 and
c3/2 can be described~to second order inDc0 andDc3/2) by
the mismatch metricgi j @29#:
^h~c0 ,c3/2!,h~c01Dc0 ,c3/21Dc3/2!&512 (
i , j 50,3/2

gijDc iDc j . ~114!

The metric coefficientsgi j can be evaluated analytically from the overlap

^h~c0 ,c3/2!,h~c01Dc0 ,c3/21Dc3/2!&.F max
Df0 ,Dt0

E d f
uA~ f !u2

Sh~ f !
cosS (

i

Dc i

f ni
1Df012p f Dt0D G Y F E d f

uA~ f !u2

Sh~ f ! G ~115!

.12
1

2 F max
Df0 ,Dt0

E d f
uA~ f !u2

Sh~ f ! S (
i

Dc i

f ni
1Df012p f Dt0D 2G Y F E d f

uA~ f !u2

Sh~ f ! G ,
~116!

wheren0[5/3 andn3/2[2/3. Comparison with Eq.~114! then gives
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(
i , j

gij Dc iDc j5
1

2
min

Df0 ,Dt0

H ~Dc0 Dc3/2!M (1)S Dc0

Dc3/2
D 12~Df0 2pDt0!M (2)S Dc0

Dc3/2
D ~117!

1~Df0 2pDt0!M (3)S Df0

2pDt0
D J , ~118!

FIG. 18. In the left panel, we plot the iso-match contours for the function^h(c0 ,c3/2),h(c01Dc0 ,c3/21Dc3/2)&; contours are given a
matches of 0.99, 0.975 and 0.95. Solid lines give the indications of the mismatch metric; dashed lines give actual values. Here
Newtonian amplitude functionA( f )5 f 27/6 ~we set a50 and we do not cut the template in the frequency domain. In fact,f cut

5400 Hz). In the right panel we plot the values ofD f cut ~versusf cut) required to obtain matches^h( f cut),h( f cut1D f cut)& of 0.95~uppermost
curve!, 0.975 and 0.99~lowermost!. In the region below each contour the match is larger than the value quoted for the contour. Agai
we use a Newtonian amplitude functionA( f )5 f 27/6 ~we seta50).
E
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where theM (1) . . . (3) are the matrices

M (1)5F J~2n0! J~n01n3/2!

J~n01n3/2! J~2n3/2!
G , ~119!

M (2)5F J~n0! J~n3/2!

J~n021! J~n3/221!
G , ~120!

M (3)5F J~0! J~21!

J~21! J~22!
G , ~121!

and where

J~n![F E d f
uA~ f !u2

Sh~ f !

1

f nG Y F E d f
uA~ f !u2

Sh~ f ! G . ~122!

SinceM (3) describes the mismatch caused by (Df0 ,Dt0), it
must be positive definite; because the right-hand side of
~117! reaches its minimum with respect to variations ofDf0
andDt0 when

2M (2)S Dc0

Dc3/2
D 12M (3)S Df0

2pDt0
D 50, ~123!

we obtain

gij5
1

2
@M (1)2M (2)

T M (3)
21M (2)# i j . ~124!

We note also that the mismatcĥh(c0 ,c3/2),h(c0
1Dc0 ,c3/21Dc3/2)& is translationally invariant in the
(c0 ,c3/2) plane, so the metricgi j is constant everywhere. In
02401
q.

the left panel of Fig. 18 we plot the iso-match contours~at
matches of 0.99, 0.975 and 0.95! in the (Dc0 ,Dc3/2) plane,
as given by the metric~124! ~solid ellipses!, compared with
the actual values obtained from the numerical computa
of the matches~dashed lines!. For our purposes, the secon
order approximation given by the metric is quite acceptab
In this computation we use a Newtonian amplitude funct
A( f )5 f 27/6 ~i.e., we seta50 and we set our cutoff fre-
quency at 400 Hz).

We move now to the mismatch induced by different cut
frequenciesf cut. Unlike the case of thec0 , c3/2 parameters,
this mismatch is first order inD f cut, so it cannot be de-
scribed by a metric. Suppose that we have two effective te
platesh( f cut) andh( f cut1D f cut) with the same phasing an
amplitudeD f .0, but different cutoff frequencies. The matc
is then given by

FIG. 19. Projection of theET(2,2.5) waveforms onto the
frequency-domain effective template space. Fora we choose the
optimal value found by the search. The (c0 ,c3/2, f cut) surface is
interpolated from the then mass pairs shown in Table III.
6-34
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^h~ f cut!,h~ f cut1D f cut!&

5

F E
0

f cut
d f

uA~ f !u2

Sh~ f ! G
F E

0

f cut
d f

uA~ f !u2

Sh~ f ! G1/2F E
0

f cut1D f cut
d f

uA~ f !u2

Sh~ f ! G1/2

~125!

5F E
0

f cut
d f

uA~ f !u2

Sh~ f !

E
0

f cut1D f cut
d f

uA~ f !u2

Sh~ f !

G 1/2

.12FD f cut

2

uA~ f cut!u2

Sh~ f cut!
G Y F E

0

f cut
d f

uA~ f !u2

Sh~ f ! G1/2

.

~126!

This result depends strongly onf cut. In the right panel of
Fig. 18 we plot the values ofD f cut that correspond to
matches of 0.95, 0.975 and 0.99, according to the first o
approximation~solid lines!, and to the exact numerical ca
culations~dashed lines!, both of which are given in the sec
ond line of Eq.~126!. In the region below each contour th
match is larger than the value that characterizes the con
As we can see from the graph, the linear approximation
not very accurate, thus in the following we shall use t
exact formula.

B. Construction of the effective template bank:
Parameter range

All the PN target models are parametrized by two ind
pendent numbers~e.g., the two masses or the total mass a
the mass ratio!; if we select a range of interest for thes
parameters, the resulting set of PN signals can be seen
02401
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two-dimensional region in the (m1 ,m2) or (M ,h) plane. Un-
der the mapping that takes each PN signal into the Four
domain effective template that matches it best, this tw
dimensional region isprojected into a two-dimensional
surface in the (c0 ,c3/2, f cut) parameter space~with the
fourth parametera50). As an example, we show in Fig. 1
the projection of theET(2,2.5) waveforms with~single-BH!

FIG. 20. Projection of the PN waveforms onto the (c0 ,c3/2)
plane, for BBHs with masses (515)M ( , (1015)M ( , . . . ,(20
120)M ( ~see Table III!. The projection was computed by max
mizing the maxmax match over the parametersc0 , c3/2 and f cut ;
the correction coefficienta was set to zero. The thin dotted an
dashed lines show the boundaries of the projected images fo

models ~from the top! T(2,2.5), HT(3,3.5,û52) and P(2,2.5).
Solid lines~theBH mass lines! link the images of the same BBH fo
different PN models. The ends of the BH mass lines are mar
with the BBH masses and with the minimum value min$fend, f cut%
across all the PN models. The thick dashed lines delimit the reg
that will be covered by the effective template bank; the (c0 ,c3/2)
coordinates are marked on the vertices. The region is further
divided into four subregions I–IV that group the BH mass lin
with very similar ending frequenciesf end min.
e first

eforms
and the
TABLE XIV. End-to-end matches and ending frequencies along the BH mass lines of Fig. 20. Th
three columns show the end-to-end matches and the corresponding number of templates~for MM .0.98)
along the BH mass lines; the remaining columns show the minimum ending frequencies of PN wav
along the BH mass lines, the match between the two effective templates at the ends of the range,
number of templates needed to step along the range while always maintaining a match.0.98 between
neighboring templates. When computing these matches, we use a Newtonian amplitude functionA( f )
5 f 27/6 ~we seta50), and we maximize over the parametersc0 andc3/2 ~which is equivalent to assuming
perfect phasing synchronization!.
6-35
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masses 5 –20 M( . The 26 models tested in Secs. III and I
would be projected into 26 similar surfaces. In construct
the detection template families, we shall first focus on 17
the 26 models, namely the adiabaticT andP models at 2PN
and 3PN, theE models at 2PN and at 3PN but withz̃1,2
50, and theH models at 3PN. We will comment on theE
models withz̃1,2Þ0, on theL models, and on theHT and
HP models at 2PN order at the end of this section.

It is hard to visualize all three parameters at once, so
shall start with the phasing parametersc0 andc3/2. In Fig.
20 we plot the (c0 ,c3/2) section of the PN-model projection
into the (c0 ,c3/2, f cutoff) space, with solid diamonds showin
the projected points corresponding to BBHs with the sa
set of ten mass pairs as in Table XIII. Each PN mode
projected to a curved-triangular region, with boundar
given by the sequences of BBHs with masses (m1m) ~equal
mass!, (201m) and (m15). In Fig. 20 these boundaries a
plotted using thin dashed lines, for the modelsT(2,2.5) ~the
uppermost in the plot!, HT(3,3.5,û52) ~in the middle!, and
P(2,2.5) ~lowest!.

As we can see, different PN models can occupy regi
with very different areas, and thus require a very differe
number of effective templates to match them with a giv
MMT . Among these three models,T(2,2.5) requires the leas
number of templates,P(2,2.5) requires a few times more
andHT(3,3.5,û52) requires many more. This is consiste
with the result by Porter@66# who found that, for the same
range of physical parameters,T waveforms are more closel
spaced thanP waveforms, so fewer are needed to achiev
certain MM. In this plot we have also linked the points th
correspond to the same BBH parameters in different
models. In Fig. 20 these lines~we shall call themBH mass
lines! lie all roughly along one direction.

A simple way to characterize the difference between
PN target models is to evaluate the maxmaxend-to-end
matchbetween effective templates at the two ends of the
mass lines~i.e., the match between the effective templa
with the largest and smallestc3/2 among the projections o
PN waveforms with the same mass parametersm1 , m2); we
wish to focus first on the effects of the phasing paramet
so we do not cut the templates in the frequency domain
we seta50. We compute also a naive end-to-end numbe
templates,Nend to end, by counting the templates require
to step all along the BH mass line while maintaining
each step a match.0.98 between neighboring template
A simple computation yieldsNend to end5 log(end-to-end
match!/log(0.98). The results of this procedure are listed
Table XIV. Notice that, as opposed to the fitting factors b
tween template families computed elsewhere in this pa
~which are maximized over the BBH mass parameters of
of the families!, these matches give a measure of the dissi
larity between different PN modelsfor the same values of th
BBH parameters; thus, they provide a crude estimate of ho
much the effective template bank must be enlarged to em
all the various PN models.

We expect that the projection of a true BBH wavefor
onto the (c0 ,c3/2) plane will lie near the BH mass line with
the true BBH parameters, or perhaps near the extensio
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the BH mass line in either direction. For this reason we sh
lay down our effective templates in the region traced out
the thick dashed lines in Fig. 20, which was determined
extending the BH mass lines in both directions by half
their length.

We move on to specifying the required range off cut for
each (c0 ,c3/2). For a given PN model and BBH mass p
rameters, we have defined theending frequency fend as the
instantaneous GW frequency at which we stop the integ
tion of the PN orbital equations. We find that usually thef cut

of the optimally matched projection of a PN template
larger than thef end of the PN template. This is because th
abrupt termination of the PN waveforms in the time doma
creates a tail in the spectrum for frequencies higher t
f end. With f cut. f end and a.0, the effective templates ca
mimic this tail and gain a higher match with the PN mode
In some cases, however, the optimalf cut can be smaller than
f end @for example,P(2,2.5) with (1015)M ( , (1515)M (

and (10110)M (] suggesting that the match of the phasi
in the entire frequency band up tof end is not very good and
we have to shorten the Fourier-domain template. Now, si
we do not know the details of the plunge for true BBH i
spiral, it is hard to estimate where the optimalf cut might lie,
except perhaps imposing that it should be larger th
min(fend, f cut). A possibility is to set the range off cut to be
above f cut min[min$fcut, f end%, with the minimum evaluated
among all the PN models.

In Table XIV we show thef cut min found across the PN
models for given BBH mass parameters. We have a
marked this minimum frequency in Fig. 20 under the cor
sponding BH mass lines. In the table we also show the ma
of the two detection templatesh( f cut5 f cut min) and h( f cut5
1`), and the numberN mass line

cut of intermediate templates
with different f cut needed to move fromh( f cut min) to h
(1`) while maintaining at each step a match.0.98 be-
tween neighboring templates. It is easy to see that this n
ber isN mass line

cut 5 log^h(fcut min),h(1`)&/log(0.98). The match
was computed using a Newtonian amplitude functionA( f )
5 f 27/6 ~we seta50), and maximized over the paramete
c0 andc3/2. Under our previous hypothesis that the proje
tion of a true BBH waveform would lie near the correspon
ing BH mass line, we can use the numbers in Table XIV
provide a rough estimate of the range off cut that should be
taken at each point (c0 ,c3/2) within the dashed contour o
Fig. 20. We trace out four subregions I, II, III, IV, such th
the BH mass lines of each subregion have approximately
same values off cut min; we then use these minimum endin
frequencies to set a lower limit for the values off cut required
in each subregion: f cut min(I) 5143, f cut min(II) 5192,
f cut min(III) 5232, f cut min(IV) 5346. The maximumf cut is ef-
fectively set by the detector noise curve, which limits t
highest frequency at which signal to noise can be still ac
mulated.

Moving on to the last parameter,a, we note that it is
probably only meaningful to havea f cut

2/3<1, so thatAeff( f )
cannot become negative forf , f cut. ~A negative amplitude
in the detection template will usually give a negative con
bution to the overlap, unless the phasing mismatch is la
6-36
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than p/2, which does not seem plausible in our cases.! In-
deed, the optimized values found fora in Table XIII seem to
follow this rule, except for a few slight violations that a
probably due to numerical error~since we had performed
search to find the optimal value ofa). For the 17 models
considered here, the optimala is always positive~Table
XIII ! which means that, due to cutoff effects, the amplitu
at high frequencies becomes always lower than thef 27/6

power law. So for the 17 models considered in this sect
0<a f cut

2/3<1. ~Note that this range will have to be extend
to include negativea ’s if we want to incorporate the model
discussed in Sec. VI E.!

C. Construction of the effective template bank:
Parameter density

At this stage, we have completed the specification of
region in the (c0 ,c3/2, f cut,a) parameter space where w
shall lay down our bank of templates. We expect that the
for the projection of the true physical signals~emitted by
nonspinningBBHs with M510–40M () onto this template
bank should be very good. We now wish to evaluate the t
number of templatesN needed to achieve a certain MM.

We shall find it convenient to separate the mismatch
to the phasing from the mismatch due to the frequency c
by introducing two minimum match parameters MMc and
MMcut, with MM5MMc•MMcut.MMc1MMcut21. As
mentioned at the beginning of this section, the correct
coefficienta is essentially anextrinsic parameter~see Sec.
II B !: we do not need to discretize the template bank w
respect toa, and there is no corresponding MM paramet

We evaluateN in three refinement steps:
~1! We start by considering only the phasing paramete

and we compute the parameter areaSi @in the (c0 ,c3/2)
plane# for each of the subregionsi 5 I, II, III, IV of Fig. 20.
We then multiply by the determinantAg of the constant met-
ric, and divide by 2(1 –MMc), according to Eq.~25!, to get

N5(
i

SiAg

2~12MMc!
. ~127!

This expression is for the moment only formal, because
cannot computeAg without considering the amplitude pa
rametersa and f cut.

~2! Next, we include the effect off cut. In the preceding
section we have setf min cut for each of the subregions b
considering the range swept byf end along the mass lines
Recalling our discussion ofN mass line

cut , we approximate the
number of distinct values off cut that we need to include fo
each parameter pair (c0 ,c3/2) as

ni
cut~c0 ,c3/2,a!

.11
log^h~c0 ,c3/2,a, f min cut!,h~c0 ,c3/2,a,no cut!&

logMMcut
.

~128!

For a in the physical range 0<a< f cut
22/3 this match is mini-

mized fora50, so this is the value that we use to evalua
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cut’s. Note that the choice of cutoff frequencies does n

depend on the values of the phasing parameters. This al
us to have a single set of cutoff frequencies for all points
one subregion. For subregioni, we denote this set byFi .

~3! The final step is to include the effect ofa and f cut on
the computation ofAg. For simplicity, we shoot for an uppe
limit by maximizing Ag with respect toa. ~Becausea is
essentially an extrinsic parameter, we do not multiplyN by
the number of its discrete values: the matches are autom
cally maximized on the continuous range 0<a< f cut

22/3.) Our
final estimate for the total number of templates is

N5
1

2~12MMc! (
i

Si (
f cutPFi

max
a

@Ag#. ~129!

We have evaluated thisN numerically.We find that the
contributions to the total number of templates from the fo
subregions, forMM 5 0.96 ~taking MMc5MMcut50.98),
are N(I) .6,410, N(II) .2,170, N(III) .1,380, N(IV)
.1,230, for a total of N511,190.This number scales ap
proximately as@0.04/(12MM) #2. Notice that subregion I,
which contains all the BBHs with total mass above 25M ( ,
requires by far the largest number of templates. This
mostly because these waveforms end in the LIGO band,
many values off cut are needed to match different endin
frequencies. Remember that the optimal signal-to-noise r
r for filtering the true GW signals by a template bank
approximately degraded~in the worst case! by the factor
MMT5FF1MM21 @67#.

While MM depends on the geometry of the templa
bank, we can only guess at the fitting factor FF for the p
jection of the true signal onto the template space. In t
section we have seen that all PN models can be proje
onto the effective frequency-domain templates with a go
FF: for a vast majority of the waveforms FF*0.96 ~and the
few exceptions can be explained!. It is therefore reasonable
to hope that the FF for the true GW signals is;0.96, so the
total degradation from the optimalr will be MMT*0.92,
corresponding to a loss of&22% in event rate. This number
can be improved by scaling up the number of templates,
of course the actual FF represents an upper limit for MMT .
For instance, about 47,600 templates should get us MT
*0.94, corresponding to a loss of&17% in event rate.

D. Parameter estimation with the detection
template family

Although our family of effective templates was built fo
the main purpose of detecting BBHs, we can still use it~once
a detection is made! to extract partial information about th
BH masses. It is obvious from Fig. 20 that the masses can
in general be determined unambiguously from the be
match parameters@i.e., the projection of the true waveform
onto the (c0 ,c3/2) plane#, because the images of differen
PN models in the plane have overlaps. Therefore differ
PN models will have different ideas, as it were, about
true masses. Another way of saying this is that the BH m
lines can cross.
6-37
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However, it still seems possible to extract at least o
mass parameter, the chirp massM5Mh3/5, with some ac-
curacy. Since the phasing is dominated by the termc0f 25/3

at low frequencies, we can use the leading Newtonian t
cN( f )5 3

128(pMf )25/3 obtained for a PN expanded adi
batic model in the stationary-phase approximation to infe

c0;
3

128S 1

pMD 5/3

⇒M approx5
1

p S 3

128c0
D 3/5

. ~130!

If this correspondence was exact, the BH mass lines in
20 would all be vertical. They are not, so this estimation h
an error that gets larger for smallerc0 ~i.e., for binaries with
higher masses!. In Table XV we show the range of chirp
mass estimates obtained from Eq.~130! for the values ofc0
at the projections of the PN models in Fig. 20, together w
their percentage errore[(M max

approx2M min
approx)/M. In this

table,Mmax and Mmin correspond to the end points of th
BH mass lines. If we take into account the extension of

FIG. 21. Projection of theE models with nonzeroz̃1 into the
(c0 ,c3/2) plane~shown in black dots!. The new points sit quite wel
along the BH mass lines of the 17 models investigated in S

VI B, VI C and VI D. We use the notationEP(3,3.5,û,z̃1 ,z̃2) and
denote byEP(T3, . . . ) the two-body model in which the coeffi-
cient A(r ) is PN expanded@see Eq.~89!#.

FIG. 22. Projections ofHT andHP models at 2PN andL mod-
els into the (c0 ,c3/2) plane~shown in black dots.! The projections
of the previous 17 models are shown in gray dots.
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BH mass lines by a factor of two in the effective templa
bank, we should double thee of the table.

It seems quite possible that a more detailed investiga
of the geometry of the projections into the effective templ
space~and especially of the BH mass lines! could produce
better algorithms to estimate binary parameters. But ag
probably only one parameter can be estimated with cer
accuracy.

E. Extension of the two-dimensional Fourier-domain
detection template

In our construction of the effective template bank, w
have been focusing until now on a subset of 17 models.
models we left out areE models at 3PN withz̃1,2 nonzero,
HT andHP models at 2PN, andL models.

As we can see from Fig. 21,E models withz̃1,2 nonzero
have a very similar behavior to the 17 models investiga
above. Indeed,~i! the projection of the PN waveforms from
the same model occupy regions that are triangular, and~ii !
the projections of PN waveforms of a given mass lies on
BH mass line spanned by the previous 17 models. In ad
tion, their projections lie roughly in the region we have a
ready defined in Secs. VI B, VI C and VI D. However, th
ending frequencies of these models can be much lower
the values we have set for the detection templates: the de
tion templates~in all four subregions! should be extended to
lower cutoff frequencies if we decide to match these mod
up to FF;0.95. A rough estimate shows that this increas
the number of templates to about twice the original value

In Fig. 22 we plot the projections of theL(2,0), L(2,1),
HT(2,2) and HP(2,2.5) waveforms into the (c0 ,c3/2)
plane. As we already know, these models are not matche
the detection templates as well as the other 17 models. H
we can see that their projections onto the (c0 ,c3/2) plane are
also quite dissimilar from those models. ForL models, al-

s.

TABLE XV. Estimation of the chirp massesM from the pro-
jections of the PN target models onto the Fourier-domain effec
template space. The numbers in the second column~labeled ‘‘M’’ !
give the values of the chirp mass corresponding to the BH mass
their left; the numbers in the third and fourth columns give t
range of estimates obtained from Eq.~130! for the values ofc0 at
the projections of the target models shown in Fig. 20. The
column shows the percentage errore[(M max

approx2M min
approx)/M.

M M M min
approx M max

approx e (%)

(515)M ( 4.35 4.16 4.27 2.6
(1015)M ( 6.08 5.75 6.00 4.2
(1515)M ( 7.33 6.85 7.28 5.9
(10110)M ( 8.71 8.10 8.72 7.1
(2015)M ( 8.33 7.55 8.31 9.1
(15110)M ( 10.62 9.76 10.96 11.3
(20110)M ( 12.17 10.92 12.50 13.0
(15115)M ( 13.06 11.69 14.88 24.4
(20115)M ( 15.05 13.15 17.74 30.6
(20120)M ( 17.41 14.91 21.52 38.0
6-38
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DETECTION TEMPLATE FAMILIES FOR . . . PHYSICAL REVIEW D 67, 024016 ~2003!
though different masses project into a triangular region,
projection of each mass configuration does not align al
the corresponding BH mass line generated by the 17 mod
In order to cover theL models up to FF;0.93, we need to
expand the (c0 ,c3/2) region only slightly. However, as we
read from Table XIII, the cutoff frequencies need to be e
tended to even lower values than for theE models with non-
zero z̃1,2. Luckily, this expansion will not cost much. In th
end the total number of templates needed should be a
three times the original value.

For HT andHP models at 2PN, the projections almost l
along the BH mass lines, but the regions occupied by th
projections have weird shapes. We have to extend
(c0 ,c3/2) region by a factor;2 in order to cover the phas
ings. ~The ending/cutoff frequencies for these models
higher than for the previous two types of models.! An addi-
tional subtlety in this case is that, as we can read from Ta
XIII, the optimal values ofa are often negative, since th

FIG. 23. Projection of the modelsP(2,2.5), ET(2,2.5),
ET(3,3.5,0), andSPA(1.5) onto the three-parameter Fourie
domain detection template, for many BBH masses that lie wit
the same ranges taken in Fig. 20. The variables (X,Y,Z) are related
to (c0 ,c1 ,c3/2) by a linear transformation, constructed so that t
mismatch metric is justd i j and that the (c0,0,c3/2) plane is mapped
to the (X,Y,0) plane. The dots show the value of the parame
(X,Y,Z) where the match with one of the PN waveforms is ma
mum.
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amplitude becomes higher than thef 27/6 power law at higher
frequencies. This expansion of the range ofa affects both
the choice of the discrete cutoff frequencies and the pla
ment of (c0 ,c3/2) lattices. This effect is yet to be estimate
Finally, we notice that if these extensions are made, then
estimation of the chirp mass from the coefficientc0 becomes
less accurate than the one given in Table XV.

F. Extension of the Fourier-domain detection template family
to more than two phasing parameters

It might seem an accident that by using only two phas
parameters,c0 andc3/2, we are able to match very precise
the wide variety of PN waveforms that we have consider
Indeed, since the waveforms predicted by each PN mo
span a two-dimensional manifold~generated by varying the
two BH massesm1 andm2 or equivalently the mass param
etersM and h), we could naturally expect that athird pa-
rameter is required to incorporate all the PN models in
more general family, and to add even more signal shapes
extrapolate beyond the phasings and amplitudes seen in
PN models.

In particular, because the accumulation of signal-to-no
ratio is more sensitive to how well we can matchthe phasing
~rather than the amplitude! of PN templates, such a third
parameter should probably interpolate between phasings
dicted by different PN models. As a consequence, the am
tude parametersf cut and A do not generate a real dimen
sional extension of our detection template family. In th
section we present a qualitative study of the extension of

n

s
-

FIG. 24. (X,Z) section of Fig. 23. Comparison with Fig. 2
shows that all the projections lie near the (X,0,Z) plane.
e
;

FIG. 25. In this figure we compare the projection of the PN models onto the three-dimensional (c0 ,c1 ,c3/2) Fourier-domain detection
template family@shown by the dots as a two-dimensional section in the (c0 ,c3/2) submanifold# with the projection of the PN models in th
two-dimensional (c0 ,c3/2) template family~shown by the lines!. In the left panel, we useA50 andf cut5400 Hz to maximize the matches
in the right panel we useA50 and f cut5200 Hz.
6-39



in

-
el
e

e
e

e

tc
e
n

e
or
om

e

-
io
n
PN
e

el

by
a

th
he
e
-
th

d
M

em

er

t

b
e

nal
id-
he

the
-
w-
-

t
ing
to

r
de-
be-
of

am-
not

ly

ee-
ob-

ary
to

d

at

he
e

. In
os-

ing

the

As
es are
ur-

use

he
the
be

tion
on

be
ept

BUONANNO, CHEN, AND VALLISNERI PHYSICAL REVIEW D 67, 024016 ~2003!
detection template family obtained by adding one phas
parameter, the parameterc1 of Eq. ~110!.

We use the (c0 ,c1 ,c3/2) Fourier-domain detection tem
plates to match the PN waveforms from the mod
P(2,2.5), ET(2,2.5), andET(3,3.5,0); these models wer
chosen because their projections onto the (c0 ,c3/2) detection
templates were rather distant in the (c0 ,c3/2) parameter
space. Throughout this section~and unlike the rest of this
paper!, we use an approximated search procedure wher
we essentially replace the amplitude of the target mod
with the Newtonian amplitudeA( f )5 f 27/6 with a cutoff fre-
quency f cut ~we always assumedA50 and f cut5400 Hz).
As expected, the matches increase, and indeed they ar
most perfect: always higher than 0.994~it should be remem-
bered, however, that these should be considered as ma
of the PN phasingsrather than as matches of the PN wav
forms; especially for high masses, the frequency depende
of the amplitude is likely to change these values!.

If we plot the projections of the PN waveforms in th
(c0 ,c1 ,c3/2) space, we find that the clusters of points c
responding to each PN target model look quite different fr
the projections@onto the (c0 ,c3/2) template space# shown in
Fig. 20; but this is just an artifact of the parametrization. W
can perform a linear transformation (c0 ,c1 ,c3/2)
→(X,Y,Z), defined in such a way that~i! in the (X,Y,Z)
parameters, the mismatch metric is justd i j , and that~ii ! the
(c0,0,c3/2) plane is mapped to the (X,Y,0) plane. These con
ditions define the linear transformation up to a translat
and a rotation along theZ axis; to specify the transformatio
completely we require also that all the projections of the
models lie near the origin, and be concentrated around thX
axis. Figure 23 shows the projection of the PN mod
P(2,2.5), ET(2,2.5), and ET(3,3.5,0) onto the
(c0 ,c1 ,c3/2) detection template family, as parametrized
the (X,Y,Z) coordinate system, for many BBH masses th
lie within the same ranges of Fig. 20. Each dot marks
parameters (X,Y,Z) that best match the phasing of one of t
PN waveforms. We include also the projection of a furth
PN model,SPA(1.5), obtained by solving the frequency
domain version of the balance equation, obtained in
stationary-phase approximation from ourT model. The ex-
pression of theSPA(1.5) phasing as a function off coin-
cides with our Eq.~110!, but the coefficients that correspon
to (c0 ,c1 ,c3/2) are functions of the two mass parameters
andh.

By construction, the match between nearby detection t
plates is related to their Euclidian distance in the (X,Y,Z) by

12overlap5DX21DY21DZ2. ~131!

We see immediately that all the PN models are not v
distant from the (X,Y,0) plane~also shown in the figure!,
which coincides with the (c0 ,c3/2) plane. The farthes
model is P(2,2.5), with a maximum distance;0.18. It is
important to notice that, since this number is obtained
assumingf cut5400 Hz andA50, it tends to underestimat
the true overlaps for models that end below 400 Hz, such
theP models at higher masses. See also Fig. 24 for an (X,Z)
section of Fig. 23.
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We can study the relation between this three-dimensio
family of templates and the two-dimensional family cons
ered earlier by projecting the points of Fig. 23 onto t
(X,Y,0) plane@which corresponds to the (c0,0,c3/2) plane#.
The resulting images resemble closely the projections of
PN models onto the (c0 ,c3/2) parameter space of the two
dimensional family, as seen in the left panel of Fig. 25. Ho
ever, the agreement is poor forP(2,2.5) because of the rela
tively high cut frequencyf cut5400 Hz. The right panel of
Fig. 25 was obtained by takingf cut5200 Hz. The agreemen
is much better. This result goes some way toward explain
why using only two phasing parameters was enough
match most PN models in a satisfactory way.

As stated at the beginning of this section, the parameteZ
can indeed be used to expand the dimensionality of our
tection template family, because it appears to interpolate
tween different PN models. It is possible that the number
Z values needed when laying down a discrete template f
ily might not be too large, because the PN models do
seem to lie very far from theZ50 plane @remember that
distances in the (X,Y,Z) parameter space are approximate
mismatch distances#.

The good performance that we find for the two- and thr
dimensional Fourier-domain families confirms the results
tained in Refs.@13,47# and @68#. In Ref. @13#, the authors
point out that the waveforms obtained from the station
phase approximation at 2PN and 2.5PN order are able
approximate theE models, throughout most of the LIGO
band, by maximizing over the mass parameters~see Ref.
@13#, in particular the discussion of their model ‘‘Tf2,’’ an
the discussion around their Fig. 2!.

In Ref. @47#, Chronopolous and Apostolatos show th
what would be in our notation theSPA(2) model~where the
phasing is described by a fourth-order polynomial in t
variable f 1/3) can be approximated very well, at least for th
purpose of signal detection, by theSPA(1.5) model, with the
advantage of having a much lower number of templates
Ref. @68#, the authors go even further, investigating the p
sibility of approximating theSPA(2) phasing with a poly-
nomial of third, second and even first degree obtained us
Chebyshev approximants.

It is important to underline that in all of these analyses
coefficients that appear in the expression of the phasing@cor-
responding to ourc0 ,c1 , . . . in Eq.~110!# depend on only
two BBH mass parameters, either directly@13,47#, or indi-
rectly @68# through specific PN relations at each PN order.
a consequence, the phasings assumed in these referenc
confined to a two-dimensional submanifold analog to the s
face labeled ‘‘SPA(1.5)’’ in Fig. 23.

In this paper we follow a more general approach, beca
the phasing coefficientsc i are initially left completely arbi-
trary. Only after studying systematically the projection of t
PN models onto the template bank we have determined
region where a possible detection template bank would
laid down. The high matches that we find between detec
templates and the various PN models depend crucially
this assumption. As a consequence, our parametersc i do not
have a direct physical meaning, and they cannot easily
traced back to specific functions of the BBH masses, exc
6-40
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DETECTION TEMPLATE FAMILIES FOR . . . PHYSICAL REVIEW D 67, 024016 ~2003!
TABLE XVI. Fitting factors for the projection of the target models~in the rows! onto theP(2,2.5) detection template family. For te
choices of BBH masses, this table shows the maxmax~mm! and minmax~mn! matches between the target models and theP(2,2.5) search
model,maximized over the intrinsic parameters of the search model. For each intersection, the triples~mm, M, h) and~mn, M, h) denote
the maximized matches and the mass parametersM5m11m2 andh5m1m2 /M2 at which the maxima are attained~maxmax and minmax
matches give rise to slightly different optimal values ofM andh). In computing these matches, the search parameterh wasnot restricted
to its physical range 0,h<1/4, but it was allowed to move in the range 0,h,1, for which the energy-balance equation~31! is still
formally integrable. With few exceptions, this table shows that maxmax and minmax matches are very similar, so we generally use
conservative minmax matches.
024016-41
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for the chirp mass, as seen in Sec. VI D. This is natu
because our detection templates are built to interpolate
tween different PN models, each of which has, as it were
different idea of what the waveform for a BBH of give
masses should be.

VII. PERFORMANCE OF THE TIME-DOMAIN
DETECTION TEMPLATES AND CONSTRUCTION
OF THE DETECTION BANK IN TIME DOMAIN

Another possibility of building a detection-template fam
ily is to adopt one or more of the physical models discus
in Secs. IV as the effective template bank used for detect
Under the general hypothesis that underlies this work~that
02401
l,
e-
a

d
n.

is, that thetarget models span the region in signal spa
where the true physical signals reside!, if we find that one of
the target models matches all the others very well, we
use it as the effective model; and we can estimate its ef
tualness in matching the true physical signal from its eff
tualness in matching all the other models.

As shown in Tables V, VIII and discussed in Sec. V, t
fitting factors FF for the projection of the PN models on
each other are low~at least for PN ordern<2.5 or for high
masses!; in other words, the models appear to be quite d
tant in signal space. This conclusion is overturned, howe
if we let the dimensionless mass ratioh move beyond its
physical range 0<h<1/4. For instance, theP(2,2.5) and
EP(3,3.5,0) models can be extended formally to the ran
6-42
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DETECTION TEMPLATE FAMILIES FOR . . . PHYSICAL REVIEW D 67, 024016 ~2003!
TABLE XVII. Fitting factors for the projection of the target models~in the rows! onto theEP(3,3.5,0) detection template family. For te
choices of BBH masses, this table shows the maxmax matches between the target models and theEP(3,3.5,0) search model,with ~mmc! and
without~mm! the time-domain cut discussed in Sec. VII. The matches aremaximized over the intrinsic parameters of the search model~over
M andh for the mm values; overM, h and f cut for the mmc values!. For each intersection, the triple~mm, M , h) and the quadruple~mm,
M , h, f cut) denote the maximized matches and the mass~and cut! parameters at which the maxima are attained. In computing these mat
the search parameterh wasnot restricted to its physical range 0,h<1/4, but it was allowed to move in the range 0,h,1 for which the
energy-balance equation~31! is still formally integrable. This table shows that the addition of the time-domain cut can improve the fi
factors considerably, especially for the higherM ’s in the in the left half of the table, and for the models whose orbital evolution is en
within the range of good interferometer sensitivity.
024016-43
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0<h<1. Beyond those ranges, either the equations~of en-
ergy balance, or motion! become singular, or the determin
tion of the MECO or light ring@the evolutionary end point o
the inspiral for theP(2,2.5) model and theEP(3,3.5,0)
model, respectively# fails.

When the models are extended to 0,h<1, they appear to
lie much closer to each other in signal space. In particu
the P(2,2.5) andEP(3,3.5,0) models are able to match a
02401
r,

the other models, with minmax FF.0.95, for almost all the
masses in our range, and in any case with much improved
for most masses; see Tables XVI and XVII. Apparently, p
of the effect of the different resummation and approximat
schemes is just to modulate the strength of the PN effect
a way that can be simulated by changingh to nonphysical
values in any one model. This fact can be appreciated
looking at Figs. 26, 27 and 28, 29 which show the project
6-44
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DETECTION TEMPLATE FAMILIES FOR . . . PHYSICAL REVIEW D 67, 024016 ~2003!
of several models onto theP(2,2.5) andEP(3,3.5,0) effec-
tive template spaces, respectively. For instance, in comp
son with T(2,2.5), the modelP(2,2.5) seems to underest
mate systematically the effect ofh, so a satisfactory FF fo
hT50.25 can be obtained only if we lethP.0.25 @quite
consistently, in the comparison of Tables V, VIII, whereh
was confined to its physical range,T(2,2.5) could match
P(2,2.5) effectively, but the reverse was not true#.

The other~and perhaps crucial! effect of raisingh is to
change the location of the MECO for theP-approximant
model ~or the light ring, for theEP model!, where orbital
evolution ends.~Remember that one of the differences b
tween the Pade´ and the EOB models is that the latter i
cludes a plunge part between the ISCO and the light rin!
More specifically, forP(2,2.5) @EP(3,3.5,0)# the position of
the MECO ~light ring! is pushed to smaller radii ash is
increased. This effect can increase the FF for target mo
that have very different ending frequencies from those

FIG. 26. Projection of 2PN waveforms onto theP(2,2.5) effec-
tive template space. Dots are shown for the same BBH masse
Table III, and for PN modelsT(2,2.5), P(2,2.5), ET(2,2.5), and
EP(2,2.5). The thin solid lines show theBH mass lines~introduced
in Sec. VI B!, while the dashed and dotted lines show the conto
of the projections of selected PN models.

FIG. 27. Projection of 3PN waveforms onto theP(2,2.5) effec-
tive template space. Dots are shown for the same BBH masse
Table XV, and for PN modelsT(3,3.5,12), P(3,3.5,12),
ET(3,3.5,12), EP(3,3.5,12), HT(3,3.5,12), andHP(3,3.5,0).

The dots forû522 are only slightly displaced, and they are n
shown. The thin solid lines show theBH mass lines~introduced in
Sec. VI B!, while the dashed and dotted lines show the contour
the projections of selected PN models.
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P(2,2.5) andEP(3,3.5) at comparableh ’s.
Because for theEP model the frequency at the light rin

is already quite high, we cannot simply operate onh to im-
prove the match between theEP model and other models
that end at much lower frequencies~see the values of min
max matches in Table XVII!. Thus, we shall enhance th
effectualness ofEP by adding an arbitrarycut parameter that
modifies the radiusr ~usually the light-ring radius! at which
we stop the integration of the Hamilton equations~92!–~95!;
the effect is to modify the final instantaneous GW frequen
of the waveform. This is therefore atime-domain cut, as
opposed to the frequency-domain cuts of the frequen
domain effective templates examined in the preceding s
tion.

We can then compute the FF by searching overf cut in
addition toM andh, and we shall correspondingly accou

of

s

of

f

FIG. 28. Projection of 2PN waveforms onto theEP(3,3.5) ef-
fective template space. This projection includes the effect of
frequency cut. Dots are shown for the same BBH masses of T
III, and for PN models T(2,2.5), P(2,2.5), ET(2,2.5), and
EP(2,2.5). The thin solid lines show theBH mass lines~introduced
in Sec. VI B!, while the dashed and dotted lines show the conto
of the projections of selected PN models.

FIG. 29. Projection of 3PN waveforms onto theEP(3,3.5) ef-
fective template space. This projection includes the effect of
frequency cut. Dots are shown for the same BBH masses of T
II, and for PN modelsT(3,3.5,12), P(3,3.5,12), ET(3,3.5,
12), EP(3,3.5,12), HT(3,3.5,12), and HP(3,3.5,12). The

dots forû522 are only slightly displaced, and they are not show
The thin solid lines show theBH mass lines~introduced in Sec.
VI B !, while the dashed and dotted lines show the contours of
projections of selected PN models.
6-45
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FIG. 30. Determinant of the mismatch metric for theP(2,2.5) models~left panel! and for theEP(3,3.5,0) models~right panel!. The
determinantAugu is shown as a function ofh andb5Mh2/5.
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for the required number of distinctf cut when we estimate the
number of templates required to give a certain MMtot . Even
so, if we are unsure whether we can model successful
given source over a certain range of frequencies that f
within the LIGO range~as it is the case for the heavy BBH
with MECOs at frequencies, 200 Hz!, the correct way to
estimate the optimalr ~and therefore the expected detecti
rate! is to include only the signal power in the frequen
range that we know well.

The best matches shown in Tables XVI and XVII, and
Figs. 26–29, were obtained by searching over the ta
model parameter space with the simplicialAMOEBA algo-
rithm @65#. We found~empirically! that it was expedient to
conduct the searches on the parametersb[Mh2/5 and h
rather than onM andh. This is because iso-match surfac
tend to look like thin ellipses clustered around the best ma
parameter pair, with principal axes along theb andh direc-
tions. As shown in Table XVI, the values of the maxmax a
minmax FFs are very close to each other for theP(2,2.5)
model; the same is true for theEP(3,3.5) model~so in Table
XVII we do not show both!. For EP(3,3.5), the search ove
the three parameters (b,h, f cut) was performed as a refine
ment step after a first search on (b,h).

We have evaluated the mismatch metric@29# gi j ~see Sec.
II ! with respect to the parameters (b,h) for the models
P(2,2.5) andEP(3,3.5,0) ~while evaluatinggi j , the EP
waveforms were not cut!. The metric components at th
point (b0 ,h0) were obtained by first determining the rang
(bmin ,bmax), (hmin ,hmax) for which

^u~b0 ,h0!,u~bmin ,h0!&5^u~b0 ,h0!,u~bmax,h0!&

5120.05 ~132!

^u~b0 ,h0!,u~b0 ,hmin!&5^u~b0 ,h0!,u~b0 ,hmax!&

5120.05; ~133!

then a quadratic form was least-squares fit to 16 values o
match along the ellipseG1 with axes given by (bmin ,bmax)
and (hmin ,hmax). The first quadratic form was used only
determine the principal axes of two further ellipsesG2 and
G3 , at projected matches of 120.025 and 120.0125. An-
other quadratic form~giving the final result for the metric!
was then fit at the same time to 16 points alongG2 and to 16
02401
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points alongG3 , but the two ellipses were given differen
fitting weights to cancel the quartic correction terms in t
Taylor expansion of the match around (b0 ,h0) ~the cubic
terms were canceled automatically by taking symme
points along the ellipses!. The rms error of the fit was in al
cases very good, establishing that the quadratic approxi
tion held in the close vicinity~matches;0.95) of each point.

We estimate that the numerical error;20% is in any case
less than the error associated with using Eq.~25! to evaluate
the required number of templates, instead of laying dow
lattice of templates more accurately.

The resultingAugu for P(2,2.5) andEP(3,3.5,0) is shown
in Fig. 30. It is evident that most of the mismatch volume
concentrated near the smallestb ’s and h ’s in parameter
space. This is encouraging, because it means that the e
sion of the effective template family to high masses and h
h ’s ~necessary, as we have seen, to match several target
els with very high FF! will be relatively cheap with respec
to the size of the template bank~this picture, however,
changes when we introduce frequency-domain cuts for
EP models!. With theAugu ’s we then computed the numbe
of P and EP templates necessary to cover the parame
rangesb: ~4,24!, h: ~0.15,1.00!, andb: ~4,24!, h: (0.1,1.00)
which span comfortably all the projected images of the tar
spaces onto theP and EP template spaces, respectivel
~Note the ranges include also BBHs where one of the B
has a mass less than 5M ( .) We obtained

NP.3260S 0.02

12MM D , NE.6700S 0.02

12MM D , ~134!

where MM is the required minimum match~analog to the
parameter MMc of the preceding section!. By comparison,
these numbers are reduced to, respectively, 1230 and 34
we restricth to the physical range.

The numberNE does not include the effect of multipl
ending frequencies~cuts!. We estimate the number of distinc
f cut needed for eachb by an argument similar to the on
used for the Fourier-domain effective templates~see Sec.
VI !; it turns out that more cuts are required for high
masses. The resulting number of templates isNEc.51,000
for MM50.98, which is comparable to the result for th
effective Fourier-domain templates.
6-46
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If we assume that the distance between the time-dom
templates and the target models is representative of the
tance to the true physical signal, we can guess that
*0.95 for P and FF*0.97 for EP with cuts. Under these
hypotheses, 6500P templates can buy us a~worst-case!
MMT.0.94, corresponding to a loss in event rate of;17%.
For 51,000EP templates, we get MMT.0.95, correspond-
ing to a loss in event rate of;14%.

Before ending this section we would like to point o
another time-domain detection-template family which can
consider kindred of the Fourier-domain detection-templ
family introduced in Sec. VI, see Eq.~108!. We can use, for
example, the following expression suggested by PN calc
tions ~see, e.g., Ref.@69#!:

heff~ t !5A eff
T ~ t ! eiceff

T (t), ~135!

where

A eff
T ~ t !5~ tc2t !7/16@12aT ~ tc2t !21/4#u~ tcut2t !,

~136!

ceff~ t !5fc1~ tc2t !5/8@c0
T1c1/2

T ~ tc2t !21/81c1
T ~ tc2t !21/4

1c3/2
T ~ tc2t !23/81c2

T ~ tc2t !21/21•••#, ~137!

wherefc ,tc ,aT,c0
T,c1

T,c3/2
T andc2

T are arbitrary parameter
whose range of values are determined maximizing
matches with the target two-body models.

VIII. SUMMARY

This paper deals with the problem of detecting GWs fro
the most promising sources for ground-based GW inter
ometers: comparable-mass BBHs with total massM
510–40M ( moving on quasicircular orbits. The detectio
of these sources poses a delicate problem, because their
sition from the adiabatic phase to the plunge, at least in
nonspinning case, is expected to occur in the LIGO a
VIRGO frequency bands. Of course, the true GW sign
from these inspirals should be obtained from exact soluti
of the Einstein equations for two bodies of comparable ma
However, the theoretical templates used to search for th
signals will be, at best, finite-order approximations to t
exact solutions, usually derived in the PN formalism. B
cause the perturbative PN approach begins to fail during
final stages of the inspiral, when strong curvature and n
linear effects can no longer be neglected, various PN res
mation methods have been introduced@15–17# to improve
the convergence of the PN series.

In the first part of this paper@see Secs. III, IV and V# we
studied and compared in detail all the PN models of
relativistic two-body dynamics currently available, includin
PN Taylor-expanded and resummed models both in the a
batic approximation and in the nonadiabatic case. We not
the following features~see Tables IX, XI!. At least for PN
ordersn<2.5, thetarget modelsT, P, andE have low cross
matches if the 2.5PN Taylor flux is used. For example,
almost all the masses in our range, we found maxmax
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<0.9; the matches were much better only forP againstE
~and vice versa!. However, if the 2PN Taylor flux is used th
overlaps are rather high. At 3PN order we found much hig
matches betweenT, P, andE, and also with the nonadiabati
model H, at least for massesM<30M ( , and restricting to

z̃1505 z̃2 . These results make sense because at 3PN o
the various approximations to the binding energy and
flux seem to be much closer to each other than at lo
orders. This ‘‘closeness’’ of the different analytical a
proaches, which at 3PN order are also much closer to s
examples of numerical quasiequilibrium BBH models@26#,
was recently pointed out in Refs.@58,59#. On the other hand
the extraction of BBH parameters from a true measured
nal, if done using the 3PN models, would still give a range
rather different estimates. However, we want to point out t
for quite high masses, e.g.,M540M ( , the 3PN models can
have again lower overlaps, also from the point of view
detection.

In addition, by studying the frequency-domain amplitu
of the GW signals that end inside the LIGO frequency ba
~see Figs. 4, 7, 10, 14!, we understood that if high matche
are required it is crucial to reproduce their deviations fro
the Newtonian amplitude evolution,f 27/6 ~on the contrary,
the Newtonian formula seems relatively adequate to mo
the PN amplitude for GW frequencies below the instan
neous GW frequency at the end point of orbital evolution!.

Finally, the introduction of theHT, HP andL models in
Secs. IV A and IV B provided another example of two-bo
nonadiabatic dynamics, quite different from theE models. In
the H models, the conservative dynamics does not have
ISCO @see the discussion below Eq.~74!# at 2PN and 3PN
orders. As a consequence, the transition to the plunge is
to secular radiation-reaction effects, and it is pushed to m
higher frequencies. This means that, for theH models, the
GW signals for BBHs of total massM510–40M ( end out-
side the LIGO frequency band, and the frequency-dom
amplitude does not deviate much from the Newtonian res
at least until very high frequencies~see Fig. 10!. TheL mod-
els do not provide the waveforms during the late inspiral a
plunge. This is due to the fact that because of the appear
of unphysical effects, e.g., the binding energy starts to
crease with time instead of continuing decreasing, we
obliged to stop the evolution before the two BHs enter
last stages of inspiral. It is important to point out that diffe
ently from the nonadiabaticE models, the nonadiabaticH
andL models give rather different predictions when used
various PN orders. So, from these point of view they are l
reliable and robust than theE models.

In the second part of this paper~Secs. VI and VII! we
pursued the following strategy. We assumed that the ta
models spanned a region in signal space that~almost! in-
cluded the true GW signal. We were then able to provid
few detection template families~either chosen among th
time-domain target models, or built directly from polynomi
amplitude and phasings in the frequency domain! that ap-
proximate quite well all the targets (FF>0.95 for almost all
the masses in our range, with much better FFs for m
masses!. We speculate that the effectualness of the detec
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model in approximating the targets is indicative of its effe
tualness in approximating the true signals.

The Fourier-domain detection template family, discuss
in Sec. VI, is simple and versatile. It uses a PN polynom
structure for the frequency-domain amplitude and phas
but it does not constrain the coefficients to the PN functio
dependencies on the physical parameters. In this sense
bank follows the basic idea that underlies the fast chirp tra
form @64#. However, because for the masses that we cons
the GW signal can end within the LIGO frequency band,
were forced to modify the Newtonian-order formula for t
amplitude, introducing a cutoff frequency and a paramete
modify the shape of the amplitude curve~the parametera).
As discussed at the end of Sec. VI F the good performanc
the two and three-dimensional families confirms also res
obtained in Refs.@13,47# and @68#.

We showed that our Fourier-domain detection templ
space has a FF higher than 0.97 for theT, P andE models,
and*0.96 for most of the 3PNHT andHP models; we then
speculate that it will match true BBH waveforms with F
;0.96. We have computed the number of templates requ
to give MM .0.96 ~about 104). The total MMT should be
larger than FF•MM;0.92, which corresponds to a loss
event rate of 12MMT

3'22%. This performance could b
improved at the price of introducing a larger number of te
plates, with the rough scaling law ofN5104@0.04/(0.96
2MM) #2.

In Sec. VI E we investigated where the less reliable 2
H and L models, and theE models at 3PN order furthe
expanded consideringz̃1Þ0, lie in the detection template
space. The Fourier-domain template family has FF in
range @0.85,0.95# with the 2PNH models, and FF mostly
higher than 0.95, but with several exceptions which can b
low as 0.93 with theL models. TheE models withz̃1Þ0 are
matched by the detection template family with FF alm
always higher than 0.95. TheE models withz̃1Þ0 and theL
models are~almost! covered by the region delimiting th
adiabatic models and theE models with z̃150. However,
these models require lower cutoff frequencies, which w
increase the number of templates up to a factor of 3. T
2PN H models sit outside this region and if we want
include them the number of templates should be doubled

The time-domain detection template families, discusse
Sec. VII, followed a slightly different philosophy. The idea
this case was to provide a template bank that, for so
choices of the parameters, could coincide with one of
approximate two-body models. Quite interestingly, this c
be achieved by relaxing the physical hypothesis that 0<h
<0.25. However, the good performances of these banks
less systematic, and harder to generalize than the pe
mance of the Fourier-domain effective bank. As suggeste
the end of Sec. VII@see Eq.~135!#, the time-domain bank
could be improved by using a parametrization of the tim
domain amplitude and phase similar to the one used for
Fourier-domain templates. The detection template fami
based on the extension of theP(2,2.5) andEP(3,3.5) to
nonphysical values ofh were shown to have FF, respe
tively, *0.95 and*0.97 for all the PN target models, an
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considerably higher for most models and masses. We h
computed the number ofP templates needed to obtain
MM50.99 ~about 6,500! and of EP templates to obtain a
MM50.98 ~about 51,000!. The expected total MMT is then,
respectively,*0.94 and*0.95, corresponding to losses
event rates of&17% and&14%. The MMs scale roughly a
@0.01/(12MM) # for P and @0.02/(12MM) #2 for EP ~be-
cause of the additional frequency-cut parameter!.

We notice that the number of templates that we estim
for the Fourier- and time-domain detection template famil
is higher than the number of templates we would obtain
ing only one PN model. However, the number ofindepen-
dent shapesthat enters the expression for ther* threshold
@see Eq.~18!# does not coincide with the number of tem
plates that are laid down within a discrete template bank
achieve a given MM; indeed, if MM is close to one, these a
almost guaranteed to be to yield S/N statistics that
strongly correlated. A rough estimate of the number of ind
pendent shapes can be obtained taking a coarse-grained
in template space. For example, by setting MM50 in Eq.
~25!, the number of independent shapes would be giv
roughly by the volume of the template space. As explaine
the end of Sec. II B, if we wish to keep the same false-ala
probability, we have to increase the threshold by;3% if we
increase the number of independent shapes by one ord
magnitude. This effect will cause a further loss in event ra
@70#.

Finally, in Sec. VI F we extended the detection templa
family in the Fourier domain by requiring that it embeds t
targets in a signal space of higher dimension~with more
parameters!. We investigated the three-dimensional case a
we found, as expected, the maxmax matches increase
particular, the match of the phasings are nearly perfect:
ways higher than 0.994 for the two-body models which a
farthest apart in the detection template space. Moreover
projecting the points in the three-dimensional space bac
the two-dimensional space, we can get nearly the same
jections we would have got from matching directly the P
waveforms with the two-parameter–phasing model. T
analysis done in Sec. VI F could suggest ways of system
cally expand the Fourier-domain templates. Trying to gu
the functional directions in which the true signals might
with respect to the targets was the most delicate challeng
our investigation. However, our suggestions are not gua
teed to produce templates that will capture the true sig
and they should be considered as indications. When num
cal relativity provides the first good examples of waveform
emitted in the last stages of the binary inspiral and plunge
will be very interesting to investigate whether th
matcheswith our detection template families are high and
which region of the detection template space do they sit.
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