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Classical stability of charged black branes and the Gubser-Mitra conjecture
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We have investigated the classical stability of magnetically charged lgdmiane solutions for string
theories that include the case studied by Gregory and Laflamme. It turns out that the stability behaves very
differently depending on the coupling parameter between the dilaton and gauge fields. In the case of Gregory
and Laflamme, it is known that the black brane instability decreases monotonically as the charge of the black
branes increases and finally disappears at the extremal point. For more general cases we found that, when the
coupling parameter is small, black brane solutions become stable even before reaching the extremal point. On
the other hand, when the coupling parameter is large, black branes are always unstable, and moreover the
instability does not continue to decrease, but starts to increase again as they approach the extremal point.
However, all extremal black branes are shown to be stable even in this case. It has also been shown that the
main features of the classical stability are in good agreement with the local thermodynamic behavior of the
corresponding black hole system through the Gubser-Mitra conjecture. Some implications of our results are
also discussed.
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I. INTRODUCTION linearized perturbations in general relativitg]. However,
Gregory and Laflamme discussed the stability of black
Black holes are very important objects for studying andbranes and found that a foliation of Schwarzschild black
understanding both general relativity and string theory. Branéoles (Schx S") is unstable if the compactification scale'(S
configurations in string theory have been studied from variradiug is larger than the order of the Schwarzschild radius—
ous aspects, and play important roles in the context of théhe so-called Gregory-Laflamme instabilif9]. One may,
gauge-gravity duality{1]. From the AdS/CFT correspon- roughly speaking, expect that charge prevents a black brane
dence it has also been suggested that the infrared limit dfom being unstable because of some repulsive forces among
nonsupersymmetric Yang-Mills theories corresponds to blackharges as the event horizon shrinks. However, Gregory and
hole configurations in AdS space, which can be regarded asaflamme also showed that some charged black branes in
the near horizon limit of nonextremal D-brane configurationsien-dimensional spacetime always have instability modes all
[2]. From the study of Yang-Mills theories we can reveal{he way down to the extremal limfit0]. So it is unlikely that
properties of black holes, and it is considered that the abge presence of charge can remove the instability in the black
sence of the tachyonic glueball might imply the stability of . gnes they considered. On the other hand, extremal black
the corresponding black hole configuratidB8% On the other branes have been shown to be stdi&]. The stability of

hand, .recently the issue of .black string '”S“%b"'ty an.d Sy lack branes in anti—de Sitter spacetime has also been inves-
evolution has been of great interest. It was widely believed.

X . S . —Tigated. In five-dimensional anti—de Sitter spacetime, black
that the evolution of the instability in a black string results in trinas that are foliations of four-dimensional Schwarzschild
bifurcations of the horizon finally. However, Horowitz and strings that are fofiations ot Tou ensionar Schwarzsc

Maeda have shown that the horizon of a black string cannol?lad(trllolﬁs[lz]bor de ﬁitter—tSckf)wwarzstcrtl)illd black Irllo[Hds%]
pinch off in a finite affine timg4]. Therefore an inhomoge- recently have been shown 1o be unstable as well. HOwever,
the black string that is a foliation of four-dimensional

neous black string may be the final stable configuration. Re- . . .
centLIJy some aulthgors gave discmljssed the propgrltjieslof inh&m'_de Sitter—Schwarzschild black holes becomes stable as

mogeneous black strings and their existef&e7]. the horizon radius is larger than the order of the pdSlius

The Schwarzschild black hole is known to be stable undeP?’]' Barados-Teitelboim-Zanelli(BTZ) black strings in
our-dimensional spacetime turn out to be stable always

In the string theory context, the black branes that Gregory
and Laflamme considerdd 0,11 are those having a mag-
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portant to study. The charged black brane solutions that Greas the charge increases. Although in Ha6] the essential
gory and Laflamme considered might not be general enougfeature of local thermodynamic stability for those black
to show other possible interesting stability behavior. Therebranes was analyzed and a sketch of the proof for the GM
fore, it will be of interest to see whether or not the stability conjecture given in the context Reall considered, the actual
behavior drastically changes when more general types cinalysis for the classical stability has not been performed. So
charged black brane solutions are considered. In fact, we findl has not been examined explicitly as yet how well the clas-
different behaviors depending on the coupling between dilasical and thermodynamic stabilities actually agree with each
ton and gauge fields. For instance, charged black branes b@ther. This is another main motivation of our study. By per-
come stable even far from the extremal point provided thaforming the classical stability analysis, we give an explicit
this coupling is smaller than a certain critical value. In thischeck for the validity of the GM conjecture. As will be
paper, we study the classical stability of a wider class ofShown below, the agreement between our numerical results
charged black brane backgrounds which include varioudor classical perturb_atlons _and the thermodynamic stability
black p-branes in string theory as special cases. through t_he GM conjecture is very gooq. We also show some
Another interesting feature of black hole systems is tha{eatu_res in the classical stablllty behawpr that are not easily
they can be regarded as thermodynamic systems. A bladkedicted by the thermodynamic behavior alone.
hole has entropy, temperature, and other thermodynamic This paper is organized as follows. In Sec. II, we summa-
quantities. The area theorem states that the total area of bla&ie the thermodynamic stability behavior of the black branes
holes cannot decrease, i.8A=0, and it might be inter- We are considering. Section Ill is devotgd to the ngmencal
preted as stating that the total entropy cannot decrésse a_naly3|§ for_ the classical §tabll|ty. We give conclusions and
>0 in the black hole thermodynamics. The behavior of in-discussion in the last section.
stability explained above has been commonly considered
from the viewpoint of thermodynamics as a reflection that 1. LOCAL THERMODYNAMIC STABILITY OF BLACK
the black string is entropically less favorable compared with p-BRANES
multiple black holes having the same mass and conserved

charges. However, the classical area theorem does not nec- !N 9€neral, it is not easy to check whether or not black

essarily require the transition of a black brane into a com‘igu-SFrlng or bf?‘”e backgrour_ld spacetimes are s_table unde_r C!as'
ical linearized perturbations. Such a classical analysis in-

ration having a larger horizon area. Thus, this global entrop | cal calculati . i As stated ab
argument is too naive and cannot be applied to all cases. FgP V€S nNumerical caiculaions in most cases. As stated above

example, one can show that a black string in five- riefly, howevgr, a simple method has bgen suggested re-
dimensional AdS space can be stable even if its entropy igently from which one can predict the basic behavior of the

smaller than that of five-dimensional AdS black hole§]. classical stability. This is the so-called Gubser-Mitra conjec-

As pointed out by Real[15], the relevant consideration ture [1.6]‘. In thi; secti_on, befqre performing the cIassica]
should be the local thermodynamic behavior. analysis in detalil, we first consider the local thermodynamic

Recently, Gubser and Mitr@SM) gave such a refinement behavior of a finite segment of a blagkbrane background

of the entropy argument and conjectured that a black brangPacetime. . . ,
with a noncompact translational symmetry is classically . We consider black-brane solutions of the following ac-
stable if and only if it is locally thermodynamically stable 1O
(the GM conjecturg[16]. Reall argued a general correspon- 1
dence between the classical instability and the presence of a :f D _‘{ “BHR— 1D 2] — —— prdE2
negative eigenmode in the Euclidean Einstein-Hilbert action ! d X\/_g & "IR=¥(94)] 2n! &) M
[15]. The negative eigenmode gives an imaginary contribu- o o
tion to the path integral and thus it is closely related to theHere F, denotes am-form field strength,8, y, and« are
local thermodynamic instability. In fact the local thermody- gssuymed to be arbitrary constants  witly=y+ (D
namic |nstab|llty |mpl|¢s the existence of negative rr(tside —1)B%/(D—2)>0. However, by taking the conformal
However, there is no rigorous proof for the converse: that the iR O — a2B4I(D-2); .
existence of a negative mode indicates the thermodynamiansformationgyy=e gun and then rescaling the
instability. For Schwarzschild17] and Reissner-Nordstno  dilaton field = ¢/ 2, this action can be written as
[16] black holes in AdS space and a Schwarzschild black
brane enclosed in a finite cavifyL8], the equivalence be- ~. 1 1
tween nonexistence of negative modes and local thermody- 'ZJ de\/—_g[R— E(ﬁ‘ﬁ)z_ mea"’Fﬁ ' @
namic stability has already been examined by performing
both classical and thermodynamic stability analyses explicwhere
itly.

However, it is worthwhile to study the classical stability
of black branes in connection with black hole thermodynam- inote that the classical stability of black branes does not change
ics in @ more general context. Charged black brane solutiongnder a conformal transformation as long as the conformal factor is
in type Il supergravity are particularly interesting. As pointedregular. Moreover, black hole thermodynamic quantities such as
out by Reall[15], magnetically chargeg-branes withp<4  temperaturé19], entropy, and specific heat are invariant under sta-
(DO, F1, D1, D2, D4 have sign changes in the specific heattionary conformal transformations.
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a+(D-2n)B/(D-2) ~ n-1 1 (D-1)(n—-1)?
a= . ©) B==—F3 YT T o oo
V25 (D-2)a
Note that the sign of the parameteis not relevant here — (D—2m(n-1) (6)
since the action is invariant undar- —a and ¢— — ¢. In (D-2)a

the following analysis, we will consider only magnetically

charged black brane solutions of this action, not electricallyThe metric for the black-brane background can be written
charged ones. This is because electrically charged solutior&s

can be obtained from magnetically charged ones by dualizing

the n-form field F. Moreover, the magnetically charged case ds?’=—Udt?+V 1dr2+R%dO2+ 5,;,dZdZ,  (7)
is technically easier to treat in the perturbation anal§3ike
metric of magnetically charged blagkbrane solutions is where
given by[20,2]]
1+ (k/r%)sintP ] 44 K e
—4d/A(D-2) V‘1=[ () ad , R?=|1+—=sintfu| r2
ds?=—| 1+ —kusinh2 udt? 1-k/re re
Thalie ®
Kk 4d/AD=2)) 42 s The massM and magnetic charg® per unitp-volume are
+1 1+ Fasmhz,u v‘i‘r dQn given by[21]
K —44/A(D-2) _ ad 2 ‘dk
; i 450 M=k| d+1+ —sin and = —sinh 2u,
+1 1+ ngmhz,u 5;dzd2, A M Q JA Ze
9
k K 2dd respectively.
~(A2a)p_ 14 i -1 —2y — —
€ 1+ rdsmhz’“’ u=1 pd’ A=att D-2 Note that the case oB=2, y=—4, a=-2, andD

=10 in Eq.(1) corresponds to the action for which the clas-
sical stability of magnetically charged blagkbrane solu-
tions has been studied by Gregory and Laflam(@d.)
[10,11. Thus, as pointed out by Re@ll5|, a Neveu-Schwarz
5-brane(NS5-brang (i.e., n=3) is the only black brane of
—1,...nandi=1,...p. Thus, the coordinate&'} de- type Il supe_rgravity coyered by their work. This case corre-
scribe thep-dimensional spatial worldvolume, adet™} the sponds taa=(1-n)/2 in the conformally transformed ac-
n-sphere. The spatial worldvolume is not corr;pactified in ourtIon n E_q.(5). The F-string by dyahzmg the Neyeu-_Schwarz
considerétion. gauge field can also be described by the_ac'uon in (EN.

Note that the metric components for tpedimensional  With a different coupling to the dilaton, i.eq=2 and soa
spatial worldvolume directions above have an overall multi-— (9—N)/2. Hence the F-string.e.,n=7) can be covered.
plication factor depending on thiecoordinate. This multipli- When =2, y=—-4, «=0, andD=10, it givesa=(5
cation factor makes the spatial worldvolume nonflat, and—n)/2. Solutions to Eq(7) for this case cover p-branes
turns out to cause some complications in the perturbatiowith p=0, 1, 2, 4, 5, 6 of the type Il supergravity carrying
analysis. As pointed out by Redll5], such complications magnetic charge. Therefore, our study contains a broad class
can be easily avoided by performing an appropriate conforef black brane solutions, including most of the black branes
mal  transformation  again,  such  as gy, N type Il supergravity. _
—2(-1¢#I(D-2)ag Then the action becomes Now let us consider a blacg-brane with unit worldvol-
ume. Being regarded as a thermal system, it has entropy and
temperature given by

The n-form field strength is proportional to the volume form
on §. Hered=n—-1, d=p+1, D=d+d+2=2+n+p,
and the coordinates afg™}={x*z'}={t,r , x™z'} with m

1

2n!

I=dex\/—_g

e P R—y(d¢)?]— 5—e**F2|, (5)

) 4/A ) —4/A

S~(coshu)*r}, and T= (coshu , (10

where the constants are now functions of a single parameter 4mry
a as follows: B
respectively. Here;,=k is the horizon radius. The ex-
tremal limit of the magnetically charged black brane solution
2Gauge perturbations can be set to zero for the sphere directions K—0 and u— < keeping the mass and charge in E8).
and are decoupled from the metric and scalar perturbations for othdinite (i.e., ke?* fixed). Note that in the extremal limit both
directions. temperature and entropy go to zero except for the case of
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A=2d,® and the solution becomes the BPS state which is n—-1 D-3-p
known to be stable even at the quantum level. In order for A= = .
this system to be stable thermodynamically, the entropy V(D-2)/2 (D-2)/2
functional given above should be a local maximum in ther- . _ o
modynamic phase space. Defining the Hessian of the systefiPr |a|<ag,, however, the specific heat is negative #@

(16)

as <, but positive if ug<u<oo. At u=ug, it diverges,
i.e., Co— =+ asu— ug+0. Here the critical value of the
9%S 32S parametefu is
aM2  IMIQ 2
H= , 11 . 2(D-3-p)(p+1)+(D—-2)a
9°S 9°S (0 Smhzﬂcr: 17

2[2(D-3-p)2—(D-2)a?]

IMIQ  9Q?
Based on the GM conjecture, therefore, it can be expected

under classical linearized perturbations that a blpdkane
background is always unstable provided=a.,, indepen-

the maximum entropy is guaranteed provided that

2
IS <0 and detH)>0, (120  dent of its chargeFor |a]<a, however, it becomes stable
IM? o for u>pue. For instance, the blacg-branes considered by
Gregory and Laflammé10,11 have a=(1—n)/2 as ex-
which become equivalent {@2] plained above. This value is exactly the same as the critical
value forD=10 in Eq.(16), i.e.,azzagr, implying negative
C :(ﬂ) >0 and (& ~0. (13) specific heat always. Thus it is expected that all black branes
gt o 9Q ) considered by them, including the NS5-brane, will be un-

stable, and this behavior is shown by them. For the F-string,
Here @, denotes the magnetic potential energy at the horiye havea=1<a.=3. For Dp-brane solutions of type II
zon. Using Eqs(9), (10), we obtain explicitly string theory, we havea=(p—3)/2 and a,=(7—p)/2.
Therefore, one can easily see that the specific heat changes
sign for magnetically charged DO-, F1-, D1-, D2-, and D4-
~ ~ branes, but not for D5- and D6-branes as mentioned by Reall
X2d+[A+d(A_2)]C°5h2/* (14 [15]. The case of D3-branes will not be considered in this
2d+ (A —2d)cosh 2u paper since the action for the self-dual gauge field is not
known. Moreover, even if we simply use the action in EQ.

d+1

Co=—4mr} i

(coshu)

2D r‘aA cosh 2u and impose the self-duality condition, we encounter some
( A [ _ H _ . (15) problems in analyzing linearized perturbation equations. Fi-
dQ /7 2d+(A—2d)cosh nally, we would like to point out that, except for cases of

B |a|=a., the specific heat goes to zero in the extremal limit,

Since the termA +d(A —2) is positive definite, one can satisfying a formulation of the ordinary thermodynamic third
find thatCq and (9@ /9Q)+ always have opposite signs in |aw.
the above. Consequently, the two conditions in @4) can-
not be satisfied simultaneously. In other words, the black
brane system in consideration cannot be thermodynamically
stable for processes in which both the mikand charge) So far, we have analyzed the local thermodynamic stabil-
vary. Therefore, according to the GM conjecture, this mayity of black p-brane systems which gives some hints at the
indicate that the black brane background is always unstablstability of such background spacetimes through the GM
under classical perturbations. As mentioned by REHH,  conjecture. Now let us perform the classical stability analysis
however, the charge of the black brane cannot fluctuate sinasxplicitly. We consider small metric perturbations about
there is no matter field carrying charge in our theory. Thushlackp-brane background spacetimes and see whether or not
only thermodynamic processes through which the chargehere exists any mode that is regular spatially, but grows
does not change are relevant. Accordingly, the local thermoexponentially in time.
dynamic stability of a black brane is determined solely by  Since the background blagkbrane spacetime in Eq7)
the sign of the specific he&@g above. is independent of the time coordindtand spatial worldvol-

The specific heat in Eq(14) is always negative ifA ume coordinateg', one can assume that
—2d=0, or, equivalently|a|=a, where the critical value _
of a depends on the form of the gauge field or the dimen- Sgyn=hyn(X#,Z)=eXtHimzH o (r x™m),
sion p of the spatial worldvolume as

Ill. CLASSICAL PERTURBATION ANALYSIS

5¢:eﬂt+imizif(r,xm),

3For the case ofA=2d, interestingly the temperature does not o
vanish although the entropy still goes to zero in the extremal limit. SF=eMTImiz 5F (1 x™) (19
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for unstable mode solutions. Hef®@>0 and the Kaluza- fluctuations proportional to the volume form off Should
Klein (KK) massm; is a continuous real number. As ex- vanish if Q+0. Thus only the remaining components
plained in Refs[14,15, one can further use the diffeomor- sF, . | 6F, .., ., 6Fyi...; ., andsF, ; ofsuch
phism symmetry so that the scalar and vector parts of thﬂucttjatigr:s COl.ljld ”Ble nonlzer(;TZ Herd, 1_ " are
metric fluctuationshy,y are set to zero fomassivemodes ' ot

f he Vi int of th | lei qucti the spatial worldvolume coordinatez. By using the
rom the viewpoint of the Kaluza-Klein reductid23] Bianchi identity ViyoFp  p =0 for (NPj---Pp)

H,i=H;;=0. (19 =(triq---ip_1) and the perturbation equations for

(P1---Pn_q)=(riq---in_»p),(ii---in_») above, one
Since in general nos-wave fluctuations are expected to be obtains coupled equations forf,=3;m, SF i i,
more stable thas-wave ones, we consider only spherically ¢ —s m sF
symmetric perturbationsThus, as shown in Ref$8], the Co
following gauge choice can be made:

2!
Fii i and OFyi i, which can easily be
decoupled as

2

Hunm Him= 0, HI=K(r) o 20 w3 =0 21
uje

VIl () —

for such perturbations. The other componests,Hy, ,H,, ,
and the dilaton and field strength perturbations are also inde-
i i wherem?=3;m?. Since bothU andV are positive outside

pendent of the angular coordinat€® That is, they are func- ! it p ) )

tions of the radial coordinate only. the horizon, one can see that the only regular solution of this
For these forms of perturbation above, one can easilgauation isf;=0, giving f,=6F; ..; =0 correspond-

show that linearized equations for gauge fluctuati6Rsare  ingly. Similarly, one also finds that there are no nonvanishing

decoupled, i.e.Vy(e*?sFNPrPn-1)=0. Moreover, as in regular solutions for other components of the fluctuations.

Ref.[10], it can be shown that for background spacetimes inTherefore we sebF=0 in the following analysis.

Eq. (7) there exists no unstable mode solution for the spheri- As shown in Ref[15], now the dilaton perturbation equa-

cally symmetric fluctuations. One can first show that thetion is given by

1
V2f— 29"V , ¢V f=H¥'V V ¢+ BHX'V ,dV - V#(;SVV( H#Y— EHzg’”)

+ 2(n_1)| e( +B8)¢ H* F/"'Pl"'ﬂn_lFVpl pnfl—TF f:|:m f. (22)

The linearized equations for the metric perturbatibh)g, are given by

2
A H/LV_ZV(MV’JHV)D p(p

+V,V,HE=2R,(,H?)+ 2R ., H? "+ B(2V (,H — VPH )V ,— 2BV ,V f + 4(y+ )

XV 0V ,)f— =11 @RI (N=D)HPF 0 o Fu M M e2— (et B)FF o F M Met]=mPH . (29)
|
The{ui} and{ij} components are backgrounds, which is expected from the viewpoint of
Kaluza-Klein dimensional reduction.
V,H, = BH!V,p—2(y+ B>V, ¢=0, (24) As pointed out in Ref[15] already, notice also that the
dilaton perturbation equation, E¢R2), is actually not inde-
HF—2Bf=0, (25) pendent, but can be obtained from the trace of 8) and

Egs. (24), (25. In Eq. (25), one finds that the dilaton fluc-
respectively. Here the covariant derivative and curvature tertuationf can be computed once the metric fluctuatiehsg,
sors in the above equations are constructed using the metréze obtained. Thus, we need to consider only the metric per-
gu, only. In other words, perturbation equations onturbation variables, which até, Hy,, H,,, andK. For the
D-dimensional blackp-brane backgrounds become coupledstability analysis, however, it suffices to consider the behav-
second order differential equations for dilaton and gravitaior of the so-called threshold modes, i.e., KK massive modes
tional fields with massn on (D — p)-dimensional black hole having A=0. This is because infinitely heavy massive

modes cannot be expected to give instability. There should

be a maximum valuen* for the instability to exist. For

“We will give an argument below that considerationsafvave  unstable modes in the case of black brane systems, if they

perturbations only might be enough to show stability. exist, it is known that the corresponding “imaginary” fre-
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quency ) usually starts to increase as the KK mass in-That is, the perturbed metric for threshold modes can be
creases, reaches some maximum value, but finally decreasespressed in the following form:

to zero at the so-called threshold mass. Thus, as long as

the set of equations in Eq$23)—(25) allows a threshold

mode solution with nonvanishing mass, the instability exists. ds’=-U(1+ ¢eimizi)dt2+v—1(1+ ¢eimi2i)dr2
When =0, there is the additional merit that a further o
gauge choice is possible to $éf, =0 as in Ref[15]. There- +R?(1+ xe'M?)dQ2+dz. (27

fore, one finally has

(Hy)=diag @(r),¥(r), x(r), ... x(r)). (26) Now Egs.(23)—(25) reduce to

) 2 ' ' , UH Ur U/ Vr Rr , m2 Ur ,
Sttt R AY eI Ul2u v "RTAY Ve Y
U// UI U! V! R!+ . _0 28
T Ul\20 2v "R B | |¢Y=0, (29)
L (U VR 2y+3p° ,om? (U yp y+p%
l[l+ E+N+nE_T¢ l// +vl/l— U+2 ﬂ d) @ —2n E‘f’ B ¢ X =0, (29)
(YR y+2p% | U'+'y+,82 , R’+y+ﬂz Ao 20
'+ 50 "R B >0 B ¢ nl& B o' | x=0. (30

Using Eq.(30), one can easily see thgtcan be evaluated frora and ¢, and that Eqs(28), (29) become two second order
coupled equations fop and ¢ only as follows:

F(r9—k)@" +[(d+1)r9 K]’ —mra+1-40/8 (181 sinkP 1) 4 o —dky’ = 0, (Y

r2(ra—k)z(ra+ksinhz,u)¢”+r(ra—k)z{zﬁd(ra—;ksinhz,u>—(H—S)(ra+ksinhz,u)}¢ (m pd+2-ddiapd_ )

"2

a— ngz> }sinlﬁ?,u(ra—k)z

. - 20 - - -
X (rd+k sinfu )42 +dk W+ 5 2d%+(d+3) y+dkWe=0. (32

Here the functiond), V, andR are substituted explicitly, and with Egs. (31), (32). It turns out that the inconsistency is
proportional to sinfu. We find therefore that metric fluctua-

2
W=a(ra—k)(ra+ksinr?u)— E a2— 2d ) tion_s alo_ne Wit_h_out dilaton perturbation cannot produge lin-
A D-2 earized instability when black branes are charged, pe.,
~ ~ ~ #0. It is possible only for uncharged black branes, ite.,
X sinfu(r4—k)?+dk cosifu rd. (33 : Y g e

=0. This property could also be expected by applying the

. same argument as in the work of Gregory and Laflamme

The question of whether the blagkbranes are stable or glo] It is shown in Ref[10] that for small charge casds

unstable under linearized perturbations now become fo+ 9(sintPu) wheref, is independent ofc. Now it can

whether or not there exists some Kaluza-Klein mass paramy 0 K 0

eter m for which the above coupled equations allow any easily be shown in Eq22) thatfo=0. .
Secondly, Egs(31), (32) are invariant under rescalings of

regular solution outside the event horizon. ) q o bit
Before going further, several points should be mentioned" @M Th—>Tn/a, p—u, andr—rie foran arbitrary

here. One may wonder if metric fluctuations alone with aconstanta. This scaling symmetry can be easily seen by
frozen dilaton perturbation could produce instability. Whendefining dimensionless variables such @sr/ry and m
f=0, Eq.(25 gives—ny= ¢+ ¢, and so from Eq(30) one  =mry, or by observing that such rescalings with-t/a

has an additional first order equation fprand. This raises andz'—z'/« simply result in an overall constant rescaling of
the question of whether or not this equation is consistenthe metric under which field equations are not affected. This
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symmetry implies that the threshold mass must be inversely
proportional to the horizon radius, i.en* ~1/r,,. Accord-
ingly, it suffices to study instability modes just for a single
value ofry .

Since the perturbation equations above are coupled sec-
ond order and linear iny and ¢, there are four linearly
independent mode solutions in general. The asymptotic solu-
tions of Egs.(31), (32) at spatial infinity(i.e., r~«) are

PHYSICAL REVIEW D 67, 024007 (2003

elne—e+9(e%ne),

ey~ =
Ajne ™u_(p)+Bye™u,(p),

az
—& 1= —(coshu)®Ine+ 9(&?),
Prv d

K|vefapr(P) +§|veapu+(P),

given by

e(r)=e"Mu.(r)

—etmr r—(’d+1)/21(a_18)$r—(8+3)/2+ .
(34)
p(r)=e""v .. (r)
—etmr r(a+3)/21%r(8+3)/2+ o
(35

(39

where the upper lines are for— 1 and the lower lines for
p—oo. All the solutions are simply linear superpositions of
these modes. Note that, for the mode B, # ;v as one
approaches the horizon whereas for the other three modes
e=1.

Now let us turn to the question of boundary conditions for
solutions s and ¢. Since they are linearized perturbations,
they should be “small” at any positions outside the event
horizon. Thus, at spatial infinity we require that bathand
¢ should be decaying, that is, exponentially decreasing. In
the vicinity of the horizon, the metric itself is regular in
Kruskal coordinates if, and only if, the perturbation is
bounded and = ¢ at the horizor{15]. All modes except for
the mode IV above satisfy these conditions. However, it is
very important to notice that this is not enough for the regu-

up to overall arbitrary constants. By finding asymptotic so-larity of linearized perturbations. Note that the second de-

lutions in the vicinity of the event horizon as well, i.g.,

rivative of the mode 11l is proportional to la Accordingly,

=1+e¢, one can have four sets of mode solutions whos&ome curvature quantity, for instance, the perturbation of the

asymptotic behaviors are given by

Ricci scalar curvature associated with this mode, becomes
singular at the horizon. In other words, the mode solution Ill

e+ 9(s?) produces a curvature singularity even if the metric perturba-
i~ 7 — tion itself is regular at the horizon. The mode solutions | and
Ae ™y _(p)+Be™v,(p), Il do not produce any curvature singularity at the horizon. By
requiring regular curvature at the horizon in addition, there-
14 9(e?) fore, the boundary conditions we impose for regular pertur-
I~ _8 ’ _ (36) bations are that bothy and ¢ are linear combinations of
"l Aae ™y _(p)+Be™u . (p), modes | and Il only near the horizon and that they should
decay at the spatial infinity.
) For various values of the parameters in E§4), (32), we
elne+d(e’Ine), have searched for regular solutions satisfying the boundary
Y~ Ayl e—apv_(p)_,_Bl” eEpv+(p) conditions described above by usimgTHEMATICA . In more
’ detail, we start from a regular solution at the horizon in the
following form:
m2
’ 871_g(COShM)BlAms*'ﬁ(SZ), @7 b=Cih+Eyy, ¢=Co +Eg. (40)
v~
A e‘aﬂu (p)+B eaf’v (p) At spatial infinity, they will become
v - v + ’
y~(CA+EA))e ™v_(p)+(CB+EBy)e™v . (p),
and correspondingly (41)
o+ 9(s?) ¢~ (CA+EA)e”™u_(p)+(CB+EB)e™u. (p).
LV~ _m = o (42
Ae ™u_(p)+B,e™u , ) . ,
' (P)+B +(p) By solving Egs.(31), (32) numerically, one can check if
o there exists any combination of consta@sE, andm such
m? 8iA ) that the coefficients of the exponentially growing parts for
1+ = (coshu)™ e+ d(¢), both ¢ and ¢ at spatial infinity vanish in Eq$41), (42), i.e.,
e~ d (39)
1

Aje ™u_(p)+Bye™u, (p),

CB,+EB,, =0, CB,+EB,=0. (43)
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p=4

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1

FIG. 1. Behavior of threshold masses for black four-brane® 10 at various values o& with fixed mass densitM =25. m*
=1.581f=0.791 withry=2 at u=0. u,=0.818 (0.8184), 0.8810.8814, and 1.125(1.1254 for the cases oa=0, 1/2, and 1,
respectively. Here the critical values obtained from the GM conjecture are noted in parentheses. On the right-hand side the same data are
plotted in terms of the nonextremality paramete.=6 corresponds tg=0.99996, 0.99995, 0.99991 far=3/2, 2, 3.

However, we have used a different but equivalent methoct =0 for the GL cases reproduce those in Gregory and
that turned out to be more stable and efficient in actual nutaflamme’s worl{ 10,11, i.e.,ry=ry=2. The nonextremal-
merical search. For instance, one needs to check only fdty parameter can be defined as

varying m, as will be shown below. Defining

Q 2 Q sinh 2u

P(m.11,2,0,0)=B/B) ~ByBy. “4 Qe M (@rpazizsmis

the existence of nontrivial constan®and E satisfying Eq. ) . ,

(43) is guaranteed only iP=0. Thus, having given the ini- Here Qnax is the maximum charge density allowed for a
tial data as in Eqs(36), (38) near the horizon, we solve the given mass densityl. Since @+1)A/2d=1, g is a mono-
coupled equatlons Eq$31), (32) numerically, and evaluate tonic function of x andq=1 is the extremal case. Notice

the quantityP(m, x,a,d,D) by using numerical values for thatasu or g increases the horizon radiug= k' decreases

Y ande, , at sufficiently largep. For given other param- according to Eq(9) and becomes zero for the extremal brane
eters of the black-branes, we vary the Kaluza-Klein mass when M is fixed. For black branes having different mass

m only and search for the valug* at whichP=0. Thiscan densityM’, one can get
be achieved by finding am* around which the functio®

above changes its sign. If there exists sucmeéin this mode R
is indeed the threshold unstable mdde. m* (u;M7)={ —

Once suchm*—m*(,u a,d, D) is obtained numerically,

the threshold mass* =m*/ry=m */k' can be evaluated The behaviors of some of the threshold masses we have
by fixing ry or k. Recall that a blaclp-brane inD dimen- ,pained are illustrated in Fig. 1. There we considered black
sions is characterized by two physical quantitigandM, or four-branes irD =10 and the mass densily =25. Our nu-
equivalentlyr, and u, and one coupling parametar We o jca results show that threshold masseg &0 are non-
would like to see how the stability behaves as the ch@l9e \ gnishing for any values of, implying that all uncharged

of a black brane increases when its mass dedit kept 50 four-branes in Eq(7) are unstable under linearized
the samé.We have chose such that the threshold masses perturbations associated with Kaluza-Klein massive modes

with 0<m<m* as expected. In other words, instability oc-

5 _ _ _ curs for small perturbations whose wavelengths in spatial

In the actual numerical calculations, we used the sign change qf,orldvolume directions are in the range ®f (=2m/m*)
Yulh—enle for p>1, which becomes equivalent when ) o The value of the threshold mass at=0 can be
BiiiBin#0. seen to be independent af as it should be, since the

8in the Gregory-Laflamme work, they fix the size of the outer dependence of Eq§31), (32) disappears ag— 0. Numeri-
horizonr in the string frame and vary the inner horizon size cally we find m*=0.791 atu=0, which agrees with the
Hererd=rdcosfu andr! —I’HSInhZ,u numerical result obtained by Gregory and Laflamh@].

1/d
m* (u;M). (46)
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|a| = 1/2

q

2.5 3 3.5 4 0 0.2 0.4 0.6 0.8 1

FIG. 2. Behavior of threshold masses for blgebranes with fixedV in D=10 in the theory ofla|=1/2. At u=0, ry=2 andm*

=H*/rH=l.153, 1.044, 0.925, 0.791, 0.635, 0.440pet 1, . . . ,6.Critical values for transition points arg,~0.413, 0.435, 0.497, 0.606,
0.773,>0.9993 forp=1, ... ,6.

When black branes become charged, the background dfor . < <6, presumably all the way down to the extremal
laton field becomes nontrivide.g., ##0) and could play point (i.e., u~o). The same data are plotted in terms of the
some important role. As can be seen in Fig. 1, the stabilitthonextremality parametey on the right-hand side. Corre-
behaves very differently depending on the coupling paramsponding critical values for transitions in the stability are
etera between the dilaton and gauge fields in the Einsteiny ~0.593, 0.606, 0.674 fon=0, 1/2, 1, respectively. This
frame Eq.(2). We summarize its behavior in three types, i.e.,critical value ., seems to increase monotonically from a
a<3/2, a=3/2, anda>3/2. minimum fora=0 to unity for the GL case. Therefore one

In the work by Gregory and Laflammigl0,11], it was  sees that there indeed exist some charged black branes which
shown that the black brane instability decreases monotonire stable even far from the extremality.
cally as a black brane approaches to its extremal gdinis For the cases of=2 and 3, the threshold masses de-
also noticed that numerical instability starts to occur near th%rease as black four-branes get Charged as before’ but inter-
extremal point, but the extremal brane was shown to bestingly they start to increase again at around?2 (i.e., q
stable by analyzing its stability separatéhi]. The case for  ~0.9972) andu~1.5 (i.e., q=0.9950), respectively. This
which numerical study was performed explicitly by Gregory tyrning point becomes smaller asncreases. Thus it shows
and Laflamme corresponds to the GL case in Fig. 2,&e., that the instability isnot always reduced as a black brane
=—1/2 andp=6. Our result confirms theirs up =4 or  gains more charge. Such stability behavior in the presence of
q=0.9993. Whemu=4, numerical instability starts to occur charge has never been expected in the literature as far as we
as already observed in Refd0,11. For the GL case in Fig. know. Moreover, the threshold mass seems to diverge as the
1 (i.e.,a=3/2 andp=4), the stability behavior is similar at plack brane approaches the extremal point as can be seen in
least up tou=4 or=0.99799. Our data for=4 are not  Fig. 1 up toq=0.99995, 0.99991 foa=2, 3. As shown

reliable due to numerical instability. below, however, extremal black branes are stable in these
For the cases cdi=0, 1/2, and 1, we find that threshold cases as well.
masses become zero at certain finite valueg.g#0.818, Now let us check the stability of extremal black branes.

0.881, and 1.125, respectively. Thus the Gregory-Laflammehese cases are expected to be stable since they correspond

instability disappears ag— u for such cases and so the to BPS ground states in string theory. Our numerical analysis

corresponding black four-branes become in fatable at  cannot be directly used to show its stability since numerical

least under spherically symmetric linearized perturbationsinstability occurs as the extremality is being approached. In-
stead, we treat the extremal case separately. As one can show
explicitly, the equations for linear perturbations in the ex-

"By decreasing instability, we mean that the threshold mass isremal case are obtained simply by puttikg 0 andu=o

decreasing. Thus, the instability actually shrinks in the parametepwith ke?*=4c fixed in Egs.(31), (32):

range ofQ) andm. Consequently, smaller values 6f imply that

instability modes grow less rapidly in time. So in this sense we may

say that a black brane having larger charge is less unstable than one d+1 c 4/A
having smaller charge in the case considered by Gregory and o'+ —¢' —m?| 1+ —=| =0, (47)
Laflamme. r rd
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the only regular solution foi is zero. Therefore all extremal

- 1| ~ ~ d d-3
(rd+c)y”+ —| (d+3)r9—d4c| —+ ——| |4’ black branes considered in this paper are stable at least under
r A 4 .
swave fluctuations, although the threshold mass seems to
N c\ ¥ ocdl L diverge fora>3/2 as the extremality is being approached.
—{m(ri+c)| 1+ = t— 20%+(d+2) For blackp-branes with differenp (#4), the basic sta-
r Ar bility behavior is essentially the same as above. Only the

752 2cd L values of threshold masses and critigalchange slightly.
x| a?— )H y——| a’— ¢=0. Figure 2 shows our results for variopsbranes in the theory
b-2 Ar? D-2 of |a|=1/2. The mass density is chosen to bé=(8
(48) —p)277P, givingry=2 atu=0. If results for other values
of a are added, one can see similar patterns as in Fig. 1 for
The boundary conditions are simply the regularitygoind  each p-brane. Blackp-branes withp=1,...,5 becomes

¢, which are different from those of nonextremal cases, andtable if u= u., whereas the instability of the six-brane per-
the asymptotic solutions near the event horizon are also difsists all the way down to at leagt=4 (i.e., q=0.9993).

ferent and cannot be obtained simply by taking the extremal Now it will be very interesting to see how well the clas-
limit of those in Egs.(36)—(39). This difference comes be- sical stability behavior of black branes described above
cause we cannot ignore the terms includingt the near agrees with that predicted by the local thermodynamic be-
horizon as long a& is nonvanishing. Now it is straightfor- havior through the GM conjecture. First of all, let us con-
ward to see that the only regular solution of E47) is ¢ sider critical valuesu., beyond which black branes become
=0 since the coefficient op is negative definite. Similarly, stable classically from being unstable.

p 1 2 3 4 5 6
pe (nUM) 0.418 0549 0.695 0.881 1.178>4
pe (GM)  0.4186 0.5493 0.6954 0.8814 1.179% (49)

The table above shows the results for the cas@lof 1/2 in will be unstable(i.e., ue=) under small perturbations if

Fig. 2. One can see that they are in very good agreemetha|>acr:(D_3_p)/‘/(D_z)/z_ If |]a|]<ag, the brane is
Other cases we have checked are marked with black dots il unstable foru< u(a,p,D), but becomes stable for

Fig. 3. The solid lines are obtained by using Etj7) in the =, As can be seen in Fig. 3 f@= 10, the critical values
GM conjecture. All critical values of. obtained numerically , increase monotonically da| or p increases. Critical val-

in our classical perturbation analysis agreed well with thosgyes for various black brane solutions of type Il supergravity
in the GM conjecture. Based on such good agreement, thigre marked in Fig. 3 explicitly.

diagram shows how the classical stability under small pertur-
bations will behave in general. That is, for a black brane with
given dimensionp for the spatial worldvolume, this brane IV. DISCUSSION

To conclude, we have investigated the stability of mag-
netically charged black brane solutions for the low energy
string theory in Eq(1) under small perturbations. It turns out
that all uncharged black branes in our consideration are un-
stable under linearized perturbations. When the black brane
becomes charged, however, the stability behavior depends on
how strongly then-form field couples to the dilaton field. In
more detail, our results seem to show that, when the coupling
is weak enough in the theory in E@) (e.g.,|]a|<a,), black
branes become stable as they get charged encaigh
=), even before they reach the extremal point. When the
coupling is strong enougke.g., |a|=a.), however, black
brane solutions of this theory are always unstable. Moreover,
the instability starts to increase again as the charge is larger

FIG. 3. Critical values of the parametgr for various black than a certain value and seems to diverge near the extremal-
p-branes inD =10 at which the threshold mass vanishe&,=0. ity. For example, F1, D1, D2, and D4 black branes of type II
The solid lines are obtained from the Gubser-Mitra conjecture angupergravity could be stable classically for large charge,
the black dots from our numerical results for several valuea.of whereas NS5 and D5 black brane solutions are always un-

Her 5

a4+
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stable all the way down to the extremal point. The case ofty behavior if the worldvolume is compactified with a scale
a=a,, is the boundary between these two categories, whiclh.? In this case, the KK mass becomes discrete and has a
is the case Gregory and Laflamme studied, and so the inst@inimum mass, e.gmy,,=2/L. Thus, KK masses smaller
bility monotonically decreases to zero at the extremal pointthan the minimuni.e., 0O<m<m,,,) are not allowed due to

All extremal black branes are shown to be stable separatelyhe compactification. Accordingly, even if the threshold

It has also been shown that our results for the classical stdnasses obtained by solving the perturbation equations for
bility agree well with the qualitative behavior predicted by Plack branes are nonvanishing, such black branes are actu-
the local thermodynamic stability through the Gubser-Mitra@lly stable provided than* <m,;,, or equivalently that the
conjecture. That is, the critical values fag, and g, 0b- compactification scale is small enoughe., L<2#/m*)
tained numerically in our classical perturbation analysis[g*lo’za' . - . .
agree very well with those in Eq€16), (17) for the sign Although the critical values for the transition points are in

change of the specific heat for the black brane regarded as od agreement between the classical stability analysis and
thermal body. the local thermodynamic stability through the GM conjec-

In the classical perturbation analysis above, we considV"® there_are some other aspec'gs that might be in disagree-
ered only spherically symmetric perturbations. Thus, even hment._Fc&r msftak?ce, on(.af.caﬁ see in caselabiacr that rt1heb| K
it turned out that there exists no instability mode for a bIackm""gn't,u €o .t e specific heat Increases whereas t € blac
brane solution withu> s, in the analysis above, this does brane instability decreases as the charge increases with fixed

not necessarily mean that such a black brane is stable undgi*>> density. MoreovEr, the Speﬁ'f'c lheaF |s|d|vergeé)nt at the
small perturbations. There might exist some instability moddransition point(i.e., u=pe). In the classica perturbation
when we considered all nagwwave perturbations as well. analys_ls, however, there does_not seem Fo exist any singular
However, we give some evidence that the only possible mpheha\r/]lor r?rour?dlé: M- FOr givenu in Fig. 1, we f°“'."dh
stability mode comes frons-wave fluctuations as follows. that the threshold mass increasesaaacreases. One might
Although it was in a different context, one can find in Ref. wonder if the magr_utude of the specific heat also'lncreases.
[24] that the higher angular momentum fluctuations forOne can see th_at it actually_decreases monotonlqally, even
Schwarzschild black brane backgrounds do not produce urf @ fixedQ/M instead of a fixed.. Maybe these discrep-
stable modes. As— 0, since the black brane solutions con- 2NCi€S in some details of the stability behavior simply indi-
sidered in the present paper become Schwarzschild bladigte that one needs to find some appropriately modified ther-

branes and the metric perturbation equations become confiodynamic quantity, other than the specific heat, in order to

pletely decoupled from others, one can easily see that theompare other details between classical and thermodynamic

s-mode instability is the only instability foanchargedblack stab.|I|ty analyses for bIacK brane;.
branes in this paper. Now one can apply the same argument Fma]ly, it would pe very interesting to understan_d why the
as in Ref[11]. When charge is added, we observed that therdStability starts to increase again as the extremality is being
is a stabilizing influence for the-wave perturbations ifa| appro_ached _for black branes in theoriesaota,,. Further
<a,,. Therefore, it is not expected that higher angular mo-VO'K iS required.
mentum modes will exhibit instability incharged black
branes since they do not give it even for the uncharged case.
The spatial worldvolume is assumed to be noncompact in  G.K. would like to thank H. S. Reall for useful discus-
the description above. Consequently, the KK mass spectrusions. This work was supported by the JSP&panese Soci-
is continuous since there are translational symmetries in spa&ty for Promotion of SciencgsY.L. was supported in part by
tial worldvolume directions. What will happen to the stabil- the BK21 Project of the Ministry of Education, Korea.
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