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Dynamics of spinning test particles in Kerr spacetime

Michael D. Hartl*
Department of Physics, California Institute of Technology, Pasadena, California 91125

~Received 14 October 2002; published 14 January 2003!

We investigate the dynamics of relativistic spinning test particles in the spacetime of a rotating black hole
using the Papapetrou equations. We use the method of Lyapunov exponents to determine whether the orbits
exhibit sensitive dependence on initial conditions, a signature of chaos. In the case of maximally spinning
equal-mass binaries~a limiting case that violates the test-particle approximation! we find unambiguous positive
Lyapunov exponents that come in pairs6l, a characteristic of Hamiltonian dynamical systems. We find no
evidence for nonvanishing Lyapunov exponents for physically realistic spin parameters, which suggests that
chaos may not manifest itself in the gravitational radiation of extreme mass-ratio binary black-hole inspirals~as
detectable, for example, by LISA, the Laser Interferometer Space Antenna!.
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I. INTRODUCTION

The presence of chaos~or lack thereof! in relativistic bi-
nary inspiral systems has received intense attention rece
due to the implications for gravitational-wave detecti
@1–8#, especially regarding the generation of theoretical te
plates for use in matched filters. There is concern that
sensitive dependence to initial conditions that character
chaos may make the calculation of such templates difficul
impossible@8#. In particular, in the presence of chaos t
number of templates would increase exponentially with
number of wave cycles to be fitted. In addition to this imp
tant concern, the problem of chaos in general relativity
inherent interest, as the dynamical behavior of general r
tivistic systems is poorly understood.

Several authors have reported the presence of chao
systems of two point masses in which one or both partic
are spinning@3,1,6#. Our work follows up on@3#, which stud-
ies the dynamics of a spinning test particle orbiting a non
tating~Schwarzschild! black hole using the Papapetrou equ
tions @Eqs. ~2.7!#. We extend this work to a rotating~Kerr!
black hole, motivated by the expectation that many as
physically relevant black holes have nonzero angular m
mentum. Furthermore, the potential for chaos may be gre
in Kerr spacetime since the Kerr metric has less symm
and hence fewer integrals of the motion than the Schwa
child metric. In addition, the decision to focus on test p
ticles is motivated partially by the Laser Interferome
Space Antenna~LISA! gravitational wave detector@9#,
which will be sensitive to radiation from spinning compa
objects orbiting supermassive black holes in galactic nuc
Using the Kerr metric is appropriate since such supermas
black holes will in general have nonzero spin.

There are many techniques for investigating chaos in
namical systems, but for the case at hand we favor the us
Lyapunov exponents to quantify chaos. Informally, ife0 is
the phase-space distance between two nearby initial co
tions in phase space, then for chaotic systems the separ
grows exponentially~sensitive dependence on initial cond
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tions!: e(t)5e0elt, wherel is the Lyapunov exponent.~See
Sec. III A for a discussion of issues related to the choice
metric used to determine the distance in phase space.! The
value of Lyapunov exponents lies not only in establishi
chaos, but also in providing a characteristic time scaletl

51/l for the exponential separation.
By definition, chaotic orbits are bounded phase sp

flows with at least one nonzero Lyapunov exponent. Th
are additional technical requirements for chaos that rule
periodic or quasiperiodic orbits, equilibria, and other types
patterned behavior@10#. For example, unstable circular orbi
in Schwarzschild spacetime can have positive Lyapunov
ponents@5#, but such orbits are completely integrable~see
Sec. VI! and hence not chaotic. In practice, we restrict o
selves to generic orbits, avoiding the specialized initial co
ditions that lead to positive Lyapunov exponents in the
sence of chaos.

The use of Lyapunov exponents is potentially danger
in general relativity because of the freedom to redefine
time coordinate. Chaos can seemingly be removed by a
ordinate transformation: simply lett85 logt and the chaos
disappears. Fortunately, in our case there is a fixed ba
ground spacetime with a time coordinate that is not dyna
cal but rather is simply a reparametrization of the prop
time. As a result, we will not encounter this time coordina
redefinition ambiguity~which plagued, for example, attemp
to establish chaos in mixmaster cosmological models, u
coordinate-invariant methods were developed@11#!. Further-
more, we can compare times in different coordinate syste
using ratios: iftp is the period of a periodic orbit in som
coordinate system with time coordinatet, andtp is the pe-
riod in proper time, then their ratio provides a conversi
factor between times in different coordinate systems@5#:

t

t
5

tp

tp
. ~1.1!

For chaotic orbits, which are not periodic, we use the aver
value ofdt/dt over the orbit, so that

tl

tl
5 K dt

dt L ~1.2!
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MICHAEL D. HARTL PHYSICAL REVIEW D 67, 024005 ~2003!
as discussed in Sec. VII D.@This more general formula re
duces to Eq.~1.1! in the case of periodic orbits.# Since we
want to measure the local divergence of trajectories,
natural definition is to use the divergence in local Lore
frames, which suggests that we use the proper timet as our
time parameter. The Lyapunov time scale in any coordin
system can then be obtained using Eq.~1.2!.

Lyapunov exponents provide a quantitative definition
chaos, but there are several common qualitative method
well, none of which we use in the present case, for reas
explained below. Perhaps the most common qualitative
in the analysis of dynamical systems is the use of Poinc´
surfaces of section. Poincare´ sections reduce the phase spa
by one dimension by considering the intersection of
phase space trajectory with some fixed surface, typic
taken to be a plane. Plotting momentum vs position for
tersections of the trajectory with this surface then give
qualitative view of the dynamics. As noted in@4#, such sec-
tions are most useful when the number of degrees of free
minus the number of constraints~including integrals of the
motion! is not greater than two, since in this case the res
ing points fall on a one-dimensional curve for nonchao
orbits, but are ‘‘dusty’’ for chaotic orbits~and in the case o
dissipative dynamical systems lie on fractal attractors!. Un-
fortunately, the system we consider has too many degree
freedom for Poincare´ sections to be useful. It is possible
plot momentum vs position when the trajectory intersect
section that is a plane in physical space~sayx50) @3#, but
this is not in general a true Poincare´ section.1

Other qualitative methods include power spectra and c
otic attractors. The power spectra for regular orbits hav
finite number of discrete frequencies, whereas their cha
counterparts are continuous. Unfortunately, it is difficult
differentiate between complicated regular orbits, quasip
odic orbits, and chaotic orbits, so we have avoided their u
Chaotic attractors, which typically involve orbits asympto
cally attracted to a fractal structure, are powerful tools
exploring chaos, but their use is limited to dissipative s
tems@10#. Nondissipative systems, including test particles
general relativity, do not possess attractors@12#.

Following Suzuki and Maeda@3#, we use the Papapetro
equations to model the dynamics of a spinning test particl
the absence of gravitational radiation. We extend their w
in a Schwarzschild background by considering orbits in K
spacetime, and we also improve on their methods for ca
lating Lyapunov exponents. The most significant improv
ment is the use of a rigorous method for determin
Lyapunov exponents using the linearized equations of m
tion for each trajectory in phase space~Sec. III A!, which
requires knowledge of the Jacobian matrix for the Papa

1In @3#, they are aided by the symmetry of Schwarzschild spa
time, which guarantees that one component of the spin tensor~Sec.
II A below! is zero in the equatorial plane. As a result, it turns o
that all but two of their variables are determined on the surface,
thus their sections are valid. Unfortunately, the reduced symm
of the Kerr metric makes this method unsuitable for the system
consider in this paper.
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trou system~Sec. V B!. We augment this method with a
implementation of an informal deviation vector approac
which tracks the size of an initial deviation of sizee0 and
uses the relatione(t)5e0 elt discussed above. We are car
ful in all cases to incorporate the constrained nature of
Papapetrou equations~Sec. II A! in the calculation of
Lyapunov exponents~Sec. IV B!.

We use units whereG5c51 and sign conventions as i
Misner, Thorne, and Wheeler~MTW! @13#. We use vector
arrows for 4-vectors~e.g.,pW for the 4-momentum! and bold-
face for Euclidean vectors~e.g., j for a Euclidean tangen
vector!. The symbol log refers in all cases to the natu
logarithm loge.

II. SPINNING TEST PARTICLES

A. Papapetrou equations

The Papapetrou equations@14# describe the motion of a
spinning test particle. Although Papapetrou first derived
equations of motion for such a particle, the formulation
Dixon @15# is the starting point for most investigations b
cause of its conceptual clarity. Dixon writes the equations
motion in terms of the 4-momentumpa and spin tensorSab,
which are defined by integrals of the particle’s stress-ene
tensorTab over an arbitrary spacelike hypersurfaceS:

pa~S!5E
S
TabdSb ~2.1!

Sab~zW,S!52E
S
~x[a2z[a!Tb]gdSg , ~2.2!

wherezW is the coordinate of the center of mass. The eq
tions of motion for a spinning test particle are then

dxm

dt
5vm

¹vW p
m52 1

2 Rm
nabvnSab

¹vWS
mn52p[mvn] , ~2.3!

wherevm is the 4-velocity, i.e., the tangent to the particle
worldline. It is apparent that the 4-momentum deviates fr
geodesic motion due to a coupling of the spin to the Riem
curvature.

1. Spin supplementary conditions

As written, the Papapetrou equations~2.3! are underdeter-
mined, and require aspin supplementary conditionto deter-
mine the rest frame of the particle’s center of mass. Follo
ing Dixon, we choose

pmSmn50, ~2.4!
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DYNAMICS OF SPINNING TEST PARTICLES IN KERR . . . PHYSICAL REVIEW D 67, 024005 ~2003!
which picks out a unique worldline that we identify as t
center of mass. In particular, in the zero 3-momentum fra
defined bypi50, applying Eq.~2.4! to Eq. ~2.2! yields

zi5

E
t5const

xiT00d3x

E
t5const

T00d3x

, ~2.5!

which is the proper relativistic generalization of the Newto
ian center of mass. The frame defined bypi50 is thus the
rest frame of the center of mass, and in this frame Eq.~2.4!
implies thatS0 j50, i.e., the spin is purely spatial in the re
frame.

A second possibility for the supplementary condition is

vmSmn50. ~2.6!

This condition has the disadvantage that it is satisfied b
family of helical worldlines filling a cylinder with frame-
dependent radius@15,16#, centered on the worldline picke
out by condition~2.4!. As a result, we adoptpmSmn50 as the
supplementary condition.

We note that the difference between the conditions~2.4!
and ~2.6! is third order in the spin@which follows from Eq.
~2.13! below#, which means that it is negligible for phys
cally realistic spins~Sec. II B!. In particular, the two condi-
tions are equivalent for post-Newtonian expansions@17#,
where condition~2.6! is typically employed@18#.

2. A reformulation of the equations

For numerical reasons, we use a form of the equati
different from Eqs.~2.3!. ~We discuss this and other numer
cal considerations in Sec. V A.! Following the appendix in
@3#, we write the equations in terms of the momentum 1-fo
pm and the spin 1-formSm .2 The system under consideratio
is a spinning particle of rest massm orbiting a central body
of mass M; in what follows, we measure all times an
lengths in terms ofM, and we measure the momentum of t
particle in terms ofm, so thatpnpn521. In these normal-
ized units, the equations of motion are

dxm

dt
5vm

¹vW pm52Rmn* abvnpaSb

¹vWSm52pm~R* a
b

gdSavbpgSd! ~2.7!

where

R* a
b

mn5 1
2 Ra

brsersmn. ~2.8!

2The lowered indices are motivated by the Hamiltonian formu
tion for a nonspinning test particle, where it is the one-formpm that
is canonically conjugate toxm @13#.
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The tensor and vector formulations of the spin are rela
by

Sm5 1
2 emnabunSab ~2.9!

and

Smn52emnabSaub , ~2.10!

whereun5pn /m (5pn in normalized units!. In addition, the
spin satisfies the condition

SmSm5 1
2 Smn Smn5S2, ~2.11!

whereS is the spin of the particle measured in units ofmM
~see Sec. II B!.

Because of the coupling of the spin to the Riemann c
vature, the 4-momentumpm @Eq. ~2.1!# is not parallel to the
tangentvm. The supplementary condition~2.4! allows for an
explicit solution for the difference between them~see@19#
for a derivation!:

vm5N~pm1wm!, ~2.12!

where

wm52* R* mabgSapbSg ~2.13!

and

* R* abmn5 1
2 R* abrsers

mn . ~2.14!

The normalization constantN is fixed by the constraint
vmvm521. We see from Eq.~2.13! that the difference be-
tweenpm and vm is O(S2), so that the difference betwee
Eqs.~2.4! and ~2.6! is O(S3).

The spin 1-form satisfies two orthogonality constraints

pmSm50 ~2.15!

and

vmSm50. ~2.16!

These two constraints are equivalent as long asvm is given
by Eq. ~2.12!, since wmSm}* R* mabgSmSa[0. When pa-
rameterizing the initial conditions, we enforce Eq.~2.15!;
since we use Eq.~2.12! in the equations of motion, Eq
~2.16! is then automatically satisfied.

3. Range of validity

We note that the Papapetrou equations include effects
only to the mass monopole and spin dipole~the pole-dipole
approximation!. In particular, the tidal coupling, which is a
mass quadrupole effect, is neglected. It is also importan
note that the Papapetrou equations are conservative
hence ignore the effects of gravitational radiation. For a th
ough and accessible general discussion of the Papape

-
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MICHAEL D. HARTL PHYSICAL REVIEW D 67, 024005 ~2003!
equations and related matters, including a comprehensive
erature review, see Semera´k @19#.

B. Comments on the spin parameter

It is crucial to note that, in our normalized units, the sp
parameterS is measured in terms ofmM , not m2. The sys-
tem we consider in this paper is a compact spinning body
massm orbiting a large body of massM, which we take to be
a supermassive Kerr black hole satisfyingM
'105–106M ( . We will show that physically realistic value
of the spin must satisfyS!1 for the compact objects~black
holes, neutron stars, and white dwarfs! most relevant for the
test particles described by the Papapetrou equations.3 The
case of a black hole is simplest: a maximally spinning bla
hole of massm has spin angular momentums5m2, so a
small black holem orbiting a large black hole of massM
@m has a small spin parameterS:

S5
s

mM
<

m2

mM
5

m

M
!1.

The limit is similar for neutron stars: most models of neutr
stars have a maximum spin ofsmax'0.6m2 @20#, which gives
S&0.6 m/M .

1. Bounds onS for stellar objects

The bound onS is relatively simple for black holes an
neutron stars, but the situation is more complicated for co
pact stellar objects such as white dwarfs. The maximum s
of a stellar object is typically determined by the mas
shedding limit, i.e., the maximum spin before the star beg
to break up. The spin in the case of the break-up limit is
moment of inertia times the maximum~break-up! angular
velocity: smax5IVmax. If we write I 5amR2 and Vmax

5bAGm/R3 for some constantsa, b&1, then we have

smax5ab~Gm3R!1/2. ~2.17!

The values ofa andb depend on the stellar model; if we us
the values for ann51.5 polytrope, we geta50.2044 and
b50.5366@21#, so thatsmax50.110(Gm3R)1/2.

The limit in Eq. ~2.17! depends on the mass-radius re
tion for the object in question. Since most neutron stars h
masses and radii in a narrow range, the estimate ofsmax
'0.6 m2 discussed above is sufficient, but for white dwa
the value ofsmax can depend strongly on the mass. An an
lytical approximation for the mass-radius relation for non
tating white dwarfs is@22#4

R

R(

50.01125S m

mmax
D 21/3

f ~m!1/2 ~2.18!

3Recall that the Papapetrou equations ignore tidal coupling
they are inappropriate for modeling more extended objects.

4The mean molecular weightm̄ is set equal to 2, corresponding t
helium and heavier elements, which is appropriate for most as
physical white dwarfs.
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f ~m!512S m

mmax
D 4/3

~2.19!

and

mmax51.454M ( . ~2.20!

We could plug Eq.~2.18! into Eq. ~2.17! to obtain an
order-of-magnitude estimate, but@21# tabulates a constantJ̄
equivalent to the productab ~which increases as the angul
velocity of the star increases!. They writeJ5 J̄(GM3R0)1/2

for a rotating white dwarf, whereJ̄ depends on the polytropic
indexn of a nonspinningwhite dwarf of the same mass, an
R0 is the nonspinning radius. In our notation, this reads

smax5 J̄~Gm3R!1/2. ~2.21!

White dwarfs withm.0.6M ( are not well approximated by
polytropes~the effective polytropic index varies from near
in the core to near 1.5 in the outer parts!, but useful bounds
can be obtained by substitutingR from Eq. ~2.18!, which is
more accurate for white dwarfs than a pure polytrope mod
Plugging Eq.~2.18! into Eq. ~2.21! and converting to geo-
metric units gives

smax577.68 J̄m4/3M (
2/3f ~m!1/4. ~2.22!

From Table 3 in@21#, we haveJ̄50.1660 for a maximally
rotatingn51.5 polytrope~vs ab50.110 for a slowly rotat-
ing one! and J̄50.0785 forn52.5. As illustrated in Fig. 1,
the values for a more realistic numerical model@23# lie be-
tween these curves, as expected.

Note from Eq.~2.22! thatsmax/m
2}m22/3 for m!mmax, so

that the spin per unit mass squared is unbounded asm→0.5

Nevertheless, the spin parameterSmax is bounded, since
o

o-

5Equation~2.22! is valid only for m*0.01M ( , but smax/m2 con-
tinues to increase with decreasingm for equations of state appro
priate for brown dwarfs and planets.

FIG. 1. The maximum spin angular momentumsmax vs massm
for a rigidly rotating white dwarf. We plot curves forn51.5 and
n52.5 polytropic approximations using Eq.~2.22!, together with
four points derived using a more realistic numerical white dw
model ~Geroyannis and Papasotiriou@23#!.
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Smax}smax/m}m1/3 in the low mass limit. We plotsmax/m vs
m in Fig. 2, which shows that the maximum value ofsmax/m
is approximately 9M ( ~corresponding to am50.5M ( white
dwarf!. For a central black hole of massM5106M ( , we
then have

S<Smax5
smax

mM
5931026, ~2.23!

which is small compared to unity.

2. Tidal disruption

We can obtain a higher value ofS if the central black hole
mass is smaller, but it is important to bear in mind that su
lower-mass black holes may tidally disrupt the white dw
companion, thereby violating a necessary condition for
validity of the Papapetrou equations. In order of magnitu
a white dwarf orbiting at radiusr will be disrupted when the
tidal acceleration due to the central body overcomes its s
gravity, i.e.,

GM

r 3
R>

Gm

R2
. ~2.24!

For the white dwarf to be undisrupted down to the horizon
r 5M , we must haveM<R3/2m21/2, so that @using Eq.
~2.18!# the minimum mass not to disrupt isMmin}m21. We
could evaluate the proportionality constant using Eq.~2.18!,
but we can obtain a more accurate result by adopting a c
stant based on a more realistic tidal disruption model. Tab
I and II of @24# give the value of the variabler̂[(r /R)
3(m/M )1/3, which is approximately 2.0 for the white dwar
of interest here. This gives

Mmin52.023/2R3/2m21/2, ~2.25!

as illustrated in Fig. 3. For a 1.0M ( white dwarf, which
~based on@23#! has smax58.57M (

2 , the central black hole
must satisfyMmin58.23104M ( , so that the spin paramete
S can be no bigger thanSmax5smax/(mMmin)51.031024 in
order to avoid tidal disruption.

FIG. 2. smax/m vs mass for a white dwarf. As in Fig. 1, we plo
curves forn51.5 andn52.5 polytropes and the numerical mod
from @23#. The corresponding spin parameterSmax is obtained sim-
ply by dividing smax/m by the massM of the central black hole.
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3. The SÄ1 limit

We have shown that all physically realistic cases sati
S!1, but we nevertheless consider the limit ofS51 ~corre-
sponding tom5M ) in order to investigate more thoroughl
the dynamics of the Papapetrou equations, and to com
our results with@3#, which investigates theS51 limit in
detail. TheS51 limit introduces no singularities into th
equations of motion, and the resulting orbits are valid so
tions of the equations. On the other hand, in this limit t
Papapetrou equations are not physically realistic, since t
are derived in the limit of spinning test particles, which mu
satisfym!M . We thus cannot draw reliable results about t
behavior of astrophysical systems from theS51 limit.

C. Symmetries and the parametrization of initial conditions

In the approximation represented by the Papapetrou e
tions there is still a constant of the motion associated w
each Killing vectorjW of the spacetime@15#:

Cj5jmpm2 1
2 jm;nSmn. ~2.26!

@For brevity, we write the constant in terms of the spin ten
Smn @Eq. ~2.10!#.# Since Kerr spacetime is stationary an
axially symmetric, it has the Killing vectorsjW t5]/]t and
jWf5]/]f, so the energyE andz angular momentumJz are
conserved:

E52pt1
1
2 gtm,nSmn ~2.27!

and

Jz5pf2 1
2 gfm,nSmn. ~2.28!

~We write Jz in place of the orbital angular momentumLz
since the spin also contributes to the angular momentum
the system.! In contrast to the energy and momentum in
grals, the Carter constantQ is no longer present when the te
particle has nonvanishing spin@25#.

FIG. 3. The minimum black hole massM required not to disrupt
an inspiraling corotating white dwarf before the last stable~pro-
grade! circular orbit around a maximally rotating Kerr black hol
as a function of white dwarf massm.
5-5
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In our problem there are twelve variables, four each
position, momentum, and spin. For the purposes of find
orbits by numerical integration, we may parametrize the
tial conditions by providingt50, r, u, f50, pr , E, Jz , S,
and any two of the spin components. The normalization c
ditions pmpm521 andSmSm5S2 allow us to eliminate one
component each of momentum and spin. The constr
pmSm50 and the integrals of the motion then give thr
equations in three unknowns:

05pmSngmn ~2.29!

E52pt1
1
2 gtm,nSmn ~2.30!

Jz5pf2 1
2 gfm,nSmn. ~2.31!

We must solve these equations for the two remaining co
ponents ofpm and one remaining component ofSm . In
Schwarzschild spacetime these can be solved explicitly
to the greater symmetry@3#, but in the Kerr case of interes
here the problem requires numerical root finding.

We also use a related parametrization method star
with the Kerr geodesic orbital parameters: eccentricitye, in-
clination anglei, and pericenterr p . We derive the corre-
sponding energy, angular momentum, and relevant mome
and then proceed as above. This method is discussed fu
in Sec. VII A 3.

III. LYAPUNOV EXPONENTS

A. General discussion of Lyapunov exponents

Our method for calculating Lyapunov exponents is we
established in the literature of nonlinear dynamical syste
@10,12#, but accessible treatments are hard to find in
physics literature, so we summarize the method here.
discussion is informal and oriented toward practical calcu
tion, based on Ref.@10#; for a more formal, rigorous presen
tation see Eckmann and Ruelle@26#.

First we give an overview of the methods for calculati
Lyapunov exponents most commonly used in physics. Gi
an initial condition, a set of differential equations determin
a solution~theflow!, which is a curve in the phase space. T
Lyapunov exponentsof the flow measure the rate at whic
nearby trajectories separate. As discussed in the Introduc
an orbit is chaotic if a nearby phase-space trajectory se
rated by an initial distancee0 separates exponentially:e(t)
5e0 elt, wherel is the Lyapunov exponent.

Implicit in the definition of chaos above is a notion of
distance function on the phase space@or, more properly, the
tangent space to the phase space, as in Eq.~3.3! below#. It is
conventional to use a Euclidean metric to define such len
@10,12#, but any positive-definite nondegenerate metric w
do @26#. While the magnitude of the resulting exponent o
viously depends on the particular metric used, the signs
the Lyapunov exponents are a property of the dynamical
tem and do not rely on any underlying metric structure.
discuss these issues further in Sec. IV A and Sec. VII D.
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This informal definition of Lyapunov exponents leads to
practical method for calculatingl: given an initial condition,
consider a nearby initial condition a distancee0 away, where
e0 is ‘‘small,’’ typically 1025–1027 of the relevant physica
scales.~Values ofe0 much smaller than this can result in
loss of numerical precision.! Keeping track of the deviation
vector between the two points yields a numerical approxim
tion of l. ~It is important to rescale the deviation vector if
grows too large, since for any bounded phase space
even a tiny deviation can grow to at most the size of
bounded region.! We call this approach thedeviation vector
method.

There are two primary limitations to the approach o
lined above. First, the method yields only the large
Lyapunov exponent, which is sufficient to establish the pr
ence of chaos but paints a limited picture of the dynam
Second, the deviation vector approach is most appropr
when an analytical expression for the Jacobian matrix is
known; by choosinge0 small enough@and by keepinge(t)
small by rescaling if necessary#, the method essentially take
a numerical derivative. Among other complications, t
value of the exponent depends both on the maximum all
able sizeemax ~the size at which the deviation is rescale!
and the initial valuee0 ~the size of the deviation after eac
rescaling!.

The principal virtue of the deviation vector approa
compared to the more complicated Jacobian method~dis-
cussed below! is speed, since it requires solving only th
equations of motion.~As we discuss in Sec. III B 1, the Jaco
bian method involves the time-consuming evolution of t
Jacobian matrix in parallel with the equations of motion.! It
also provides a valuable way to verify the validity of th
Jacobian method.

The Jacobian methodis a more thorough and rigorou
approach to the calculation of Lyapunov exponents, wh
makes precise the notion of ‘‘infinitesimally’’ separated ve
tors. The general method proceeds as follows: conside
phase space with variablesy5$yi% and an autonomous set o
differential equations

dy

dt
5f~y!. ~3.1!

~Here we uset instead oft in anticipation of the application
of these results to general relativity, where we will be usi
proper time as our time parameter.! If d y represents a smal
deviation vector, then the distance between the two traje
ries is

d~d y!

dt
5f~y1dy!2f~y!5Df•d y1O~ idyi2!, ~3.2!

whereDf is the Jacobian matrix@(Df) i j 5] f i /]xj #.
We can clarify the notation and make the system easie

visualize if we introducej as an element of the tangent spa
at y, so that

dj

dt
5Df•j, ~3.3!
5-6
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DYNAMICS OF SPINNING TEST PARTICLES IN KERR . . . PHYSICAL REVIEW D 67, 024005 ~2003!
which is equivalent to taking the limitid yi→0. We visual-
ize j as a perfectly finite vector~as opposed to an ‘‘infini-
tesimal’’!. Since it lives in the tangent space, not the physi
phase space,j can grow arbitrarily large with time. This
means that instead of the frequent rescaling required in
deviation vector approach,j must be rescaled only when
grows so large that it approaches the floating point limit
the computer. This is a rare occurrence, and in practice
tangent vector almost never needs rescaling.

Although following the evolution of an arbitrary initia
tangent vectorj yields the largest Lyapunov exponent, w
can do even better by following the evolution of a family
n tangent vectors, which allows us to determine alln
Lyapunov exponents. The essence of the method is as
lows: for a system of differential equations withn variables,
we consider a set ofn vectors that lie on a ball in the tange
space. We represent this ball using a matrix whose colu
aren normalized, linearly independent tangent vectors, c
ventionally taken to be orthogonal. This set of orthonorm
vectors then spans a unit ball in the tangent space. The a
of the Jacobian matrix, which is a linear operator on
tangent space, is to map the ball to an ellipsoid under
time-evolution of the flow, as shown in Fig. 4.

For a dynamical system withn degrees of freedom, ther
aren Lyapunov numbersthat measure the average growth
the n principal axes$r i(t)% i 51

n of the ellipsoid. More for-
mally, the Lyapunov numbersLi are given by

Li5 lim
t→`

@r i~t!#1/t, ~3.4!

where r i(t) is the length of thei th principal axis of the
ellipsoid. The corresponding Lyapunov exponents are
natural logarithms of the Lyapunov numbers, so that

l i5 lim
t→`

log@r i~t!#

t
. ~3.5!

These limits exist for a broad class of dynamical syste
@26#.

The principal axes of the tangent space ellipsoid indic
the directions along which nearby initial conditions separ
or converge, which we may call theLyapunov directions. In
particular, consider a principal axis that is stretched under
time evolution. Such a vector has one component for e
dimension ~position or momentum! in the phase space;
nonzero component in any direction indicates an exponen
divergence in the corresponding coordinate. For exampl
a system has two spatial coordinates (r ,f) and correspond-
ing momenta (pr ,pf), then a typical tangent vector wil
have componentsj5(j r ,jf ,jpr

,jpf
). If the only tangent

FIG. 4. The Jacobian matrix maps a tangent space ball to
ellipsoid.
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vector with nonzero Lyapunov exponent is, for examplej
5(1/A3)(1,1,1,0), then nearby initial conditions separate
ponentially inr, f, andpr , but nearby values ofpf do not
separate exponentially. This is potentially relevant to
present study since, in the limit of a point test particle, t
gravitational radiation depends on the spatial variables
not the spin. If the principal axes along expanding directio
have nonzero components only in the spin directions,
system could be formally chaotic without affecting the gra
tational waves.

In summary, the method for visualizing the Lyapunov e
ponents of a dynamical system is to picture a ball of init
conditions—an infinitesimal ball if visualized in the pha
space, or a unit ball if visualized in the tangent space—a
watch it evolve into an ellipsoid under the action of the Ja
bian matrix. After a sufficiently long time, the ellipsoid wi
be greatly deformed, stretched out along the expanding
rections and compressed along the contracting directio
The directions of the principal axes are the Lyapunov dir
tions, and their lengths give the Lyapunov numbers throu
the relationLi'@r i(t)#1/t.

B. Numerical calculation of Lyapunov exponents

In order to implement a numerical algorithm based on
considerations above, we must bear two things in mi
First, since the vectors spanning the initial unit ball are ar
trary, they will all be stretched in the direction of the large
exponent: in general every initial vector has some nonz
component along the direction of greatest stretching, wh
dominates ast→`. In order to find the other principal axes
we must periodically produce a new orthogonal basis.
will show that the Gram-Schmidt procedure is appropria
Second, the lengths of the vectors could potentially overfl
or underflow the machine precision, so we should perio
cally normalize the ellipsoid axes.

1. The algorithm in detail

To simplify the notation, we denote the~time-dependent!
Jacobian matrixDf by Jt and the ellipsoid~whose columns
are the tangent vectors! by U. The algorithm then proceed
as follows.

~i! Construct a set ofn orthonormal vectors~which span
ann-dimensional ball in the tangent space of the flow!. Rep-
resent this ball by a matrixU whose columns are the tange
vectorsji .

~ii ! Equation~3.3!, applied to each tangent vector, implie
that U satisfies the matrix equation

dU

dt
5JtU, ~3.6!

which constitutes a set oflinear differential equations for the
tangent vectors. SinceJt depends on the values ofy, these
equations are coupled to our system of nonlinear differen
equationsẏ5f(y), so they must be solved in parallel wit
Eq. ~3.1!.

~iii ! Choose some timeT big enough to allow the expand
ing directions to grow but small enough so that they are

n

5-7
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MICHAEL D. HARTL PHYSICAL REVIEW D 67, 024005 ~2003!
too big. Numerically integrate Eqs.~3.1! and~3.6!, and every
time T apply the Gram-Schmidt orthogonalization procedu
The vectors resulting from the Gram-Schmidt procedure
proximate the semiaxes of the evolving ellipsoid. Record
log of the length log@ri(tn)# of each vector after each timeT,
wheretn5nT. Finally, normalize the ellipsoid back to a un
ball.

~iv! At each timet, the sum

l i'
1

t (
n51

N

log@r i~tn!#[
log@r i~t!#

t
~3.7!

is a numerical estimate for thei th Lyapunov exponent.

2. Gram-Schmidt and Lyapunov exponents

The use of the Gram-Schmidt procedure is crucial to
tracting alln Lyapunov exponents. Let us briefly review th
important construction. Givenn linearly independent vector
$ui%, the Gram-Schmidt procedure constructsn orthogonal
vectors$vi% that span the same space, given by

vi5ui2(
j 51

i 21 ui•vj

ivj i2
vj . ~3.8!

To construct thei th orthogonal vector, we take thei th vector
from the original set and subtract off its projections onto
previousi 21 vectors produced by the procedure.

The use of the Gram-Schmidt procedure in dynam
comes from observing that the resulting vectors approxim
the semiaxes of the tangent space ellipsoid. After the
time T, all of the vectors point mostly along the princip
expanding direction. We may therefore pick any one as
first vector in the Gram-Schmidt algorithm, so choosej1
[u1 without loss of generality. If we letei denote unit vec-
tors along the principal axes and letr i be the lengths of those
axes, the dynamics of the system guarantees that the
vectoru1 satisfies

u15r 1e11r 2e21•••'r 1e1[v1

since e1 is the direction of fastest stretching. The seco
vectorv2 given by Gram-Schmidt is then

v25u12
u1•v1

iv1i2
v1'u12r 1e15r 2e2 ,

with an error of orderr 2 /r 1. The procedure proceeds iter
tively, with each successive Gram-Schmidt step~approxi-
mately! subtracting off the contribution due to the previo
semiaxis direction.

It is important to choose timeT long enough to keep
errors of the formr 2 /r 1 small but short enough to preven
numerical under- or overflow. In practice, the method is qu
robust, and it is easy to find valid choices for the timeT, as
discussed in Sec. VII.
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IV. RELATIVITY AND PAPAPETROU SUBTLETIES

The algorithm described above is of a general nature,
signed with a generic dynamical system in mind. The Pa
petrou equations and the framework of general relativ
present additional complications. Here we discuss some
finements to the algorithm necessary for the present cas

A. Phase space norm

In the context of general relativistic dynamical system
the meaning of trajectory separation in phase space is so
what obscured by the time variable. We can skirt the issue
trajectories ‘‘diverging in time’’ by using a 311 splitting of
spacetime, and consider trajectory separation in a space
hypersurface@27#. This prescription reduces properly to th
traditional method for classical dynamical systems in
nonrelativistic limit.

In Kerr spacetime, we use the zero angular-moment
observers~ZAMOs!, and project 4-dimensional quantitie
into the ZAMO hypersurface using the projection tens
Pm

n5dm
n1UmUn , whereUm is the ZAMO 4-velocity. In

this formulation, spatial variables obeyxm→ x̃i5Pm
i xm and

momenta obeypm→ p̃i5Pi
mpm ~and similarly forSm) @27#.

The relevant norm is then a Euclidean distance in
3-dimensional hypersurface.

We should note that we use the projected norm for c
ceptual clarity, not necessity. The naive use of a Euclid
norm using unprojected components yields the same sign
the exponents, as noted in Sec. III A. The magnitudes of
resulting exponents are also similar~Sec. VII D!.

B. Constraint complications

Although the Lyapunov algorithm is fairly straightforwar
to implement for a general dynamical system, the co
strained nature of the Papapetrou equations adds a cons
able amount of complexity. The fundamental problem is t
the tangent vectorj cannot have arbitrary initial componen
for the Papapetrou system, as it can for an unconstra
dynamical system. Eachj must correspond to some devia
tion d y which is not arbitrary: the deviated pointy1d y
must satisfy the constraints.

1. Constraint-satisfying deviations

Recall that the dynamical variables in the Papapet
equations must satisfy normalization and orthogonality c
straints ~Sec. II A!: pnpn521 ~normalized units!, SnSn

5S2, andpnSn50. To make the constraint condition ond y
clearer, letC„y)50 represent the constraints rearranged
that the right hand side is zero. For example, withy
5(t,r ,m,f,pt ,pr ,pm ,pf ,St ,Sr ,Sm ,Sf),6 we can write

C1~y!5pnpn11, ~4.1!

6Recall that we write the equations of motion in terms ofm
5cosu.
5-8
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DYNAMICS OF SPINNING TEST PARTICLES IN KERR . . . PHYSICAL REVIEW D 67, 024005 ~2003!
so thatC1(y)50 for a constraint-satisfyingy. The other con-
straints are then

C2~y!5SnSn2S2 ~4.2!

and

C3~y!5pnSn . ~4.3!

A deviationd y is constraint-satisfyingif C(y1dy)50 when
C(y)50.

We may construct a constraint-satisfying deviationd y as
follows. Begin with a 12-dimensional vectory that satisfies
the constraints. Add a random small deviation to eight of
components to form a new vectory8. ~We need not add a
deviation tot; see Sec. IV B 2 below.! Determine the remain
ing three components ofy8 using the constraints, using th
same technique used to set the initial conditions. Finally,
d y[y82y. The correspondingj is then simplyd y/id yi .

The prescription above glosses over an important de
the inference of tangent vector components from the c
straints is not unique. Solving the constraint equations
volves taking square roots in several places, so there a
number of sign ambiguities representing different solut
branches. The implementation of the component-infere
algorithm must compare each component ofy with the cor-
responding component ofy8 to ensure that they represe
solutions from the same branches. Enforcing the constra
in this manner, and thereby inferring the full tangent vec
j, is especially important for the algorithm described in t
next section.

2. A modified Gram-Schmidt algorithm

A spinning test particle has an apparent twelve degree
freedom—four each for position, momentum, and spin—sa
priori there is the potential for twelve nonzero exponen
Since the Papapetrou equations have no explicit tim
dependence, we can eliminate the time degree of freed
The three constraints~momentum and spin normalization
and momentum-spin orthogonality! further reduce the num
ber of degrees of freedom by three. We are left finally w
eight degrees of freedom.

Eliminating the four spurious degrees of freedom from
tangent vectors presents a formidable obstacle to the im
mentation of the phase space ellipsoid method describe
Sec. III B 1. The crux of the dilemma is that the axes of t
ellipsoid must be orthogonal, but must also correspond
constraint-satisfying deviation vectors—mutually exclus
conditions. Solving this problem requires a modification
the Gram-Schmidt algorithm.

~i! Instead of a 12312 ball ~i.e., n512 in the original
algorithm!, consider an 838 ball by choosing to eliminate
the t, pt , pf , andSt components. The time componentj t of
each tangent vector is irrelevant since nothing in the prob
is explicitly time dependent; the first column of the Jacob
matrix is zero, soj t is not necessary to determine th
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time-evolution.7 The other three components are determin
by the constraints as described above.

~ii ! Given eight initial random tangent vectors, apply t
Gram-Schmidt process to form an 838 ball. For each vec-
tor, determine the three missing components using the c
straints, and then evolve the system using

dU

dt
5JtU

as before.~Now U represents a 1238 matrix instead of a
12312 ball.!

~iii ! At each timeT, extract the relevant eight componen
from each vector to form a new 838 ellipsoid, apply the
Gram-Schmidt process, and then fill in the missing com
nents using the constraints, yielding again a 1238 matrix.
The projected norms of the eight tangent vectors contrib
to the running sums for the Lyapunov exponents as in
original algorithm.

The algorithm above yields eight Lyapunov exponents
the Papapetrou system of equations.

In order to implement this algorithm, we must have
method for constructing a full tangent vectorj from an
eight-component vectorj̃. The method is as follows.

~i! Let ỹ85y1e j̃ for a suitable choice ofe.
~ii ! Fill in the missing components ofỹ8 using the con-

straints to formy8, taking care thaty andy8 have the same
constraint branches.

~iii ! Infer the full tangent vector usingj5(y82y)/e.
This technique depends on the choice ofe, and fails when

e is too small or too large. Using the techniques discusse
the next section to calibrate the system, we find thae
'1025–1026 works well in practice.

3. Two rigorous techniques

It should be clear from the discussion above that extra
ing all eight Lyapunov exponents is difficult, and in practi
the techniques are finicky, depending~among other things!
on the choice ofe as described in Sec. IV B 2 above. How
then, can we be confident that the results make sense?
tunately, there are two techniques that give rigoro
Lyapunov exponents by managing to sidestep the constr
complexities entirely.

First, it is always possible to calculate the single larg
exponent using the Jacobian method without considering
constraint subtleties. The complexity of the main Jacob
approach involves the competing requirements of Gra
Schmidt orthogonality and constraint satisfaction, but in
case of only one vector these difficulties vanish. Since
equations of motion preserve the constraints, an ini
constraint-satisfying tangent vector retains this prope
throughout the integration. Thus, we begin with a vector c
structed as in Sec. IV B 1 and evolve it~without rescaling!
along with the equations of motion. Other than the requi

7Also, the time piece is discarded in the projected norm formali
in any case~Sec. IV A!.
5-9



a
n
he
um

h

a

a

n
b

i
ra
te

rfu
ro
rn
pr

i
p

m

th
r

om

a

g
ur-

go
aco-
use
d

nd
ifi-
ex-

t
op
es
an

es
for
int

st a
the
n a
le

er

in
ck-

r an

ian
r of
g a

st

as
x,

ncy
c
n-
ing

at
r

of

sor
and
this

nts

MICHAEL D. HARTL PHYSICAL REVIEW D 67, 024005 ~2003!
ment of constraint satisfaction, its initial components are
bitrary, so it evolves in the direction of largest stretching a
eventually points in the largest Lyapunov direction. T
logarithm of its projected norm then contributes to the s
for the largest Lyapunov exponent.

Second, we can implement a deviation vector approac
described in Sec. III A. Given an initial conditiony0, we
construct a nearby initial conditiony08 as in Sec. IV B 1 and
then evolve them both forward. In principle, an approxim
tion for the largest Lyapunov exponent is then

1

t
logS iy82yi

iy082y0i D [
1

t
logS id yi

id y0i D .

In practice~for chaotic systems! the method saturates: for
given initial deviation, sayid y0i;1026, once the initial
conditions have diverged by a factor of;106 the method
breaks down.8 ~The traditional solution to the saturatio
problem is to rescale the deviation before it saturates,
such a rescaling in this case violates the constraints.! Despite
its limitations, this unrescaled deviation vector technique
valuable, since it tracks the correct solution until the satu
tion limit is reached, and avoids the subtleties associa
with the constraints.

With these two techniques in hand, we have a powe
method for verifying that the largest Lyapunov exponent p
duced by the Gram-Schmidt method is correct. This, in tu
gives us confidence that the other Lyapunov exponents
duced by the main algorithm are meaningful as well.

V. IMPLEMENTATION DETAILS

A. Some numerical comments

Finally, we discuss some specialized issues related to
tegrating the Papapetrou equations on a computer. The
mary subjects are the formulation of the equations, opti
zation techniques, and error checking.

Our choice to write the Papapetrou equations using
spin vector is motivated partially by numerical conside
ations. The spin vector approach has nice properties c
pared to the tensor approach asS→0. Comparing their co-
variant derivatives is instructive:

¹vWSm52pm~R* a
b

gdSavbpgSd!

¹vWS
mn5pmvn2pnvm52p[mvn] .

Though simpler in form, the derivative ofSmn has unfortu-
nate numerical properties for smallS, since in the limitS
→0 we havepm→vm: the differencepmvn2pnvm goes to
zero in principle but in practice is plagued by numeric

8This underscores the point that chaos is essentially alocal phe-
nomenon.Any unrescaled deviation vector approach must satur
since no bounded system can have trajectories that diverge fo
bitrarily long times.
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roundoff errors. SinceS!1 is the most physically interestin
limit, the vector approach is more convenient for our p
poses.

Calculating the many tensors and derivatives which
into the Papapetrou equations and the corresponding J
bian matrix is a considerable task. As a first step, we
GRTENSORfor MAPLE to calculate all relevant quantities, an
we useMAPLE’S optimizedC output to createC code auto-
matically. Due to the symmetries of the Riemann tensor a
the metric, many terms are identically zero, which sign
cantly reduces the number of required operations. For
ample, in order to calculateR* a

b
gdSavbpgSd we need four

loops, which constitutes 445256 evaluations, but in fac
R* a

b
gd has only 80 nonzero components. Performing lo

unrolling by writing these terms to an optimized derivativ
file consisting of explicit sums speeds up calculation by
order of magnitude compared to nested for loops.

Another optimization involves the choice of coordinat
used in the metric, which has significant consequences
the size of the tensor files and the number of floating po
operations required. Simply usingm5cosu in the Kerr met-
ric reduces the size of the Riemann derivatives by at lea
factor of 2.9 Since these derivatives are the bottleneck in
calculation of the Jacobian matrix, we can get more tha
50% improvement in performance with even this simp
variable transformation.

All integrations were performed using a Bulirsch-Sto
integrator adapted fromNumerical Recipes@28#. Occasional
checks with a fifth-order Runge-Kutta integrator were
agreement. We verified the Papapetrou integration by che
ing errors in the constraints and conserved quantities; fo
orbit such as that shown in Fig. 6, all errors are at the 10211

level aftert5105M .
As should be clear from Sec. V B below, the Jacob

matrix of the Papapetrou equations has a large numbe
terms, and it is essential to verify its correctness by usin
diagnostic that comparesDf•d y with the differencef(y
1d y)2f(y) for a suitable constraint-satisfyingd y. It is not
sufficient for the difference merely to be small: we mu
calculate the quantityf(y1d y)2f(y)2Df•d y for several
values of d y and verify that each component scales
id yi2. An early implementation of the Jacobian matri
which gave nearly identical results forf(y1d y)2f(y) and
Df•d y, nevertheless had an undetectedO(S2) error. The un-
rescaled deviation vector approach showed a discrepa
with the Jacobian method,10 which showed spurious chaoti
behavior. Theid yi2 scaling method described above eve
tually diagnosed the problem, which resulted from a miss
term in ]Ṡm /]Sn ~Sec. V B!.

e,
ar-

9Warning: This variable substitution changes the handedness

the coordinate system, since the unit vectorm̂ points opposite toû.
This in turn introduces an extra minus sign in the Levi-Civita ten
eabgd, which appears many times in the Papapetrou equations
the corresponding conserved quantities. The author discovered
subtlety the hard way.

10This illustrates the value of calculating the Lyapunov expone
using two different methods.
5-10
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B. The Jacobian matrix

For reference, we write out explicit equations for part
the Jacobian matrix of the Papapetrou equations.

The Jacobian matrix of a system of differential equatio
specialized to the case at hand, is as follows:

S ] ẋm

]xn

] ẋm

]pn

] ẋm

]Sn

] ṗm

]xn

] ṗm

]pn

] ṗm

]Sn

]Ṡm

]xn

]Ṡm

]pn

]Ṡm

]Sn

D . ~5.1!

Once we calculate] ẋm/]xn5vn
m , all the other derivatives

can be expressed in terms of the derivatives ofvm, the ten-
sors and connection coefficients, and Kroneckerd ’s.

Written out in full, the Papapetrou equations are as f
lows:

ẋm5vm ~5.2!

ṗm52Rmn* abvnpaSb1Ga
bmpavb ~5.3!

Ṡm52pm~R* a
b

gd SavbpgSd!1Ga
bmSavb. ~5.4!

We measuret and r in units of M ~the mass of the centra
body!, pm in units of the particle rest massm, and Sm in
terms of the productmM . The overdot is an ordinary deriva
tive with respect to proper time:ẋ[dx/dt.

The unusual placement of indices onR* is motivated by
the form of the Jacobian matrix. The index placement sho
above brings the equations into a form where the indices
pm andSm are always lowered, which simplifies the Jacobi
matrix since ~for example! ]pm /]xm50. Otherwise the
Jacobian matrix is unnecessarily complicated; for exampl
pm appeared anywhere on the right hand side then we wo
have]pm/]xnÞ0, which would contribute toJt .

As discussed in Sec. II A, the supplementary condit
pmSmn50 @Eq. ~2.4!# leads to the equation forvm in terms of
pm:

vm5N~pm1wm!5Nṽm, ~5.5!

where

ṽm5pm1wm ~5.6!

and

wm52* R* mabgSapbSg . ~5.7!

N is a normalization constant fixed byvmvm521.
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The calculation of the partial derivativesẋm in Eq. ~5.1!
proceeds as follows. From the relation forvm5Nṽm, we
have

] ẋm

]xn
5vm

,n5Nṽm
,n1N,nṽm.

Now, ṽm
,n5pm

,n1wm
,n5pagam

,n2* R* mabg
,n SapbSg , so

the first term is easy. The second term is trickier: from t
expression forvm, we have that215vmvm5N2(pmpm
12wmpm1wmwm)5N2(2112wmpm1wmwm), so we have

N5~122wmpm2wmwm!21/2.

Differentiating gives

N,n5N3~pawa
,n1wa

,nwa1 1
2 wawbgab,n!

5N3~ ṽawa
,n1 1

2 wawbgab,n!

where we have relabeled the dummy index (m→a). Sum-
ming the various terms, we have

vm
,n5N@pagam

,n1wm
,n1vm~vaw,n

a 1 1
2 Nwawbgab,n!#.

~5.8!

The expression for] ẋm/]pn is similar to vm
,n , but it is

simpler because the derivative of the metric with respec
the momentum is zero. As before, we use the product ru

]vm

]pn
5N

] ṽm

]pn
1

]N

]pn
ṽm.

The first term requires

] ṽm

]pn
5

]pm

]pn
1

]wm

]pn
5gmn2* R* manbSaSb

[gmn1Wmn.

Note thatWmn is symmetric. The second term requires

]N

]pn
5N3~Wanpa1wada

n1Wanwa!

5N3~wn1 ṽaWan!.

Summing the terms gives

] ẋm

]pn
5N~gmn1Wmn1Nvmwn!1NvmvaWan ~5.9!

with

]wm

]pn
[Wmn52* R* manbSaSb . ~5.10!

Finally, we calculate] ẋm/]Sn . With

] ṽm

]Sn
52Sapb~* R* mabn2* R* mnab![Vmn,
5-11
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and

]N

]Sn
ṽm5NvmvaVan,

we have

] ẋm

]Sn
5NVmn1NvmvaVan. ~5.11!

We calculate the derivatives ofṗm andṠm usingvm
,n , the

product rule, and the derivatives of the various tensors in
problem. The full results appear in Appendix A.

VI. INTEGRABILITY AND CHAOS

A. Phase space and constants of the motion

Having laid the foundation for the numerical calculatio
of Lyapunov exponents, we now discuss some general
pects of dynamical systems relevant to our study. A dyna
cal system withn coordinates has a 2n dimensional phase
space, typically consisting of generalized positions and th
corresponding conjugate momenta. Motion in the ph
space is arbitrary in general, but when there are integral
the motion then the flow is confined to a surface on wh
the integral is constant. This can be seen most easily
transforming to angle-action coordinates, where the surf
is an invariant~multidimensional! torus.

A system withn coordinates andn constants of the motion
is integrableand cannot have chaos~though the motion can
still be quasiperiodic or exhibit other complicated behavio!.
For example, we can consider geodesic orbits around a
black hole to have eight degrees of freedom (n54) and four
constants of the motion—particle rest massm, energyE,
axial or z angular momentumLz , and Carter constan
Q—which are enough to integrate the equations of mot
explicitly. Alternatively, we may look at Kerr spacetime a
having a 6-dimensional phase space by eliminating t
~which is simply a reparametrization of the proper time! and
using rest mass conservation to eliminate one momen
coordinate. Then the three integralsE, Lz , andQ are suffi-
cient to integrate the motion.~In practice, we allow all four
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momenta to evolve freely; the normalization is then a co
straint which can be checked for consistency at the end of
integration.!

In the case of a spinning test particle, the extra spin
grees of freedom create the possibility for chaotic behav
Moreover, sinceQ is not conserved in the case of nonze
spin, even without the extra spin degrees of freedom
potential for chaos would exist. Kerr spacetime has j
enough constants to make the system integrable; losinQ
reduces the number of analytic integrals below the criti
level required to guarantee integrability.11

B. Hamiltonian systems

1. Lyapunov exponents for Hamiltonian flows

The phase space flow of Hamiltonian systems is c
strained by more than the integrals of the motion. In parti
lar, the Lyapunov exponents of a Hamiltonian system co
in pairs 6l; i.e., if l is a Lyapunov exponent then so
2l @26#. Geometrically, this means that if one semima
axis of the phase-space ellipsoid stretches an amountelt

5L, another axis must shrink by an amounte2lt51/L. One
consequence of this property is that the product of
lengths of the axes is 1. Since the ellipsoid volume is p
portional to this invariant product, Liouville’s theorem on th
conservation of phase space volume follows as a corolla

The 6l property of Hamiltonian flows results from th
symplectic nature of the Jacobian matrix for Hamiltoni
dynamical systems.12 But a naive analysis of the Jacobia
matrix of the Papapetrou equations shows that it is not s
plectic in the canonical sense. Nevertheless, the Papape
equations can be derived from a Lagrangian@30#, and can be
cast in Hamiltonian form by use of a free Hamiltonian wi
added constraints~following the method of Dirac@31# as
discussed in@32#!. As a consequence, we could in princip
find coordinates in which the Jacobian matrix is symplec
with respect to the canonical symplectic matrix. Fortunate
this is an unnecessary complication, since the underlying
namics are independent of the coordinates.

2. Exponents for spinning test particles

As discussed in Sec. IV B 2, the lack of explicit time d
pendence independence and the three constraints reduc
ity, in
11It is possible that deformations of Kerr geometry that destroyQ nevertheless possess a numerical integral that preserves integrabil
analogy with some galactic potentials@29#, but the loss ofQ certainly ends theguaranteeof integrability.

12A matrix S is symplectic with respect to the canonical symplectic matrixJ if STJS5J, whereJ5( I
0

0
2I) andI is then3n identity matrix.

FIG. 5. The orbit of a nonspinning (S50) test
particle in maximal (a51) Kerr spacetime, plot-
ted in Boyer-Lindquist coordinates.~a! y
5r sinu sinf vs x5r sinu cosf; ~b! z vs r
5Ax21y2. The orbital parameters areE
50.8837m and Jz52.0667mM , with pericenter
2.0M and apocenter 6.0M.
5-12
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FIG. 6. The orbit of a maximally spinning
(S51) particle in maximal Kerr spacetime, fo
E50.8837m and Jz52.0667mM ~the same val-
ues as in Fig. 5!. The spin has initial values o

Sr̂5Sm̂50.1, corresponding to an initial angle o
54° with respect to the vertical in the particle
rest frame. As in Fig. 5, we ploty vs x in ~a! and
z vs r in ~b!. The spin causes significant devia
tions from geodesic orbits.
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degrees of freedom from twelve to eight, which leaves
possibility of eight nonzero Lyapunov exponents. The ph
space flow is further constrained by the constants of the
tion, energy andz angular momentum; corresponding to ea
constant should be a zero Lyapunov exponent, since tra
tories that start on an invariant torus must remain there. T
leaves six exponents potentially nonzero. Since the ex
nents must come in pairs6l, there should be at most thre
independent nonzero exponents.

VII. RESULTS

First we give results for the dynamics of the Papapet
equations in the extreme~and unphysical! limit S51, which
represents a violation of the test-particle approximation
is still mathematically well-defined. We find the presence
chaotic orbits~in agreement with@3#!. We next examine the
effects of varyingS, including the limit S!1. Finally, we
investigate more thoroughly the dynamics for physically
alistic spins.

A. Chaos for SÄ1

1. Maximally spinning Kerr spacetime

In a background spacetime of a maximally spinning K
black hole (a51) ~see Fig. 5! there are unambiguous pos
@ i # @ i #
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tive Lyapunov exponents for a range of physical parame
whenS51. We show a typical orbit that produces nonze
Lyapunov exponents in Fig. 6. The orbit has energyE
50.8837m, z angular momentumJz52.0667mM , and the
radius ranges from pericenterr p51.7M to apocenterr a

56.7M . The Lyapunov integrations typically run for 104M ,
which corresponds approximately to 400f-orbital periods.

We can illustrate the presence of a chaotic orbit by pl
ting the natural logarithm of thei th ellipsoid axis log@ri(t)#
vs t @Eq. ~3.7!#, so that the slope is the Lyapunov expone
as shown in Fig. 7.13 There appear to be two nonzer
Lyapunov exponents; the third largest exponent is consis
with zero, as shown in Fig. 8. The reflection symmetry of t
figure is a consequence of the exponent pairing: for each
with slopel, there is a second line with slope2l.

The main plot in Fig. 7~a! is generated by the modifie
Gram-Schmidt~GS! algorithm~Sec. IV B 2!. Recall that this
method depends on the value ofe used to infer the tangen
vector; we find a valide by calibrating it using the rigorous
Jacobian method, which must yield an exponent that matc
the largest exponent from the modified Gram-Schm
method. The plot in Fig. 7~a! represents the casee51026; it
is apparent that the two methods agree closely. The un
h

e
ne

. The
tion
f

13It is traditional to plot log@ri(t)#/t, which converges to the Lyapunov exponent ast→`, but it is much easier to identify the linear growt
of log r (t) than to identify the convergence of logr (t) /t. The 6l property is also clearer on such plots.

FIG. 7. Natural logarithms of the phase space ellipsoid axes vs proper time in Kerr spacetime withS51. The slopes of the lines are th
Lyapunov exponents; the largest exponent is approximatelylmax5531023M 21. The initial conditions are the same as in Fig. 6, and o
point is recorded at each timeT5100M ~Sec. III B 1!. ~a! Full Gram-Schmidt Jacobian method~light! with rigorous Jacobian method~dark!.
The full GS method is rescaled at each timeT according to the algorithm in Sec. III B, while the rigorous Jacobian method is unrescaled
two methods agree closely on the value of the largest Lyapunov exponent.~b! Rigorous Jacobian method compared to unrescaled devia
vector method. Note that the latter method, which started with a deviation of size 1027, saturates at;16. This corresponds to a growth o
e16'93106, which means that the separation has grown to a size of order unity.
5-13
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MICHAEL D. HARTL PHYSICAL REVIEW D 67, 024005 ~2003!
caled deviation vector method provides an additional ch
on the validity of the largest exponent, as shown in Fig. 7~b!.
As expected, the unrescaled approach closely tracks the
Jacobian approach until it saturates.

The numerical values of the exponents are shown in Ta
I. The6l property is best satisfied by6lmax, the exponents
with the largest absolute value. The exponents are le
squares fits to the data, with approximate standard error
1%. These errors are not particularly meaningful since
exponents themselves can vary by;10% depending on the
initial direction of the deviation vector. Moreover, even e
ponents that appear nonzero may be indistinguishable f
zero in the sense of Fig. 8; for such exponents a ‘‘1%’’ er
on the fit is meaningless.

For initial conditions considered in Fig. 6, and other orb
in the strongly relativistic region near the horizon, the typic
largest Lyapunov exponents are on the order of a
31023/M . For the particular case illustrated in Fig. 6, w
have lmax'531023M 21, which implies ane-folding time
scale oftl[1/l'23102M . This is strongly chaotic, with a
significant divergence in approximately eightf-orbital peri-
ods.

Based on integrations in the case of zero spin, which c
responds to no chaos~Lyapunov exponents all zero!, we can
determine how quickly the exponents approach z

FIG. 8. Ellipsoid axis lengths from the upper half of Fig. 7~a!
~light!, compared to an integration with zero spin and hence z
Lyapunov exponent~dark!. Only two of the four lines represen
exponents distinguishable from zero.
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numerically.14 Figure 8 compares the four apparently po
tive exponents with a known zero exponent. Only two of t
four exponents are unambiguously distinguishable from ze
consistent with the argument in Sec. VI B that there sho
be at most three independent nonzero exponents.

Finally, we note that the components of the direction
largest stretching are all nonzero in general. The chaos is
confined to the spin variables alone, but rather mixes
directions. This indicates that chaos could in principle ma
fest itself in the gravitational waves from extreme mass-ra
binaries—but see Sec. VII C below.

2. Schwarzschild spacetime revisited

We now reconsider the case of a spinS51 particle in
Schwarzschild spacetime, as investigated in Ref.@3#. Figure
9 shows an orbit similar to a chaotic orbit considered th
@Fig. 4~d! in @3##. A plot of log@ri(t)# vs t ~Fig. 10! shows
behavior similar to that in Fig. 7. In particular, the6l sym-
metry is present, apparently with two positive exponen
~The other lines are indistinguishable from zero, again us
S50 orbits as a baseline.! The largest exponent of 1.5
31023M 21 agrees closely with the value from Ref.@3#,
which reported an exponent of;231023M 21 for a similar
orbit. ~This agreement is somewhat surprising, since@3# ap-

TABLE I. Lyapunov exponents in Kerr spacetime in units
1023M 21, using a least squares fit. The exponents correspon
the semimajor axis evolution shown in Fig. 7~a!. As is typical with
the Gram-Schmidt Jacobian method, the exponents with the lar
magnitudes are determined most accurately, and thus show the6l
property most clearly. The standard errors on the fit are;1% for
each exponent, but these errors are dominated by two system
errors:~i! the variation due to different choices of initial~random!
tangent vectors;~ii ! nonzero numerical values even for exponen
that converge to zero eventually. In particular, the four smal
exponents~in absolute value! are indistinguishable from zero~see
Fig. 8!.

1l 5.5 1.5 0.56 0.25
2l 5.3 1.6 0.76 0.072
o

issue by

e

14As noted in the Introduction, it is possible for integrable but unstable orbits to have positive Lyapunov exponents. We avoid this
choosing a baseline orbit that is not unstable.

FIG. 9. The orbit of a maximally spinning
(S51) test particle in Schwarzschild spacetim
for E50.94738162m andJz54.0mM As before,
we plot ~a! y vs x and ~b! z vs r5Ax21y2.
5-14
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FIG. 10. Natural logarithms of the phase space ellipsoid axes vs proper time in Schwarzschild spacetime withS51. The largest exponen
is lmax'1.231023M 21. The initial conditions are the same as in Fig. 9.~a! Full Gram-Schmidt Jacobian method~light! with rigorous
Jacobian method~dark!. ~b! Rigorous Jacobian method compared to unrescaled deviation vector method. As in Fig. 7~b!, the unrescaled
method eventually saturates.
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pears not to have taken the constrained nature of the de
tion vectors into account. Luckily, the exponents are robu
and even unconstrained deviation vectors give nearly cor
results.!

3. Kerr and Schwarzschild orbits compared

The Kerr and Schwarzschild Lyapunov exponents of
previous two sections are not all that different; both a
1022–1023M 21 in order of magnitude~see Table II!. Nev-
ertheless, the two systems prove to be quite different: cha
orbits are easy to find in Kerr spacetime for nearly any ini
condition that explores the strongly relativistic region ne
the horizon, whereas nearly all analogous orbits in Schwa
child spacetime are not chaotic.

Figure 11 compares Kerr and Schwarzschild orbits w
the same inclination anglei510° and eccentricitye50.5 but
varying pericentersr p . ~Details of this parametrization
method, mentioned above in Sec. II C, appear in@33#.! We
insure that the systems are analogous by using orbitsS
51 particles with the same values ofr p /r ms, wherer ms is
the radius of the marginally stable orbit in the correspond
S50 ~geodesic! case. We use a Kerr geodesic integrator
veloped by Hughes@34# to find r ms, which is the smallest
pericenter that still yields a stable orbit. For the values oi
and e considered, r ms51.0M for Kerr orbits and r ms
54.67M for Schwarzschild orbits.

It is evident from Fig. 11 that the Kerr orbits are chao
for a broad range of pericenters, with the maximu
Lyapunov lmax generally decreasing as the pericenter
creases. In contrast, the Schwarzschild orbits are not cha

TABLE II. Lyapunov exponents in Schwarzschild spacetime
units of 1023M 21, using a least squares fit. The exponents co
spond to the semimajor axis evolution shown in Fig. 10~a!, which is
similar to the orbit in Fig. 4~d! of Ref. @3#. As with the Kerr case
~Table I!, the standard errors on the fit are;1% for each exponent
and the same caveats apply. The four smallest exponents~in abso-
lute value! are indistinguishable from zero in the sense of Fig. 8

1l 1.2 0.67 0.21 0.0063
2l 1.5 0.57 0.10 0.00023
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anywhere over the entire range of valid initial conditions.
fact, we are unable to find any chaotic orbits in Schwar
child spacetime other than the types identified by Suzuki
Maeda @3#, which were exceptional cases of orbits on t
edge of a generalized effective potential. In Kerr, on t
other hand, chaotic orbits appear to be the rule for p
centers nearr ms.

B. Dependence onS

Since chaos must disappear asS→0, we expect to see the
largest Lyapunov exponent approach zero in this limit. T
is indeed the case: in Fig. 12, which shows the variation
lmax with S for two different orbits, we see that the chao
unambiguously present whenS51 is not present for smalle
values ofS. In particular, the largest Lyapunov exponent
indistinguishable from zero over the entire range 1026<S
<1021. ~The far left of the plots have data points for ea
decade in this range.!

Although the strength of the chaos generally decrea
with S, one remarkable feature of Fig. 12~a! is the return of

FIG. 11. Comparison of maximally spinning (S51) Kerr par-
ticle orbits~dark! and Schwarzschild particle orbits~light!. We plot
the largest Lyapunov exponent versus pericenter~normalized by the
marginally stable radius!. The Kerr initial conditions for the inner-
most orbits are essentially as in Fig. 6. The Schwarzschild orbits
identical to their Kerr counterparts in inclination (10°) and ecce
tricity (e50.5) but have the Kerr parametera set to zero. The
Schwarzschild orbits have exponents indistinguishable from z
over the entire range of parameters.

-
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FIG. 12. Variation of the largest Lyapunov exponent vsS. ~a! The spinS51 initial conditions are the same as in Fig. 6.~b! AnotherS51
case with a different inclination angle (20°) and pericenter~2.5 M!. As the spin decreases, we hold fixed the Kerr orbital parame
inclination angle, eccentricity, and pericenter. Note that in~a! the chaos disappears belowS;0.5, but returns in a region centered onS
;0.3. The horizontal line in both plots is the value oflmax calculated for the baselineS50 orbit. In both~a! and~b! the Lyapunov exponen
is indistinguishable from zero for physically realistic spins.
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chaotic orbits betweenS;0.25 and 0.4 after their disappea
ance atS;0.5. The effect is qualitatively clear in Fig. 13
This chaotic ‘‘bump’’ in lmax vs S illustrates an importan
theme in nonlinear dynamical systems: theonly way to de-
termine whether an orbit is chaotic is to do the calculati
Though we certainly expect the strength of chaos to
smaller forS!1 than forS'1, it is impossible, in general
to determinea priori whether a particular set of paramete
will lead to chaotic behavior.

C. Physically realistic spins

The Papapetrou equations are only realistic in the t
particle limit, so physically realistic spins must satisfyS
!1 ~Sec. II B!. This corresponds to likely sources of grav
tational waves for LISA@35–37#, e.g., maximally spinning
m510M ( black holes spiraling into supermassiveM
5106M ( Kerr black holes, which have spin parameters
S5m/M51025. Because of their likely importance as em
ters of gravitational waves, it is essential to understand
dynamics of such systems.

1. Vanishing Lyapunov exponents

We would like to be able to make a definitive stateme
about the presence or absence of chaos for ‘‘small’’ sp
e.g., values ofS in the range 1022–1026. Unfortunately,

FIG. 13. Two orbits from the ‘‘bump’’ in Fig. 12~a!. The S
50.4 orbit ~light! is not chaotic, but theS50.3 orbit ~dark! is
chaotic, despite having a smaller value of the spin.
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when determining Lyapunov exponents numerically, it is i
possible to conclude definitively that an orbit is or is n
chaotic, since to do so would require an infinite-time integ
tion. On the other hand, for suspected nonchaotic orbits,
can provide an approximate bound on thee-folding time
scale.

The numerical values of exponents suspected to be
depend strongly on the time of the integration. For examp
for values ofS in the range 1022<S<1026, the exponent in
Fig. 12 appears to belmax'531024M 21, but this plot rep-
resents an integration time of only 104M . Longer integration
times give correspondingly smaller estimates for the s
pected zero exponents~Fig. 14!. For the system shown in
Fig. 12, an integration of 107M yields an estimate oflmax
'3.031027M 21 for all spins in the range 1022<S
<1027. In this case, the relevant Lyapunov timescales ar
least 33106M , and are probably much longer; the size
the bound is limited only by our patience and computer b
get. It seems highly likely that such orbits are not chaotic

2. Spin-induced phase differences

Even if their Lyapunov exponents are zero, small sp
affect the relative phase of the orbits, and since phase di

FIG. 14. The variation of the dimensionless quantitylmaxM
with final integration timet f for spin parameterS in the range
1022<S<1026. From top to bottom, the total integration time va
ies from 104M to 107M . It is likely that the true Lyapunov expo
nent is zero.
5-16
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TABLE III. Phase shiftsDf5fgeodesic2fspin in radians as a function of orbital inclination anglei and pericenterr p for a50.5 andS
51025. Inclination anglei50° is prograde equatorial andi5180° is retrograde equatorial. The geodesic orbits and their corresponding
orbits start with the same initial 4-velocityvm, and the integrations are performed using Boyer-Lindquist coordinate timet, with tmax' ~2000
times the average radial orbital period!. The pericenters are scaled by the marginally stable radiusr ms, and we start atr p /r ms51.5 to

guarantee the existence of valid initial conditions for the nongeodesic orbit. The spin has fixed initial values ofSr̂5Sm̂50.1S ~with hats
indicating an orthonormal basis!, corresponding to initial angles of 9° to 30° with respect to the vertical in the particle’s rest fr
increasing with decreasing pericenter.

r p /r ms

i 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5

10° 1.503102 5.693103 4.323103 2.133103 2.023103 1.273103 1.143103 7.773104

45° 2.793102 1.233102 1.013102 4.343103 4.603103 2.243103 1.663103 1.833103

85° 4.363102 2.923103 1.483103 8.243104 1.003103 2.203103 1.863103 1.263103

135° 29.023103 26.253103 22.343103 21.303103 21.733103 28.173104 26.763104 27.723104

170° 8.403104 2.853104 1.843104 7.313105 1.253104 1.123104 3.353105 3.073105
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ences accumulate secularly@38#, the spin can still affect the
gravitational wave signal. It is therefore useful to have
sense of the orders of magnitude of such spin-induced ph
shifts. Tables III and IV show typical values for the pha
differenceDf5fgeodesic2fspin for S51025, where the geo-
desic and spin systems start with the same initial 4-velo
vm. The most useful quantity in practice is the phase shif
measured by observers at infinity, so we integrate in term
the Boyer-Lindquist coordinate timet in place of t. ~This
involves multiplying the differential equations bydt/dt at
each time step.! As is apparent from the tables, the pha
shifts range broadly, from 1021 to 1025 radians after 2000
radial orbital periods, but tend to decrease in magnitude w
increasing inclination angle or pericenter.

Reference@37# shows that the number of orbital period
in a full inspiral from r'4M to the final plunge isN
;M /m, which is 105 for the systems in Tables III and IV
Since the table represents values ofDf for 2000 times the
average radial orbital period, this means that the total ph
shift during the inspiral is 50Df table. For a 10° inclination
angle the total phase shift is on the order of a tenth o
radian to a radian. Slightly more realistic values of the nu
ber of orbits can be obtained using Fig. 2 in@37#, which
givesN;23104 orbital periods fromr 54M to the plunge
at r'M for a50.998, i510°, andM /m5105. Since the
orbit spends most of its time between 4r ms and 2r ms, inter-
polating in Table IV gives Df total'103Df r 53.052
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31022. This is only a rough estimate, since the orbits in@37#
are circular, while the orbits we consider are eccentric.

D. Comments on time, rescaling, and norms

In this paper, we have elected to uset as the time param-
eter, a rescaling timeT of 100M, and a projected norm~Sec.
IV A !. Here we discuss the effects of varying these choic

First, we consider the effects of using coordinate timet in
place oft. In Fig. 15, we plot the natural logarithm of th
largest ellipsoid axis log@r1(t)# vs t together with log@r1(t)#
vs t. ~We use the unrescaled deviation vector approach
simplicity, since the Jacobian approach requires a new J
bian matrix for each coordinate change.! The exponents are
lt55.0531023M 21 and l t52.5131023M 21, implying
Lyapunov time scales oftl51.983102M and tl53.98
3102M . The average value ofdt/dt over the orbit is 2.06,
whereastl /tl52.01, so the relationship

tl

tl
5 K dt

dt L ~7.1!

discussed in the Introduction is well satisfied.
Second, we discuss the effects of varying the resca

time T. We find that choosingT to be a moderate fraction o
the shortest Lyapunov time scale~corresponding to the larg
est Lyapunov exponent! works best, giving each axis enoug
TABLE IV. Phase shiftsDf5fgeodesic2fspin in radians as a function of orbital inclination anglei and pericenterr p for a51 andS

51025. As in Table III, the pericenters are scaled byr ms, and the spin has fixed initial values ofSr̂5Sm̂50.1S ~corresponding in this case
to initial angles of 28° to 61°, again decreasing with increasing pericenter!.

r p /r ms

i 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5

10° 7.213102 4.583102 2.413102 1.833102 1.103102 9.463103 6.563103 7.433103

45° 2.373101 5.563102 2.593102 1.833102 1.733102 1.523102 1.083102 7.833103

85° 1.963102 6.213103 2.823103 2.133103 2.663102 3.643103 6.473104 3.483103

135° 21.043102 23.173103 23.213103 21.413103 21.123103 28.463104 28.823104 25.593104

170° 3.893104 1.483104 6.683105 5.973105 8.093105 9.553105 3.063105 1.663105
5-17
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time to grow before rescaling while still keeping the negat
exponents from underflowing and preventing the largest a
from dominating. Rescaling times between 50M and 100M
work best for the systems we consider, which have Lyapu
time scales ranging from 102M to 103M . A comparison of
results forT550M andT5100M appears in Fig. 16.

Third, we compare the projected norm used here t
naive Euclidean norm for determining the length of t
phase-space tangent vectorsji . As shown in Fig. 17, even
using a 12-dimensional Euclidean norm changes the re
ing exponent very little~approximately 15% in this ex
ample!. Given its conceptual advantages, we choose to
the projected norm with the confidence that the Lyapun
exponent order of magnitude is robust.

VIII. CONCLUSIONS

A spinning test particle, as described by the Papape
equations, appears to be chaotic in Kerr spacetime, w
maximume-folding time scales of a few3102 M. The appli-
cability of this result is limited by three main factors:~i!
chaos appears only for physically unrealistic values of
spin parameter;~ii ! other effects, such as tidal coupling, ma
be important for some astrophysical systems, violating
pole-dipole approximation implicit in the Papapetrou equ
tions; and~iii ! we neglect gravitational radiation. The thir
limitation is not fatal, since the radiation time scales can
long enough that chaos, if present in the conservative lim

FIG. 15. The natural logarithm of the largest ellipsoid axis
time for proper timet ~dark! and coordinate timet ~light!. The
exponents are clearly different, but the Lyapunov time scalestl

51/lt and tl51/l t are related by Eq.~7.1!.

FIG. 16. Natural logarithms of the ellipsoid axes vst for
rescaling timeT5100M ~dark! and timeT550M ~light!.
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would have time to manifest itself in the gravitational rad
tion of extreme mass-ratio systems.

In the unphysicalS51 limit, the Lyapunov exponents ex
hibit characteristics expected of a Hamiltonian system,
pearing in pairs6l ~Sec. VI B!. There are zero Lyapunov
exponents which correspond to the constants of the mot
but the other exponents are in general nonzero.~For the Kerr
orbits considered in this paper, we find that two of the th
independent exponents are nonzero, as illustrated in Fig!
Typical orders of magnitude for the largest Lyapunov exp
nents are a few31023M 21 for unphysical spins (S51). For
physically realistic spin parameters~Sec. VII C!, we find that
lmax&few31027M 21, corresponding toe-folding time
scales of a few3106M . Even this bound appears to be lim
ited only by the total integration time; in all physically rea
istic cases considered,lmax is indistinguishable from zero
~usingS50 integrations as a baseline!.

From the perspective of gravitational radiation detectio
our most important conclusion is that chaos seems to dis
pear for physically realistic values ofS, i.e., values ofS for
which the test-particle approximation and hence the Papa
trou equations are valid. We are unable to comment on
dynamics of comparable mass-ratio binaries, since such
tems are not accurately modeled by the Papapetrou e
tions, but forextrememass-ratio binaries it appears unlike
that chaos will present a problem for the calculation of th
oretical templates for use in matched filters. A more thorou
exploration of parameter space is needed to reach a fir
conclusion@33#.
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APPENDIX A: FULL JACOBIAN

For reference, we list the derivatives needed to calcu
the full Jacobian matrix.

FIG. 17. The natural logarithm of the largest ellipsoid axis vst
for the Euclidean norm~top! and the projected norm from Sec. IV A
~bottom!.
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From Sec. V B, we have the following:

] ẋm

]xn
5NFpagam

,n1wm
,n1vmS vawa

,n1
1

2
Nwawbgab,nD G

~A1!

] ẋm

]pn
5N~gmn1Wmn1Nvmwn!1NvmvaWan ~A2!

with

Wmn52* R* manbSaSb ~A3!

] ẋm

]Sn
5NVmn1NvmvaVan ~A4!

with

Vmn52Sapb~* R* mabn2* R* mnab!. ~A5!

Now we simply apply the product rule many times:

] ṗm

]xn
52paSb~Rmg* ab

,nvg1Rmg* abv ,n
g !1pa~Gbm,n

a vb

1Ga
bmvb

,n! ~A6!

] ṗm

]pn
52SbS Rmg* nbvg1Rmg* abpa

]vg

]pn
D1Gn

bmvb

1Ga
bm pa

]vb

]pn
~A7!
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] ṗm

]Sn
52Rmg* anvgpa2Rmg* ab

]vg

]Sn
paSb1Ga

bmpa

]vb

]Sn
~A8!

]Ṡm

]xn
52pmSapgSd~R* a

b
gd

,nvb1R* a
b

gdvb
,n

1Sa~Ga
bm,nvb1Ga

bmvb
,n! ~A9!

]Ṡm

]pn
52SaSdvb~dm

nR* a
b

gdpg1pmR* a
b

nd!

2pmR* a
b

gdSa

]vb

]pn
pgSd1Ga

bm

]vb

]pn
Sa ~A10!

]Ṡm

]Sn
52pmpgvb~R* n

b
gdSd1R* a

b
gnSa!

2pmR* a
b

gdSa

]vb

]Sn
pgSd1Gn

bmvb1Ga
bm

]vb

]Sn
Sa .

~A11!

Accidentally leaving off the final term in]Ṡm /]Sn led to
the robust but spurious chaotic behavior mentioned in S
V A.
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