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Dynamics of spinning test particles in Kerr spacetime
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We investigate the dynamics of relativistic spinning test particles in the spacetime of a rotating black hole
using the Papapetrou equations. We use the method of Lyapunov exponents to determine whether the orbits
exhibit sensitive dependence on initial conditions, a signature of chaos. In the case of maximally spinning
equal-mass binariga limiting case that violates the test-particle approximatiea find unambiguous positive
Lyapunov exponents that come in paits\, a characteristic of Hamiltonian dynamical systems. We find no
evidence for nonvanishing Lyapunov exponents for physically realistic spin parameters, which suggests that
chaos may not manifest itself in the gravitational radiation of extreme mass-ratio binary black-hole itapirals
detectable, for example, by LISA, the Laser Interferometer Space Antenna
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[. INTRODUCTION tions): e(7) = ey,e7, where\ is the Lyapunov exponentSee
Sec. Il A for a discussion of issues related to the choice of
The presence of chadsr lack thereof in relativistic bi-  metric used to determine the distance in phase spate
nary inspiral systems has received intense attention recentglue of Lyapunov exponents lies not only in establishing
due to the implications for gravitational-wave detectionchaos, but also in providing a characteristic time scale
[1-8], especially regarding the generation of theoretical tem= 1/\ for the exponential separation.
plates for use in matched filters. There is concern that the By definition, chaotic orbits are bounded phase space
sensitive dependence to initial conditions that characterizebows with at least one nonzero Lyapunov exponent. There
chaos may make the calculation of such templates difficult oare additional technical requirements for chaos that rule out
impossible[8]. In particular, in the presence of chaos the periodic or quasiperiodic orbits, equilibria, and other types of
number of templates would increase exponentially with thepatterned behavidi0]. For example, unstable circular orbits
number of wave cycles to be fitted. In addition to this impor-in Schwarzschild spacetime can have positive Lyapunov ex-
tant concern, the problem of chaos in general relativity haponents[5], but such orbits are completely integratikee
inherent interest, as the dynamical behavior of general relaSec. V) and hence not chaotic. In practice, we restrict our-
tivistic systems is poorly understood. selves to generic orbits, avoiding the specialized initial con-
Several authors have reported the presence of chaos fditions that lead to positive Lyapunov exponents in the ab-
systems of two point masses in which one or both particlesence of chaos.
are spinning3,1,6]. Our work follows up orf 3], which stud- The use of Lyapunov exponents is potentially dangerous
ies the dynamics of a spinning test particle orbiting a nonroin general relativity because of the freedom to redefine the
tating (Schwarzschilglblack hole using the Papapetrou equa-time coordinate. Chaos can seemingly be removed by a co-
tions[Egs. (2.7)]. We extend this work to a rotatingerr) ordinate transformation: simply let'=log r and the chaos
black hole, motivated by the expectation that many astrodisappears. Fortunately, in our case there is a fixed back-
physically relevant black holes have nonzero angular moground spacetime with a time coordinate that is not dynami-
mentum. Furthermore, the potential for chaos may be great@al but rather is simply a reparametrization of the proper
in Kerr spacetime since the Kerr metric has less symmetr§ime. As a result, we will not encounter this time coordinate
and hence fewer integrals of the motion than the Schwarzgedefinition ambiguitywhich plagued, for example, attempts
child metric. In addition, the decision to focus on test par-to establish chaos in mixmaster cosmological models, until
ticles is motivated partially by the Laser Interferometercoordinate-invariant methods were developgt). Further-
Space Antenna(LISA) gravitational wave detectof9],  more, we can compare times in different coordinate systems
which will be sensitive to radiation from spinning compact using ratios: ift, is the period of a periodic orbit in some
objects orbiting supermassive black holes in galactic nucleicoordinate system with time coordinateand 7, is the pe-
Using the Kerr metric is appropriate since such supermassiveod in proper time, then their ratio provides a conversion
black holes will in general have nonzero spin. factor between times in different coordinate syst¢Bls
There are many techniques for investigating chaos in dy-
namical systems, but for the case at hand we favor the use of
Lyapunov exponents to quantify chaos. Informallyejf is
the phase-space distance between two nearby initial condi-
tions in phase space, then for chaotic systems the separatiéi®r chaotic orbits, which are not periodic, we use the average
grows exponentially(sensitive dependence on initial condi- value ofdt/dr over the orbit, so that

E:—". (1.1
.

t, /dt w2
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as discussed in Sec. VII This more general formula re- trou system(Sec. V B. We augment this method with an
duces to Eq(1.1) in the case of periodic orbitsSince we implementation of an informal deviation vector approach,
want to measure the local divergence of trajectories, thavhich tracks the size of an initial deviation of sizg and
natural definition is to use the divergence in local Lorentzuses the relatior(7) = €, €' discussed above. We are care-
frames, which suggests that we use the proper tiras our ~ ful in all cases to incorporate the constrained nature of the
time parameter. The Lyapunov time scale in any coordinat€®apapetrou equationgSec. IIA) in the calculation of
system can then be obtained using Eg2). Lyapunov exp_OﬂehtﬁSec. IV B). _ _ .
Lyapunov exponents provide a quantitative definition of \We use units wher&=c=1 and sign conventions as in
chaos, but there are several common qualitative methods A4iSner, Thome, and WheeldMTW) [13]. We use vector
well, none of which we use in the present case, for reasongfrows for 4-vectorge.g.,p for the 4-momentumand bold-
explained below. Perhaps the most common qualitative todce for Euclidean vectorée.g., £ for a Euclidean tangent
in the analysis of dynamical systems is the use of Poincaréectod. The symbol log refers in all cases to the natural
surfaces of section. Poincasections reduce the phase spacelogarithm log..
by one dimension by considering the intersection of the

phase space trajectory with some fixed surface, typically Il. SPINNING TEST PARTICLES

taken to be a plane. Plotting momentum vs position for in-

tersections of the trajectory with this surface then gives a A. Papapetrou equations

qualitative view of the dynamics. As noted [i], such sec- The Papapetrou equatiofis4] describe the motion of a

tions are most useful when the number of degrees of freedomgyinning test particle. Although Papapetrou first derived the
minus the number of constrainfcluding integrals of the equations of motion for such a particle, the formulation by
motlon} is not greater than two, since in this case the re:su_ItDiXOn [15] is the starting point for most investigations be-
ing points fall on a one-dimensional curve for nonchaoticcayse of its conceptual clarity. Dixon writes the equations of
orbits, but are “dusty” for chaotic orbitéand in the case of ,otion in terms of the 4-momentupf and spin tenso*?
dissipative dynamical systems lie on fractal attragtot®-  \yhich are defined by integrals of the particle’s stress-energy

fortunately, the system we consider has too many degrees @f,sorT% over an arbitrary spacelike hypersurfate
freedom for Poincarsections to be useful. It is possible to

plot momentum vs position when the trajectory intersects a
section that is a plane in physical spasayx=0) [3], but pU(X)= LTa’ngB (2.)
this is not in general a true Poincasection®

Other qualitative methods include power spectra and cha-
otic attractors. The power spectra for regular orbits have a
finite number of discrete frequencies, whereas their chaotic
counterparts are continuous. Unfortunately, it is difficult to
differentiate between complicated regular orbits, quasiperi- -, .
odic orbits, and chaotic orbits, so we have avoided their us¢¥herez is the coordinate of the center of mass. The equa-
Chaotic attractors, which typically involve orbits asymptotj- ions of motion for a spinning test particle are then
cally attracted to a fractal structure, are powerful tools for
exploring chaos, but their use is limited to dissipative sys- dx*
tems[10]. Nondissipative systems, including test particles in dr
general relativity, do not possess attractdr].

Following Suzuki and Maedg3], we use the Papapetrou
equations to model the dynamics of a spinning test particle in Voph=—3 RH g rseB
the absence of gravitational radiation. We extend their work
in a Schwarzschild background by considering orbits in Kerr
spacetime, and we also improve on their methods for calcu-
lating Lyapunov exponents. The most significant improve-
ment is the use of a rigorous method for determiningwherev” is the 4-velocity, i.e., the tangent to the particle’s
Lyapunov exponents using the linearized equations of moworldline. It is apparent that the 4-momentum deviates from
tion for each trajectory in phase spa(®ec. Il A), which  geodesic motion due to a coupling of the spin to the Riemann
requires knowledge of the Jacobian matrix for the Papapesurvature.

S"B(E,E)=2JE(X[“—Z[“)Tﬁ]7d27, (2.2

V;Stv=2pl#p, 2.3

1. Spin supplementary conditions
n [3], they are aided by the symmetry of Schwarzschild space-

time, which guarantees that one component of the spin tdSsar. mined, and require apin supplementary conditicio deter-

Il A below) is zero |n.the gquatorlal plane. As a result, it turns Omgnine the rest frame of the particle’s center of mass. Follow-
that all but two of their variables are determined on the surface, an .
ing Dixon, we choose

thus their sections are valid. Unfortunately, the reduced symmetry
of the Kerr metric makes this method unsuitable for the system we
consider in this paper. p.S"=0, (2.4)

As written, the Papapetrou equatidi2s3) are underdeter-
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which picks out a unique worldline that we identify as the The tensor and vector formulations of the spin are related
center of mass. In particular, in the zero 3-momentum framéy
defined byp'=0, applying Eq.2.4) to Eq.(2.2) yields

Sﬂzé eﬂmﬁu”saﬁ (2.9

iT0043
ft x'T%d°x and

=const

= (2.5
f TO0g3y S=—et"FS, g, (2.10
t=const
whereu,=p,/u (=p, in normalized units In addition, the
which is the proper relativistic generalization of the Newton-spin satisfies the condition
ian center of mass. The frame defined fidy=0 is thus the

rest frame of the center of mass, and in this frame (Ecf) S, 8= %SWS/”=SZ, (2.11
implies thatS% =0, i.e., the spin is purely spatial in the rest
frame. whereSis the spin of the particle measured in units.dl

A second possibility for the supplementary condition is (see Sec. Il B
Because of the coupling of the spin to the Riemann cur-
v,S*"=0. (2.6)  vature, the 4-momentup* [Eq. (2.1)] is not parallel to the
tangentv*. The supplementary conditid2.4) allows for an
This condition has the disadvantage that it is satisfied by @axplicit solution for the difference between theisee[19]
family of helical worldlines filling a cylinder with frame- for a derivation:
dependent radiugl5,16], centered on the worldline picked
out by condition(2.4). As a result, we adop, S*”=0 as the vA=N(p*+wH), (2.12
supplementary condition.
We note that the difference between the conditiGhd) where
and(2.6) is third order in the spifwhich follows from Eq.
(2.13 below], which means that it is negligible for physi- Wh= — * R* ”““'BVSapBSy (2.13
cally realistic spingSec. Il B). In particular, the two condi-
tions are equivalent for post-Newtonian expansi¢hd], gng
where condition(2.6) is typically employed 18].
- . *R*aﬂ,uv=% R*aﬁ’p(repu_,u.v' (214)
2. A reformulation of the equations
For numerical reasons, we use a form of the equation§he normalization constani is fixed by the constraint
different from Eqgs(2.3). (We discuss this and other numeri- v ,v*=—1. We see from Eq(2.13 that the difference be-
cal considerations in Sec. V AFollowing the appendix in tweenp* andv* is O(S?), so that the difference between
[3], we write the equations in terms of the momentum 1-formEgs. (2.4) and(2.6) is O(S°).
p, and the spin 1-forng, .2 The system under consideration ~ The spin 1-form satisfies two orthogonality constraints:
is a spinning particle of rest mags orbiting a central body
of massM; in what follows, we measure all times and p*S,=0 (2.15
lengths in terms oM, and we measure the momentum of the
particle in terms ofw, so thatp,p”=—1. In these normal- and
ized units, the equations of motion are

v#”S,=0. (2.16
dx* B
dr ¢ These two constraints are equivalent as long‘ass given
by Eq. (2.12, since w*S,«*R*#*FYS S =0. When pa-
V;p,=—R:,%%0"p, S, rameterizing the initial conditions, we enforce EQ.15);
. since we use EQ(2.12 in the equations of motion, Eq.
a 2.16 is th icall isfied.
V;S,= —p,(R* Byasavﬁpysﬁ) 2.7 (2.16 is then automatically satisfied
where 3. Range of validity
We note that the Papapetrou equations include effects due
R* "E“Vz%R“BNeP"W. (2.8 only to the mass monopole and spin dipélee pole-dipole

approximation. In particular, the tidal coupling, which is a
mass quadrupole effect, is neglected. It is also important to
2The lowered indices are motivated by the Hamiltonian formula-note that the Papapetrou equations are conservative and
tion for a nonspinning test particle, where it is the one-farjnthat hence ignore the effects of gravitational radiation. For a thor-
is canonically conjugate tg* [13]. ough and accessible general discussion of the Papapetrou
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equations and related matters, including a comprehensive lit-
erature review, see Semkrgl9).

B. Comments on the spin parameter

It is crucial to note that, in our normalized units, the spin
parametelS is measured in terms giM, not u2. The sys-
tem we consider in this paper is a compact spinning body of
massu orbiting a large body of magd, which we take to be
a supermassive Kerr black hole satisfyingM

Smax (Mo?)

0 02 04 06 08 1 12 14

~10°-1CFPM . We will show that physically realistic values (M)
of the spin must satisf$<1 for the compact objectdblack
holes, neutron stars, and white dwanfsost relevant for the FIG. 1. The maximum spin angular momentsgy, VS massu

test particles described by the Papapetrou equafidiise  for a rigidly rotating white dwarf. We plot curves for=1.5 and
case of a black hole is simplest: a maximally spinning blackn=2.5 polytropic approximations using E¢2.22, together with
hole of massu has spin angular momentus u?, so a  four points derived using a more realistic numerical white dwarf
small black holex orbiting a large black hole of magd ~ model(Geroyannis and Papasotirig23]).

> u has a small spin parametg&r
where

2
S _H# _H 43
s= <M g
M= uM M f(ﬂ)zl—(ﬁ (2.19
m.

The limit is similar for neutron stars: most models of neutron
stars have a maximum spin §f,,,~0.6u2 [20], which gives

S=<0.6 u/M. Mmax=1.45M ¢ . (2.20

and

1. Bounds onS for stellar objects We could plug Eq.(2.18 into Eq. (2.17 to obtain an

The bound orS is relatively simple for black holes and order-of-magnitude estimate, bil1] tabulates a constasdt
neutron stars, but the situation is more complicated for comequivalent to the produetg (which increases as the angular
pact stellar objects such as white dwarfs. The maximum spige|ocity of the star increasesThey write J=J(GM3R,) 2

of a stellar object is typically determined by the mass-,. , 1otating white dwarf, wher@ depends on the polytropic

shedding limit, i.e., t_he_ maximum spin before the star b_egin?ndexn of a nonspinningwhite dwarf of the same mass, and
to break up._The_sp|_n in the case ‘_)f the break-up limit is thq?o is the nonspinning radius. In our notation, this reads
moment of inertia times the maximuiibreak-up angular

velocity: Sma=!Qmax. If we write |=auR? and Q. — (3R 12
=BG u/R® for some constants, =<1, then we have Sma= H(GA7R) ™ 229
White dwarfs withu>0.6M 5 are not well approximated by
Sma= 2B(Gu’R) Y2 (217 polytropes(the effective polytropic index varies from near 3
) in the core to near 1.5 in the outer paytisut useful bounds
The values ofr and3 depend on the stellar model; if we use can pe obtained by substitutii®from Eq. (2.18), which is
the values for am=1.5 polytrope, we get=0.2044 and  more accurate for white dwarfs than a pure polytrope model.
B=0.5366[21], SO thatsy,,=0.110Gx°R)". Plugging Eq.(2.18 into Eq. (2.21) and converting to geo-
The limit in Eq. (2.17) depends on the mass-radius rela- metric units gives
tion for the object in question. Since most neutron stars have
masses and radii in a narrow range, the estimats,gf Smax=77.68 J_M4/3Mé/3f( w)t (2.22
~0.6 u? discussed above is sufficient, but for white dwarfs
the value ofsy,, can depend strongly on the mass. An ana-From Table 3 in[21], we haveJ=0.1660 for a maximally
lytical approximation for the mass-radius relation for nonro-rotatingn=1.5 polytrope(vs a3=0.110 for a slowly rotat-

tating white dwarfs i§22]* ing on® andJ=0.0785 forn=2.5. As illustrated in Fig. 1,
R 13 the values for a more realistic numerical mof238] lie be-
_:0_0112% K) f( )2 (2.18  tween these curves, as expected.
Ro ma Note from Eq.(2.22) thatSya/u?su 22 for < wmax, SO

that the spin per unit mass squared is unbounded-a® .°
Nevertheless, the spin paramet8y,,, is bounded, since
SRecall that the Papapetrou equations ignore tidal coupling, so
they are inappropriate for modeling more extended objects.
“The mean molecular WeigI]Ttis set equal to 2, corresponding to  °Equation(2.22 is valid only for u=0.0IM ¢, but S,,,/u? con-
helium and heavier elements, which is appropriate for most astrotinues to increase with decreasipgfor equations of state appro-
physical white dwarfs. priate for brown dwarfs and planets.
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FIG. 2. Spax/ e Vs mass for a white dwarf. As in Fig. 1, we plot ~ FIG. 3. The minimum black hole ma#s required not to disrupt
curves forn=1.5 andn=2.5 polytropes and the numerical model an inspiraling corotating white dwarf before the last staipieo-
from [23] The Corresponding Spin parame&r‘ax is obtained sim- grade circular orbit around a maXImally I’Otatlng Kerr black h0|e,

ply by dividing Sya,/x by the massv of the central black hole. s a function of white dwarf mags.
Smax®Smax/ w2 in the low mass limit. We plos./u Vs 3. The S=1 limit
w in Fig. 2, which shows that the maximum valuesaf,./u We have shown that all physically realistic cases satisfy

is approximately 8, (corresponding to &=0.5M white  S<1, but we nevertheless consider the limit$# 1 (corre-
dwarf). For a central black hole of magd =10°M, we  sponding tox=M) in order to investigate more thoroughly
then have the dynamics of the Papapetrou equations, and to compare
our results with[3], which investigates th&=1 limit in
_ Smax_ 6 detail. TheS=1 limit introduces no singularities into the
S= Smax_,uM =9x107%, 2.23 equations of motion, and the resulting orbits are valid solu-
tions of the equations. On the other hand, in this limit the
which is small compared to unity. Papapetrou equations are not physically realistic, since they
are derived in the limit of spinning test particles, which must
2. Tidal disruption satisfyu <M. We thus cannot draw reliable results about the

We can obtain a higher value 8fif the central black hole ~Pehavior of astrophysical systems from e 1 limit.
mass is smaller, but it is important to bear in mind that such
lower-mass black holes may tidally disrupt the white dwarf C. Symmetries and the parametrization of initial conditions

companion, thereby violating a necessary condition for the In the aporoximation represented by the Papapetrou equa-
validity of the Papapetrou equations. In order of magnitude pproximat P y papetrou equ

a white dwarf orbiting at radiuswill be disrupted when the  1°"S there is still a constant of the motion associated with
tidal acceleration due to the central body overcomes its selfeach Killing vectoré of the spacetimé15]:

gravity, i.e.,
GM Gu

r

=

3 R (2.24 [For brevity, we write the constant in terms of the spin tensor
S*” [Eq. (2.10].] Since Kerr spacetime is stationary and

For the white dwarf to be undisrupted down to the horizon a@xially symmetric, it has the Killing vectorg'=a/4t and
r=M, we must haveM=<R%®?, 12 so that[using Eq. £%=d/d¢, so the energf andz angular momentund, are
(2.18] the minimum mass not to disrupt M ;,<ux *. We  conserved:

could evaluate the proportionality constant using 418,

but we can obtain a more accurate result by adopting a con- N ,

stant based on a more realistic tidal disruption model. Tables E=-pit+ 2 Gtu,S” (2.27)
| and Il of [24] give the value of the variable=(r/R)

X (u/M)*3, which is approximately 2.0 for the white dwarfs and

of interest here. This gives

M in=2.0"32R¥2,, 712 (2.25 J=Py= 5 9ppu S (2.28

as illustrated in Fig. 3. For a 1M, white dwarf, which  (We write J, in place of the orbital angular momentuin
(based on23]) has Sy.,=8.5M2 , the central black hole since the spin also contributes to the angular momentum of
must satisfyM ,i,=8.2x 10°M, so that the spin parameter the system.In contrast to the energy and momentum inte-
S can be no bigger thaB,.,=Snax/(4Mmin)=1.0x10"% in  grals, the Carter consta@tis no longer present when the test
order to avoid tidal disruption. particle has nonvanishing spj5].
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In our problem there are twelve variables, four each for This informal definition of Lyapunov exponents leads to a
position, momentum, and spin. For the purposes of findingractical method for calculating: given an initial condition,
orbits by numerical integration, we may parametrize the ini-consider a nearby initial condition a distanggaway, where
tial conditions by providingr=0, r, 6, =0, p,, E, J,, S €0 is “small,” typically 10°~10 7 of the relevant physical
and any two of the spin components. The normalization conscales.(Values of e, much smaller than this can result in a
ditionsp,p*=—-1 andSMSfLZS2 allow us to eliminate one loss of numerical precisionKeeping track of the deviation
component each of momentum and spin. The constraintector between the two points yields a numerical approxima-
p”S,=0 and the integrals of the motion then give threetion of \. (It is important to rescale the deviation vector if it

equations in three unknowns: grows too large, since for any bounded phase space flow
even a tiny deviation can grow to at most the size of the
0=p,S,g*" (2.29 bounded region.We call this approach thdeviation vector
method
) There are two primary limitations to the approach out-
E=—pit 291,59 (230 |ined above. First, the method yields only the largest
Lyapunov exponent, which is sufficient to establish the pres-
J,=py— %QW’VS,W_ (2.31) ence of chaos but paints a limited picture of the dynamics.

Second, the deviation vector approach is most appropriate
) . when an analytical expression for the Jacobian matrix is un-
We must solve these equatlor_ls_ for the two remaining COMgnown; by choosing, small enougand by keeping(7)
ponents ofp, and one remaining component &,. In gma|l by rescaling if necessdrthe method essentially takes
Schwarzschild spacetime thesg can be solved expllcnly dug numerical derivative. Among other complications, the
to the greater symmeti§g], but in the Kerr case of interest 5jye of the exponent depends both on the maximum allow-
here the problem requires numerical root finding. _ able sizeep,y (the size at which the deviation is rescaled
‘We also use a related parametrization method startingq the initial valuee, (the size of the deviation after each
with the Kerr geodesic orbital parameters: eccentriejtin- rescaling.
clination angle:, and pericenter,. We derive the corre- The principal virtue of the deviation vector approach

sponding energy, angular mome_ntum, and_rele_vant moment@ompared to the more complicated Jacobian metfeis-
and then proceed as above. This method is discussed furthglissed belois speed, since it requires solving only the

in Sec. VIIA3. equations of motion(As we discuss in Sec. Il B 1, the Jaco-
bian method involves the time-consuming evolution of the
IIl. LYAPUNOV EXPONENTS Jacobian matrix in parallel with the equations of motjdb.
also provides a valuable way to verify the validity of the
A. General discussion of Lyapunov exponents Jacobian method.

Our method for calculating Lyapunov exponents is well- ~ The Jacobian methods a more thorough and rigorous
established in the literature of nonlinear dynamical system@pproach to the calculation of Lyapunov exponents, which
[10,17, but accessible treatments are hard to find in thenakes precise the notion of “infinitesimally” separated vec-
physics literature, so we summarize the method here. Ouers. The general method proceeds as follows: consider a
discussion is informal and oriented toward practical calculaphase space with variablgs-{y;} and an autonomous set of
tion, based on Ref10]; for a more formal, rigorous presen- differential equations
tation see Eckmann and Ruell26].

First we give an overview of the methods for calculating
Lyapunov exponents most commonly used in physics. Given
an initial condition, a set of differential equations determines ) ) S o
a solution(the flow), which is a curve in the phase space. The(Here we user instead oft in anticipation of the application
Lyapunov exponentsf the flow measure the rate at which of these results to general relativity, where we will be using
nearby trajectories separate. As discussed in the IntroductioRfoper time as our time paramejelf. 5y represents a small
an Orbit iS Chaotic if a nearby phase_space trajectory Sepéj-.eViiation Vector, then the diStance betWeen the two tl’ajeCtO-
rated by an initial distance, separates exponentially(7) nesis
=¢€,€M7, where\ is the Lyapunov exponent. d(sy)

Implicit in the definition of chaos above is a notion of a _ _ —Df. 2
distance function on the phase sp&oe more properly, the g = fy+ay)=f(y)=Df-sy+0O([ey|*), (3.2
tangent space to the phase space, as i(E§). below]. It is )
conventional to use a Euclidean metric to define such length¢hereDf is the Jacobian matrik(Df);; = of; /ox'].

[10,12, but any positive-definite nondegenerate metric will We can clarify the notation and make the system easier to
do [26]. While the magnitude of the resulting exponent ob-Visualize if we introduce as an element of the tangent space
viously depends on the particular metric used, the signs ofty, so that

the Lyapunov exponents are a property of the dynamical sys-

tem and do not rely on any underlying metric structure. We d§

discuss these issues further in Sec. IV A and Sec. VII D. dr Df-&, 33

dy
3.=f). (3.
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4 vector with nonzero Lyapunov exponent is, for examgle,
T =(1/4/3)(1,1,1,0), then nearby initial conditions separate ex-
ponentially inr, ¢, andp,, but nearby values gb, do not
separate exponentially. This is potentially relevant to the
present study since, in the limit of a point test particle, the
FIG. 4. The Jacobian matrix maps a tangent space ball to agravitational radiation depends on the spatial variables but
ellipsoid. not the spin. If the principal axes along expanding directions
have nonzero components only in the spin directions, the
which is equivalent to taking the limjtsy| —0. We visual-  system could be formally chaotic without affecting the gravi-
ize £ as a perfectly finite vectofas opposed to an “infini- tational waves.
tesimal”). Since it lives in the tangent space, not the physical |n summary, the method for visualizing the Lyapunov ex-
phase space can grow arbitrarily large with time. This ponents of a dynamical system is to picture a ball of initial
means that instead of the frequent rescaling required in theonditions—an infinitesimal ball if visualized in the phase
deviation vector approacl§ must be rescaled only when it space, or a unit ball if visualized in the tangent space—and
grows so large that it approaches the floating point limit ofwatch it evolve into an ellipsoid under the action of the Jaco-
the computer. This is a rare occurrence, and in practice thisian matrix. After a sufficiently long time, the ellipsoid will
tangent vector almost never needs rescaling. be greatly deformed, stretched out along the expanding di-
Although following the evolution of an arbitrary initial rections and compressed along the contracting directions.
tangent vectoi§ yields the largest Lyapunov exponent, we The directions of the principal axes are the Lyapunov direc-
can do even better by following the evolution of a family of tions, and their lengths give the Lyapunov numbers through
n tangent vectors, which allows us to determine mll the relationL;~[r;(7)]*".
Lyapunov exponents. The essence of the method is as fol-
lows: for a system of differential equations withvariables,
we consider a set af vectors that lie on a ball in the tangent  In order to implement a numerical algorithm based on the
space. We represent this ball using a matrix whose columnsonsiderations above, we must bear two things in mind.
aren normalized, linearly independent tangent vectors, conFirst, since the vectors spanning the initial unit ball are arbi-
ventionally taken to be orthogonal. This set of orthonormaltrary, they will all be stretched in the direction of the largest
vectors then spans a unit ball in the tangent space. The acti@xponent: in general every initial vector has some nonzero
of the Jacobian matrix, which is a linear operator on thecomponent along the direction of greatest stretching, which
tangent space, is to map the ball to an ellipsoid under theominates as—o. In order to find the other principal axes,
time-evolution of the flow, as shown in Fig. 4. we must periodically produce a new orthogonal basis. We
For a dynamical system with degrees of freedom, there will show that the Gram-Schmidt procedure is appropriate.
aren Lyapunov numberthat measure the average growth of Second, the lengths of the vectors could potentially overflow
the n principal axes{r;(7)}{_, of the ellipsoid. More for- or underflow the machine precision, so we should periodi-
mally, the Lyapunov numbets; are given by cally normalize the ellipsoid axes.

B. Numerical calculation of Lyapunov exponents

L= lim[r,(n)]*", (3.9 1. The algorithm in detail

T—®

To simplify the notation, we denote tl{éme-dependent
Jacobian matrbDf by J, and the ellipsoidwhose columns
are the tangent vectordy U. The algorithm then proceeds
as follows.

(i) Construct a set ofh orthonormal vectorgwhich span

log[r,(7)] an n-dime_nsional ball in t_he tangent space of the floRep-
A= lim——. (3.5  resent this ball by a matri whose columns are the tangent
o T vectorsé .
(i) Equation(3.3), applied to each tangent vector, implies
These limits exist for a broad class of dynamical systemshat U satisfies the matrix equation
[26].

The principal axes of the tangent space ellipsoid indicate du
the directions along which nearby initial conditions separate —=J.U, (3.6
or converge, which we may call thgzapunov directionsin
particular, consider a principal axis that is stretched under the
time evolution. Such a vector has one Component for eacWhiCh constitutes a set dihear differential equations for the
dimension (position or momentumnin the phase space; a tangent vectors. Sincé. depends on the values gf these
nonzero component in any direction indicates an exponentig@quations are coupled to our system of nonlinear differential
divergence in the corresponding coordinate. For example, igquationsy=f(y), so they must be solved in parallel with
a system has two spatial coordinates#) and correspond- Eq. (3.1).
ing momenta p,,p,), then a typical tangent vector will (iii ) Choose some tim€ big enough to allow the expand-
have componentg= (¢, '§¢’§Pr’§%)' If the only tangent ing directions to grow but small enough so that they are not

wherer;(7) is the length of theith principal axis of the
ellipsoid. The corresponding Lyapunov exponents are th
natural logarithms of the Lyapunov numbers, so that
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too big. Numerically integrate Eqé3.1) and(3.6), and every IV. RELATIVITY AND PAPAPETROU SUBTLETIES
time T apply the Gram-Schmidt orthogonalization procedure. . . .
The vectors resulting from the Gram-Schmidt procedure ap- The algorithm described above is of a general nature, de-

proximate the semiaxes of the evolving ellipsoid. Record thes'gned with a generic dynamical system in mind. The Papa-

log of the length lofy;(=)] of each vector after each tinte petrou equations and the framework of general relativity

wherer.—nT. Finally. normalize the ellinsoid back to a unit present additional complications. Here we discuss some re-
ball " ' 4 P finements to the algorithm necessary for the present case.

(iv) At each timer, the sum

A. Phase space norm

N
M”E > logri(my)]= loglri(7)] (3.7) In the context of general relativistic dynamical systems,
T =1 T the meaning of trajectory separation in phase space is some-
what obscured by the time variable. We can skirt the issue of
is a numerical estimate for th¢h Lyapunov exponent. trajectories “diverging in time” by using a 3 1 splitting of
spacetime, and consider trajectory separation in a spacelike
2. Gram-Schmidt and Lyapunov exponents hypersurfacd27]. This prescription reduces properly to the

traditional method for classical dynamical systems in the
nonrelativistic limit.

In Kerr spacetime, we use the zero angular-momentum
observers(ZAMOs), and project 4-dimensional quantities
into the ZAMO hypersurface using the projection tensor

The use of the Gram-Schmidt procedure is crucial to ex
tracting alln Lyapunov exponents. Let us briefly review this
important construction. Given linearly independent vectors
{u;}, the Gram-Schmidt procedure construot®rthogonal

vectors{v;} that span the same space, given by P#,=8* +U*U,, whereU” is the ZAMO 4-velocity. In
o this formulation, spatial variables ob —x'=P! x* and
i—1 s
vi=u— > Ui~ Vj (3.9  Mmomenta obe;pM—>f)i= P{p, (and similarly forS,) [27].
=1 v)? J The relevant norm is then a Euclidean distance in the
3-dimensional hypersurface.
To construct théth orthogonal vector, we take tlith vector We should note that we use the projected norm for con-
from the original set and subtract off its projections onto theceptual clarity, not necessity. The naive use of a Euclidean
previousi — 1 vectors produced by the procedure. norm using unprojected components yields the same sign for

The use of the Gram-Schmidt procedure in dynamicghe exponents, as noted in Sec. Ill A. The magnitudes of the
comes from observing that the resulting vectors approximatéesulting exponents are also simil&ec. VIl D).
the semiaxes of the tangent space ellipsoid. After the first
time T, all of the vectors point mostly along the principal B. Constraint complications

expanding direction. We may therefore pick any one as the  ajthough the Lyapunov algorithm is fairly straightforward
first vector in the Gram-Schmidt algorithm, so cho&e (o implement for a general dynamical system, the con-
=u, without loss of generality. If we le¢; denote unit vec-  gyrained nature of the Papapetrou equations adds a consider-
tors along the principal axes and tetoe the lengths of those apje amount of complexity. The fundamental problem is that
axes, the dynamics of the system guarantees that the firg{e tangent vecta# cannot have arbitrary initial components
vectoru, satisfies for the Papapetrou system, as it can for an unconstrained
dynamical system. Eack must correspond to some devia-
Ui=Tr16+ 16+ - -~re,=V; tion 8y which is not arbitrary: the deviated poigt+Jdy
must satisfy the constraints.
since e, is the direction of fastest stretching. The second

vectorv, given by Gram-Schmidt is then 1. Constraint-satisfying deviations
Recall that the dynamical variables in the Papapetrou
U vy equations must satisfy normalization and orthogonality con-
Vo=Uj— ——=Vi=~U;— 1€, =,6;, straints (Sec. Il A): p’p,=—1 (normalized units S’S,
AR =52, andp”S,=0. To make the constraint condition @y

clearer, letC(y)=0 represent the constraints rearranged so

with an error of order,/r,. The procedure proceeds itera- that the right hand side is zero. For example, with
tively, with each successive Gram-Schmidt s{@pproxi- =(t,r,,u,¢,pt,pr,pﬂ,p¢,S[,Sr,SM,S¢),6we can write
mately) subtracting off the contribution due to the previous
semiaxis direction.

It is important to choose tim& long enough to keep Ci(y)=p’p,+1, 4.1
errors of the formr,/r; small but short enough to prevent
numerical under- or overflow. In practice, the method is quite———
robust, and it is easy to find valid choices for the tileas ~ °Recall that we write the equations of motion in terms sof
discussed in Sec. VII. =cosé.
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so thatC,(y) =0 for a constraint-satisfying. The other con-  time-evolution’ The other three components are determined
straints are then by the constraints as described above.

(ii) Given eight initial random tangent vectors, apply the
Gram-Schmidt process to form arx® ball. For each vec-

_Qre Q2
Ca(y)=S'S,=S 4.2 tor, determine the three missing components using the con-
straints, and then evolve the system using
and
du
a0
Cs(y)=p’S,. (4.3

as before(Now U represents a 228 matrix instead of a

A deviation 3y is constraint-satisfyingf C(y+ sy)=0when ~ 12X12 ball) )
C(y)=0. (iii ) At each timeT, extract the relevant eight components

We may construct a constraint-satisfying deviatyas 70m €ach vector to form a new>88 ellipsoid, apply the
follows. Begin with a 12-dimensional vectgrthat satisfies CGram-Schmidt process, and then fill in the missing compo-

the constraints. Add a random small deviation to eight of its?€Nts using the constraints, yielding again a<®matrix.
components to form a new vectgf. (We need not add a The prOJect_ed norms of the eight tangent vectors cont_rlbute
deviation tot: see Sec. IV B 2 belowDetermine the remain- t©_the running sums for the Lyapunov exponents as in the
ing three components of using the constraints, using the ©riginal algorithm. , _

same technique used to set the initial conditions. Finally, set 1he algorithm above yields eight Lyapunov exponents for
Sy=y’' —y. The corresponding is then simplysy/|sy]. the Papapetrou system of equations.

The prescription above glosses over an important detail: N order to implement this algorithm, we must have a
the inference of tangent vector components from the conMethod for constructing a full tangent vectdrfrom an
straints is not unique. Solving the constraint equations in€ight-component vectaf. The method is as follows.
volves taking square roots in several places, so there are a (i) Lety’ =y e for a suitable choice o€.
number of sign ambiguities representing different solution iy Fil in the missing components &f using the con-
branches. The implementation of the component-inferencgaints to formy’, taking care thay andy’ have the same
algorithm must compare each component/afith the cor-  -onstraint branches.

responding component of’ to ensure that they represent i) |nfer the full tangent vector using=(y’ —y)/e.
;olut_mns from the same brancheg. Enforcing the constraints This technique depends on the choicespéind fails when

in this manner, and thereby inferring the full tangent vector, is 190 small or too large. Using the techniques discussed in
& is espt_aually important for the algorithm described in theyne next section to calibrate the system, we find that
next section. ~10 °-10 © works well in practice.

2. A modified Gram-Schmidt algorithm 3. Two rigorous techniques

A spinning test particle has an apparent twelve degrees of |t should be clear from the discussion above that extract-
freedom—four each for position, momentum, and spin-aso ing all eight Lyapunov exponents is difficult, and in practice
priori there is the potential for twelve nonzero exponentsthe techniques are finicky, dependifmmong other things
Since the Papapetrou equations have no explicit timeen the choice of as described in Sec. IV B 2 above. How,
dependence, we can eliminate the time degree of freedonthen, can we be confident that the results make sense? For-
The three constrainttmomentum and spin normalization, tunately, there are two techniques that give rigorous
and momentum-spin orthogonalitfurther reduce the num- Lyapunov exponents by managing to sidestep the constraint
ber of degrees of freedom by three. We are left finally withcomplexities entirely.
eight degrees of freedom. First, it is always possible to calculate the single largest

Eliminating the four spurious degrees of freedom from theexponent using the Jacobian method without considering the
tangent vectors presents a formidable obstacle to the impleonstraint subtleties. The complexity of the main Jacobian
mentation of the phase space ellipsoid method described iapproach involves the competing requirements of Gram-
Sec. Il B 1. The crux of the dilemma is that the axes of theSchmidt orthogonality and constraint satisfaction, but in the
ellipsoid must be orthogonal, but must also correspond tease of only one vector these difficulties vanish. Since the
constraint-satisfying deviation vectors—mutually exclusiveequations of motion preserve the constraints, an initial
conditions. Solving this problem requires a modification ofconstraint-satisfying tangent vector retains this property
the Gram-Schmidt algorithm. throughout the integration. Thus, we begin with a vector con-

(i) Instead of a 1¥12 ball (i.e., n=12 in the original structed as in Sec. IV B 1 and evolve(iithout rescaliny
algorithm), consider an &8 ball by choosing to eliminate along with the equations of motion. Other than the require-
thet, p;, p4, andS; components. The time componeftof
each tangent vector is irrelevant since nothing in the problemm————
is explicitly time dependent; the first column of the Jacobian 7Also, the time piece is discarded in the projected norm formalism
matrix is zero, so&; is not necessary to determine the in any casgSec. IV A).
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ment of constraint satisfaction, its initial components are arroundoff errors. Sinc&€<1 is the most physically interesting
bitrary, so it evolves in the direction of largest stretching andimit, the vector approach is more convenient for our pur-
eventually points in the largest Lyapunov direction. Theposes.
logarithm of its projected norm then contributes to the sum Calculating the many tensors and derivatives which go
for the largest Lyapunov exponent. into the Papapetrou equations and the corresponding Jaco-
Second, we can implement a deviation vector approach dsian matrix is a considerable task. As a first step, we use
described in Sec. Il A. Given an initial conditioyy, we  GRTENSORfor MAPLE to calculate all relevant quantities, and
construct a nearby initial conditioy)) as in Sec. IVB 1 and we USeMAPLE'S optimizedcC output to createc code auto-
then evolve them both forward. In principle, an approxima-matically. Due to the symmetries of the Riemann tensor and

tion for the largest Lyapunov exponent is then the metric, many terms are identically zero, which signifi-
cantly reduces the number of required operations. For ex-
1 ly' =yl 1 15yl ample, in prder to qalculalﬁ* “ﬁvésauﬁpysﬁ we neeq four
(_>E og( ) loops, which constitutes “4-256 evaluations, but in fact
T 16— oll 7 8ol R* “ﬁ75 has only 80 nonzero components. Performing loop

unrolling by writing these terms to an optimized derivatives

In practice(for chaotic systemsthe method saturates: for a file consisting .of explicit sums speeds up calculation by an
given initial deviation, say|dyo|~10"%, once the initial ©rder of magnitude compared to nested for loops.
conditions have diverged by a factor ef10f the method Anqther optimization mvolves'the_chome of coordinates
breaks dowr. (The traditional solution to the saturation USed in the metric, which has significant consequences for
problem is to rescale the deviation before it saturates, buf'e Size of the tensor files and the number of floating point
such a rescaling in this case violates the constraibisspite ~ OPerations required. Simply using=cosé in the Kerr met-

its limitations, this unrescaled deviation vector technique ig'C reduceg the size of the Riemann derivatives by at least a
valuable, since it tracks the correct solution until the saturafector of 27 Since these derivatives are the bottleneck in the

tion limit is reached, and avoids the subtleties associateg@lculation of the Jacobian matrix, we can get more than a

with the constraints. 50% improvement in performance with even this simple
With these two techniques in hand, we have a powerfudariable transformation. , _

method for verifying that the largest Lyapunov exponent pro- All integrations were performed using a Bulirsch-Stoer

duced by the Gram-Schmidt method is correct. This, in turnintégrator adapted frofiumerical Recipef28]. Occasional

gives us confidence that the other Lyapunov exponents pr&necks with a fifth-order Runge-Kutta integrator were in

duced by the main algorithm are meaningful as well. agreement. We verified the Papapetrou integration by check-
ing errors in the constraints and conserved quantities; for an

orbit such as that shown in Fig. 6, all errors are at the't0
V. IMPLEMENTATION DETAILS level afterr=10°M.
As should be clear from Sec. V B below, the Jacobian
) ) o ) ~matrix of the Papapetrou equations has a large number of
Finally, we discuss some specialized issues related t0 insrms, and it is essential to verify its correctness by using a
tegrating the Papapetrou equations on a computer. The Piiiagnostic that compareBf- 5y with the differencef(y
mary subjec_ts are the formulation _of the equations, optimi-;. 8y) —f(y) for a suitable constraint-satisfyingy. It is not
zation techniques, and error checking. _ _ sufficient for the difference merely to be small: we must
Our choice to write the Papapetrou equations using thegculate the quantitf(y+ 8y)—f(y)— Df- 8y for several
spin vector is motivated partially by numerical consider-, 4 es of 5y and verify that each component scales as
ations. The spin vector approach has nice _propert.ies conﬂ-gy”z_ An early implementation of the Jacobian matrix,
pared to the tensor approach &s-0. Comparing their co-  \yhich gave nearly identical results féty+ 6y) —f(y) and
variant derivatives is instructive: Df- 8y, nevertheless had an undetect®(s?) error. The un-
e xa ydc B rescaled deviation vector approach showed a discrepancy
VoSu =~ PulRT7Sa07PySs) with the Jacobian methdd,which showed spurious chaotic
behavior. The|dy||? scaling method described above even-
;84" =pto’—p*or=2ply. tually diagnosed the problem, which resulted from a missing

term indS,/JS, (Sec. V B.

A. Some numerical comments

Though simpler in form, the derivative &*” has unfortu-
nate numerical properties for sm&) since in the limitS
—0 we havep*—uv*: the differencep”v”—p”v#* goes to SWarning This variable substitution changes the handedness of
zero in principle but in practice is plagued by numericalthe coordinate system, since the unit vegiopoints opposite td.
This in turn introduces an extra minus sign in the Levi-Civita tensor
€*#7° which appears many times in the Papapetrou equations and
8This underscores the point that chaos is essentialpcal phe-  the corresponding conserved quantities. The author discovered this
nomenonAny unrescaled deviation vector approach must saturatesubtlety the hard way.
since no bounded system can have trajectories that diverge for ar-°This illustrates the value of calculating the Lyapunov exponents
bitrarily long times. using two different methods.
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The calculation of the partial derivative® in Eq. (5.1)

For reference, we write out explicit equations for part of proceeds as follows. From the relation fot'=Nv*, we

the Jacobian matrix of the Papapetrou equations.

have

The Jacobian matrix of a system of differential equations,

specialized to the case at hand, is as follows:

IXE gxE gxm
axy ap, 95,
P, op, I

ox¥ dp, 9S,
JS, S, dS,
axr dp, S,

Once we calculatex*/dx’=v*, all the other derivatives
can be expressed in terms of the derivatives tf the ten-
sors and connection coefficients, and KronecKsr

Written out in full, the Papapetrou equations are as fol

lows:

XH=pH (5.2)
-p,u,: - R:,Vaﬂv VpaSB+FaBMpavB (53)
S,=—P.(R* %57 S,0Pp.Ss) +T,,S,0". (5.4)

We measurer andr in units of M (the mass of the central
body), p, in units of the particle rest mass, andS, in
terms of the product.M. The overdot is an ordinary deriva-

tive with respect to proper timec=dx/d .
The unusual placement of indices B is motivated by

the form of the Jacobian matrix. The index placement shown

IXH

ox”

=v# ,=Nv# ,+N v

Now, v# ,=p* ,+WH ,=p,g** ,—*R***% S ,p,S , so

the first term is easy. The second term is trickier: from the
expression forv*, we have that—l=v'“v’u=N2(p'“pM
+2wHp, +WHhw,,) =N?(— 142wk p ,+w*w,), so we have

N=(1-2wHp,—wHw,) Y2
Differentiating gives
N,V: Ns(pawa,v+wa,vwa+ % Wawﬂgaﬁ,v)

= NS(; aWa,V+ % Wawﬁgaﬁ,v)

where we have relabeled the dummy index—¢ «). Sum-
ming the various terms, we have
U,M,V: N[pagaﬂ,v+wﬂ,v+ UM(UaW,C:/+ % NWaWBgaﬁ,V)]'
(5.9

The expression fopx*/dp, is similar to v* ,, butitis
simpler because the derivative of the metric with respect to
the momentum is zero. As before, we use the product rule:
dut

P,

du*

ap,

The first term requires

aN~M
&p,,v .

vt Ipt IwH
=—+
ap, Ip, Ip,

— g,uv_ * R* ,U,aVBSasﬁ

above brings the equations into a form where the indices on

p, andS, are always lowered, which simplifies the Jacobian

matrix since (for example dp,/dx*=0. Otherwise the

Jacobian matrix is unnecessarily complicated; for example, i
p* appeared anywhere on the right hand side then we would

havedp#/dx”+ 0, which would contribute td .

As discussed in Sec. Il A, the supplementary condition

p,.S*"=0[Eq.(2.4)] leads to the equation far* in terms of
pH:

v#=N(p*+wH)=Np*, (5.5
where
VR =prtwH (5.6)
and
Wh=—*R#F1S p S | (5.7

N is a normalization constant fixed ly,v*=—1.

=gH’+WH?,
Plote thatWw*” is symmetric. The second term requires

oN
p,

=N3(W*"p,+w*3," +W*'w
pa [ [

=N3(W"+v,W).

Summing the terms gives

IxH
ap, (@ W No kW) + Noto W (5.9)
with
W = xRS S 5.1
apv_ - a3 - ( . @

Finally, we calculateix”/4S,. With

o
5 =~ Supp(*REvahr s REurah) =y,

4
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and momenta to evolve freely; the normalization is then a con-
straint which can be checked for consistency at the end of the
aN~M_ e\ integration)

7SV =Nov#v V7, In the case of a spinning test particle, the extra spin de-
grees of freedom create the possibility for chaotic behavior.

we have Moreover, sinceQ is not conserved in the case of nonzero
spin, even without the extra spin degrees of freedom the
potential for chaos would exist. Kerr spacetime has just

=NVA"+ Nv#v V. (5.10) enough constants to make the system integrable; lo&ing
S, reduces the number of analytic integrals below the critical

level required to guarantee integrabiltfy.

14

PG

We calculate the derivatives of, andS, usingv* ,, the
product rule, and the derivatives of the various tensors in the B. Hamiltonian systems

problem. The full results appear in Appendix A.
1. Lyapunov exponents for Hamiltonian flows

VI. INTEGRABILITY AND CHAOS The phase space flow of Hamiltonian systems is con-
strained by more than the integrals of the motion. In particu-
lar, the Lyapunov exponents of a Hamiltonian system come

Having laid the foundation for the numerical calculation in pairs £\; i.e., if A is a Lyapunov exponent then so is
of Lyapunov exponents, we now discuss some general as-\ [26]. Geometrically, this means that if one semimajor
pects of dynamical systems relevant to our study. A dynamiaxis of the phase-space ellipsoid stretches an ametint
cal system withn coordinates has ar2dimensional phase =L, another axis must shrink by an amoent*"=1/L. One
space, typically consisting of generalized positions and theiconsequence of this property is that the product of the
corresponding conjugate momenta. Motion in the phaséengths of the axes is 1. Since the ellipsoid volume is pro-
space is arbitrary in general, but when there are integrals gjortional to this invariant product, Liouville’s theorem on the
the motion then the flow is confined to a surface on whichconservation of phase space volume follows as a corollary.
the integral is constant. This can be seen most easily by The =\ property of Hamiltonian flows results from the
transforming to angle-action coordinates, where the surfacsymplectic nature of the Jacobian matrix for Hamiltonian
is an invariantimultidimensional torus. dynamical system¥ But a naive analysis of the Jacobian

A system withn coordinates and constants of the motion matrix of the Papapetrou equations shows that it is not sym-
is integrableand cannot have chadgthough the motion can plectic in the canonical sense. Nevertheless, the Papapetrou
still be quasiperiodic or exhibit other complicated behavior equations can be derived from a Lagrandia@l, and can be
For example, we can consider geodesic orbits around a Kewgast in Hamiltonian form by use of a free Hamiltonian with
black hole to have eight degrees of freedam+@) and four added constraint¢following the method of Dirad31] as
constants of the motion—particle rest magss energyE, discussed i32]). As a consequence, we could in principle
axial or z angular momentumL,, and Carter constant find coordinates in which the Jacobian matrix is symplectic
Q—which are enough to integrate the equations of motiorwith respect to the canonical symplectic matrix. Fortunately,
explicitly. Alternatively, we may look at Kerr spacetime as this is an unnecessary complication, since the underlying dy-
having a 6-dimensional phase space by eliminating timanamics are independent of the coordinates.
(which is simply a reparametrization of the proper tjmaad
using rest mass conservation to eliminate one momentum
coordinate. Then the three integrédsL,, andQ are suffi- As discussed in Sec. IV B 2, the lack of explicit time de-
cient to integrate the motiorfln practice, we allow all four pendence independence and the three constraints reduce the

A. Phase space and constants of the motion

2. Exponents for spinning test particles

1
03 7}l§// FIG. 5. The orbit of a nonspinnind&0) test
\ﬂ//\\,:,/’. ‘ S . _ N s
./~§0/\\’/\“ particle in maximal &=1) Kerr spacetime, plot
~ 0 ‘\’//‘Q\?/""" ted in Boyer-Lindquist coordinates(a) y
05 \ AN =rsindsing vs x=rsinfcose; (b) z vs p
’ =x*+y?. The orbital parameters areE
. _ =0.8837% and J,=2.0667uM, with pericenter
0 1 5 3 I 5 6 2.0M and apocenter 6M\.
o)
(b)

Ht is possible that deformations of Kerr geometry that des@ayevertheless possess a numerical integral that preserves integrability, in
analogy with some galactic potentidf29], but the loss ofQ certainly ends thguaranteeof integrability.
127 matrix Sis symplectic with respect to the canonical symplectic makiixS™JS=J, whereJ=(?,') andl is thenx n identity matrix.
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FIG. 6. The orbit of a maximally spinning
(S=1) particle in maximal Kerr spacetime, for
E=0.8837« and J,=2.0667uM (the same val-
ues as in Fig. b The spin has initial values of
S'=$*=0.1, corresponding to an initial angle of
54° with respect to the vertical in the particle’s
rest frame. As in Fig. 5, we platvs xin (a) and
zvs p in (b). The spin causes significant devia-
tions from geodesic orbits.

degrees of freedom from twelve to eight, which leaves thg;ye | yapunov exponents for a range of physical parameters
possibility of eight nonzero Lyapunov exponents. The phasg hen's—1. we show a typical orbit that produces nonzero
space flow is further constrained by the constants of the mo[yapunov exponents in Fig. 6. The orbit has eneigy

tion, energy and angular momentum; corresponding to each™ -
constant should be a zero Lyapunov exponent, since trajec= 0-8837, z angular momentund,=2.066+M, and the

tories that start on an invariant torus must remain there. Thigadius ranges from pericenter,=1.7M to apocenterr,
leaves six exponents potentially nonzero. Since the expo=6.7M. The Lyapunov integrations typically run for 4,
nents must come in pairs \, there should be at most three which corresponds approximately to 49@rbital periods.
independent nonzero exponents. We can illustrate the presence of a chaotic orbit by plot-
ting the natural logarithm of theth ellipsoid axis logri(7)]
vs 7 [Eqg. (3.7)], so that the slope is the Lyapunov exponent,

First we give results for the dynamics of the Papapetrowas shown in Fig. 7> There appear to be two nonzero
equations in the extrem@nd unphysicallimit S=1, which  Lyapunov exponents; the third largest exponent is consistent
represents a violation of the test-particle approximation buyith zero, as shown in Fig. 8. The reflection symmetry of the
is stiII_ math_ematically WeII-def_ined. We find the presence Ofﬁgure is a consequence of the exponent pairing: for each line
chaotic orbits(in agreement with3]). We next examine the it siope), there is a second line with slopeN.
ierlf\f/ee(;tﬁ g{evfnrglrgg'?lolrnocduﬂlln%rfged “rrwmaqsf lf' rF'r;]all¥' v;/le re- The main plot in Fig. 7 is generated by the modified

9 gnly ynamics for physicaly re Gram-Schmid{GS) algorithm(Sec. IV B 2. Recall that this

VII. RESULTS

alistic spins. method depends on the value ©lused to infer the tangent
A. Chaos for S=1 vector; we find a valide by calibrating it using the rigorous
) o ) Jacobian method, which must yield an exponent that matches
1. Maximally spinning Kerr spacetime the largest exponent from the modified Gram-Schmidt

In a background spacetime of a maximally spinning Kerrmethod. The plot in Fig. (8) represents the cage=10"°%; it
black hole @=1) (see Fig. % there are unambiguous posi- is apparent that the two methods agree closely. The unres-

, 50
40 el
40
E - St 7 . E30
s I =
g ' : 220
-20
10
—40
: 0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
™M) ™M)
(a) (b)

FIG. 7. Natural logarithms of the phase space ellipsoid axes vs proper time in Kerr spacetinse=\WitiThe slopes of the lines are the
Lyapunov exponents; the largest exponent is approximatgly=5x10"3M ~1. The initial conditions are the same as in Fig. 6, and one
point is recorded at each tinfe=100M (Sec. 11l B 1. (a) Full Gram-Schmidt Jacobian methd@yht) with rigorous Jacobian methddark).

The full GS method is rescaled at each tifnaccording to the algorithm in Sec. 11l B, while the rigorous Jacobian method is unrescaled. The
two methods agree closely on the value of the largest Lyapunov expdheRigorous Jacobian method compared to unrescaled deviation
vector method. Note that the latter method, which started with a deviation of siZe 48turates at-16. This corresponds to a growth of
e®~9x 10f, which means that the separation has grown to a size of order unity.

Byt is traditional to plot logir,(9)]/7, which converges to the Lyapunov exponent-ase, but it is much easier to identify the linear growth
of log[r;(7)] than to identify the convergence of lag7)]/7. The =\ property is also clearer on such plots.
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il TABLE |. Lyapunov exponents in Kerr spacetime in units of
- 10 3M 1, using a least squares fit. The exponents correspond to
40 o~ the semimajor axis evolution shown in FigaY. As is typical with
= the Gram-Schmidt Jacobian method, the exponents with the largest
{: 30 magnitudes are determined most accurately, and thus show xhe
E’n 20 property most clearly. The standard errors on the fit-ad for
i each exponent, but these errors are dominated by two systematic
10 e S errors: (i) the variation due to different choices of initi@bindom
0 LT~ tangent vectors(ii) nonzero numerical values even for exponents
0 2000 4000 6000 8000 10000 that converge to zero eventuall_y. !n_part_lcular, the four smallest
T (M) exponentgin absolute valugare indistinguishable from zersee
Fig. 8.
FIG. 8. Ellipsoid axis lengths from the upper half of Figa?
(light), compared to an integration with zero spin and hence zerot A 55 15 0.56 0.25
Lyapunov exponentdark). Only two of the four lines represent —x\ 5.3 1.6 0.76 0.072

exponents distinguishable from zero.

caled deviation vector method provides an additional checlqymerically** Figure 8 compares the four apparently posi-
on the validity of the largest exponent, as shown in Fi).7  tjve exponents with a known zero exponent. Only two of the
As expected, the unrescaled approach closely tracks the fulhyr exponents are unambiguously distinguishable from zero,

Jacobian approach until it saturates. _ consistent with the argument in Sec. VI B that there should
The numerical values of the exponents are shown in Tablge at most three independent nonzero exponents.

l. The =\ property is best satisfied by \ 4, the exponents Finally, we note that the components of the direction of
with the largest absolute value. The exponents are leasfyrgest stretching are all nonzero in general. The chaos is not
squares fits to the data, with approximate standard errors @fnfined to the spin variables alone, but rather mixes all
1%. These errors are not particularly meaningful since thejirections. This indicates that chaos could in principle mani-

exponents themselves can vary 5y10% depending on the fest itself in the gravitational waves from extreme mass-ratio
initial direction of the deviation vector. Moreover, even ex- pinaries—but see Sec. VIl C below.

ponents that appear nonzero may be indistinguishable from
zero in the sense of Fig. 8; for such exponents a “1%"” error ) ) .
on the fit is meaningless. 2. Schwarzschild spacetime revisited
For initial conditions considered in Fig. 6, and other orbits We now reconsider the case of a s@r1 particle in
in the strongly relativistic region near the horizon, the typicalSchwarzschild spacetime, as investigated in . Figure
largest Lyapunov exponents are on the order of a fewd shows an orbit similar to a chaotic orbit considered there
X 1073/M. For the particular case illustrated in Fig. 6, we [Fig. 4(d) in [3]]. A plot of log[ri(7)] vs 7 (Fig. 10 shows
have A may=5x10"3M "1, which implies ane-folding time  behavior similar to that in Fig. 7. In particular, thex sym-
scale ofr,=1/\~2X 10°M. This is strongly chaotic, with a metry is present, apparently with two positive exponents.
significant divergence in approximately eightorbital peri-  (The other lines are indistinguishable from zero, again using
ods. S=0 orbits as a baselineThe largest exponent of 1.5
Based on integrations in the case of zero spin, which corx 10 3M ~! agrees closely with the value from RdB],
responds to no chadkyapunov exponents all zexowve can  which reported an exponent ef2x 10 3M ~* for a similar
determine how quickly the exponents approach zerarbit. (This agreement is somewhat surprising, sif@kap-

FIG. 9. The orbit of a maximally spinning
(S=1) test particle in Schwarzschild spacetime
for E=0.94738162 andJ,=4.0uM As before,

we plot(a) y vs x and (b) z vs p= X2+ Y2

As noted in the Introduction, it is possible for integrable but unstable orbits to have positive Lyapunov exponents. We avoid this issue by
choosing a baseline orbit that is not unstable.
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FIG. 10. Natural logarithms of the phase space ellipsoid axes vs proper time in Schwarzschild spacetBrelwittine largest exponent
iS Anay=1.2X10"3M "1, The initial conditions are the same as in Fig.(8. Full Gram-Schmidt Jacobian methdlight) with rigorous
Jacobian methoddark). (b) Rigorous Jacobian method compared to unrescaled deviation vector method. As ifbFigh& unrescaled
method eventually saturates.

pears not to have taken the constrained nature of the devianywhere over the entire range of valid initial conditions. In
tion vectors into account. Luckily, the exponents are robustfact, we are unable to find any chaotic orbits in Schwarzs-
and even unconstrained deviation vectors give nearly corredhild spacetime other than the types identified by Suzuki and
results) Maeda[3], which were exceptional cases of orbits on the
edge of a generalized effective potential. In Kerr, on the

3. Kerr and Schwarzschild orbits compared other hand, chaotic orbits appear to be the rule for peri-

The Kerr and Schwarzschild Lyapunov exponents of theCenters nearms.

previous two sections are not all that different; both are

102-10 *M ! in order of magnituddésee Table Il. Nev- B. Dependence orS

ertheless, the two systems prove to be quite different: chaotic )

orbits are easy to find in Kerr spacetime for nearly any initial SINCe chaos must disappearss 0, we expect to see the
condition that explores the strongly relativistic region near@'9€st Lyapunov exponent approach zero in this limit. This

the horizon, whereas nearly all analogous orbits in SchwarzdS indeed the case: in Fig. 12, which shows the variation of
child spacetime are not chaotic. Nmax With S for two different orbits, we see that the chaos

Figure 11 compares Kerr and Schwarzschild orbits withUnambiguously present whé=1 is not present for smaller
the same inclination angle= 10° and eccentricitg=0.5 but ~ V&lues ofS In particular, the largest Lyapunov exponent is
varying pericentersr,. (Details of this parametrization |nd|sE|?gU|shable from zero over the entire range %8S
method, mentioned above in Sec. Il C, appeaf38l.) We <10 -. (The far left of the plots have data points for each

insure that the systems are analogous by using orbi® of decade in this range.
=1 particles with the same values Qf/1 s, Wherer g is Although the strength of the chaos generally decreases

the radius of the marginally stable orbit in the correspondingith S one remarkable feature of Fig. (B2is the return of
S=0 (geodesit case. We use a Kerr geodesic integrator de-

veloped by Hughe$34] to find r g, which is the smallest 0.006
pericenter that still yields a stable orbit. For the values of 0.005
and e considered,r,,,=1.0M for Kerr orbits andr g .
=4.6™ for Schwarzschild orbits. L 0.004
It is evident from Fig. 11 that the Kerr orbits are chaotic = 0.003
for a broad range of pericenters, with the maximum &
Lyapunov A ,.x generally decreasing as the pericenter in- 0:002
creases. In contrast, the Schwarzschild orbits are not chaotic 0.001

TABLE Il. Lyapunov exponents in Schwarzschild spacetime in
units of 10 3M 1, using a least squares fit. The exponents corre-
spond to the semimajor axis evolution shown in Figia,0which is FIG. 11. Comparison of maximally spinning€ 1) Kerr par-
similar to the orbit in Fig. 4d) of Ref.[3]. As with the Kerr case ticle orbits(dark and Schwarzschild particle orbitkght). We plot
(Table ), the standard errors on the fit arel % for each exponent, the largest Lyapunov exponent versus pericefrtermalized by the
and the same caveats apply. The four smallest exporiiengbso-  marginally stable radiysThe Kerr initial conditions for the inner-
lute valug are indistinguishable from zero in the sense of Fig. 8. most orbits are essentially as in Fig. 6. The Schwarzschild orbits are
identical to their Kerr counterparts in inclination (10°) and eccen-
+\ 1.2 0.67 0.21 0.0063 tricity (e=0.5) but have the Kerr parameterset to zero. The
-\ 1.5 0.57 0.10 0.00023 Schwarzschild orbits have exponents indistinguishable from zero
over the entire range of parameters.
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FIG. 12. Variation of the largest Lyapunov exponentSs/¢a) The spinS= 1 initial conditions are the same as in Fig.(B. AnotherS=1
case with a different inclination angle (20°) and periceri2b M). As the spin decreases, we hold fixed the Kerr orbital parameters:
inclination angle, eccentricity, and pericenter. Note thatanthe chaos disappears bel®v- 0.5, but returns in a region centered 8n
~0.3. The horizontal line in both plots is the value)gf,, calculated for the baselir@=0 orbit. In both(a) and(b) the Lyapunov exponent
is indistinguishable from zero for physically realistic spins.

chaotic orbits betweeB8~0.25 and 0.4 after their disappear- when determining Lyapunov exponents numerically, it is im-
ance atS~0.5. The effect is qualitatively clear in Fig. 13. possible to conclude definitively that an orbit is or is not
This chaotic “bump” in \ 5 VS S illustrates an important chaotic, since to do so would require an infinite-time integra-
theme in nonlinear dynamical systems: threy way to de-  tion. On the other hand, for suspected nonchaotic orbits, we
termine whether an orbit is chaotic is to do the calculationcan provide an approximate bound on tedolding time
Though we certainly expect the strength of chaos to bescale.

smaller forS<1 than forS~1, it is impossible, in general, The numerical values of exponents suspected to be zero
to determinea priori whether a particular set of parameters depend strongly on the time of the integration. For example,
will lead to chaotic behavior. for values ofSin the range 10°<S<10"°, the exponent in
Fig. 12 appears to be,,,,~5x10"*M 1, but this plot rep-
C. Physically realistic spins resents an integration time of only“M. Longer integration

times give correspondingly smaller estimates for the sus-

. . : L _ : tf)ected zero exponent&ig. 14. For the system shown in
particle limit, so physically realistic spins must satisBy Fig. 12, an integration of 704 yields an estimate ok,

<1 (Sec. Il B. This corresponds to likely sources of gravi- ~3.0x10° M~ for all spins in the range IG<S
ta'ﬂolrgl\l/l Wa\glas LothI|SA{35—_37_||_, €.g., tmaX|maIIy Sp'r_‘\;'éng <10 7. In this case, the relevant Lyapunov timescales are at
l—LIOGM OK a%l kok?SI Sp'ri.'nﬁ hm O Supermassi fIeast 3x10PM, and are probably much longer; the size of
- o Kerr black holes, which have spin parameters Oly, o 1), nq is limited only by our patience and computer bud-

_ _ 75 . - . .
S=pu/M= 10°>. Because of t_h(_alr likely Importance as emit- get. It seems highly likely that such orbits are not chaotic.
ters of gravitational waves, it is essential to understand th

dynamics of such systems. o _
2. Spin-induced phase differences

1. Vanishing Lyapunov exponents Even if their Lyapunov exponents are zero, small spins
We would like to be able to make a definitive statementaffect the relative phase of the orbits, and since phase differ-
about the presence or absence of chaos for “small” spins,

e.g., values ofS in the range 10?-10 6. Unfortunately, -25
s =10'M
25 -
i g 733 = 10°M
5 -4
17.5 é 45 6
= o T 7=10"M
e b g _s
=125 =
T -5.5 =10'M
-6
7.5 -6 -5 —4 -3 -2 -1
5 log,,S

0 5000 10000 15000 20000 25000 30000 . . . .
7 (M) FIG. 14. The variation of the dimensionless quanfity,M

with final integration timer; for spin parametesS in the range
FIG. 13. Two orbits from the “bump” in Fig. 1@&). The S 107 2<S=<10"5. From top to bottom, the total integration time var-
=0.4 orbit (light) is not chaotic, but thes=0.3 orbit (dark is ies from 10M to 10M. It is likely that the true Lyapunov expo-
chaotic, despite having a smaller value of the spin. nent is zero.
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TABLE Ill. Phase shiftsA ¢= ¢geqdesic Pspin in radians as a function of orbital inclination anglend pericenter , for a=0.5 andS
=10"5. Inclination angle.=0° is prograde equatorial ane- 180° is retrograde equatorial. The geodesic orbits and their corresponding spin
orbits start with the same initial 4-velocity*, and the integrations are performed using Boyer-Lindquist coordinate tiwith t,,,,~ (2000
times the average radial orbital perjodhe pericenters are scaled by the marginally stable ragiys and we start at,/r,=1.5 to
guarantee the existence of valid initial conditions for the nongeodesic orbit. The spin has fixed initial vaBiesStf=0.1S (with hats
indicating an orthonormal bagjscorresponding to initial angles of 9° to 30° with respect to the vertical in the particle’s rest frame,
increasing with decreasing pericenter.

Mo/lms
. 15 2.0 2.5 3.0 35 4.0 4.5 5
10° 1.50< 107 5.69x 10° 4.32x10° 2.13x10° 2.02x 10° 1.27x10° 1.14x 10° 7.77x 10¢
45° 2.7 107 1.23x 107 1.01x< 16 4.34x 10° 4.60x10° 2.24x 10° 1.66x 10° 1.83x 10°
85° 4.36x 107 2.92x10° 1.48<10° 8.24x10* 1.00x 10° 2.20x 10° 1.86x 10° 1.26x10°
135° —-9.02x10° —6.25x10° —2.34x10° -—1.30x10° -—1.73x10°®° -—-8.17x10* -6.76x10* —7.72x10%
170° 8.40< 10* 2.85x10* 1.84x 10 7.31xX10° 1.25x10* 1.12x10* 3.35x 10° 3.07x 10°

ences accumulate seculaff§8], the spin can still affect the x 1072, This is only a rough estimate, since the orbit§3i]
gravitational wave signal. It is therefore useful to have agre circular, while the orbits we consider are eccentric.
sense of the orders of magnitude of such spin-induced phase-

shifts. Tables Il and IV show typical values for the phase D. Comments on time, rescaling, and norms
differenceA ¢= ¢ yeodesic Pspin fOr S= 10" °, where the geo- , i

desic and spin systems start with the same initial 4-velocity !N this paper, we have elected to usas the time param-
v#. The most useful quantity in practice is the phase shift a§ter. & rescaling tim& of 100M, and a projected norrtBec.
measured by observers at infinity, so we integrate in terms A). Here we discuss the effects of varying these choices.
the Boyer-Lindquist coordinate timein place of 7. (This First, we consider the effects of using coordinate tirire
involves multiplying the differential equations lyr/dt at ~ Place of7. In Fig. 15, we plot the natural logarithm of the
each time step.As is apparent from the tables, the phaselargest ellipsoid axis Idg,(7)] vs 7 together with logr,(t)]
shifts range broadly, from 10 to 10°° radians after 2000 VS t. (We use the unrescaled deviation vector approach for

radial orbital periods, but tend to decrease in magnitude witimMPlicity, since the Jacobian approach requires a new Jaco-
increasing inclination angle or pericenter. bian matrix for each coordinate chang&he exponents are

Reference37] shows that the number of orbital periods M~=5-05<10"°M ™ and \,=2.51x10 *M"*, implying
in a full inspiral from r~4M to the final plunge isN  Lyapunov time scales ofr,=1.98<10°M and t,=3.98
~M/ g, which is 16 for the systems in Tables Ill and IV. X 10°M. The average value aft/dr over the orbit is 2.06,

Since the table represents valuesAop for 2000 times the Whereast, /7,=2.01, so the relationship
average radial orbital period, this means that the total phase

shift during the inspiral is 5Q ¢, FOr a 10° inclination ty dt
angle the total phase shift is on the order of a tenth of a T_x: dr
radian to a radian. Slightly more realistic values of the num-

ber of orbits can be obtained using Fig. 2 [i87], which  discussed in the Introduction is well satisfied.

givesN~2x 10* orbital periods fronr =4M to the plunge Second, we discuss the effects of varying the rescaling
atr~M for a=0.998, :=10°, andM/u=10°. Since the time T. We find that choosing to be a moderate fraction of
orbit spends most of its time betweem 4 and 2r ¢, inter-  the shortest Lyapunov time scaleorresponding to the larg-
polating in Table IV gives A ¢ a~10XAd,—30=2 est Lyapunov exponenivorks best, giving each axis enough

(7.2)

TABLE IV. Phase shiftsA ¢= ¢geogesic- Pspin in radians as a function of orbital inclination angleand pericenter, for a=1 andS

=10"°. As in Table III, the pericenters are scaledigy, and the spin has fixed initial values 8f= $#=0.1S (corresponding in this case
to initial angles of 28° to 61°, again decreasing with increasing pericenter

o/lms
. 15 2.0 2.5 3.0 35 4.0 45 5
10° 7.21x 1% 4.58< 107 2.41x< 107 1.83x 10% 1.10x 10? 9.46x 10° 6.56x 10° 7.43<10°
45° 2.3 10 5.56X 107 2.59x 107 1.83x 107 1.73x 107 1.52x 10 1.08x 107 7.83x 10°
85° 1.96< 10 6.21x 10° 2.82x 10° 2.13x 10° 2.66x 107 3.64x10° 6.47x 10 3.48x 10°
135° —-1.04x10? —-3.17x10° -3.21x10° —1.41x10° —-1.12x10° —-8.46x10* —-8.82x10* —5.59x10
170° 3.8% 10 1.48x 104 6.68x 10° 5.97x 10° 8.09x 10° 9.55x 10° 3.06x 10° 1.66x 10°
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FIG. 15. The natural logarithm of the largest ellipsoid axis VS g 17. The natural logarithm of the largest ellipsoid axisrvs

time for proper timer (dark and coordinate time (light). The ¢4 the Euclidean norftop) and the projected norm from Sec. IV A
exponents are clearly different, but the Lyapunov time scajes (bottom).

=1/\, andt, =1/, are related by Eq(7.1).
would have time to manifest itself in the gravitational radia-

time to grow before rescaling while still keeping the negativelion Of extreme mass-ratio systems.
exponents from underflowing and preventing the largest axis !N the unphysica=1 limit, the Lyapunov exponents ex-
from dominating. Rescaling times betweenVs@nd 1004  hibit characteristics expected of a Hamiltonian system, ap-
work best for the systems we consider, which have Lyapuno@€aring in pairstx (Sec. VI B). There are zero Lyapunov
time scales ranging from 2 to 1°M. A comparison of €XPonents which correspond to the constants of the motion,
results forT=50M and T=100M appears in Fig. 16. but the other exponents are in general nonzgtor the Kerr
Third, we compare the projected norm used here to é)l’blts considered in this paper, we find that two of t_he t_hree
naive Euclidean norm for determining the length of themdgpendent exponents are nonzero, as illustrated in Big. 8.
phase-space tangent vectdis As shown in Fig. 17, even 1ypical orders of ngnltlude for the largest Lyapunov expo-
using a 12-dimensional Euclidean norm changes the resulfl€nts are a few 10-"M == for unphysical spins%=1). For
ing exponent very little(approximately 15% in this ex- Physically realls7t|cis§)|n parameteiSec. VII O, we find that
ample. Given its conceptual advantages, we choose to uskma=fewx10""M =, corresponding toe-folding time
the projected norm with the confidence that the Lyapunowcales of a few 10°M. Even this bound appears to be lim-
exponent order of magnitude is robust. ited only by the total integration time; in all physically real-
istic cases considered,,,, is indistinguishable from zero
(using S=0 integrations as a baseline
VIIl. CONCLUSIONS From the perspective of gravitational radiation detection,
o ) . our most important conclusion is that chaos seems to disap-
A spinning test particle, as described by the Papapetrofear for physically realistic values & i.e., values ofS for
equations, appears to be chaotic in Kerr spacetime, Withyhich the test-particle approximation and hence the Papape-
maximume-folding time scales of a few 107 M. The appli- 1oy equations are valid. We are unable to comment on the
cability of this result is limited by three main factor§)  gynamics of comparable mass-ratio binaries, since such sys-
chgos appears_.only for physically unreqllstlc valqes of thgems are not accurately modeled by the Papapetrou equa-
spin parameter(ji) other effects, such as tidal coupling, may tjons, put forextrememass-ratio binaries it appears unlikely
be important for some astrophysical systems, violating thgnat chaos will present a problem for the calculation of the-
pole-dipole approximation implicit in the Papapetrou equa-yretical templates for use in matched filters. A more thorough

tions; and(iii) we neglect gravitational radiation. The third gypioration of parameter space is needed to reach a firmer
limitation is not fatal, since the radiation time scales can b%onclusion[33].

long enough that chaos, if present in the conservative limit,
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From Sec. V B, we have the following:

s N kAW o +1N B ”
= aavwvvvawav_wawav
N Pag s Jap,
(A1)
G
35 = NG+ WA Nuw?) +Noko W (A2)
with
WHr=—*RrrerBS, S, (A3)
LR A4
&SV_ V'V, ( )
with
V,U,V:_Sapﬁ(* R*MQBV_*R*MVaﬁ)- (AS)

Now we simply apply the product rule many times:

Jd
ﬁp#__paSB(R* aﬁ U7+ R* aﬂvy)+pa(rﬁuv
X"
+IT%,07 ) (AB)
ap,, , g VY ,
(;pV:_SB R, PuT+ RS, Bpwa_pv +T7g,07
pe, g 27 A7
B paﬁ_pv (A7)
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P, " v P
5'_31; R* ypa R* B_pasﬂ +re ,B,upa 078
(A8)
S
axl: = — PSP, Ss(R* 57 pA+R¥*,7%F
+SQ(FQBN,VUB+F“BﬂvB’V) (A9)
&S VR* @ Yo *a vo
D P=—5s ,Ssv P (6,"R**g"°p,+p,R*“")
* 75 B dv g
—p.R S D, —P,Sst 1, pySa (A10)
S
=D, R (RIS RY S,
5 vP JvP
* 14 [e3
p R y Sa(?S py85+r BMUﬁ‘I"F B’u'(?_SVSa
(A11)

Accidentally leaving off the final term ila'Sﬂ/&S,, led to
the robust but spurious chaotic behavior mentioned in Sec.
VA,
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