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Black hole formation in the grazing collision of high-energy particles
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We numerically investigate the formation BFdimensional black holes in high-energy particle collisions
with the impact parameter and evaluate the total cross section of black hole production. We find that the
formation of an apparent horizon occurs when the distance between the colliding particles is less than 1.5 times
the effective gravitational radius of each particle. Our numerical result indicates that although both the one-
dimensional hoop and thé(— 3)-dimensional volume corresponding to the typical scale of the system give a
fairly good condition for horizon formation in the higher-dimensional gravity, the-@)-dimensional volume
provides a better condition to judge the existence of the horizon.
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I. INTRODUCTION production. The circumference that surrounds two particles
at the instant of collision isC~2b. By setting
The brane world scenario has been paid much attention iBb/27r,(21) ~1, where Zu is the center-of-mass energy of
the context of the unified theory of elementary particles. Thighe system, the maximal impact parameigg, that leads to
scenario regards our space as a 3-brane with large extra dhe black hole formation becomég,,,~r,(2«). By intro-
mensions on which gauge particles and interactions are comtucing a numerical factd#(D) close to unity, the total cross
fined. In this scenario, the Planck energy can be at@he section for black hole production is written in the following
(TeV) scale[1]. One of the consequences of lowering theform:
Planck scale is that the properties of a small black hole
whose radius is smaller than the size of the extra dimensions T h. productiof™ F(D)wrﬁ(z,u). 3
are substantially altered; the black hole is well described as a
D-dimensional black hole centered on the brane, but extendbtaining F(D) is necessary to improve experimental pre-
ing out into the D —4)-dimensional extra space and the ra-dictions of the black hole production in collider physics and
dius of such a black hole is-10*? times larger than that of observations of ultrahigh-energy cosmic rays.
the usual black hole with the same mass. Hence it becomes In our previous papeld], we investigated the black hole
much easier to produce black holes using a future plannetprmation in high-energy head-on collisions of particles in
accelerator such as the CERN Large Hadron Collider, anthe D-dimensional gravity and found thét, becomes a pa-
this possibility has been discussed by many auth®fs rameter to judge the existence of the apparent horizon for all
The possibility of producing black holes by the collision D. Although this implies that the hoop conjecture holds for
of particles can be estimated by using the hoop conjecturthis system, we do not know the condition for the horizon
[3]. It states that in four-dimensional Einstein gravity, anformation in the higher-dimensional spacetime. Recently, Ida
apparent horizon forms when and only when the nMssf ~ and Nakad5] investigated momentarily static initial data in
the system gets compacted into a region whose circumfethe five-dimensional spacetime and found that a spindle dis-

enceC satisfies tribution of matter can lead to black hole formation even if
the hoopC is arbitrarily larger than Zr,(M). This provides

B C _ a counterexample for the “only when” part of the hoop con-

Hp= WNL 1) jecture. They showed that the isoperimetric inequality

(characteristic are$4wrﬁ(M) is satisfied on the horizon
wherer,(M) is the Schwarzschild horizon radius for the and conjectured that for a characteristiz-{ 3)-dimensional
massM. If we assume that the inequalit}) gives the con- volumeVp_; of the system, the inequality
dition for black hole formation in the higher-dimensional
gravity wherer,(M) is now given as Vp_3
GpM

=1 (4)

167G b M 1/(D-3)
) 2

rh(M)_((D—Z)QDZ would become a condition for the horizon formation. This
“( D—3)-volume conjecture(volume conjecture is one
with the volume of the unit@ —2)-sphereQ)p_, and the candidate that provides a better condition for the horizon
gravitational constanGp, we can evaluate the impact pa- formation in the higher-dimensional spacetime than the hoop
rameterb of the colliding particles which leads to black hole conjecture and it is worth investigating.
In this paper, we consider the grazing collisions of par-
ticles in theD-dimensional Einstein gravity and investigate
*Electronic address: hyoshino@allegro.phys.nagoya-u.ac.jp  the formation of apparent horizons. Eardley and Gidd[itds
TElectronic address: nambu@allegro.phys.nagoya-u.ac.jp developed a method of finding apparent horizons for this
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system. The problem was reduced to a boundary-value prob- The apparent horizots is defined as a closed spacelike
lem for Poisson’s equation in aD(—2)-dimensional flat (D —2)-surface on which the outer null geodesic congruence
space and they solved it analytically for tBe=4 case. We has zero convergence. Eardley and Giddirf&sleveloped a
solve this problem numerically fob>4 and obtain the method of finding the apparent horizon in the union of the
maximal impact parametér,,., for black hole formation and two shock wavesy=0>v andv=0>u. Their method re-
the factorF(D) in Eq. (3). Then using these solutions, we duces the problem to finding th®( 3)-dimensional closed
discuss the condition of horizon formation for this systemsurface C and two functions ¥.(x) on the
from the viewpoint of the hoop conjecture and the volume(D — 2)-dimensional plane satisfying

conjecture.

This paper is organized as follows. In Sec. II, we briefly VX®.-V¥.)=0 interiorto C, 9
review the method of finding apparent horizons in the system

of the grazing collision of particles. In Sec. lll, we present ¥.=0 on (, (10
our numerical results and discuss the two conjectures for this

system. Section IV is devoted to summary and discussion. V¥, -V¥_=4 on ( 1D

where® . =®(x—x..). If we can find a solution of Eq%9),

Il. APPARENT HORIZONS IN THE GRAZING (10), and(11), a surface with zero expansion is given as the
COLLISION OF HIGH-ENERGY PARTICLES union of two O — 2)-surfaces = — ¥, (x) in u=0>v and

To simplify the situation, we consider black holes with Y=~ ¥-(X) in v=0>u. C is the intersection of the two
horizon radius smaller than the size of extra dimensions. ThisD —2)-surfaces au=v=0. ForD=4, Eardley and Gid-
enables us to ignore the effect of the brane tension and tHiings solved the above problem analyticdé). They used
geometry of the extra dimensions. The metric with a high-the C(_)nformal invariance of the two.—d|menS|onaI Poisson
energy point particle is obtained by infinitely boosting a€duation. FOD>4, we cannot use their method because the
Schwarzschild black hole with fixed total energy The re- (P —2)-dimensional Poisson equation does not have confor-
sulting system becomes a massless point particle accompglal invariance. We must solve the above problem numeri-
nied by a plane-fronted gravitational shock wave which isC@lly- _ _
the Lorentz-contracted longitudinal gravitational field of the N the (O—2)-dimensional spac€, and¥'.. have a sym-
particle. Combining two shock waves, we can set up thénetry abou't thex; axis that connects two source points.
collision of high-energy two particles moving in thez di- ~ Hence solving the apparent horizon is reduced to a two-
rections. This system was originally developed by D’Eathdimensional problem. We use spherical coordinat@) to
and Paynd7] and recently analyzed if#,6]. The metric of ~ represent the point in (D —2)-dimensional space, where
this system outside the future light cone of the collidingis the distancéx| from the origin and is the angle between

shocks is given as X and thex; axis. We parametrize the cureby r=g(#6).
The function g(#) and ¥. have symmetryg(8)=g(m
ds2= —dudv+(Hi(k+)ka+)+ Hi(k—)HJ(k—)_ &) dxidx, —60) and¥ (r,0)=V¥ _(r,7— 6). We calculateC and¥ ..

numerically as follows. First, we give a trial curvkand
u solve Eq.(9) under the boundary conditiofi0). Then, we

Hi(j+)= 8+ §®(U)V1VJCD(X—X+), (5) calculqtg:- the vaIu@=V\IfT-V\If_—4 onC, and determine

a modified boundanC using the value ofs. C and ¥,
converge to the solution of Eq®), (10), and(11) by iterat-
ing these two steps. In order to proceed the first step, we
introduce a regular functiom=® _, -V, that obeys the
(D —2)-dimensional Laplace equation,

_ 1%
H( =5+ 50V (x—x-),

whereu=t—z, v=t+z, O is the Heviside step function,

andx=(x') is the point in flat D — 2)-space Xy, . . . Xp_») ho+278, 1, o D—4
T r ,r s

cotéh ,=0. (12

that is transverse to the direction of particle motion. The r2 r2
function ®(x) depends only om=|x|= yx;x' and takes the
form The boundary condition is
h dh
d(x)=—8G,ulogr for D=4 (6) _ gy o
hi—gn =P+, - T, 0, (13)
d(x)= 16m1.Go 01—4 for D>4. (7)  Which comes from Eq(10) and the symmetry about thg
Qp_3(D—4) r axis. To simplify the boundary condition, we introduce a new
coordinate ¢, 6) by
X+ denote the points of two particles iD( 2)-dimensional
space and we take r=g(@)r, 6=4. (14)
X+=(x=b/2,0,...,0. (8) In this coordinate, Eq(12) becomes
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D=4
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xfro 0 x2/ro
-05 FIG. 1. The shape of the ap-
parent horizonC on the ;,X,)
-1 plane in the collision plane=v
] ~05 0 0.5 1 =0 for D=4,...,7. Incoming
x1fro particles are located on the hori-

zontal linex,=0. Values ofb/r,
are0@®), 04 (©),07(¢), 10
(¢, shown only inD=6,7), and
Dmax/ro (*). As the distancé be-
tween two particles increases, the
radius ofC decreases.

0.5
Xfro O

Xa/ro

-0.5

x1fro Y

1 2g’ calculation for the larger impact parameterThe maximal
— h;;+~—2h;,;,—:—hy7;r impact parameteb,,,, is obtained whenig(8,b)/db be-
r r g comes—c. ForD=10 and 11, the numerical instability oc-
'2 , curs at the neighborhood &f=b,,,. We obtained,,, by
(D_4)Cot”gg_) h~ extrapolatingg(7/2,b) by fitting the numerical data.
g/ To evaluate numerical errors, we compare the numerical
solution with the analytic solution given by Eardley and Gid-
D-4 . dings for theD=4 case. The numerical error is less than
+ 7—2C0t0h]9_0 15 0.020%. ForD=5, we evaluate the error by comparing the
solution with the result of the calculation with (18@00)

and the boundarg is given by?=1. We solve Eq.(15) grids. The error is about 0.04% fdd=6, 0.07% forD

using the finite differential method with (50100) grids. —8» 0.25% forb=10, and 0.4% foD =11.
There is a coordinate singularity and we cannot write down

14

1
+ =
:

g

D-3- 0 127
g

92

the finite difference equation of Eq15) atT=0. ForT IIl. NUMERICAL RESULTS AND CONDITION FOR
=0, we use the Laplace equation in thg (p) coordinate, HORIZON FORMATION
_ Figure 1 shows the shape 6fon the &;,x,) plane for
h +(D—-3)h =0 at 0, 16 , S 1182) F
gt Moo P (16 D=4,...,7. Folb=0, the apparent horizon consists of two

wherep is the distance from thr; axis. We relate the value (D—2)-dimensional flat disks whose radiugis

at the grid points around=0 using Eq.(16). (SWMGD

Onceh converges, we proceed to the second step to de- ro=
termine the modified boundary. We calculate §(6)
=VV¥,-V¥,—4, and determine the modified bound&rgs

1/(D-3)
) (18

The radiusg(#) of C takes the maximum value,,,, at
r=g(6)+exa(6). (179 =0, and the minimum valuey, at = w/2. As the impact

parameterb increases, the radius of thd® (- 3)-surfaceC
If € is sufficiently small,C converges. In our calculation, we becomes smaller. The shape®ét b=b,,,, deviates from a
took the value of as typically 10 3~10 ° times the horizon sphere and the ratit../r mi, becomes large ad increases

radius of the system. Smalleris required to converge the and a more prolate-shaped horizon can exist for laiyer
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FIG. 2. The relation between the impact paraméteand the
minimum radiug ,;, of C for D=4, .. .,11. The value 0b,,,/2rq
grows asD increases.

Figure 2 shows the relation betwebrandr ., for each

D. The value ofb,,,/ro ranges between 0.8 and 1.3 and

becomes large asD increases. Because&,(2u)=rg,
bmax/rn(2w) is alsoO(1) and increases with. This behav-

ior of by /rn(2u) is different from the case of the head-on

collision [4], where the ratio
(distance of two particles),(2u) at the horizon formation
decreases withD. Our numerical results fob,,,/2r, and
F(D) are summarized in Table I.

Now we investigate the condition for horizon formation in

the two-particle system. Becau®g,,/rn(2u)~0(1), the

hoop conjecture can be applicable to estimate the maximal
impact parameter in high-energy collisions in the higher-
dimensional spacetime. But the hoop conjecture cannot e

plain the increase ob,.,/rn(21) with the increase oD.
Figure 3 is the plot ob,,,(D). We found that the relation
bma=1.5h(u) well describes the behavior @f,,(D) ob-
tained by numerical calculation. As,(un) is an effective

gravitational radius of each incoming particle, the horizon
e_

formation occurs when there is an overlap of more than on
half of r,(«) between the regions with radiug(w) around
each particle. Becausg(u) is proportional tou*®~3), the
ratio r(u)/rn(2,)=2"YP~3) increases wittD. This leads
to the increase o q/rn(21) with D.

The behaviorbg,/rn(2u)<2 Y®=3 can be derived
from the more fundamental principle, the

X_
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FIG. 3. The value ob,,,, (crossesas a function of the space-
time dimensionD. The dotted liner,(2x) comes from the hoop
conjecture. Although the ratib,,,,/rn(2u1) takes the value around
unity, the hoop conjecture does not explain the increase of
bmax/rn(2p)  with  D.  The solid line bya/rn(2w®)
=1.5(u)/rp(2u)~2~Y(P=3) gives a good fit obyy.

comes~[br2~4(w)/r23(2u)1YP =3, By settingHp~1,
the maximal impact parameter is given by
bmax

Fn(2m) N(

Although this is a rough-order estimation, the calculation
indicates that the volume conjecture provides a better condi-
tion than the hoop conjecture.

To test the validity of the two conjectures further, we
consider how much energy is trapped by the black hole. This
is related to the definition of the mass in the system. In our

D-4
”‘(2“)) 2 UO-3) 20

r(m)

previous papef8], we discussed the existence of the gravi-
tational wave energy that does not contribute to the horizon
formation in the system with motion and found that the hoop
conjecture with Hawking’s quasilocal mass provides a good
condition for the horizon formation in four-dimensional
gravity. In the present system, we calculate the quantity

(ADZ)(DS)/(DZ)
Qp-»

Moo= (D-2)Qp_,

Y

whereAp_, is the (D —2)-dimensional area of the apparent
horizon. By the area theorenM, . provides the lower
bound of the final mass of the black hole and coincides with

(D—3)-dimensional volume conjecture. In the present SYSHawking’s quasilocal mass on the horizon. Therefddg, .

tem, the conditior(4) can be written as
1/(D-3)

=<1.

Vb-3

Ho=|—"—F=—
Qp_srp (M)

(19

This condition reduces to the hoop conject(tg for the D
=4 case. As the characteristic length of the systelmiiisthe
x4 direction andr(x) in other directions, the characteristic
(D—3)-volume becomesV/p_3;~brP %(u) and Hp be-

can become an indicator of the energy trapped by the hori-
zon. Figure 4 shows the behavior i, /21 as a function

of b for eachD. We find that the value oM, /2 at b
=bnax decreases ab increases. In the higher-dimensional
spacetime, the amount of “junk” energy increases because
the gravitational field distributes in the space of the extra
dimensions and only a small portion of the total energy of
the system can contribute to the horizon formation. This junk
energy will be radiated away rapidly after the formation of

TABLE I. The value ofb,,/2r, andF(D) for D=4, ...,11.

D 4 5 6 7 8 9 10 11
D mad2r o 0.402 0.480 0.526 0.559 0.583 0.603 0.619 0.632
F(D) 0.647 1.084 1.341 1.515 1.642 1.741 1.819 1.883
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FIG. 6. The value of{ 5" as a function ofb/r(2u) for D

FIG. 4. The relation between the horizon mdbgy /2 and the =4 - - -,11. The circles show the values & bpyqy. HE™ (Drma)
impact parameteb for D=4, . ..,11. M, /2 becomes small as Pecomes small ab increases.
D increases. The black hole in the higher-dimensional spacetime
can trap a small amount of the energy. considering symmetries of the horizon and took the maxi-
mum value of their D—3)-volume. Using the similar

the black hole. This strongly suggests that we should use thl%ethod, we adopt theX— 3)-volume of the D —3)-surface
quasilocal mass to check the hoop and the volume conjeg. Figure 6 shows the numerical results @fA(b).

tures. AH. . . . .
To test the validity of the two conjectures with the Hp " (b) is almost constant and slightly increases vith

quasilocal mass, we must calculatd(S), C(S), and

Vp_3(S) for all surfaces S, and then take the minimum value HA.H.(b):HA.H.(O):[(D_Z)QD2

of C(S)/2mr,(M(S)) and Vp_5(S)/Qp_zrR *(M(S)). In D b 2Q0p_3

the present system, calculation of the quasilocal mass is dif-

ficult because we treat the black hole on two connected nulp s the isoperimetric inequalitit 3 (b)=<1 holds on the

hyperpl)lllfmeﬁ, whilefordinary quasilocal rlnalss is gefine::i IN {orizon in this system. The factor in E@2) contradicts the
SH%S:CEES yp)e/z;s:rr E(J"(\:/Ie' ")'engﬁdwg_[ /f_ﬁ_;“[f‘/te t(g va)1/ue Yonstancy ofHAM (b With respect toD that we have
A 1/?073%“' D D-312AH. expected from Eq(20). It may be absorbed in the definition
Qp-alp (MAAHH.)] on the apparent horizon@.. I of the volume factor, but we do not have the rigorous defi-
calculatingHp™, we must specify the hoop for the surface nition of the volume and we cannot explain the meaning of
San.- The hoop is defined as the longest closed geodesic ofhis factor at this stage. By ignoring this factor, the behavior
the surface. In our system, the hoop is the length of the curvgs Hé'”'(b) for eachD is similar toHé‘H'(b) for D=4. This
C on the (;,x;) plane shown in Fig. 1. Figure 5 shows the jndicates thaf{, with the quasilocal mass provides a value

numerical results oH3"(b) for eachD. H5"™(b) mono-  thatis close to unity at the horizon formation and the volume
tonically increases with for all D and it can be a parameter conjecture holds.

to judge the existence of the horizon. The value at horizon
formation H5™(bpa) ranges between 1.4 and 1.6 and in-
creases wittD. The deviation of the valuklp from unity is
due to the definition of the mass and we expect that this e have investigated black hole formation in the grazing
value approaches close to unity if we use the appropriatgoliision of high-energy particles numerically. A black hole
mass of the system and the hoop conjecture holds. The ifs produced when the impact parametesatisfies the condi-
crease ofHS"™(bya) with D reflects the fact that a more tion b=<1.5, (). This condition can be derived by using the
prolate-shaped horizon can form for largdd and  volume conjecture and suggests that the volume conjecture

1/(D-2)
(22)

IV. SUMMARY AND DISCUSSION

Brmax/Th(24) increases wittD. provides a better condition for horizon formation than the
As for (D —3)-volume, a general definition does not exist hoop conjecture in the higher-dimensional gravity.
yet. Ida and Nakad5] selected someX—3)-surfaces by We evaluated the value dfi, and Hp on the apparent
AH horizon and both inequalitiddp,<1 andHp=<1 give fairly
llgD good conditions for the horizon formation. This result is in
’ contrast to the horizon formation by the spindle matter dis-
L5 tribution [5]; in this case, the gravitational field in the trans-
14 verse direction of spindle matter i®( 1)-dimensional and
1.3 the black hole forms even if the hodis far greater than
1.2 27, (M) for D=5 andHp=<1 does not give the condition
1.1 for the horizon formation. But in the system with two point
biri(2u) particles, the gravitational field in the middle of two particles

01 02 03 04 05 06 is weak if the distance of two particles is larger thgfM)

FIG. 5. The value oH5"" as a function ofb/r,(2u) for D and becomes sulfficiently strong to form the horizon if the
=4,...,11. The circles show the values latb,,,. HA"™ (b0  distance of two particles equalg(M) for any D. This leads
becomes large ad increases. to the condition of the black hole formatioHp~1. We
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therefore expect that the hoop conjecture in the higherformation; if an apparent horizon exists, there is a surface
dimensional spacetime holds for the system that consists ahat satisfies{p=<1. There remains the possibility that even
two point particles. if the apparent horizon does not exist, there is a surface that

The behavior ofl—(’S'H'(bmaQ indicates thatHp=<1 with  satisfies the{p=1. Hence further investigation is required
the quasilocal mass provides a better condition for the horito confirm whether D —3)-volume conjecture provides a
zon formation compared to the hoop conjecture. But what wesufficient condition for the horizon formation. This is our
have confirmed is the necessary condition for the horizomemaining problem.
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