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Classical stability of charged black branes and the Gubser-Mitra conjecture
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We have investigated the classical stability of magnetically charged blackp-brane solutions for string
theories that include the case studied by Gregory and Laflamme. It turns out that the stability behaves very
differently depending on the coupling parameter between the dilaton and gauge fields. In the case of Gregory
and Laflamme, it is known that the black brane instability decreases monotonically as the charge of the black
branes increases and finally disappears at the extremal point. For more general cases we found that, when the
coupling parameter is small, black brane solutions become stable even before reaching the extremal point. On
the other hand, when the coupling parameter is large, black branes are always unstable, and moreover the
instability does not continue to decrease, but starts to increase again as they approach the extremal point.
However, all extremal black branes are shown to be stable even in this case. It has also been shown that the
main features of the classical stability are in good agreement with the local thermodynamic behavior of the
corresponding black hole system through the Gubser-Mitra conjecture. Some implications of our results are
also discussed.
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I. INTRODUCTION

Black holes are very important objects for studying a
understanding both general relativity and string theory. Br
configurations in string theory have been studied from v
ous aspects, and play important roles in the context of
gauge-gravity duality@1#. From the AdS/CFT correspon
dence it has also been suggested that the infrared lim
nonsupersymmetric Yang-Mills theories corresponds to bl
hole configurations in AdS space, which can be regarde
the near horizon limit of nonextremal D-brane configuratio
@2#. From the study of Yang-Mills theories we can reve
properties of black holes, and it is considered that the
sence of the tachyonic glueball might imply the stability
the corresponding black hole configurations@3#. On the other
hand, recently the issue of black string instability and
evolution has been of great interest. It was widely believ
that the evolution of the instability in a black string results
bifurcations of the horizon finally. However, Horowitz an
Maeda have shown that the horizon of a black string can
pinch off in a finite affine time@4#. Therefore an inhomoge
neous black string may be the final stable configuration.
cently some authors have discussed the properties of i
mogeneous black strings and their existence@5–7#.

The Schwarzschild black hole is known to be stable un
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linearized perturbations in general relativity@8#. However,
Gregory and Laflamme discussed the stability of bla
branes and found that a foliation of Schwarzschild bla
holes (Sch.3Sn) is unstable if the compactification scale (Sn

radius! is larger than the order of the Schwarzschild radius
the so-called Gregory-Laflamme instability@9#. One may,
roughly speaking, expect that charge prevents a black b
from being unstable because of some repulsive forces am
charges as the event horizon shrinks. However, Gregory
Laflamme also showed that some charged black brane
ten-dimensional spacetime always have instability modes
the way down to the extremal limit@10#. So it is unlikely that
the presence of charge can remove the instability in the b
branes they considered. On the other hand, extremal b
branes have been shown to be stable@11#. The stability of
black branes in anti–de Sitter spacetime has also been in
tigated. In five-dimensional anti–de Sitter spacetime, bla
strings that are foliations of four-dimensional Schwarzsch
black holes@12# or de Sitter–Schwarzschild black holes@13#
recently have been shown to be unstable as well. Howe
the black string that is a foliation of four-dimension
anti–de Sitter–Schwarzschild black holes becomes stabl
the horizon radius is larger than the order of the AdS4 radius
@13#. Ban̂ados-Teitelboim-Zanelli~BTZ! black strings in
four-dimensional spacetime turn out to be stable always@14#.

In the string theory context, the black branes that Greg
and Laflamme considered@10,11# are those having a mag
netic charge with respect to Neveu-Schwarz gauge fie
@i.e., the case ofā522 in Eq. ~1! below#. Thus, for ex-
ample, black p-branes carrying charge with respect
Ramond-Ramond gauge fields~i.e., the case ofā50) are not
covered in their work. The properties of D-branes and th
nonextremal extensions have many applications and are
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portant to study. The charged black brane solutions that G
gory and Laflamme considered might not be general eno
to show other possible interesting stability behavior. The
fore, it will be of interest to see whether or not the stabil
behavior drastically changes when more general types
charged black brane solutions are considered. In fact, we
different behaviors depending on the coupling between d
ton and gauge fields. For instance, charged black branes
come stable even far from the extremal point provided t
this coupling is smaller than a certain critical value. In th
paper, we study the classical stability of a wider class
charged black brane backgrounds which include vari
black p-branes in string theory as special cases.

Another interesting feature of black hole systems is t
they can be regarded as thermodynamic systems. A b
hole has entropy, temperature, and other thermodyna
quantities. The area theorem states that the total area of b
holes cannot decrease, i.e.,dA>0, and it might be inter-
preted as stating that the total entropy cannot decreasedS
>0 in the black hole thermodynamics. The behavior of
stability explained above has been commonly conside
from the viewpoint of thermodynamics as a reflection th
the black string is entropically less favorable compared w
multiple black holes having the same mass and conse
charges. However, the classical area theorem does not
essarily require the transition of a black brane into a confi
ration having a larger horizon area. Thus, this global entr
argument is too naive and cannot be applied to all cases.
example, one can show that a black string in fiv
dimensional AdS space can be stable even if its entrop
smaller than that of five-dimensional AdS black holes@13#.
As pointed out by Reall@15#, the relevant consideratio
should be the local thermodynamic behavior.

Recently, Gubser and Mitra~GM! gave such a refinemen
of the entropy argument and conjectured that a black br
with a noncompact translational symmetry is classica
stable if and only if it is locally thermodynamically stab
~the GM conjecture! @16#. Reall argued a general correspo
dence between the classical instability and the presence
negative eigenmode in the Euclidean Einstein-Hilbert act
@15#. The negative eigenmode gives an imaginary contri
tion to the path integral and thus it is closely related to
local thermodynamic instability. In fact the local thermod
namic instability implies the existence of negative mode~s!.
However, there is no rigorous proof for the converse: that
existence of a negative mode indicates the thermodyna
instability. For Schwarzschild@17# and Reissner-Nordstro¨m
@16# black holes in AdS space and a Schwarzschild bl
brane enclosed in a finite cavity@18#, the equivalence be
tween nonexistence of negative modes and local thermo
namic stability has already been examined by perform
both classical and thermodynamic stability analyses exp
itly.

However, it is worthwhile to study the classical stabili
of black branes in connection with black hole thermodyna
ics in a more general context. Charged black brane solut
in type II supergravity are particularly interesting. As point
out by Reall@15#, magnetically chargedp-branes withp<4
~D0, F1, D1, D2, D4! have sign changes in the specific he
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as the charge increases. Although in Ref.@15# the essential
feature of local thermodynamic stability for those bla
branes was analyzed and a sketch of the proof for the
conjecture given in the context Reall considered, the ac
analysis for the classical stability has not been performed
it has not been examined explicitly as yet how well the cl
sical and thermodynamic stabilities actually agree with e
other. This is another main motivation of our study. By pe
forming the classical stability analysis, we give an expli
check for the validity of the GM conjecture. As will b
shown below, the agreement between our numerical res
for classical perturbations and the thermodynamic stab
through the GM conjecture is very good. We also show so
features in the classical stability behavior that are not ea
predicted by the thermodynamic behavior alone.

This paper is organized as follows. In Sec. II, we summ
rize the thermodynamic stability behavior of the black bran
we are considering. Section III is devoted to the numeri
analysis for the classical stability. We give conclusions a
discussion in the last section.

II. LOCAL THERMODYNAMIC STABILITY OF BLACK
p-BRANES

In general, it is not easy to check whether or not bla
string or brane background spacetimes are stable under
sical linearized perturbations. Such a classical analysis
volves numerical calculations in most cases. As stated ab
briefly, however, a simple method has been suggested
cently from which one can predict the basic behavior of
classical stability. This is the so-called Gubser-Mitra conje
ture @16#. In this section, before performing the classic
analysis in detail, we first consider the local thermodynam
behavior of a finite segment of a blackp-brane background
spacetime.

We consider blackp-brane solutions of the following ac
tion:

I5E dDxA2ḡFe2b̄f̄@R̄2ḡ~]f̄ !2#2
1

2n!
eāf̄Fn

2G . ~1!

Here Fn denotes ann-form field strength.b̄, ḡ, and ā are
assumed to be arbitrary constants withĝ5ḡ1(D
21)b̄2/(D22).0. However, by taking the conforma
transformation1 ḡMN5e2b̄f̄/(D22)ĝMN and then rescaling the

dilaton field f̄5f/A2ĝ, this action can be written as

I5E dDxA2ĝF R̂2
1

2
~]f!22

1

2n!
eafFn

2G , ~2!

where

1Note that the classical stability of black branes does not cha
under a conformal transformation as long as the conformal facto
regular. Moreover, black hole thermodynamic quantities such
temperature@19#, entropy, and specific heat are invariant under s
tionary conformal transformations.
7-2
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a5
ā1~D22n!b̄/~D22!

A2ĝ
. ~3!

Note that the sign of the parametera is not relevant here
since the action is invariant undera→2a andf→2f. In
the following analysis, we will consider only magnetical
charged black brane solutions of this action, not electrica
charged ones. This is because electrically charged solut
can be obtained from magnetically charged ones by dualiz
the n-form field F. Moreover, the magnetically charged ca
is technically easier to treat in the perturbation analysis.2 The
metric of magnetically charged blackp-brane solutions is
given by @20,21#

dŝ252S 11
k

r d̃
sinh2m D 24d̃/D(D22)

Udt2

1S 11
k

r d̃
sinh2m D 4d/D(D22)S dr2

U
1r 2dVn

2D
1S 11

k

r d̃
sinh2m D 24d̃/D(D22)

d i j dzidzj ,

e2(D/2a)f511
k

r d̃
sinh2m, U512

k

r d̃
, D5a21

2d̃d

D22
.

~4!

Then-form field strength is proportional to the volume for
on Sn. Here d̃5n21, d5p11, D5d̃1d12521n1p,
and the coordinates are$xM%5$xm,zi%5$t,r ,xm,zi% with m
51, . . . ,n and i 51, . . . ,p. Thus, the coordinates$zi% de-
scribe thep-dimensional spatial worldvolume, and$xm% the
n-sphere. The spatial worldvolume is not compactified in o
consideration.

Note that the metric components for thep-dimensional
spatial worldvolume directions above have an overall mu
plication factor depending on ther coordinate. This multipli-
cation factor makes the spatial worldvolume nonflat, a
turns out to cause some complications in the perturba
analysis. As pointed out by Reall@15#, such complications
can be easily avoided by performing an appropriate con
mal transformation again, such as ĝMN
5e2(n21)f/(D22)agMN . Then the action becomes

I5E dDxA2gFe2bf@R2g~]f!2#2
1

2n!
eafFn

2G , ~5!

where the constants are now functions of a single param
a as follows:

2Gauge perturbations can be set to zero for the sphere direct
and are decoupled from the metric and scalar perturbations for o
directions.
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n21

a
, g5

1

2
2

~D21!~n21!2

~D22!a2
,

a5a1
~D22n!~n21!

~D22!a
. ~6!

The metric for the blackp-brane background can be writte
as

ds252Udt21V21dr21R2dVn
21d i j dzidzj , ~7!

where

V215
@11~k/r d̃!sinh2m#4/D

12k/r d̃
, R25S 11

k

r d̃
sinh2m D 4/D

r 2.

~8!

The massM and magnetic chargeQ per unit p-volume are
given by @21#

M5kS d̃111
4d̃

D
sinh2m D and Q5

d̃k

AD
sinh 2m,

~9!

respectively.
Note that the case ofb̄52, ḡ524, ā522, and D

510 in Eq.~1! corresponds to the action for which the cla
sical stability of magnetically charged blackp-brane solu-
tions has been studied by Gregory and Laflamme~GL!
@10,11#. Thus, as pointed out by Reall@15#, a Neveu-Schwarz
5-brane~NS5-brane! ~i.e., n53) is the only black brane o
type II supergravity covered by their work. This case cor
sponds toa5(12n)/2 in the conformally transformed ac
tion in Eq.~5!. The F-string by dualizing the Neveu-Schwa
gauge field can also be described by the action in Eq.~1!

with a different coupling to the dilaton, i.e.,ā52 and soa
5(92n)/2. Hence the F-string~i.e., n57) can be covered
When b̄52, ḡ524, ā50, and D510, it gives a5(5
2n)/2. Solutions to Eq.~7! for this case cover Dp-branes
with p50, 1, 2, 4, 5, 6 of the type II supergravity carryin
magnetic charge. Therefore, our study contains a broad c
of black brane solutions, including most of the black bran
in type II supergravity.

Now let us consider a blackp-brane with unit worldvol-
ume. Being regarded as a thermal system, it has entropy
temperature given by

S;~coshm!4/Dr H
n and T5

d̃

4pr H
~coshm!24/D, ~10!

respectively. Herer H5k1/d̃ is the horizon radius. The ex
tremal limit of the magnetically charged black brane soluti
is k→0 andm→` keeping the mass and charge in Eq.~9!
finite ~i.e., ke2m fixed!. Note that in the extremal limit both
temperature and entropy go to zero except for the cas

ns,
er
7-3
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D52d̃,3 and the solution becomes the BPS state which
known to be stable even at the quantum level. In order
this system to be stable thermodynamically, the entro
functional given above should be a local maximum in th
modynamic phase space. Defining the Hessian of the sys
as

H5S ]2S

]M2

]2S

]M]Q

]2S

]M]Q

]2S

]Q2

D , ~11!

the maximum entropy is guaranteed provided that

S ]2S

]M2D
Q

,0 and det~H !.0, ~12!

which become equivalent to@22#

CQ5S ]M

]T D
Q

.0 and S ]FH

]Q D
T

.0. ~13!

HereFH denotes the magnetic potential energy at the h
zon. Using Eqs.~9!, ~10!, we obtain explicitly

CQ524pr H
d̃11~coshm!4/D

3
2d̃1@D1d̃~D22!#cosh 2m

2d̃1~D22d̃!cosh 2m
, ~14!

S ]FH

]Q D
T

5
r H

2d̃D cosh 2m

2d̃1~D22d̃!cosh 2m
. ~15!

Since the termD1d̃(D22) is positive definite, one can
find thatCQ and (]FH /]Q)T always have opposite signs i
the above. Consequently, the two conditions in Eq.~13! can-
not be satisfied simultaneously. In other words, the bl
brane system in consideration cannot be thermodynamic
stable for processes in which both the massM and chargeQ
vary. Therefore, according to the GM conjecture, this m
indicate that the black brane background is always unst
under classical perturbations. As mentioned by Reall@15#,
however, the charge of the black brane cannot fluctuate s
there is no matter field carrying charge in our theory. Th
only thermodynamic processes through which the cha
does not change are relevant. Accordingly, the local ther
dynamic stability of a black brane is determined solely
the sign of the specific heatCQ above.

The specific heat in Eq.~14! is always negative ifD
22d̃>0, or, equivalently,uau>acr where the critical value
of a depends on the formn of the gauge field or the dimen
sion p of the spatial worldvolume as

3For the case ofD52d̃, interestingly the temperature does n
vanish although the entropy still goes to zero in the extremal lim
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n21

A~D22!/2
5

D232p

A~D22!/2
. ~16!

For uau,acr , however, the specific heat is negative if 0<m
,mcr , but positive if mcr,m,`. At m5mcr , it diverges,
i.e., CQ→7` asm→mcr70. Here the critical value of the
parameterm is

sinh2mcr5
2~D232p!~p11!1~D22!a2

2@2~D232p!22~D22!a2#
. ~17!

Based on the GM conjecture, therefore, it can be expec
under classical linearized perturbations that a blackp-brane
background is always unstable provideduau>acr , indepen-
dent of its charge. For uau,acr , however, it becomes stabl
for m.mcr . For instance, the blackp-branes considered b
Gregory and Laflamme@10,11# have a5(12n)/2 as ex-
plained above. This value is exactly the same as the crit
value forD510 in Eq.~16!, i.e.,a25acr

2 , implying negative
specific heat always. Thus it is expected that all black bra
considered by them, including the NS5-brane, will be u
stable, and this behavior is shown by them. For the F-str
we havea51,acr53. For Dp-brane solutions of type II
string theory, we havea5(p23)/2 and acr5(72p)/2.
Therefore, one can easily see that the specific heat cha
sign for magnetically charged D0-, F1-, D1-, D2-, and D
branes, but not for D5- and D6-branes as mentioned by R
@15#. The case of D3-branes will not be considered in t
paper since the action for the self-dual gauge field is
known. Moreover, even if we simply use the action in Eq.~1!
and impose the self-duality condition, we encounter so
problems in analyzing linearized perturbation equations.
nally, we would like to point out that, except for cases
uau5acr , the specific heat goes to zero in the extremal lim
satisfying a formulation of the ordinary thermodynamic thi
law.

III. CLASSICAL PERTURBATION ANALYSIS

So far, we have analyzed the local thermodynamic sta
ity of black p-brane systems which gives some hints at
stability of such background spacetimes through the G
conjecture. Now let us perform the classical stability analy
explicitly. We consider small metric perturbations abo
blackp-brane background spacetimes and see whether o
there exists any mode that is regular spatially, but gro
exponentially in time.

Since the background blackp-brane spacetime in Eq.~7!
is independent of the time coordinatet and spatial worldvol-
ume coordinateszi , one can assume that

dgMN5hMN~xm,zi !5eVt1 imiz
i
HMN~r ,xm!,

df5eVt1 imiz
i
f ~r ,xm!,

dF5eVt1 imiz
i
dF~r ,xm! ~18!t.
7-4
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for unstable mode solutions. HereV.0 and the Kaluza-
Klein ~KK ! massmi is a continuous real number. As ex
plained in Refs.@14,15#, one can further use the diffeomo
phism symmetry so that the scalar and vector parts of
metric fluctuationshMN are set to zero formassivemodes
from the viewpoint of the Kaluza-Klein reduction@23#

Hm i5Hi j 50. ~19!

Since in general non-s-wave fluctuations are expected to b
more stable thans-wave ones, we consider only spherica
symmetric perturbations.4 Thus, as shown in Refs.@8#, the
following gauge choice can be made:

Htm5Hrm50, Hn
m5K~r !dn

m ~20!

for such perturbations. The other componentsHtt ,Htr ,Hrr ,
and the dilaton and field strength perturbations are also in
pendent of the angular coordinatesxm. That is, they are func-
tions of the radial coordinater only.

For these forms of perturbation above, one can ea
show that linearized equations for gauge fluctuationsdF are
decoupled, i.e.,¹N(eafdFNP1•••Pn21)50. Moreover, as in
Ref. @10#, it can be shown that for background spacetimes
Eq. ~7! there exists no unstable mode solution for the sph
cally symmetric fluctuations. One can first show that t
te
et
on
ed
ita

02400
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fluctuations proportional to the volume form on Sn should
vanish if VÞ0. Thus only the remaining componen
dFti 1••• i n21

, dFri 1••• i n21
, dFtri 1••• i n22

, anddFi 1••• i n
of such

fluctuations could be nonzero. Herei 1 , . . . ,i n21 are
the spatial worldvolume coordinatesz. By using the
Bianchi identity ¹ [NdFP1•••Pn]50 for (NP1•••Pn)

5(tr i 1••• i n21) and the perturbation equations fo
(P1•••Pn21)5(ri 1••• i n22),(i i 1••• i n22) above, one
obtains coupled equations forft[( imidFtii 1••• i n22

,

fr[( imidFrii 1••• i n22
, anddFtri 1••• i n22

which can easily be
decoupled as

Vft91~••• !ft82S m21
V2

U D ft50, ~21!

wherem25( imi
2 . Since bothU and V are positive outside

the horizon, one can see that the only regular solution of
equation is ft50, giving fr5dFtri 1••• i n22

50 correspond-
ingly. Similarly, one also finds that there are no nonvanish
regular solutions for other components of the fluctuatio
Therefore we setdF50 in the following analysis.

As shown in Ref.@15#, now the dilaton perturbation equa
tion is given by
¹2f 22bgmn¹mf¹n f 2Hmn¹m¹nf1bHmn¹mf¹nf2¹mf¹nS Hmn2
1

2
Hr

rgmnD
1

a

2~n21!!
e(a1b)fFHmnFmr1•••rn21

Fn
r1•••rn212

a1b

n
F2f G5m2f . ~22!

The linearized equations for the metric perturbationsHmn are given by

¹2Hmn22¹ (m¹rHn)r1¹m¹nHr
r22Rr(mHn)

r 12RmrnsHrs1b~2¹ (mHn)
r 2¹rHmn!¹rf22b¹m¹n f 14~g1b2!

3¹ (mf¹n) f 2
1

~n21!!
e(a1b)f@~n21!HrsFmrl1•••ln22

Fns
l1•••ln222~a1b! f Fml1•••ln21

Fn
l1•••ln21#5m2Hmn . ~23!
of

e

-

per-

av-
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e
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-

The $m i % and$ i j % components are

¹nHm
n 2bHm

n ¹nf22~g1b2! f ¹mf50, ~24!

Hr
r22b f 50, ~25!

respectively. Here the covariant derivative and curvature
sors in the above equations are constructed using the m
gmn only. In other words, perturbation equations
D-dimensional blackp-brane backgrounds become coupl
second order differential equations for dilaton and grav
tional fields with massm on (D2p)-dimensional black hole

4We will give an argument below that consideration ofs-wave
perturbations only might be enough to show stability.
n-
ric

-

backgrounds, which is expected from the viewpoint
Kaluza-Klein dimensional reduction.

As pointed out in Ref.@15# already, notice also that th
dilaton perturbation equation, Eq.~22!, is actually not inde-
pendent, but can be obtained from the trace of Eq.~23! and
Eqs. ~24!, ~25!. In Eq. ~25!, one finds that the dilaton fluc
tuation f can be computed once the metric fluctuationsHmn

are obtained. Thus, we need to consider only the metric
turbation variables, which areHtt , Htr , Hrr , andK. For the
stability analysis, however, it suffices to consider the beh
ior of the so-called threshold modes, i.e., KK massive mo
having V50. This is because infinitely heavy massiv
modes cannot be expected to give instability. There sho
be a maximum valuem* for the instability to exist. For
unstable modes in the case of black brane systems, if
exist, it is known that the corresponding ‘‘imaginary’’ fre
7-5
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quency V usually starts to increase as the KK mass
creases, reaches some maximum value, but finally decre
to zero at the so-called threshold massm* . Thus, as long as
the set of equations in Eqs.~23!–~25! allows a threshold
mode solution with nonvanishing mass, the instability exis
When V50, there is the additional merit that a furth
gauge choice is possible to setHtr50 as in Ref.@15#. There-
fore, one finally has

~Hn
m!5diag~w~r !,c~r !,x~r !, . . . ,x~r !!. ~26!
r
e

am
ny

e
a

en

en

02400
-
ses

.

That is, the perturbed metric for threshold modes can
expressed in the following form:

ds252U~11weimiz
i
!dt21V21~11ceimiz

i
!dr2

1R2~11xeimiz
i
!dVn

21dz2. ~27!

Now Eqs.~23!–~25! reduce to
r

w91S U8

2U
1

V8

2V
1n

R8

R
2bf8Dw81FU9

U
2

U8

U S U8

2U
2

V8

2V
2n

R8

R
1bf8D2

m2

V Gw2
U8

U
c8

2FU9

U
2

U8

U S U8

2U
2

V8

2V
2n

R8

R
1bf8D Gc50, ~28!

c91S U8

2U
1

V8

2V
1n

R8

R
2

2g13b2

b
f8Dc81

m2

V
c2S U8

U
12

g1b2

b
f8Dw822nS R8

R
1

g1b2

b
f8Dx850, ~29!

c81S U8

2U
1n

R8

R
2

g12b2

b
f8Dc2S U8

2U
1

g1b2

b
f8Dw2nS R8

R
1

g1b2

b
f8Dx50. ~30!

Using Eq.~30!, one can easily see thatx can be evaluated fromw andc, and that Eqs.~28!, ~29! become two second orde
coupled equations forw andc only as follows:

r ~r d̃2k!w91@~ d̃11!r d̃2k#w82m2r d̃1124d̃/D~r d̃1k sinh2m!4/Dw2d̃kc850, ~31!

r 2~r d̃2k!2~r d̃1k sinh2m!c91r ~r d̃2k!2F2d̃S r d̃2
2

D
k sinh2m D2~ d̃23!~r d̃1k sinh2m!Gc82S m2r d̃1224d̃/D~r d̃2k!

3~r d̃1k sinh2m!114/D1d̃kH W1
2

D
F2d̃21~ d̃13!S a22

2d̃2

D22
D Gsinh2m~r d̃2k!2J Dc1d̃kWw50. ~32!
s
-
in-
,

the
me

f

by

of
his
Here the functionsU, V, andR are substituted explicitly, and

W5d̃~r d̃2k!~r d̃1k sinh2m!2
2

D
S a22

2d̃2

D22
D

3sinh2m~r d̃2k!21d̃k cosh2m r d̃. ~33!

The question of whether the blackp-branes are stable o
unstable under linearized perturbations now becom
whether or not there exists some Kaluza-Klein mass par
eter m for which the above coupled equations allow a
regular solution outside the event horizon.

Before going further, several points should be mention
here. One may wonder if metric fluctuations alone with
frozen dilaton perturbation could produce instability. Wh
f 50, Eq.~25! gives2nx5w1c, and so from Eq.~30! one
has an additional first order equation forw andc. This raises
the question of whether or not this equation is consist
s
-

d

t

with Eqs. ~31!, ~32!. It turns out that the inconsistency i
proportional to sinh2m. We find therefore that metric fluctua
tions alone without dilaton perturbation cannot produce l
earized instability when black branes are charged, i.e.m
Þ0. It is possible only for uncharged black branes, i.e.,m
50. This property could also be expected by applying
same argument as in the work of Gregory and Laflam
@10#. It is shown in Ref.@10# that for small charge casesf
5 f 01q(sinh2m) where f 0 is independent ofm. Now it can
easily be shown in Eq.~22! that f 050.

Secondly, Eqs.~31!, ~32! are invariant under rescalings o
m→am, r H→r H /a, m→m, and r→r /a for an arbitrary
constanta. This scaling symmetry can be easily seen

defining dimensionless variables such asr5r /r H and m̄
5mrH , or by observing that such rescalings witht→t/a
andzi→zi /a simply result in an overall constant rescaling
the metric under which field equations are not affected. T
7-6
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symmetry implies that the threshold mass must be inver
proportional to the horizon radius, i.e.,m* ;1/r H . Accord-
ingly, it suffices to study instability modes just for a sing
value of r H .

Since the perturbation equations above are coupled
ond order and linear inc and w, there are four linearly
independent mode solutions in general. The asymptotic s
tions of Eqs.~31!, ~32! at spatial infinity ~i.e., r;`) are
given by

w~r !.e6mru6~r !

.e6mrF r 2(d̃11)/27
~ d̃21!~ d̃11!

8m
r 2(d̃13)/21•••G ,

~34!

c~r !.e6mrv6~r !

.e6mrF r 2(d̃13)/27
~ d̃11!~ d̃15!

8m
r 2(d̃13)/21•••G

~35!

up to overall arbitrary constants. By finding asymptotic s
lutions in the vicinity of the event horizon as well, i.e.,r
511«, one can have four sets of mode solutions who
asymptotic behaviors are given by

c I;H «1q~«2!,

AIe
2m̄rv2~r!1BIe

m̄rv1~r!,

c II ;H 11q~«2!,

AII e
2m̄rv2~r!1BII e

m̄rv1~r!,
~36!

c III ;H « ln «1q~«2ln «!,

AIII e
2m̄rv2~r!1BIII e

m̄rv1~r!,

c IV;H «212
m̄2

d̃
~coshm!8/Dln «1q~«2!,

AIVe2m̄rv2~r!1BIVem̄rv1~r!,

~37!

and correspondingly

w I;H «1q~«2!,

ĀIe
2m̄ru2~r!1B̄Ie

m̄ru1~r!,

w II ;H 11
m̄2

d̃
~coshm!8/D«1q~«2!,

ĀII e
2m̄ru2~r!1B̄II e

m̄ru1~r!,

~38!
02400
ly

c-

u-

-

e

w III ;H « ln «2«1q~«2ln «!,

ĀIII e
2m̄ru2~r!1B̄III e

m̄ru1~r!,

w IV;H 2«212
m̄2

d̃
~coshm!8/Dln «1q~«2!,

ĀIVe2m̄ru2~r!1B̄IVem̄ru1~r!,
~39!

where the upper lines are forr→1 and the lower lines for
r→`. All the solutions are simply linear superpositions
these modes. Note that, for the mode IV,w IVÞc IV as one
approaches the horizon whereas for the other three mo
w5c.

Now let us turn to the question of boundary conditions
solutionsc and w. Since they are linearized perturbation
they should be ‘‘small’’ at any positions outside the eve
horizon. Thus, at spatial infinity we require that bothc and
w should be decaying, that is, exponentially decreasing
the vicinity of the horizon, the metric itself is regular i
Kruskal coordinates if, and only if, the perturbation
bounded andw5c at the horizon@15#. All modes except for
the mode IV above satisfy these conditions. However, i
very important to notice that this is not enough for the reg
larity of linearized perturbations. Note that the second
rivative of the mode III is proportional to ln«. Accordingly,
some curvature quantity, for instance, the perturbation of
Ricci scalar curvature associated with this mode, becom
singular at the horizon. In other words, the mode solution
produces a curvature singularity even if the metric pertur
tion itself is regular at the horizon. The mode solutions I a
II do not produce any curvature singularity at the horizon.
requiring regular curvature at the horizon in addition, the
fore, the boundary conditions we impose for regular pert
bations are that bothc and w are linear combinations o
modes I and II only near the horizon and that they sho
decay at the spatial infinity.

For various values of the parameters in Eqs.~31!, ~32!, we
have searched for regular solutions satisfying the bound
conditions described above by usingMATHEMATICA . In more
detail, we start from a regular solution at the horizon in t
following form:

c5Cc I1Ec II , w5Cw I1Ew II . ~40!

At spatial infinity, they will become

c;~CAI1EAII !e
2m̄rv2~r!1~CBI1EBII !e

m̄rv1~r!,

~41!

w;~CĀI1EĀII !e
2m̄ru2~r!1~CB̄I1EB̄II !e

m̄ru1~r!.

~42!

By solving Eqs.~31!, ~32! numerically, one can check i
there exists any combination of constantsC, E, andm̄ such
that the coefficients of the exponentially growing parts
bothc andw at spatial infinity vanish in Eqs.~41!, ~42!, i.e.,

CBI1EBII 50, CB̄I1EB̄II 50. ~43!
7-7
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FIG. 1. Behavior of threshold masses for black four-branes inD510 at various values ofa with fixed mass densityM525. m*
.1.581/r H.0.791 with r H52 at m50. mcr.0.818 (0.8184), 0.881~0.8814!, and 1.125~1.1254! for the cases ofa50, 1/2, and 1,
respectively. Here the critical values obtained from the GM conjecture are noted in parentheses. On the right-hand side the sam
plotted in terms of the nonextremality parameterq. m56 corresponds toq.0.99996, 0.99995, 0.99991 fora53/2, 2, 3.
o
nu
f

-
e

r
-
s

e

es

nd

a

e

ne
ss

ave
ack

d
des
c-
tial

e
n

ter
However, we have used a different but equivalent meth
that turned out to be more stable and efficient in actual
merical search. For instance, one needs to check only
varying m̄, as will be shown below. Defining

P~m̄,m,a,d̃,D !5BIB̄II 2BII B̄I , ~44!

the existence of nontrivial constantsC andE satisfying Eq.
~43! is guaranteed only ifP50. Thus, having given the ini
tial data as in Eqs.~36!, ~38! near the horizon, we solve th
coupled equations Eqs.~31!, ~32! numerically, and evaluate
the quantityP(m̄,m,a,d̃,D) by using numerical values fo
c I ,II andw I ,II at sufficiently larger. For given other param
eters of the blackp-branes, we vary the Kaluza-Klein mas
m̄ only and search for the valuem̄* at whichP50. This can
be achieved by finding anm̄* around which the functionP
above changes its sign. If there exists such anm̄* , this mode
is indeed the threshold unstable mode.5

Once suchm̄* 5m̄* (m,a,d̃,D) is obtained numerically,
the threshold massm* 5m̄* /r H5m̄* /k1/d̃ can be evaluated
by fixing r H or k. Recall that a blackp-brane inD dimen-
sions is characterized by two physical quantitiesQ andM, or
equivalentlyr H and m, and one coupling parametera. We
would like to see how the stability behaves as the chargQ
of a black brane increases when its mass densityM is kept
the same.6 We have chosenM such that the threshold mass

5In the actual numerical calculations, we used the sign chang
c II /c I2w II /w I for r@1, which becomes equivalent whe

BI ,II ,B̄I ,II Þ0.
6In the Gregory-Laflamme work, they fix the size of the ou

horizon r 0 in the string frame and vary the inner horizon sizer i .

Here r 0
d̃5r H

d̃ cosh2m and r i
d̃5r H

d̃ sinh2m.
02400
d
-

or

at m50 for the GL cases reproduce those in Gregory a
Laflamme’s work@10,11#, i.e., r 05r H52. The nonextremal-
ity parameter can be defined as

q[
Q

Qmax
5

2

AD

Q

M
5

sinh 2m

~ d̃11!D/2d̃12 sinh2m
. ~45!

Here Qmax is the maximum charge density allowed for
given mass densityM. Since (d̃11)D/2d̃>1, q is a mono-
tonic function ofm and q51 is the extremal case. Notic
that asm or q increases the horizon radiusr H5k1/d̃ decreases
according to Eq.~9! and becomes zero for the extremal bra
when M is fixed. For black branes having different ma
densityM 8, one can get

m* ~m;M 8!5S M

M 8
D 1/d̃

m* ~m;M !. ~46!

The behaviors of some of the threshold masses we h
obtained are illustrated in Fig. 1. There we considered bl
four-branes inD510 and the mass densityM525. Our nu-
merical results show that threshold masses atm50 are non-
vanishing for any values ofa, implying that all uncharged
black four-branes in Eq.~7! are unstable under linearize
perturbations associated with Kaluza-Klein massive mo
with 0,m,m* as expected. In other words, instability o
curs for small perturbations whose wavelengths in spa
worldvolume directions are in the range ofl* (52p/m* )
,l,`. The value of the threshold mass atm50 can be
seen to be independent ofa, as it should be, since thea
dependence of Eqs.~31!, ~32! disappears asm→0. Numeri-
cally we find m* .0.791 atm50, which agrees with the
numerical result obtained by Gregory and Laflamme@10#.

of
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FIG. 2. Behavior of threshold masses for blackp-branes with fixedM in D510 in the theory ofuau51/2. At m50, r H52 andm*
5m̄* /r H.1.153, 1.044, 0.925, 0.791, 0.635, 0.440 forp51, . . . ,6.Critical values for transition points areqcr.0.413, 0.435, 0.497, 0.606
0.773,.0.9993 forp51, . . . ,6.
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When black branes become charged, the background
laton field becomes nontrivial~e.g., fÞ0) and could play
some important role. As can be seen in Fig. 1, the stab
behaves very differently depending on the coupling para
eter a between the dilaton and gauge fields in the Einst
frame Eq.~2!. We summarize its behavior in three types, i.
a,3/2, a53/2, anda.3/2.

In the work by Gregory and Laflamme@10,11#, it was
shown that the black brane instability decreases monot
cally as a black brane approaches to its extremal point.7 It is
also noticed that numerical instability starts to occur near
extremal point, but the extremal brane was shown to
stable by analyzing its stability separately@11#. The case for
which numerical study was performed explicitly by Grego
and Laflamme corresponds to the GL case in Fig. 2, i.ea
521/2 andp56. Our result confirms theirs up tom.4 or
q.0.9993. Whenm*4, numerical instability starts to occu
as already observed in Refs.@10,11#. For the GL case in Fig
1 ~i.e., a53/2 andp54), the stability behavior is similar a
least up tom.4 or q.0.99799. Our data form*4 are not
reliable due to numerical instability.

For the cases ofa50, 1/2, and 1, we find that threshol
masses become zero at certain finite values ofmcr.0.818,
0.881, and 1.125, respectively. Thus the Gregory-Laflam
instability disappears asm→mcr for such cases and so th
corresponding black four-branes become in factstable, at
least under spherically symmetric linearized perturbatio

7By decreasing instability, we mean that the threshold mas
decreasing. Thus, the instability actually shrinks in the param
range ofV and m. Consequently, smaller values ofV imply that
instability modes grow less rapidly in time. So in this sense we m
say that a black brane having larger charge is less unstable tha
having smaller charge in the case considered by Gregory
Laflamme.
02400
di-

y
-

n
,

i-

e
e

e

s,

for mcr,m<6, presumably all the way down to the extrem
point ~i.e., m;`). The same data are plotted in terms of t
nonextremality parameterq on the right-hand side. Corre
sponding critical values for transitions in the stability a
qcr.0.593, 0.606, 0.674 fora50, 1/2, 1, respectively. This
critical value qcr seems to increase monotonically from
minimum for a50 to unity for the GL case. Therefore on
sees that there indeed exist some charged black branes w
are stable even far from the extremality.

For the cases ofa52 and 3, the threshold masses d
crease as black four-branes get charged as before, but i
estingly they start to increase again at aroundm.2 ~i.e., q
.0.9972) andm.1.5 ~i.e., q.0.9950), respectively. This
turning point becomes smaller asa increases. Thus it show
that the instability isnot always reduced as a black bran
gains more charge. Such stability behavior in the presenc
charge has never been expected in the literature as far a
know. Moreover, the threshold mass seems to diverge as
black brane approaches the extremal point as can be se
Fig. 1 up toq.0.99995, 0.99991 fora52, 3. As shown
below, however, extremal black branes are stable in th
cases as well.

Now let us check the stability of extremal black brane
These cases are expected to be stable since they corres
to BPS ground states in string theory. Our numerical analy
cannot be directly used to show its stability since numeri
instability occurs as the extremality is being approached.
stead, we treat the extremal case separately. As one can
explicitly, the equations for linear perturbations in the e
tremal case are obtained simply by puttingk50 andm5`
with ke2m54c fixed in Eqs.~31!, ~32!:

w91
d̃11

r
w82m2S 11

c

r d̃D 4/D

w50, ~47!
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~r d̃1c!c91
1

r
F ~ d̃13!r d̃24cS d̃

D
1

d̃23

4
D Gc8

2H m2~r d̃1c!S 11
c

r d̃D 4/D

1
2cd̃

Dr 2 F2d̃21~ d̃12!

3S a22
2d̃2

D22
D G J c2

2cd̃

Dr 2 S a22
2d̃2

D22
Dw50.

~48!

The boundary conditions are simply the regularity ofw and
c, which are different from those of nonextremal cases,
the asymptotic solutions near the event horizon are also
ferent and cannot be obtained simply by taking the extre
limit of those in Eqs.~36!–~39!. This difference comes be
cause we cannot ignore the terms includingk at the near
horizon as long ask is nonvanishing. Now it is straightfor
ward to see that the only regular solution of Eq.~47! is w
50 since the coefficient ofw is negative definite. Similarly
e
ts

os
th
tu
it
e

an

02400
d
if-
al

the only regular solution forc is zero. Therefore all extrema
black branes considered in this paper are stable at least u
s-wave fluctuations, although the threshold mass seem
diverge fora.3/2 as the extremality is being approached

For blackp-branes with differentp (Þ4), the basic sta-
bility behavior is essentially the same as above. Only
values of threshold masses and criticalm change slightly.
Figure 2 shows our results for variousp-branes in the theory
of uau51/2. The mass density is chosen to beM5(8
2p)272p, giving r H52 at m50. If results for other values
of a are added, one can see similar patterns as in Fig. 1
each p-brane. Blackp-branes with p51, . . . ,5 becomes
stable ifm>mcr whereas the instability of the six-brane pe
sists all the way down to at leastm54 ~i.e., q50.9993).

Now it will be very interesting to see how well the cla
sical stability behavior of black branes described abo
agrees with that predicted by the local thermodynamic
havior through the GM conjecture. First of all, let us co
sider critical valuesmcr beyond which black branes becom
stable classically from being unstable.
p 1 2 3 4 5 6

mcr ~num.! 0.418 0.549 0.695 0.881 1.178 .4

mcr ~GM! 0.4186 0.5493 0.6954 0.8814 1.1791̀ ~49!
f
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ge,
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The table above shows the results for the case ofuau51/2 in
Fig. 2. One can see that they are in very good agreem
Other cases we have checked are marked with black do
Fig. 3. The solid lines are obtained by using Eq.~17! in the
GM conjecture. All critical values ofm obtained numerically
in our classical perturbation analysis agreed well with th
in the GM conjecture. Based on such good agreement,
diagram shows how the classical stability under small per
bations will behave in general. That is, for a black brane w
given dimensionp for the spatial worldvolume, this bran

FIG. 3. Critical values of the parameterm for various black
p-branes inD510 at which the threshold mass vanishes,m* 50.
The solid lines are obtained from the Gubser-Mitra conjecture
the black dots from our numerical results for several values ofa.
nt.
in

e
is
r-
h

will be unstable~i.e., mcr5`) under small perturbations i
uau>acr5(D232p)/A(D22)/2. If uau,acr , the brane is
still unstable form,mcr(a,p,D), but becomes stable form
>mcr . As can be seen in Fig. 3 forD510, the critical values
mcr increase monotonically asuau or p increases. Critical val-
ues for various black brane solutions of type II supergrav
are marked in Fig. 3 explicitly.

IV. DISCUSSION

To conclude, we have investigated the stability of ma
netically charged black brane solutions for the low ene
string theory in Eq.~1! under small perturbations. It turns ou
that all uncharged black branes in our consideration are
stable under linearized perturbations. When the black br
becomes charged, however, the stability behavior depend
how strongly then-form field couples to the dilaton field. In
more detail, our results seem to show that, when the coup
is weak enough in the theory in Eq.~2! ~e.g.,uau,acr), black
branes become stable as they get charged enough~e.g., m
>mcr), even before they reach the extremal point. When
coupling is strong enough~e.g., uau>acr), however, black
brane solutions of this theory are always unstable. Moreo
the instability starts to increase again as the charge is la
than a certain value and seems to diverge near the extre
ity. For example, F1, D1, D2, and D4 black branes of type
supergravity could be stable classically for large char
whereas NS5 and D5 black brane solutions are always
d
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stable all the way down to the extremal point. The case
a5acr is the boundary between these two categories, wh
is the case Gregory and Laflamme studied, and so the in
bility monotonically decreases to zero at the extremal po
All extremal black branes are shown to be stable separa
It has also been shown that our results for the classical
bility agree well with the qualitative behavior predicted b
the local thermodynamic stability through the Gubser-Mi
conjecture. That is, the critical values foracr and mcr ob-
tained numerically in our classical perturbation analy
agree very well with those in Eqs.~16!, ~17! for the sign
change of the specific heat for the black brane regarded
thermal body.

In the classical perturbation analysis above, we con
ered only spherically symmetric perturbations. Thus, eve
it turned out that there exists no instability mode for a bla
brane solution withm.mcr in the analysis above, this doe
not necessarily mean that such a black brane is stable u
small perturbations. There might exist some instability mo
when we considered all non-s-wave perturbations as wel
However, we give some evidence that the only possible
stability mode comes froms-wave fluctuations as follows
Although it was in a different context, one can find in Re
@24# that the higher angular momentum fluctuations
Schwarzschild black brane backgrounds do not produce
stable modes. Asm→0, since the black brane solutions co
sidered in the present paper become Schwarzschild b
branes and the metric perturbation equations become c
pletely decoupled from others, one can easily see that
s-mode instability is the only instability forunchargedblack
branes in this paper. Now one can apply the same argum
as in Ref.@11#. When charge is added, we observed that th
is a stabilizing influence for thes-wave perturbations ifuau
<acr . Therefore, it is not expected that higher angular m
mentum modes will exhibit instability incharged black
branes since they do not give it even for the uncharged c

The spatial worldvolume is assumed to be noncompac
the description above. Consequently, the KK mass spect
is continuous since there are translational symmetries in
tial worldvolume directions. What will happen to the stab
gy

.
d
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ity behavior if the worldvolume is compactified with a sca
L? In this case, the KK mass becomes discrete and h
minimum mass, e.g.,mmin52p/L. Thus, KK masses smalle
than the minimum~i.e., 0<m,mmin) are not allowed due to
the compactification. Accordingly, even if the thresho
masses obtained by solving the perturbation equations
black branes are nonvanishing, such black branes are a
ally stable provided thatm* ,mmin , or equivalently that the
compactification scale is small enough~i.e., L,2p/m* )
@9,10,25#.

Although the critical values for the transition points are
good agreement between the classical stability analysis
the local thermodynamic stability through the GM conje
ture, there are some other aspects that might be in disag
ment. For instance, one can see in cases ofuau<acr that the
magnitude of the specific heat increases whereas the b
brane instability decreases as the charge increases with
mass density. Moreover, the specific heat is divergent at
transition point~i.e., m5mcr). In the classical perturbation
analysis, however, there does not seem to exist any sing
behavior aroundm5mcr . For givenm in Fig. 1, we found
that the threshold mass increases asa increases. One migh
wonder if the magnitude of the specific heat also increas
One can see that it actually decreases monotonically, e
for a fixedQ/M instead of a fixedm. Maybe these discrep
ancies in some details of the stability behavior simply in
cate that one needs to find some appropriately modified t
modynamic quantity, other than the specific heat, in orde
compare other details between classical and thermodyna
stability analyses for black branes.

Finally, it would be very interesting to understand why t
instability starts to increase again as the extremality is be
approached for black branes in theories ofa.acr . Further
work is required.
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