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Black hole formation in the grazing collision of high-energy particles

Hirotaka Yoshino* and Yasusada Nambu†

Department of Physics, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
~Received 30 August 2002; published 15 January 2003!

We numerically investigate the formation ofD-dimensional black holes in high-energy particle collisions
with the impact parameter and evaluate the total cross section of black hole production. We find that the
formation of an apparent horizon occurs when the distance between the colliding particles is less than 1.5 times
the effective gravitational radius of each particle. Our numerical result indicates that although both the one-
dimensional hoop and the (D23)-dimensional volume corresponding to the typical scale of the system give a
fairly good condition for horizon formation in the higher-dimensional gravity, the (D23)-dimensional volume
provides a better condition to judge the existence of the horizon.
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I. INTRODUCTION

The brane world scenario has been paid much attentio
the context of the unified theory of elementary particles. T
scenario regards our space as a 3-brane with large extr
mensions on which gauge particles and interactions are
fined. In this scenario, the Planck energy can be at thO
~TeV! scale @1#. One of the consequences of lowering t
Planck scale is that the properties of a small black h
whose radius is smaller than the size of the extra dimens
are substantially altered; the black hole is well described
D-dimensional black hole centered on the brane, but exte
ing out into the (D24)-dimensional extra space and the r
dius of such a black hole is;1032 times larger than that o
the usual black hole with the same mass. Hence it beco
much easier to produce black holes using a future plan
accelerator such as the CERN Large Hadron Collider,
this possibility has been discussed by many authors@2#.

The possibility of producing black holes by the collisio
of particles can be estimated by using the hoop conjec
@3#. It states that in four-dimensional Einstein gravity,
apparent horizon forms when and only when the massM of
the system gets compacted into a region whose circum
enceC satisfies

HD[
C

2pr h~M !
&1, ~1!

where r h(M ) is the Schwarzschild horizon radius for th
massM. If we assume that the inequality~1! gives the con-
dition for black hole formation in the higher-dimension
gravity wherer h(M ) is now given as

r h~M !5S 16pGDM

~D22!VD22
D 1/(D23)

~2!

with the volume of the unit (D22)-sphereVD22 and the
gravitational constantGD , we can evaluate the impact pa
rameterb of the colliding particles which leads to black ho
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production. The circumference that surrounds two partic
at the instant of collision is C;2b. By setting
2b/2pr h(2m);1, where 2m is the center-of-mass energy o
the system, the maximal impact parameterbmax that leads to
the black hole formation becomesbmax;r h(2m). By intro-
ducing a numerical factorF(D) close to unity, the total cross
section for black hole production is written in the followin
form:

sb.h. production5F~D !pr h
2~2m!. ~3!

ObtainingF(D) is necessary to improve experimental pr
dictions of the black hole production in collider physics a
observations of ultrahigh-energy cosmic rays.

In our previous paper@4#, we investigated the black hol
formation in high-energy head-on collisions of particles
theD-dimensional gravity and found thatHD becomes a pa-
rameter to judge the existence of the apparent horizon fo
D. Although this implies that the hoop conjecture holds f
this system, we do not know the condition for the horiz
formation in the higher-dimensional spacetime. Recently,
and Nakao@5# investigated momentarily static initial data i
the five-dimensional spacetime and found that a spindle
tribution of matter can lead to black hole formation even
the hoopC is arbitrarily larger than 2pr h(M ). This provides
a counterexample for the ‘‘only when’’ part of the hoop co
jecture. They showed that the isoperimetric inequa
(characteristic area)&4pr h

2(M ) is satisfied on the horizon
and conjectured that for a characteristic (D23)-dimensional
volumeVD23 of the system, the inequality

VD23

GDM
&1 ~4!

would become a condition for the horizon formation. Th
‘‘( D23)-volume conjecture’’~volume conjecture! is one
candidate that provides a better condition for the horiz
formation in the higher-dimensional spacetime than the h
conjecture and it is worth investigating.

In this paper, we consider the grazing collisions of p
ticles in theD-dimensional Einstein gravity and investiga
the formation of apparent horizons. Eardley and Giddings@6#
developed a method of finding apparent horizons for t
©2003 The American Physical Society09-1
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system. The problem was reduced to a boundary-value p
lem for Poisson’s equation in a (D22)-dimensional flat
space and they solved it analytically for theD54 case. We
solve this problem numerically forD.4 and obtain the
maximal impact parameterbmax for black hole formation and
the factorF(D) in Eq. ~3!. Then using these solutions, w
discuss the condition of horizon formation for this syste
from the viewpoint of the hoop conjecture and the volum
conjecture.

This paper is organized as follows. In Sec. II, we brie
review the method of finding apparent horizons in the sys
of the grazing collision of particles. In Sec. III, we prese
our numerical results and discuss the two conjectures for
system. Section IV is devoted to summary and discussio

II. APPARENT HORIZONS IN THE GRAZING
COLLISION OF HIGH-ENERGY PARTICLES

To simplify the situation, we consider black holes wi
horizon radius smaller than the size of extra dimensions. T
enables us to ignore the effect of the brane tension and
geometry of the extra dimensions. The metric with a hig
energy point particle is obtained by infinitely boosting
Schwarzschild black hole with fixed total energym. The re-
sulting system becomes a massless point particle accom
nied by a plane-fronted gravitational shock wave which
the Lorentz-contracted longitudinal gravitational field of t
particle. Combining two shock waves, we can set up
collision of high-energy two particles moving in the6z di-
rections. This system was originally developed by D’Ea
and Payne@7# and recently analyzed in@4,6#. The metric of
this system outside the future light cone of the collidi
shocks is given as

ds252dudv1~Hik
(1)H jk

(1)1Hik
(2)H jk

(2)2d i j !dxidxj ,

Hi j
(1)5d i j 1

u

2
Q~u!¹i¹jF~x2x1!, ~5!

Hi j
(2)5d i j 1

v
2

Q~v !¹i¹jF~x2x2!,

where u5t2z, v5t1z, Q is the Heviside step function
andx[(xi) is the point in flat (D22)-space (x1 , . . . ,xD22)
that is transverse to the direction of particle motion. T
function F(x) depends only onr[uxu5Axix

i and takes the
form

F~x!528G4m log r for D54 ~6!

F~x!5
16pmGD

VD23~D24!

1

r D24
for D.4. ~7!

x6 denote the points of two particles in (D22)-dimensional
space and we take

x65~6b/2,0, . . . ,0!. ~8!
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The apparent horizonS is defined as a closed spacelik
(D22)-surface on which the outer null geodesic congrue
has zero convergence. Eardley and Giddings@6# developed a
method of finding the apparent horizon in the union of t
two shock waves,u50.v andv50.u. Their method re-
duces the problem to finding the (D23)-dimensional closed
surface C and two functions C6(x) on the
(D22)-dimensional plane satisfying

¹2~F62C6!50 interior to C, ~9!

C650 on C, ~10!

¹C1•¹C254 on C, ~11!

whereF6[F(x2x6). If we can find a solution of Eqs.~9!,
~10!, and~11!, a surface with zero expansion is given as t
union of two (D22)-surfacesv52C1(x) in u50.v and
u52C2(x) in v50.u. C is the intersection of the two
(D22)-surfaces atu5v50. For D54, Eardley and Gid-
dings solved the above problem analytically@6#. They used
the conformal invariance of the two-dimensional Poiss
equation. ForD.4, we cannot use their method because
(D22)-dimensional Poisson equation does not have con
mal invariance. We must solve the above problem num
cally.

In the (D22)-dimensional space,C andC6 have a sym-
metry about thex1 axis that connects two source point
Hence solving the apparent horizon is reduced to a tw
dimensional problem. We use spherical coordinate (r ,u) to
represent the pointx in (D22)-dimensional space, wherer
is the distanceuxu from the origin andu is the angle between
x and thex1 axis. We parametrize the curveC by r 5g(u).
The function g(u) and C6 have symmetryg(u)5g(p
2u) andC1(r ,u)5C2(r ,p2u). We calculateC andC6

numerically as follows. First, we give a trial curveC and
solve Eq.~9! under the boundary condition~10!. Then, we
calculate the valued5¹C1•¹C224 on C, and determine
a modified boundaryC using the value ofd. C and C1

converge to the solution of Eqs.~9!, ~10!, and~11! by iterat-
ing these two steps. In order to proceed the first step,
introduce a regular functionh[F12C1 that obeys the
(D22)-dimensional Laplace equation,

h,rr 1
D23

r
h,r1

1

r 2
h,uu1

D24

r 2
cotuh,u50. ~12!

The boundary condition is

hur 5g(u)5F1 ,
]h

]u U
u50

5
]h

]uU
u5p

50, ~13!

which comes from Eq.~10! and the symmetry about thex1
axis. To simplify the boundary condition, we introduce a ne
coordinate (r̃ ,ũ) by

r 5g~ ũ ! r̃ , u5 ũ. ~14!

In this coordinate, Eq.~12! becomes
9-2
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FIG. 1. The shape of the ap
parent horizonC on the (x1 ,x2)
plane in the collision planeu5v
50 for D54, . . . ,7. Incoming
particles are located on the hor
zontal linex250. Values ofb/r 0

are 0 (d), 0.4 (s), 0.7 (l), 1.0
(L, shown only inD56,7), and
bmax/r 0 (!). As the distanceb be-
tween two particles increases, th
radius ofC decreases.
w
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S 11
g82

g2 D h, r̃ r̃1
1

r̃ 2
h,ũ ũ2

2

r̃

g8

g
h,ũ r̃

1
1

r̃
S D232

g9

g
12

g82

g2
2~D24!cotũ

g8

g D h, r̃

1
D24

r̃ 2
cotũh,ũ50 ~15!

and the boundaryC is given by r̃ 51. We solve Eq.~15!
using the finite differential method with (503100) grids.
There is a coordinate singularity and we cannot write do
the finite difference equation of Eq.~15! at r̃ 50. For r̃
50, we use the Laplace equation in the (x1 ,r) coordinate,

h,x1x1
1~D23!h,rr50 at r→0, ~16!

wherer is the distance from thex1 axis. We relate the value
at the grid points aroundr̃ 50 using Eq.~16!.

Onceh converges, we proceed to the second step to
termine the modified boundaryC. We calculate d(u)
5¹C1•¹C224, and determine the modified boundaryC as

r 5g~u!1e3d~u!. ~17!

If e is sufficiently small,C converges. In our calculation, w
took the value ofe as typically 1023–1025 times the horizon
radius of the system. Smallere is required to converge th
02400
n

e-

calculation for the larger impact parameterb. The maximal
impact parameterbmax is obtained when]g(u,b)/]b be-
comes2`. For D510 and 11, the numerical instability oc
curs at the neighborhood ofb5bmax. We obtainedbmax by
extrapolatingg(p/2,b) by fitting the numerical data.

To evaluate numerical errors, we compare the numer
solution with the analytic solution given by Eardley and Gi
dings for theD54 case. The numerical error is less th
0.02%. ForD>5, we evaluate the error by comparing th
solution with the result of the calculation with (1003200)
grids. The error is about 0.04% forD56, 0.07% for D
58, 0.25% forD510, and 0.4% forD511.

III. NUMERICAL RESULTS AND CONDITION FOR
HORIZON FORMATION

Figure 1 shows the shape ofC on the (x1 ,x2) plane for
D54, . . . ,7. Forb50, the apparent horizon consists of tw
(D22)-dimensional flat disks whose radiusr 0 is

r 05S 8pmGD

VD23
D 1/(D23)

. ~18!

The radiusg(u) of C takes the maximum valuer max at u
50,p and the minimum valuer min at u5p/2. As the impact
parameterb increases, the radius of the (D23)-surfaceC
becomes smaller. The shape ofC at b5bmax deviates from a
sphere and the ratior max/r min becomes large asD increases
and a more prolate-shaped horizon can exist for largerD.
9-3
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Figure 2 shows the relation betweenb and r min for each
D. The value ofbmax/r 0 ranges between 0.8 and 1.3 a
becomes large asD increases. Becauser h(2m).r 0 ,
bmax/r h(2m) is alsoO(1) and increases withD. This behav-
ior of bmax/r h(2m) is different from the case of the head-o
collision @4#, where the ratio
(distance of two particles)/r h(2m) at the horizon formation
decreases withD. Our numerical results forbmax/2r 0 and
F(D) are summarized in Table I.

Now we investigate the condition for horizon formation
the two-particle system. Becausebmax/r h(2m);O(1), the
hoop conjecture can be applicable to estimate the max
impact parameter in high-energy collisions in the high
dimensional spacetime. But the hoop conjecture cannot
plain the increase ofbmax/r h(2m) with the increase ofD.
Figure 3 is the plot ofbmax(D). We found that the relation
bmax.1.5r h(m) well describes the behavior ofbmax(D) ob-
tained by numerical calculation. Asr h(m) is an effective
gravitational radius of each incoming particle, the horiz
formation occurs when there is an overlap of more than o
half of r h(m) between the regions with radiusr h(m) around
each particle. Becauser h(m) is proportional tom1/(D23), the
ratio r h(m)/r h(2m)5221/(D23) increases withD. This leads
to the increase ofbmax/r h(2m) with D.

The behaviorbmax/r h(2m)}221/(D23) can be derived
from the more fundamental principle, th
(D23)-dimensional volume conjecture. In the present s
tem, the condition~4! can be written as

HD[F VD23

VD23r h
D23~M !

G 1/(D23)

&1. ~19!

This condition reduces to the hoop conjecture~1! for the D
54 case. As the characteristic length of the system isb in the
x1 direction andr h(m) in other directions, the characterist
(D23)-volume becomesVD23;brh

D24(m) and HD be-

FIG. 2. The relation between the impact parameterb and the
minimum radiusr min of C for D54, . . .,11. The value ofbmax/2r 0

grows asD increases.
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D24(m)/r h

D23(2m)#1/(D23). By settingHD;1,
the maximal impact parameter is given by

bmax

r h~2m!
;S r h~2m!

r h~m! D D24

}221/(D23). ~20!

Although this is a rough-order estimation, the calculati
indicates that the volume conjecture provides a better co
tion than the hoop conjecture.

To test the validity of the two conjectures further, w
consider how much energy is trapped by the black hole. T
is related to the definition of the mass in the system. In
previous paper@8#, we discussed the existence of the gra
tational wave energy that does not contribute to the hori
formation in the system with motion and found that the ho
conjecture with Hawking’s quasilocal mass provides a go
condition for the horizon formation in four-dimension
gravity. In the present system, we calculate the quantity

MA.H.[
~D22!VD22

16pGD
S AD22

VD22
D (D23)/(D22)

, ~21!

whereAD22 is the (D22)-dimensional area of the appare
horizon. By the area theorem,MA.H. provides the lower
bound of the final mass of the black hole and coincides w
Hawking’s quasilocal mass on the horizon. Therefore,MA.H.
can become an indicator of the energy trapped by the h
zon. Figure 4 shows the behavior ofMA.H./2m as a function
of b for eachD. We find that the value ofMA.H./2m at b
5bmax decreases asD increases. In the higher-dimension
spacetime, the amount of ‘‘junk’’ energy increases beca
the gravitational field distributes in the space of the ex
dimensions and only a small portion of the total energy
the system can contribute to the horizon formation. This ju
energy will be radiated away rapidly after the formation

FIG. 3. The value ofbmax ~crosses! as a function of the space
time dimensionD. The dotted liner h(2m) comes from the hoop
conjecture. Although the ratiobmax/r h(2m) takes the value around
unity, the hoop conjecture does not explain the increase
bmax/r h(2m) with D. The solid line bmax/r h(2m)
51.5r h(m)/r h(2m);221/(D23) gives a good fit ofbmax.
32
83
TABLE I. The value ofbmax/2r 0 andF(D) for D54, . . .,11.

D 4 5 6 7 8 9 10 11

bmax/2r 0 0.402 0.480 0.526 0.559 0.583 0.603 0.619 0.6
F(D) 0.647 1.084 1.341 1.515 1.642 1.741 1.819 1.8
9-4
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the black hole. This strongly suggests that we should use
quasilocal mass to check the hoop and the volume con
tures.

To test the validity of the two conjectures with th
quasilocal mass, we must calculateM (S), C(S), and
VD23(S) for all surfaces S, and then take the minimum va
of C(S)/2pr h„M (S)… and VD23(S)/VD23r h

D23
„M (S)…. In

the present system, calculation of the quasilocal mass is
ficult because we treat the black hole on two connected
hyperplanes, while ordinary quasilocal mass is defined
spacelike hypersurface. Hence we calculate the value
HD

A.H.[C(SA.H.)/2pr h(MA.H.) and H D
A.H.[@VD23(SA.H.)/

VD23r h
D23(MA.H.)#1/(D23) on the apparent horizon SA.H. . In

calculatingHD
A.H. , we must specify the hoop for the surfac

SA.H. . The hoop is defined as the longest closed geodesi
the surface. In our system, the hoop is the length of the cu
C on the (x1 ,x2) plane shown in Fig. 1. Figure 5 shows th
numerical results ofHD

A.H.(b) for eachD. HD
A.H.(b) mono-

tonically increases withb for all D and it can be a paramete
to judge the existence of the horizon. The value at horiz
formation HD

A.H.(bmax) ranges between 1.4 and 1.6 and
creases withD. The deviation of the valueHD from unity is
due to the definition of the mass and we expect that
value approaches close to unity if we use the appropr
mass of the system and the hoop conjecture holds. The
crease ofHD

A.H.(bmax) with D reflects the fact that a mor
prolate-shaped horizon can form for largerD and
bmax/r h(2m) increases withD.

As for (D23)-volume, a general definition does not ex
yet. Ida and Nakao@5# selected some (D23)-surfaces by

FIG. 4. The relation between the horizon massMA.H./2m and the
impact parameterb for D54, . . .,11. MA.H./2m becomes small as
D increases. The black hole in the higher-dimensional space
can trap a small amount of the energy.

FIG. 5. The value ofHD
A.H. as a function ofb/r h(2m) for D

54, . . .,11. The circles show the values atb5bmax. HD
A.H.(bmax)

becomes large asD increases.
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considering symmetries of the horizon and took the ma
mum value of their (D23)-volume. Using the similar
method, we adopt the (D23)-volume of the (D23)-surface
C. Figure 6 shows the numerical results ofH D

A.H.(b).
H D

A.H.(b) is almost constant and slightly increases withb:

H D
A.H.~b!.H D

A.H.~0!5F ~D22!VD22

2VD23
G1/(D22)

. ~22!

Thus the isoperimetric inequalityH D
A.H.(b)&1 holds on the

horizon in this system. The factor in Eq.~22! contradicts the
constancy ofH D

A.H.(bmax) with respect toD that we have
expected from Eq.~20!. It may be absorbed in the definitio
of the volume factor, but we do not have the rigorous de
nition of the volume and we cannot explain the meaning
this factor at this stage. By ignoring this factor, the behav
of H D

A.H.(b) for eachD is similar toHD
A.H.(b) for D54. This

indicates thatHD with the quasilocal mass provides a valu
that is close to unity at the horizon formation and the volu
conjecture holds.

IV. SUMMARY AND DISCUSSION

We have investigated black hole formation in the graz
collision of high-energy particles numerically. A black ho
is produced when the impact parameterb satisfies the condi-
tion b&1.5r h(m). This condition can be derived by using th
volume conjecture and suggests that the volume conjec
provides a better condition for horizon formation than t
hoop conjecture in the higher-dimensional gravity.

We evaluated the value ofHD and HD on the apparent
horizon and both inequalitiesHD&1 andHD&1 give fairly
good conditions for the horizon formation. This result is
contrast to the horizon formation by the spindle matter d
tribution @5#; in this case, the gravitational field in the tran
verse direction of spindle matter is (D21)-dimensional and
the black hole forms even if the hoopC is far greater than
2pr h(M ) for D>5 andHD&1 does not give the condition
for the horizon formation. But in the system with two poi
particles, the gravitational field in the middle of two particl
is weak if the distance of two particles is larger thanr h(M )
and becomes sufficiently strong to form the horizon if t
distance of two particles equalsr h(M ) for anyD. This leads
to the condition of the black hole formationHD;1. We

e

FIG. 6. The value ofH D
A.H. as a function ofb/r h(2m) for D

54, . . .,11. The circles show the values atb5bmax. H D
A.H.(bmax)

becomes small asD increases.
9-5
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therefore expect that the hoop conjecture in the high
dimensional spacetime holds for the system that consist
two point particles.

The behavior ofH D
A.H.(bmax) indicates thatHD&1 with

the quasilocal mass provides a better condition for the h
zon formation compared to the hoop conjecture. But what
have confirmed is the necessary condition for the hori
tt

an

02400
r-
of

i-
e
n

formation; if an apparent horizon exists, there is a surfa
that satisfiesHD&1. There remains the possibility that eve
if the apparent horizon does not exist, there is a surface
satisfies theHD&1. Hence further investigation is require
to confirm whether (D23)-volume conjecture provides
sufficient condition for the horizon formation. This is ou
remaining problem.
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