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Geometric dilaton gravity and smooth charged wormholes

Wolfgang Graf*
Institut für Theoretische Physik der Universita¨t Wien, Boltzmanngasse 5, A-1090 Wien, Austria

~Received 15 September 2002; published 8 January 2003!

A particular type of coupling of the dilaton field to the metric is shown to admit a simple geometric
interpretation in terms of a volume element density independent from the metric. For dimensionn54 two
families of either magnetically or electrically charged static spherically symmetric solutions to the correspond-
ing Maxwell-Einstein-dilaton field equations are derived. Whereas the metrics of the ‘‘magnetic’’ spacetimes
are smooth, asymptotically flat, and have the topology of a wormhole, the ‘‘electric’’ metrics behave similarly
as the singular and geodesically incomplete classical Reissner-Nordstro¨m metrics. At the price of losing the
simple geometric interpretation, a closely related ‘‘alternative’’ dilaton coupling can nevertheless be defined,
admitting as solutions smooth ‘‘electric’’ metrics.
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I. INTRODUCTION

Einstein’s classical theory of gravity, based on a met
has so far passed all experimental tests concerning the
tion of bodies or the deflection of light, with ever increasi
precision~cf. Will @1#!. But there are some disturbing lim
tations of a more formal nature, such as generic singulari
when not allowing ‘‘exotic matter.’’ This is most evident i
the gravitational collapse of stars and in the early phase
the Universe, notably at the ‘‘big bang singularity.’’ In fact,
seems that we have come to live with this unsatisfact
situation as a necessary consequence of a classical de
tion. These problems can be attributed either to Einste
theory itself or to the inadequacy of the matter model us
or to both. In the first case, singularities seem to be a gen
feature ~somewhat attenuated by the expectation that t
will in general be hidden behind an event horizon!, unless
some other ‘‘pathologies’’ are accepted, such as exotic ma
or closed timelike lines. In the other case, for example,
apparent accelerating cosmic expansion has led to a ge
alization involving a ‘‘variable cosmological constant’’L
~‘‘quintessence,’’ ‘‘k essence’’!. Previously, a generalizatio
based on a ‘‘variable gravitational constant’’G has been con-
sidered, well known as Brans-Dicke theory. Also, in order
inflation to work, some specific modifications must be ma
In all these generalizations, an additional real scalar fi
serving the particular purpose, plays a fundamental role.
cept in exceptional cases, the singularity problem remain
is, however, generally expected that a future reconciliation
gravity and quantum theory will lead to a unique theo
without the above mentioned problems. Attempts in this
rection can be seen in the currently extensively stud
‘‘string-inspired cosmologies,’’ which are based on some l
energy limit of string theory and an appropriate reduction
dimensionn54. There a scalar field multiplying~as an ex-
ponential! the Ricci scalar and/or the metric plays a prom
nent role, which is interpreted physically as the dilaton fie
A big advantage of these approaches is the fact that e
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tions closely related to Einstein’s are a necessary con
quence.

Our aim is to show that already on a classical level,
properly including the dilaton scalar, some of the singular
problems can be avoided. Firmly based on standard diffe
tial geometry and only loosely inspired by the dilaton sca
of string theory, we formulate a theory of dilaton gravity. A
criteria for the soundness of our approach, both the formu
tion of a minimal coupling scheme and the existence of n
trivial geodesically complete and asymptotically flat so
tions of the corresponding field equations are taken.

We will proceed as follows. In Sec. II a particular form o
the coupling of a scalar fieldf ~called ‘‘dilaton’’! to the
metric tensorgik of a spacetime is proposed, which admits
straightforward and unique geometric interpretation in ter
of an independentvolume element density. A dilatonic cou-
pling scheme is formulated in order to accomodate additio
nongeometric fields. In Sec. III, the field equations cor
sponding to a Maxwell-Einstein-dilaton Lagrangian are d
rived, where also their ‘‘Einstein form’’ is given. In Sec. IV
family of magnetically charged static spherically symmet
solutions is derived, closely related to the well-know
‘‘string-inspired’’ charged black hole solutions of Garfinkle
Horowitz, and Strominger@2#. These metrics are shown to b
geodesically complete~in fact, smooth! and asymptotically
flat, each of them containing awormhole, with no exotic
matter being involved. The corresponding family of elect
cally charged solutions consist of singular metrics wh
have either an event horizon or exhibit a naked singular
An ‘‘alternative’’ nongeometric coupling is shown to be
however, possible, admitting a family of smooth electrica
charged solutions. In Sec. V, for the proposed geometric c
pling the equivalence principle is shown to be fulfilled, in th
sense that uncharged point particles still move on geode
In order to derive expressions for the mass and some o
significant parameters, the parametrized post-Newtonian
proximation is invoked. In terms of the basic parametersm,
b, and g, it is shown that the derived solutions must b
considered as viable with respect to present-day astronom
empirical data. For the realm of elementary particles, it
shown that for the smooth magnetic and electric wormh
solutions, significant effects could be expected at distan
©2003 The American Physical Society02-1
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of roughly the order of the classical electron radius. For
wormhole solutions it is shown that their mass parameter
zero as a lower bound. Also an explanation of the ‘‘rep
sive’’ character of the dilaton involved in the wormhole s
lutions is given. The concluding Sec. VI formulates the m
conclusions and points to some important open question

II. GEOMETRIC DILATON COUPLING

A. Volume geometry: Hodge duality

As is well-known~cf., e.g., Abraham, Marsden, and Rat
@3# for the closely related concept of avolume manifold!, a
volume element density~VED! is geometrically a nondegen
erate smooth n-form density volume, that is, unde
orientation-preserving coordinate transformations it beha
as a conventionaln form, whereas under orientation reve
sion it gets an extra factor21. Such a VED already allows
one to invariantly express the divergence divv of a vector
field v as~div v! volªd(v • vol), where the dot denotes th
contraction of a differential form by a vector field. This de
nition is well known in Hamiltonian mechanics, where
plays a major role. Also the Gauss integral theorem can
ready be formulated. Note that no metric has been invol
so far.

It makes sense to speak of a ‘‘positive’’ VED, an
any two such VEDs differ only by a positive functionl.
Assuming that we also have a nondegenerate metricgik ,
we can therefore always write for a general VED, v
5 ugu1/2ef dx1`•••`dxn, where we have convenientl
set l5ef, with some scalar functionf.1 This functional
form ensures positivity ofl, when f is continuous. Of
course we could also have chosen any other smooth m
tone positive function off, but this would not introduce
anything new, as effectively only the ‘‘dilaton factor’’ef

matters. The scalar fieldf thus represents anessentially
unique new geometrical degree of freedom.

Its occurrence in the form of the factoref strongly re-
minds one of the dilaton factor appearing in the reduc
Lagrangians for the low energy limit of string theo
~LELST!.2

For a volume manifold with a nondegenerate metric,
notion of theHodge dualof a differential form has to be
sligthly generalized. Recall that the dual!F of a plain
p-form F is the result of the following construction, give
with respect to some coordinate basis:

Fi 1••• i p
→F j 1••• j p

ªgi 1 j j
•••gi pj pFi 1••• i p

→!F j p11••• j n

ªvolj 1••• j pj p11••• j n
F j 1••• j p

[ugu1/2ef « j 1••• j pj p11••• j n
F j 1••• j p, ~1!

where« denotes the permutation symbol. The plainp-form F

1As is common practice in the physics literature, we will deno
the corresponding coefficient of then form dx1`•••`dxn as ‘‘sca-
lar density,’’ e.g., the LagrangianL.

2Although there the equivalent factore22f seems to be more
natural.
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is thus mapped to a (n2p)-form density!F. As this map is
one-to-one, it can be inverted to map ap-form H density to a
plain (n2p)-form !21H. Unfortunately, the nomenclatur
of the two different types of differential forms is far from
standard3 and so we will adhere to de Rham@4#, denoting the
forms we called ‘‘plain’’ with even typeand the ‘‘form den-
sities’’ with forms of odd type.

Consequently, we now define the generalized Hodge d
of any formF ~even or odd! as

* F5H !F, F even,

!21F, F odd.
~2!

This definition makes the duality operator trivially idemp
tent, *2F5F.4

Alternatively, we could also define the Hodge dualityF
→* F as theunique isomorphismfrom the vector space o
even~odd! p forms to the ‘‘dual’’ vector space of odd~even!
(n2p) forms, whose restriction to even forms gives

F`* G5~F,G! vol, F,G even. ~3!

Here the round bracket denotes the scalar product of fo
based on the Riemann metric. As a consequence, we hav
odd forms the corresponding relation

* F`G5~* F,* G! vol, F,G odd. ~4!

Based on the Hodge duality for differential forms, the ope
tors for thedivergenced and theLaplacianD for differential
forms can now be defined asdª* d* and Dªdd1dd,
whered denotes the operator ofexterior derivative, which is
valid for forms of any even/odd type.5

Why this insistence on differential forms? The main re
son is that the Lagrangian scalar density is geometric
more properly understood as an odd form of maximal deg
n, the energy momentum tensor being a covector-valued
(n21) form. Of course, the electromagnetic Maxwell fiel
to be extensively used later together with its Hodge dual
to be understood as an even 2 form. Also we need the di
gence of a vector field and of a two form, as well as t
Laplacian of a scalar field.

B. General dilaton coupling

Be it from a five-dimensional Klein-Kaluza~KK ! reduc-
tion, or from a LELST compactified ton54, the
Lagrangians have the generic form6

3Also the following designations are common: pseudoform
twisted forms, Weyl tensors, and oriented tensors.

4Note that when distinguishing even and odd type forms,!2 does
not make sense.

5The more precise definition ofd by de Rham introduces an extr
factor21, depending on the dimensionality of the manifold and t
signature of the metric.

6We use the conventions of Misner, Thorne, and Wheeler@7#
throughout, the squares denoting the conventional metric sc
product.
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L5ugu1/2eaf @R2b~¹f!22egfF2#. ~5!

The constant parametersa, b, andg depend on the particu
lar higher-dimensional base theory and the chosen reduc
Of course, from a LELST many more scalar fields and a
symmetric tensor fields of different degrees~‘‘moduli’’ ! will
appear, but we keep only the dilaton scalarf and a rank-2
antisymmetric tensor fieldF, later to be interpreted as th
Maxwell field two form.7 R denotes the omnipresent Rie
mann curvature scalar of general relativity. We will refer
this class of Lagrangians as Maxwell-Einstein-dilat
~MED! Lagrangians.

Often, more general Lagrangians are studied, contain
free functions~cf. Esposito-Fare´se and Polarski@5#, and ref-
erences therein!, but our choice is already general enough
cover the most important applications as special cases
particular, the class of Bergmann-Wagoner Lagrangians
tensively studied for about 30 years by Bronnikovet al. ~cf.
@6#! should be mentioned, having the general formL
5ugu1/2@ f (f)R1h(f)(¹f)22F2# ~in particular, with h
51 and f 512jf2, wherej is a constant parameter!. Al-
though diverse charged wormhole solutions have been
tained, they all violate some of the energy conditions. N
that the class of MED Lagrangians considered in our w
essentially differs from Bronnikov’s class, which complete
excludes ‘‘string-inspired’’ Lagrangians.

As convenient for dimensionally reduced Lagrangia
the relativistic gravitational constantk ~as well as any factor
1/2) is assumed to be absorbed intoF2. For example, the KK
reduction leads toa51, b50, g52, whereas a typica
LELST reduction hasa522, b524, g50. With a scalar
defined byFªef, we can also deduce the scalar-tens
Brans-Dicke Lagrangian from this form, with parametersa
51, b5v5” 3/2, g521. Similarly, for b53 we get a con-
formal scalar coupling.

However, all these MED Lagrangians can be transform
a moduloa trivial divergence by a Weyl conformal transfo
mationgik8 5gik eaf into a so-calledEinstein frame, charac-
terized bya850. For dimensionn54, this results inb8
5b13/2a2,g85g1a. In such a frame, formally the con
ventional Einstein Lagrangian is obtained, with a massl
Klein-Gordon~KG! field f and a Maxwell fieldF gravita-
tionally coupled with an effective coupling ‘‘constant
e(a1g)f. The scalar fieldf is ghost-free, i.e.,nonexotic, if
and only if b8>0.

More generally, for any dimensionn, a dilaton-based con
formal transformation of the metric,gik8 5gik elf (l a con-
stant parameter!, leads to the following transformation be
havior of the parameters of the MED Lagrangian density

a→a85a2l,

b→b85b1~n21!~n22!/4 ~a22a82!, ~6!

g→g85g1l.

7Sometimes ‘‘potential’’ termsV(f) also appear or are introduce
‘‘by hand.’’
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Although the causal structure is not altered as long asf is
continuous,8 some basic metric-based relations~e.g., length
and ‘‘straightness’’! are not. For the physical interpretatio
therefore some conformal frame has to be taken as the
damental one, characterized by a particular form of the
grangian density. This will depend on the particular coupli
to other fields, in particular, to point masses. However
‘‘string-inspired’’ dilaton theories most authors agree that
Einstein frame should be taken, primarily justified by t
availability of the familiar interpretatory apparatus of th
classical Einstein gravity.9

C. Geometric dilatonic coupling and minimal coupling scheme

Let us now introduce a particularly simple coupling, cha
acterized by the parametersa51, b50, g50. Evidently,
the dilaton enters the corresponding MED Lagrangian in
mode which can be interpreted geometrically in terms o
general metric-based volume element density, as previo
described. The Lagrangian simply becomesL5ugu1/2ef (R
2F2). Let us call such a coupling ageometric dilaton cou-
pling ~GDC! and the corresponding conformal frame aG
frame (G for ‘‘geometric’’!.

The particularly simple form of the GDC suggests t
following minimal geometric dilatonic coupling schem
~MGDCS!: assuming we have already a Lagrangian den
without dilaton and satisfying the prerequisites of gene
covariance,L05ugu1/2L, we get a GDC by just correcting
any occurence of the Riemann volume element densityugu1/2

by the dilaton factoref: LªL 0 ef5ugu1/2ef L, even when
it explicitly occurs insideL.

Taking the standard Maxwell-Einstein Lagrangian as
prototypical example, we get as a result of the MGDCS
GDC Lagrangian:

MGCDS: L5ugu1/2~R21/2F2!°L
5ugu1/2ef ~R21/2F2!. ~7!

Similarly, a massive point particle could also be incorp
rated, to giveL5ugu1/2ef R2m( ẋ2)1/2dT , where the Dirac
delta distribution is supported by the world-lineT of the
particle, given byT:t°xi(t). Note that the mass term doe
not acquire a dilaton factor, as it does not contain the fac
udetgu1/2.

III. GDC FIELD EQUATIONS

The field equations derived from the geometrica
coupled Maxwell-Einstein-dilaton Lagrangian L
5ugu1/2ef (R21/2 F2) are, up to a factorugu1/2ef,

Gik2s2 Q ik8 2s Q ik9 5Mik , ~8!

R51/2F2, ~9!

05div F, ~10!

8Which is, however, not in general the case.
9Compare, e.g., Gasperini and Veneziano@8#.
2-3



a

is

f-

as

y
e

e

ili

a

e
ns
e

e

ne
re

:

ical
e
ar-

it-

e

ave

WOLFGANG GRAF PHYSICAL REVIEW D67, 024002 ~2003!
where

MikªFir Fks grs21/4F2 gik , ~11!

Q ik9 ª¹i¹kf2¹2f gik , ~12!

Q ik8 ª¹if¹kf2~¹f!2 gik , ~13!

and

sª~n22!/2. ~14!

Here divF denotes the dilaton-generalized divergence of
form, which in a coordinate base can also be written as

~div F ! i
ªugu21/2e2f ] j~ ugu1/2ef Fi j ![¹jF

i j 1f jF
i j .

~15!

Also we have assumed thatF has a gauge potential,F
5dA, with respect to which the corresponding variation
performed. Combining Eq.~9! with the trace of Eq.~8! and
assumingn>2, we get an explicitdilaton equationfor F
ªesf,

¹2F21/~n21! R F50. ~16!

Remarks

~i! Neither the dilaton scalarf nor the dilaton factoref

do explicitly appear in the primary field equations~8!–~10!,
except through their derivatives, this invisibility of the ‘‘e
fective gravitational coupling constant’’ef underlines the
geometric character of the theory.

~ii ! The dilaton scalar doesnot couple to the trace~which
here vanishes forn54) of the energy momentum tensor
in the Brans-Dicke theory, but to the independent scalarF2.

~iii ! The tensorQ8 has almost the form of the energ
momentum tensor for a massless Klein-Gordon field, exc
for a factor21 instead of21/2.

~iv! The dilaton equation is purely geometric, as it do
not contain the Maxwell field; for dimensionn56 it reduces
to theconformal wave equation10 ¹2F21/5R F50.

Transformed to anE frame ~and asssumingn>2), these
field equations can, however, be reduced to the more fam
looking locally equivalent forms11

Gik5~n21!/2s Q ik1l Mik , ~17!

s ¹2f51/2~n21! l F2, ~18!

¹i ~l Fi j !50. ~19!

Herelªef, andQ is the Klein-Gordon energy momentum
tensor,

Q ikª¹if¹kf21/2~¹f!2 gik . ~20!

10Note that theR factor is dimension-dependent~cf. Wald @9#,
Appendix D!.

11For notational reasons, we do not differentiate between thG
framegik and theE framegik8 ªef gik .
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Unfortunately, in Eq.~17! the KG termQ does not couple
with the same factorl as the constant factor of theM term,
thus making a conventional interpretation in terms of
‘‘variable effective gravitational coupling constant’’lªef

somewhat problematic.
The merit of theE frame formulation lies, however, in th

fact that for this most frequently used frame, some solutio
to slightly more general couplings are already known. W
will in the following take advantage of this.

IV. STATIC SPHERICALLY SYMMETRIC SOLUTIONS

A. Smooth GDC solutions of magnetic type

In the following, we will deal exclusively with the cas
n54 (s51). The MED field equations in theE frame then
reduce to

Gik53/2Q ik1l Mik , ~21!

¹2f51/6l F2, ~22!

¹i ~l Fi j !50. ~23!

We want to obtain static spherically symmetric~SSS! solu-
tions to the GDC field equations. This is most easily do
staying in theE frame, where SSS solutions to slightly mo
general equations, depending on an extra parametera, have
been found by Garfinkle, Horowitz, and Strominger@2#
~GHS!.12 They start from the following Lagrangian density

L5ugu1/2@R22~¹f!221/2e22af F2#, ~24!

where we trivially rescaled theirF with a factor 1/A2 in
order to have a closer correspondence with the class
Maxwell field. Our G-frame Lagrangian can evidently b
conformally mapped to the GHS Lagrangian with the p
ticular choice of the parametera561/A3.

Their general ‘‘magnetic-type’’ solution can then be wr
ten as13

ds252l2dt21l22dr21R2dV2, ~25!

l2
ªX1X2

(12a2)/(11a2) , ~26!

R2
ªr 2X2

2a2/(11a2) , ~27!

e22af5X2
2a2/(11a2) , ~28!

F5Fmªq sinu du`dw, ~29!

where

X1ª12r 1 /r , X2ª12r 2 /r . ~30!

12In the context of a broader framework, equivalent solutions h
been found earlier by Gibbons and Maeda@10# ~see also Horowitz
@11#, relating these solutions to the GHS solution!.

13In accordance with the notation of GHS,l andR here refer only
to Eq. ~25!.
2-4
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The parametersq,r 1 ,r 2 are, however, restricted by14

q252 r 1r 2 /~11a2!. ~31!

Mapping thea251/3 GHS solution back to theG frame, we
then get the following ‘‘magnetic’’ family of solutions:

ds252X1dt21~X1X2!21dr21r 2dV2, ~32!

ef5X2
1/2, F5Fmªq sinu du`dw, ~33!

where

q2
ª3/2r 1r 2 . ~34!

However, in these coordinates the metric isnot regular atr
5r 2 , and the dilaton scalar does not even exist forr
,r 2 . Introducing a new coordinater ~solution of dr/dr
5« X2

21/2) by means of

r~r !5«r 2 „j1/2~j21!1/21 ln~j1/21~j21!1/2!…, jªr /r 2 ,
~35!

removes these drawbacks. The parameter«561 character-
izes the twor branches joined atr50 and mapping to the
single r range r>r 2.0. The inverse functionr (r) is
smooth inr. In these new cordinates~which now properly
include the locusr 5r 2 , respectively,r50), the resulting
metric

ds252X1dt21X1
21dr21r 2~r!dV2 ~36!

is nondegenerate15 and can be shown to besmooth in a
neighborhood ofr50 which does not includer5r(r 1).16

Also, ef becomes smooth there, and the expression for
Maxwell field Fm remains unchanged~and smooth!.

As the metric is symmetric underr→2r, and there is
now always a two sphere with minimal areaA54pr 2

2 @cor-
responding to a ‘‘radius’’r (0)5r 2], the geometric interpre-
tation is that of awormholewith throat atr50. This notion
of wormhole, based on alocal reflection symmetry, is, how-
ever, different and more general than the usual one, wh
only allows wormholes withtimelike throats ~e.g., Visser
@12#, compare also Hayward@13#!.

If r 1>r 2 the locusr 5r 1 can be shown to be aregular
event horizon~even in the ‘‘degenerate’’ caser 15r 2), and
the metric can be smoothly extended through it by stand
procedures~e.g., by using Eddington-Finkelstein coord
nates!. For r 1,r 2 there is no black hole and the comple
metric can be expressed in the single coordinate chart g
above. The wormhole topology~connecting universes with
their own asymptotic regions! is common to all metrics of
this family and can in this sense be considered asgeneric
among the class of SSS solutions.

14Despite the suggestive notation, it isnot required that r 1

>r 2 .
15Except for the usual easily removable degeneracy at thez axis.
16Note the close similarity of the form of this metric wit

Schwarzschild’s, to which it reduces forr 250.
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The Carter-Penrose~CP! diagrams corresponding to thes
extensions fall into the three distinct types I:r 2.r 1>0, II:
r 25r 1.0, III: r 1.r 2.0, and are shown in Fig. 1~where
we also used the more physical characterization by mean
chargeq versus massm, to be justified later!. Depending on
the type of the solution, the throat of the wormhole istime-
like for type I, null for type II ~coinciding with the event
horizon!, andspacelikefor type III.

B. Gauge potential for the magnetic GDC solution

Although the question of an appropriate gauge potentia
most often ignored~being trivial in the ‘‘electric’’ case!, we
will now exhibit a smooth potential in the sense of
U(1)-gauge theory. The existence of such a potential ma
the smooth SSS solution complete. Consider theu(1)-valued
~i.e., purely imaginary!

Ã6ª2 in/2 ~cosq71!dw, ~37!

where the upper sign refers to the upper hemisphereq5” p
and the lower sign to the lower hemisphereq5” 0. Evidently,
F̃ªdÃ5 in/2 sinq dq`dw. The transition function for the
potential in the overlap of the two hemispheres is given
Sªeinw: A15A21S21dS. For consistencynPN must
hold ~cf. Göckeler and Schu¨cker @14# for more details!. Re-
verting to the corresponding real field,iFªF̃, this amounts
to q5n/2. Taking properly into account the terms appeari
in the ‘‘gauge derivative’’ for an electrically charged partic
in the field of a magnetic monopole,¹5]1 ie/\ A, we ob-
tain Dirac’s quantization condition: pq/\5n/2. For n51
and p5e the minimal magnetic charge isg51/2e/\
'68.5e, giving the factor (g/e)2'4.73103 needed in
Sec. V.

C. Singular GDC solutions of electric type

As already shown by Garfinkle, Horowitz, an
Strominger @2#, from a magnetically charged solutio
(g,f,F) of their E frame field equations, an electricall

FIG. 1. Carter-Penrose diagrams for the extended wormh
metrics. Thick lines: null infinity, thin lines: event horizon, dash
lines: wormhole throat, circles:i 6,i 0.
2-5



in
d

er
y

w

h

ha
g
te
m

l-
e
a

m

o
t

sign

are
on.
m-
part
D

ith

ta-

-

me

the
as
elec-
ect

er,
-
lar,
n

ric
-
nd

eo-
the
the
en

ns

d’’
h
er-

me

ring

s
ding

g
ly
d

WOLFGANG GRAF PHYSICAL REVIEW D67, 024002 ~2003!
charged one can formally be obtained by taking (g,
2f,* F), where *F is the ~generalized! Hodge dual ofF.17

But then, the transformation back to theG frame inevitably
leads to a metric immanently degenerate atr 5r 2

ds25X2~2X1dt21X1
21dr21r 2~r!dV2!, ~38!

which is the image of the degenerate conformal mapp
with factor X2 of the smooth ‘‘magnetic’’ metric considere
before.18 Dilaton factor and Maxwell field are given by

ef5X2
21/2, F5Feªp/r 2 X2

1/2dr`dt, ~39!

wherep253/2r 1r 2 . A gauge potential forF is

Aeª«p/r 2 X2 dt. ~40!

Note that no charge quantization is involved and thatF van-
ishes at the singularity of the metric,r50 (r 5r 2), in fact,
both F and its potential are smooth there.

If r 1.r 2 and r 1.0, the locusr 5r 1 is a regular event
horizon, hiding the spacelike singularity. For the ‘‘degen
ate’’ caser 15r 2 , there is still a horizon, but the singularit
becomes timelike. Forr 1,r 2 , the singularity is timelike
and even naked. The corresponding CP diagrams agree
those of the Reissner-Nordstro¨m family of solutions, except
for the case r 1.r 2 , where the diagram agrees wit
Schwarzschild’s, which has a spacelike singularity.

D. Alternative dilaton coupling

A closer look at the general GHS solution reveals t
only the choicea251/3 allows one to remove the offendin
commonX2 factor from the SSS metric by an appropria
conformal transformation. This again is given by the sa
factor e22aw, as from theG frame to theE frame, resulting
in the ‘‘alternative’’ dilaton coupling~ADC! Lagrangian

L5ugu1/2~e2f R21/2ef F2!. ~41!

Evidently, it cannotdirectly be interpreted in terms of a vo
ume manifold and corresponding coupling scheme. The fi
equations corresponding to this alternative Lagrangian
then

Gik2Q ik8 1Q ik9 5e2f Mik , ~42!

R521/2e2f F2, ~43!

05div ~e2f F !, ~44!

with the corresponding dilaton equation derived from the

hf521/6e2f F2. ~45!

Here the divergence and the Laplacian are defined based
volume element densityugu1/2e2f. Except for the manifes

17A manifestation of the ‘‘weak/strong coupling duality’’ of strin
theory.

18Note thatX2 is non-negative, considered as a function ofr.
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appearance of dilaton factors the essential change is a
reversal in the dilaton equation.

This shows that smooth electric wormhole solutions
possible when sacrificing the geometrical interpretati
Their metrics agree with those of the smooth GDC wor
holes. The coupling is again ghost-free and the material
still obeys the energy conditions. Among the class of ME
Lagrangians considererd, it is the only Lagrangian w
smooth SSS solutions.

An ‘‘alternative’’ coupling scheme, involving arbitrary
nongeometrical fields, could, however, be formulated ten
tively as follows: ~i! apply the standard GDC scheme,~ii !
denote the map from theG frame to theE frame byE, and
~iii ! define the ‘‘alternate’’A frame ~and corresponding La
grangian! as the image of theG frame under the mapE 2.

When including point masses, such a coupling sche
would lead to nongeodesic behavior for their trajectories~see
Sec. V!. This could be considered as a drawback. But
main objection against this coupling is of course that it h
been deliberately constructed so as to possess smooth
trically charged SSS solutions, and also its lack of any dir
geometric interpretation.

E. Comparison with other SSS solutions

As already noted by Garfinkle, Horowitz, and Stroming
all the nontrivialE-frame metrics of the GHS family of so
lutions are either geodesically incomplete and/or singu
with the exception of the ‘‘cornucopion’’ metric, which is a
extreme solution fora51 interpreted in the string frame.

To my knowledge all other static spherically symmet
solutions directly or indirectly related to Maxwell-Einstein
dilaton gravity violate some of the energy conditions, a
must be considered as classically ‘‘unphysical.’’19 Therefore
we will not dicuss them here.

Unfortunately, general enough existence or no-go th
rems do not yet exist, save for particular couplings and
corresponding conformal frames. For example, for
closely related vacuum Brans-Dicke theory, it has be
shown by Nandi, Bhattacharjee, Alam, and Evans@15# that
while in the Jordan frame there do exist wormhole-solutio
for the ~unphysical! range23/2,v,24/3 of the BD pa-
rameter, which are, however, plagued by ‘‘badly disease
naked singularities, in theE frame there do not exist suc
solutions at all, unless energy-violating regions are delib
ately introduced.

However, we must admit that while our GDC/ADC
wormhole solutions are smooth as regards metric, volu
element density~i.e., dilaton factoref, respectivelye2f),
and gauge potentials, they are not, when instead conside
the dilaton scalarf itself, which diverges to2` ~respec-
tively 1`) at the throat of the wormhole. Although thi
poses no problem for the smoothness of the correspon

19In fact, Bronnikov’s wormhole solutions turn out to be high
unstable~cf. @6#!. This is also the case for the recently foun
‘‘ghostly’’ massless wormhole solution of Armenda´riz-Picón @16#,
as discussed by Shinkai and Hayward@17#.
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TABLE I. PPN parameters for charged static spherically symmetric metrics.

2m b g g asymptotics

GDC/magnetic
ADC/electric r 1 111/6e2 111/6e2 O(e2)
GDC/electric r 11r 2 111/3e2 (11x)21 n. a.
GHS/E frame r 1 111/4e2 1 O(e0)
GHS/S frame r 12r 2 1 (11x)/(12x) O(e1)
Reissner-Nordstro¨m r 11r 2 121/2e2 1 O(e0)
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dilaton factors~which just smoothly vanish there!, the geo-
metric interpretation in terms of a corresponding nondeg
erate volume element density cannot anymore be stri
maintained, as it is not manifestly positive. This must in fa
be considered a flaw, albeit not a serious one, as the phy
interpretation does not suffer.

V. INTERPRETATION

A. GDCÕADC and Einstein’s equivalence principle

Let us emphasize that the GDC theory presented her
still a metric theory, in the sense that massive point sour
move on timelikegeodesicsof the metric, when expressed i
a G frame. This can be most easily seen by noting that
volume integral over the GDC Lagrangian for a point p
ticle effectively splits into the volume integral over the ‘‘ge
metric’’ part of the Lagrangian plus a conventional line int
gral m*( ẋ2)1/2dt, which by variation of the arc length the
leads to the standard geodesic equation.20

As the alternative coupling scheme seems to be too
ficial to be really believed, we introduce the point partic
term ‘‘by hand’’ into theA frame Lagrangian. Therefore Ein
stein’s equivalence principle~EEP! is satisfied both for the
GDC and~trivially ! ADC formulations.

However, for both the standard GHS and the generali
GHS solution the validity of the EEP is undecided, as
equivalent to a coupling scheme to external sources has
been formulated. In the following we will therefore simp
assumethe EEP to hold also for the corresponding strin
inspired theory. This will allow us in the following to inter
pret the parametrized post-Newtonian~PPN! parameterm for
all solutions considered as the mass of the gravitatio
source.

B. PPN viability and experimental verifiability

However, the compatibility with the EEP is not sufficie
for the viability of a generalized theory of gravity, as it do
not refer to any particular solution. A framework to che
just this ~in particular, SSS solutions! is well known under
the name of parametrized post-Newtonian~PPN! approxima-
tion ~cf. Will @18#!. We will give in tabular form only the
resulting most important parameters massm, b, andg, and
compare them on the one hand with the corresponding

20This can also be justified with a ‘‘pure dust’’ model of matte
based on relativistic thermodynamics~paper in preparation!.
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rameters for thea251 GHS solutions~parametrized by
(M ,Q,f0),21 where Mªr 1/2, q2

ªr 1r 2 ,22 qªQe2f0),
both in theE frame and in theS frame, and on the other han
with the PPN parameters of the Reissner-Nordstro¨m metric,
also given in the same form23

ds252l2dt21l22dr21r 2dV2,

where l2
ª~12r 1 /r !~12r 2 /r !. ~46!

In this PPN approximation, the metric has the followin
‘‘isotropic’’ form:

ds252@122m/r 12~m/r !2 b#dt21~112m/r g!

3~dr21r 2dV2!. ~47!

Setting eªq/m, xªr 2 /r 1 and assumingm5” 0, r 15” 0,
we can collect the results in the Table I, where also
asymptotic behavior ofg is given fore→`. As for the elec-
tric GDC solutione is limited by e2<3/2, in this case an
asymptotic expression does not make sense. The metric
the GDC and ADC wormholes agree, so they share a c
mon table entry.

Before proceeding, let us observe that theS-frame GHS
‘‘cornucopion’’ solution, being degenerate (r 15r 2), has
vanishingPPN massm and so does not fit into the table (b
and g undefined!. This applies also to both the zero-ma
magnetic GDC and electric ADC solutions, wherer 150.

For heavenly bodies, where most empirical data com
from, we haveueu5uq/mu!1. Assumingr 1'm, we also
have xªr 2 /r 1[2/3 (q/r 1)2'e2(m/r 1)2!1, so all these
metrics areequally viable, havingb'g'1.

However, applied to charged elementary particles~where
up to now no PPN data seems to exist!, the correspondingg
show significant differences in their dependence on the ‘‘s
cific charge’’ ratio q/m. This is most pronounced for th
smooth SSS metric, whereg;e2. For the smooth electric
metric, taking the charge and mass of the electron, we ge
factor e2'1040, which is essentially the smallest of Dirac
big numbers.

21M is not necessarily to be identified with the PPN mass.
22Note that we have to rescaleF with 1/A2 in order to have

common conventions.
23Note that this form of the metric is only possible ifm2>q2, i.e.,

e2<1.
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This would lead for the electric ADC metric to significa
effects near the wormhole throatr'r 2'q2/m, which for
the electron is of the order of theclassical electron radius
r El'3310213 cm. For the magnetic GDC metric, this es
mate does change less than one order of magnitude, w
taking q5e/2a ~corresponding the Dirac’s charge quantiz
tion! and assuming the mass of the proton,m'1836me ,
giving a throat ‘‘radius’’ of about 8310213 cm. The energies
corresponding to these distances~a few MeV! would be well
within the reach of present-day experimental technology.

In comparison, for theS-frame GHS metric deviations
would appear only at distances~and corresponding energie!
of the order ofr'e, which is even one order of magnitud
smaller than the Planck lengthr Pl'2310233 cm.

Of course, magnetic monopoles have not been obse
~not even by their characteristic electromagnetic signatu!.
However, for the possible dilatonic effects of electrica
charged particles the situation looks more favorable. A re
istic estimate of the effects involved would have to take in
account a~not yet existing! quantum field theory adapted t
curved backgrounds with nontrivial topology.

C. Zero-mass solutions; boundedness of mass

From a formal geometric viewpoint, the classic
Reissner-Nordstro¨m family of metrics are equally meaning
ful for zero and even negative values of their mass par
eters; only the character of their everpresent singularitie
r 50 change to the worse. From a physical standpoint,
would like to be able to exclude such negative-mass s
tions. In the classical Einstein theory for isolated syste
and assuming suitable energy conditions, this has b
achieved only fairly recently~see references given in Wal
@9#!.

The boundedness of the mass,m>0, is, however, guar-
anteed by the families of charged SSS solutions descr
above, when insisting onsmoothness.

First, the particular solutions withr 150, r 2.0 have
smooth metrics withvanishing mass, m50. As the corre-
sponding chargeq necessarily vanishes, they arevacuum so-
lutions of GDC/ADC gravity.24

Now, let us assume negative massm, i.e., r 1,0. Then
we must necessarily also haver 2,0 if the solution is to be
charged. But then the transformationr °r(r ) to regular co-
ordinates fails to produce a metric locally regular atr(0),
regularity can also not be achieved by any other map.
main the uncharged possible solutions withm,0. This
means necessarilyr 250, but this is exactly the negative
mass Schwarzschild metric, which is well known to have
naked singularity.25 Therefore as claimed, for the family o
smooth SSS solutions there must be thelower mass bound
m>0, in order that the metric remains smooth. The non

24Closely related uncharged massless wormhole solutions h
been investigated very recently by Armenda´riz-Picón @16#, although
for a ‘‘ghostly’’ KG/dilaton scalar.

25The positive-mass Schwarzschild metrics would also be
cluded by smoothness.
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smooth SSS metrics can thus form5” 0 be characterized by
the two physically meaningful parametersm, q, wherem
.0, q5” 0, whereas the massless solutions (m50) are un-
charged (q50) and are uniquely characterized by their ‘‘sc
lar charge’’r 2>0.

Incidentally, the conserved total energy residing in t
Maxwell field can be straightforwardly calculated, givingE
53m for both types I and II andE5q2/m,3m for type III,
indicating that there is agravitational binding energyDgE
<2m, saturated for type I and II. Note that there is cons
tency in the sense that the vanishing of the massm corre-
sponds to the vanishing both of the chargeq and the Max-
well field F.

D. Energy conditions; repulsion

Due to fairly general theorems, in the context of classi
gravity ~e.g., Friedman, Schleich and Witt@19#, cf. also Vis-
ser’s monography@12#!, wormhole metrics like the smooth
SSS metrics would necessarily somewhere exhibit ‘‘exo
matter,’’ in the form of regions with negative energy dens
of the material source.26 The Maxwell stress tensorMik evi-
dently obeys automatically even the dominant energy con
tion ~DEC! and was used as the only material source in
system of field equations; moreover it was coupled in
‘‘orthodox’’ way ~up to a dilaton factor in the case of th
electric ADC solution! on the right-hand side of the field
equation. G2Q82Q95M , respectively G2Q81Q9
5e2fM . Therefore it can be said that our solutions donot
contain any exotic matter, their material sources obeying
DEC. This is also evident in theE frame, where the KG
stress tensor~adding to the Maxwell stress tensor multiplie
by the dilaton factor! obeys the DEC. In fact, the energ
tensor for our dilaton metrics does even obey the strong
ergy condition~SEC!, which plays a prominent role in the
singularity theorems of classical gravity.

So how does it come that there seems to be a ‘‘repuls
force’’ holding open the throat of the wormhole? This can
seen by invoking the Raychaudhuri identity for geodesi
First note that this identity cannot be applied directly in t
G frame, as the field equations involve extra geometric ter
besides the Einstein tensor. Mapping geodesics from thG
frame or from theA frame to theE frame ~where Einstein’s
equations formally hold! will result in additional nongeode

sic terms:uẆ 50→uẆ 51/2@(u•df) uW 1g21df#. Such terms
;df are also known from Nordstro¨m’s scalar theory
of gravitation ~a precursor of Einstein’s metric theory!.27

These additional terms also prevent the Raychaud
identity from being applied. For the smooth SSS metr
~and r .2m) they have a repulsive effect,g21df
51/2r 2 /r 2 (X1 /X2)1/2nr (nrªX1

1/2]r), which for type I

ve

-

26The few known ‘‘nonexotic’’ wormhole solutions of the classic
Maxwell-Einstein theory~e.g., Schein and Aichelburg@20#! in fact
break some of the standard assumptions, like having closed time
lines.

27For a short history of scalar-tensor theories of gravitation,
Brans@21#.
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and type III becomes unbounded at the former locus of
throat, where the metric is now singular. Therefore wh
interpreted in theE frame, test particles seem to be alwa
effectively repelledby the object ‘‘sitting’’ atr50. In con-
trast, being driven bye2f, the singular electric SSS GDC
solution would always appear to attract the test particle.

VI. CONCLUSIONS

With respect to the criteria mentioned in the Introductio
we have been able to show that among the class of Maxw
Einstein-dilaton Lagrangians there exist two essentially
ferent couplings allowing for well-behaved static spherica
symmetric solutions. However, only the GDC Lagrangi
admits a simple coupling scheme. Moreover, it has an im
diate geometric interpretation in terms of a volume manifo

When it comes to making a choice between alterna
Lagrangian-based theories of dilaton gravity, of course it
pends on the weight one is willing to give to the existence
well-behaved~i.e., smooth! solutions and to the generality o
MED Lagrangians. In the context of classical gravity, t
‘‘regularizing’’ nature of the GDC/ADC dilaton could be
welcomed as a ‘‘new degree of freedom’’ to tame some
the inherent divergences. The main obstacle is, however,
the ‘‘magnetic’’ nature of the geometric GDC solution
whereas for the ‘‘electric’’ ADC solutions, it is their lack o
geometric interpretation and the nonuniqueness of a co
sponding coupling scheme. There are no indications
more ‘‘sophisticated’’ Lagrangians could resolve this d
lemma.

The stability of the smooth wormhole solutions has n
been touched in our work, and constitutes the major o
issue. However, in view of the fulfillment of all the energ
conditions, the prospects seem to be promising.
D
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It would be also be highly desirable to have generalsta-
tionary spherically symmetric GDC/ADC solutions. Som
basic questions in this context: are there still smooth char
wormhole solutions? Do nontrivial geometric vacuum so
tions again exist? Does the ‘‘magnetic-electric dilemma’’ s
persist? Can stability be proven to hold in a general sen

A satisfactory answer to these questions would of cou
challenge the role of classical relativity and the correspo
ing ~nondilatonic! black holes.

Applications to the different setting of cosmology wou
be particularly interesting: there is the possibility that t
dilaton could again act repulsively, thus contributing to t
observed accelerated cosmic expansion.

The diverse global spacetime models derivable from
basic extensions described here could also serve as ‘‘s
boxes’’ to develop and test some other fundamental theo
in situations where the two-dimensional formulations are
limited to be realistic.
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