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Geometric dilaton gravity and smooth charged wormholes
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A particular type of coupling of the dilaton field to the metric is shown to admit a simple geometric
interpretation in terms of a volume element density independent from the metric. For dimersibriwo
families of either magnetically or electrically charged static spherically symmetric solutions to the correspond-
ing Maxwell-Einstein-dilaton field equations are derived. Whereas the metrics of the “magnetic” spacetimes
are smooth, asymptotically flat, and have the topology of a wormhole, the “electric” metrics behave similarly
as the singular and geodesically incomplete classical Reissner-Nondstetrics. At the price of losing the
simple geometric interpretation, a closely related “alternative” dilaton coupling can nevertheless be defined,
admitting as solutions smooth “electric” metrics.
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[. INTRODUCTION tions closely related to Einstein’s are a necessary conse-
quence.

Einstein’s classical theory of gravity, based on a metric, Our aim is to show that already on a classical level, by
has so far passed all experimental tests concerning the mproperly including the dilaton scalar, some of the singularity
tion of bodies or the deflection of light, with ever increasing problems can be avoided. Firmly based on standard differen-
precision(cf. Will [1]). But there are some disturbing limi- tial geometry and only loosely inspired by the dilaton scalar
tations of a more formal nature, such as generic singularitie)f string theory, we formulate a theory of dilaton gravity. As
when not allowing “exotic matter.” This is most evident in criteria for the soundness of our approach, both the formula-
the gravitational collapse of stars and in the early phases dfon of a minimal coupling scheme and the existence of non-
the Universe, notably at the “big bang singularity.” In fact, it trivial geodesically complete and asymptotically flat solu-
seems that we have come to live with this unsatisfactoryions of the corresponding field equations are taken.
situation as a necessary consequence of a classical descrip-"Ve Will proceed as follows. In Sec. Il a particular form of
tion. These problems can be attributed either to Einstein'd"® coupling of a scalar field (called “dilaton”) to the

theory itself or to the inadequacy of the matter model usedMetric ensog; of a spacetime is proposed, which admits a
ﬁtralghtforward and unique geometric interpretation in terms

f an independentolume element densiti dilatonic cou-
ling scheme is formulated in order to accomodate additional

nongeometric fields. In Sec. lll, the field equations corre-

some other “pathologies” are accepted, such as exotic mattegponding to a Maxwell-Einstein-dilaton Lagrangian are de-
or closed timelike lines. In the other case, for example, th ived, where also their “Einstein form” is given. In Sec. IV a

apparent accelerating cosmic expansion has led 0 a genglyiiy of magnetically charged static spherically symmetric
alization involving a “variable cosmological constantt solutions is derived, closely related to the well-known
(“quintessence,” 'k essence]. Previously, a generalization «string-inspired” charged black hole solutions of Garfinkle,
based on a “variable gravitational consta@’has been con-  Horowitz, and Stroming€i2]. These metrics are shown to be
sidered, well known as Brans-Dicke theory. Also, in order forgeodesically completén fact, smooth and asymptotically
inflation to work, some specific modifications must be madeflat, each of them containing wormhole with no exotic
In all these generalizations, an additional real scalar fieldmatter being involved. The corresponding family of electri-
serving the particular purpose, plays a fundamental role. Exeally charged solutions consist of singular metrics which
cept in exceptional cases, the singularity problem remains. lhave either an event horizon or exhibit a naked singularity.
is, however, generally expected that a future reconciliation oAn “alternative” nongeometric coupling is shown to be,
gravity and quantum theory will lead to a unique theoryhowever, possible, admitting a family of smooth electrically
without the above mentioned problems. Attempts in this di-charged solutions. In Sec. V, for the proposed geometric cou-
rection can be seen in the currently extensively studiegling the equivalence principle is shown to be fulfilled, in the
“string-inspired cosmologies,” which are based on some lowsense that uncharged point particles still move on geodesics.
energy limit of string theory and an appropriate reduction toln order to derive expressions for the mass and some other
dimensionn=4. There a scalar field multiplyinas an ex-  significant parameters, the parametrized post-Newtonian ap-
ponential the Ricci scalar and/or the metric plays a promi- proximation is invoked. In terms of the basic parameters
nent role, which is interpreted physically as the dilaton field.8, and y, it is shown that the derived solutions must be
A big advantage of these approaches is the fact that equaensidered as viable with respect to present-day astronomical
empirical data. For the realm of elementary particles, it is
shown that for the smooth magnetic and electric wormhole
*Electronic address: wolfgang.graf@ap.univie.ac.at solutions, significant effects could be expected at distances

feature (somewhat attenuated by the expectation that the
will in general be hidden behind an event horizoanless
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of roughly the order of the classical electron radius. For thas thus mapped to an(- p)-form densityxF. As this map is
wormhole solutions it is shown that their mass parameter hasne-to-one, it can be inverted to map-éorm H density to a
zero as a lower bound. Also an explanation of the “repul-plain (n— p)-form =~ *H. Unfortunately, the nomenclature
sive” character of the dilaton involved in the wormhole so- of the two different types of differential forms is far from
lutions is given. The concluding Sec. VI formulates the mainstandardand so we will adhere to de Rhdu], denoting the
conclusions and points to some important open questions. forms we called “plain” with even typeand the “form den-
sities” with forms of odd type
Il. GEOMETRIC DILATON COUPLING Consequently, we now define the generalized Hodge dual

A. Volume geometry: Hodge duality of any formF (even or odgias

As is well-known(cf., e.g., Abraham, Marsden, and Ratiu *F, F even,
[3] for the closely related concept ofvmlume manifolyl a *F= «'F  E odd (2
volume element densitf ED) is geometrically a nondegen- ' '
erate  smoothn-form density volume, that is, under Thjs definition makes the duality operator trivially idempo-
orientation-preserving coordinate transformations it behave{%nt, RE—F 4
as a conventionah form, whereas under orientation rever-

sion it gets an extra factor 1. Such a VED already allows __ «F 55 theunique isomorphisnfrom the vector space of

one to inva_riantly express the divergence diwof a vector even(odd p forms to the “dual” vector space of odgven
field v as(div v) vol:=d(v - vol), where the dot denotes the (n—p) forms, whose restriction to even forms gives
contraction of a differential form by a vector field. This defi-

nition is well known in Hamiltonian mechanics, where it FA*G=(F,G) vol, F,G even. (3)

plays a major role. Also the Gauss integral theorem can al-

ready be formulated. Note that no metric has been involvedHere the round bracket denotes the scalar product of forms

so far. based on the Riemann metric. As a consequence, we have for
It makes sense to speak of a “positive” VED, and odd forms the corresponding relation

any two such VEDs differ only by a positive function.

Assuming that we also have a nondegenerate mejfic *FAG=(*F,*G) vol, F,G odd. 4)

we can therefore always write for a general VED, vol

= |g|*2e?dx!/\---Adx", where we have conveniently Based on the Hodge duality for differential forms, the opera-

set A=e®, with some scalar functiors.® This functional tors for thedivergences and theLaplacianA for differential

form ensures positivity of\, when ¢ is continuous. Of forms can now be defined a8:=*d* and A:=dé+ 4d,

course we could also have chosen any other smooth mon@¢hered denotes the operator ekterior derivative which is

tone positive function ofg, but this would not introduce Vvalid for forms of any even/odd type.

Alternatively, we could also define the Hodge dualty

anything new, as effectively only the “dilaton facto? Why this insistence on differential forms? The main rea-
matters. The scalar fielp thus represents amssentially son is that the Lagrangian scalar density is geometrically
unigue new geometrical degree of freedom more properly understood as an odd form of maximal degree

Its occurrence in the form of the facte® strongly re- N, the energy momentum tensor being a covector-valued odd
minds one of the dilaton factor appearing in the reducedn—1) form. Of course, the electromagnetic Maxwell field,
Lagrangians for the low energy limit of string theory to be extensively used later together with its Hodge dual, is
(LELST).2 to be understood as an even 2 form. Also we need the diver-

For a volume manifold with a nondegenerate metric, thegence of a vector field and of a two form, as well as the
notion of theHodge dualof a differential form has to be Laplacian of a scalar field.
sligthly generalized. Recall that the duaF of a plain
p-form F is the result of the following construction, given B. General dilaton coupling

with respect to some coordinate basis: . . . . .
P Be it from a five-dimensional Klein-Kaluz&KK) reduc-

Fi _>Fjl"'jp::giljj...gipijil_”i —xF tion, or from a LELST compactified ton=4, the
p p

Jps1 i . .
prin Lagrangians have the generic fétm
.=vol. .. N = ERR
"VOlJr"lpJpH“'lnFl p
E|g|llze¢ejl...,—pjp+1...jnFj1"'jp, (1) 3also the following designations are common: pseudoforms,
) ) twisted forms, Weyl tensors, and oriented tensors.
wheree denotes the permutation symbol. The plgiform F “Note that when distinguishing even and odd type forefsgoes

not make sense.
5The more precise definition of by de Rham introduces an extra
As is common practice in the physics literature, we will denotefactor — 1, depending on the dimensionality of the manifold and the
the corresponding coefficient of tmform dx*/\- - - Adx" as “sca-  signature of the metric.

lar density,” e.g., the Lagrangiad. SWe use the conventions of Misner, Thorne, and WhegTér
2Although there the equivalent facter 2¢ seems to be more throughout, the squares denoting the conventional metric scalar
natural. product.
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L£L=|g|"?e**[R—B(V ¢)>—e??F?]. (5) Although the causal structure is not altered as long &s
continuous$ some basic metric-based relatiofesg., length
The constant parametesis 3, andy depend on the particu- and “straightness) are not. For the physical interpretation
lar higher-dimensional base theory and the chosen reductiotherefore some conformal frame has to be taken as the fun-
Of course, from a LELST many more scalar fields and anti-damental one, characterized by a particular form of the La-
symmetric tensor fields of different degreémoduli” ) will grangian density. This will depend on the particular coupling
appear, but we keep only the dilaton scajaand a rank-2 to other fields, in particular, to point masses. However for
antisymmetric tensor fieldF, later to be interpreted as the “string-inspired” dilaton theories most authors agree that an
Maxwell field two form’ R denotes the omnipresent Rie- Einstein frame should be taken, primarily justified by the
mann curvature scalar of general relativity. We will refer to availability of the familiar interpretatory apparatus of the
this class of Lagrangians as Maxwell-Einstein-dilatonclassical Einstein gravity.
(MED) Lagrangians.
Often, more general Lagrangians are studied, containin@. Geometric dilatonic coupling and minimal coupling scheme
free functions(cf. Esposito-Farge and PolarsKi5], and ref- . . . .
O Let us now introduce a particularly simple coupling, char-
erences therejnbut our choice is already general enough to cterized by the parametets=1, =0, y=0. Evidentl
cover the most important applications as special cases. fh dilat y i pth ’d' MED L Nty
particular, the class of Bergmann-Wagoner Lagrangians ex- € diiaton enters the corresponding agrangian in a

tensively studied for about 30 years by Bronnit I (cf mode which can be interpreted geometrically in terms of a
[6]) should be mentioned, having the general .fonﬁw general metric-based volume element density, as previously

- . . , described. The Lagrangian simply becomes |g|*?e? (R
=[g|"2[f(¢)R+h(9)(V)>—F2?] (in particular, withh — ~ > _ S |0
=1 andf=1—¢¢?, whereé is a constant paramejerAl- F<). Let us call such a coupling geometric dilaton cou-

though diverse charged wormhole solutions have been o F!\r;r?e(éDf?r ? nedortrr::tri%c,),;respond|ng conformal frameGa
tained, they all violate some of the energy conditions. Note The articmﬂarl sim Ié form of the GDC suagests the
that the class of MED Lagrangians considered in our workfol P Y P 99

essentially differs from Bronnikov’s class, which completely lowing minima! geometric dilatonic coupling_ SChem?
excludes “string-inspired” Lagrangians. (MGDCY9): assuming we have already a Lagrangian density

As convenient for dimensionally reduced Lagrangians,w'thom dilaton and satisfying the prerequisites of general

L o covariance,Ly=|g|*2L, we get a GDC by just correcting
the relativistic gravitational constart (as well as any factor . |
1/2) is assumed to be absorbed ifito For example, the KK any occurence of the Riemann volume element deigity”

. &. - b—_ | |12k
reduction leads toe=1, =0, y=2, whereas a typical by the dilaton factoe®: L:=L,e?=|g|™e?L, evenwhen

X . it explicitly occurs insideL.
LELST reduction hasy=—2, 8= —4, y=0. With a scalar : - . .
defined by®:=e®, we can also deduce the scalar-tensor Taking the standard Maxwell-Einstein Lagrangian as the

Brans-Dicke Lagrangian from this form, with parametears prototypical e>§ample, we get as a result of the MGDCS the
=1, B=w+3/2, y=—1. Similarly, for 3=3 we get a con- GDC Lagrangian:

formal scalar coupling. MGCDS: £=|g|*?(R—1/2F?)—L
However, all these MED Lagrangians can be transformed i 5
a moduloa trivial divergence by a Weyl conformal transfor- =|g|*?e? (R—1/2F?). (7)

mation g/, = g ¢ into a so-callecEinstein frame charac- . . . : .
terized bya'=0. For dimensiom=4, this results ing’ Similarly, a massive point particle could also be incorpo-

— B+3/202,y' = y+a. In such a frame, formally the con- rated, to giveL=|g|"?e?R—m(x*)?5;, where the Dirac
ventional Einstein Lagrangian is obtained, with a masslesg€lta distribution is supported by the world-lifne of the
Klein-Gordon (KG) field ¢ and a Maxwell fieldF gravita- ~ Particle, given byT: 7—x'(7). Note that the mass term does
tionally coupled with an effective coupling “constant” not acquire a dilaton factor, as it does not contain the factor
el®™¢ The scalar fieldp is ghost-free, i.e.nonexotic if |detg| "2,
and only if 3'=0.

More generally, for any dimensiam a dilaton-based con- ll. GDC FIELD EQUATIONS

formal transformation of the metrig!’k=gike"¢ (A a con- The field equations derived from the geometrically
stant parameter leads to the following transformation be- coupled Maxwell-Einstein-dilaton Lagrangian £

havior of the parameters of the MED Lagrangian density: _ |g|1’2ed’ (R—1/2F?) are,upto a factofg|1/2e¢,
a—a'=a—N\, Gik_0'2®i/k_0'®i,i<:Mik’ (8)
p—B'=B+(n-1)(n-2)/4(a*~a'd), () R=1/2F?, ©
Yy = A, 0=divF, (10

"Sometimes “potential” term¥(¢) also appear or are introduced  ®Which is, however, not in general the case.
“by hand.” SCompare, e.g., Gasperini and Venezi&éb
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where Unfortunately, in Eq.(17) the KG term® does not couple
s 5 with the same factok as the constant factor of thé term,
Mi:=FirFis @ — 4F~ gy, 1D thus making a conventional interpretation in terms of a
" ) “variable effective gravitational coupling constank’:=e?
ik=ViVkd— V¢ gix, (12 somewhat problematic.
. ’ The merit of theE frame formulation lies, however, in the
Oi:=VipVid— (V)" gic, (13 fact that for this most frequently used frame, some solutions
to slightly more general couplings are already known. We

and will in the following take advantage of this.

o:=(n—2)/2. (14)
IV. STATIC SPHERICALLY SYMMETRIC SOLUTIONS
Here divF denotes the dilaton-generalized divergence of a 2 i _
form, which in a coordinate base can also be written as A. Smooth GDC solutions of magnetic type

In the following, we will deal exclusively with the case

i / G N

(divF)':=|g|~"2e”?;(|g|"?e? F1)=V/F+ ¢;F . n=4 (oc=1). The MED field equations in thE frame then
(15) reduce to

Also we have assumed th& has a gauge potentiak o CANM. 21

=dA, with respect to which the corresponding variation is Gix=3/20i A Mg, @D

performed. Combining Eq9) with the trace of Eq(8) and V2¢=1/6\ F2 (22)

assumingn=2, we get an explicidilaton equationfor & ’

—@0d "

=79, Vi (A F)=0. (23

V20 —-1/(n—1)R®=0. (16)

We want to obtain static spherically symmet(8SS solu-

tions to the GDC field equations. This is most easily done

Remarks staying in thek frame, where SSS solutions to slightly more
general equations, depending on an extra paranagteave
been found by Garfinkle, Horowitz, and Stromingjt]

3 (GHS).*2 They start from the following Lagrangian density:

(i) Neither the dilaton scalap nor the dilaton factoe?
do explicitly appear in the primary field equatiof@®—(10),
except through their derivatives, this invisibility of the “e
fective gravitational coupling constan&? underlines the £=|g|"2[R—2(V ¢)2—1/2e~ %3¢ F2] (24)
geometric character of the theory. '

(i) The dilaton scalar doasot couple to the tracéwhich  yhere we trivially rescaled theiF with a factor 142 in
here vanishes fon=4) of the energy momentum tensor as grder to have a closer correspondence with the classical
in the Brans-Dicke theory, but to the independent scBfar  pjaxwell field. Our G-frame Lagrangian can evidently be

(iii) The tensor®’ has almost the form of the energy conformally mapped to the GHS Lagrangian with the par-
momentum tensor for a massless Klein-Gordon field, exceptcjar choice of the parameter= = 1/\/3.
for a factor—1 instead of—1/2. _ _ Their general “magnetic-type” solution can then be writ-

(iv) The dilaton equation is purely geometric, as it doesig, 543
not contain the Maxwell field; for dimensian=6 it reduces

to the conformal wave equatidf V2d —1/5R ®=0. ds?= —\2dt?+\ ~2dr?2+ R2dO?, (25)
Transformed to arE frame (and asssuming=2), these

field equations can, however, be reduced to the more familiar 2,_ (1-a?)/(1+a?)

. k A= X XY , (26)

looking locally equivalent form'd
2a?%/ 2

Gy=(N—1)120 O+ A My, (17) RZ=r2x 20, (27)

o V2p=1/2n—1) \ F2, (189) e 280 x2al(1+a%) 28)

V.(AF)=0. (19) F=F,:=qsin0dé/\de, (29)

Here\:=e?, and® is the Klein-Gordon energy momentum where
tensor,
Xy=1—r /r, X_:=1-r_]Ir. (30
Oik:=V,p%d—1/2(V $)? gi - (20

2In the context of a broader framework, equivalent solutions have
ONote that theR factor is dimension-dependertf. Wald [9], been found earlier by Gibbons and Madd#)] (see also Horowitz

Appendix D. [11], relating these solutions to the GHS solujion
ror notational reasons, we do not differentiate betweenGhe  ¥In accordance with the notation of GHS andR here refer only
frameg;, and theE frameg;,:=e? g . to Eq. (25).
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The parametersg,r, ,r_ are, however, restricted By
g?=2r,r_/(1+a?). (31)

Mapping thea?=1/3 GHS solution back to thé frame, we
then get the following “magnetic” family of solutions:

ds?=— X, dt?+ (X, X_) " Ldr2+r2dQ? (32)

e?=X¥2 F=F,=qsin6dé/\de, (33

where

q2:=3/2r,r_. (34)
TypeL:r_>r; >0 TypeIl: r. =71, >0 TypeIIL: . >r_ >0
(¢*> > 6m? >0, and (¢*=6m?>0) 0<g®<6m?)

However, in these coordinates the metrio regular atr G=m=0, 1 >0)

=r_, and the dilaton scalar does not even exist for
<r_. Introducing a new coordinatg (solution of dp/dr FIG. 1. Carter-Penrose diagrams for the extended wormhole
=g x:1/2) by means of metrics. Thick lines: null infinity, thin lines: event horizon, dashed
lines: wormhole throat, circles=,i°.
p(N)=sr - (EYHE-1) P2+ IN(EP+(E-1)M),  E=rlr_,
(35 The Carter-Penros€€P) diagrams corresponding to these
extensions fall into the three distinct types L:>r . =0, Il
removes these drawbacks. The parametert 1 character- r_=r,>0, lll: r,>r_>0, and are shown in Fig. (where
izes the twop branches joined =0 and mapping to the \ye also used the more physical characterization by means of
single r range r=r_>0. The inverse functiorr(p) is  chargeq versus mass, to be justified later Depending on
smooth inp. In these new cordinategvhich now properly  the type of the solution, the throat of the wormholdiise-
include the locus =r_, respectivelyp=0), the resulting jike for type I, null for type Il (coinciding with the event
metric horizon, andspacelikefor type lIl.
— 2 w14 2, .2 2
ds’= ~X X Tdp T (p)dQ (36) B. Gauge potential for the magnetic GDC solution
is nondegenerate and can be shown to besmoothin a Although the question of an appropriate gauge potential is
neighborhood ofp=0 which does not includg=p(r.)."®  most often ignoredbeing trivial in the “electric” casg we
Also, e? becomes smooth there, and the expression for theiill now exhibit a smooth potential in the sense of a
Maxwell field F,, remains unchange@nd smooth U(1)-gauge theory. The existence of such a potential makes
As the metric is symmetric undgr— —p, and there is the smooth SSS solution complete. Consident{ie)-valued
now always a two sphere with minimal ar@a=47r? [cor-  (i.e., purely imaginary
responding to a “radiust(0)=r _], the geometric interpre- ~
tation is that of avormholewith throat atp=0. This notion A.:=—in/2(cosd+1)de, (37)
of wormhole, based on lacal reflection symmetryis, how- _ )
ever, different and more general than the usual one, whicwhere the upper sign refers to the upper hemisplister
only allows wormholes withtimelike throats (e.g., Visser ~and the lower sign to the lower hemisphere:0. Evidently,
[12], compare also Hayward 3]). F:=dA=in/2 sindd¥/\de. The transition function for the
If r=r_ the locusr=r, can be shown to be egular  potential in the overlap of the two hemispheres is given by
event horizor(even in the “degenerate” case.=r_), and S:=e'"¥: A, =A_+S 1dS For consistencyne N must
the metric can be smoothly extended through it by standartiold (cf. Gockeler and Scheker[14] for more details Re-
procedures(e.g., by using Eddington-Finkelstein coordi- verting to the corresponding real fielid :=F, this amounts
nateg. Forr ., <r_ there is no black hole and the complete to q=n/2. Taking properly into account the terms appearing
metric can be expressed in the single coordinate chart givej the “gauge derivative” for an electrically charged particle
above. The wormhole tOpOIOg@COﬂnecting universes with in the field of a magnetic monopo|§,: J+ielh A, we ob-
their own asymptotic regiofss common to all metrics of tain Dirac’s quantization condition: p4i=n/2. For n=1
this family and can in this sense be consideredjeseric  gn(g p=e the minimal magnetic charge ig=1/2el%
among the class of SSS solutions. ~68.%, giving the factor @¢/e)?’~4.7x10° needed in
Sec. V.

YDespite the suggestive notation, it i®t required thatr .

=r_ .

C. Singular GDC solutions of electric type

Except for the usual easily removable degeneracy at tids. As already shown by Garfinkle, Horowitz, and
Note the close similarity of the form of this metric with Strominger [2], from a magnetically charged solution
Schwarzschild’s, to which it reduces for =0. (9,9,F) of their E frame field equations, an electrically
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charged one can formally be obtained by taking, ( appearance of dilaton factors the essential change is a sign
—¢,*F), where *F is the (generalizefiHodge dual ofF.}”  reversal in the dilaton equation.
But then, the transformation back to tkeframe inevitably This shows that smooth electric wormhole solutions are
leads to a metric immanently degenerate atr possible when sacrificing the geometrical interpretation.
Their metrics agree with those of the smooth GDC worm-
ds’=X_(—X.dt?+ X 'dp®+r%(p)d0Q?), (38  holes. The coupling is again ghost-free and the material part

still obeys the energy conditions. Among the class of MED

which is the image of the degenerate conformal mapping 5qrangians considererd, it is the only Lagrangian with
with factor X of the smooth “magnetic” metric considered gmnoth SSS solutions.

before:® Dilaton factor and Maxwell field are given by An “alternative” coupling scheme, involving arbitrary

b_—12 —F .—p/r2 x12 nongeometrical fields, could, however, be formulated tenta-
ef=X_TF, F=Fe=p/rmXTdp/\dt, (39 tively as follows: (i) apply the standard GDC schem@,

wherep?=3/2r ,r_. A gauge potential foF is denote the map from thé frame to thek frame by¢, and
(iii) define the “alternate’A frame (and corresponding La-
Ag:=ep/r_ X_ dt. (40 grangian as the image of th& frame under the mag?.

When including point masses, such a coupling scheme

Note that no charge quantization is involved and tha@n-  would lead to nongeodesic behavior for their trajectofses
ishes at the singularity of the metrig=0 (r=r_), in fact,  Sec. \J. This could be considered as a drawback. But the
both F and its potential are smooth there. main objection against this coupling is of course that it has

If r.>r_andr,>0, the locus =r, is a regular event peen deliberately constructed so as to possess smooth elec-
horizon, hiding the spacelike singularity. For the “degener-trically charged SSS solutions, and also its lack of any direct
ate” caser . =r _, there is still a horizon, but the singularity geometric interpretation.
becomes timelike. For . <r_, the singularity is timelike
and even naked. The corresponding CP diagrams agree with
those of the Reissner-Nordstnofamily of solutions, except E. Comparison with other SSS solutions
for the caser,.>r_, where the diagram agrees with

Schwarzschild's, which has a spacelike singularity, As already noted by Garfinkle, Horowitz, and Strominger,

all the nontrivialE-frame metrics of the GHS family of so-
, . . lutions are either geodesically incomplete and/or singular,
D. Alternative dilaton coupling with the exception of the “cornucopion” metric, which is an
A closer look at the general GHS solution reveals thatextreme solution for=1 interpreted in the string frame.
only the choicea?=1/3 allows one to remove the offending ~ To my knowledge all other static spherically symmetric
commonX_ factor from the SSS metric by an appropriate solutions directly or indirectly related to Maxwell-Einstein-
conformal transformation. This again is given by the samedilaton gravity violate some of the energy conditions, and
factore 22¢, as from theG frame to theE frame, resulting Mmust be considered as classically “unphysical. Therefore

in the “alternative” dilaton coupling ADC) Lagrangian we will not dicuss them here.
Unfortunately, general enough existence or no-go theo-
£=|g|"*(e”?R-1/2e? F?). (41)  rems do not yet exist, save for particular couplings and the

) ) ) ) ) corresponding conformal frames. For example, for the
Evidently, itcannotdirectly be interpreted in terms of a vol- ¢josely related vacuum Brans-Dicke theory, it has been
ume manifold and corresponding coupling scheme. The fieldhown py Nandi, Bhattacharjee, Alam, and EvabS] that
equations corresponding to this alternative Lagrangian ar@ile in the Jordan frame there do exist wormhole-solutions
then for the (unphysical range —3/2<w< —4/3 of the BD pa-
rameter, which are, however, plagued by “badly diseased”

-0 +0" =M.
Gik= O+ Ojc=e"" Mg, (42 naked singularities, in th& frame there do not exist such
_ 26 =2 solutions at all, unless energy-violating regions are deliber-
R 1/2e*"F%, (43 ately introduced.
0=div (e2¢F), (44) However, we must admit that while our GDC/ADC

wormhole solutions are smooth as regards metric, volume
with the corresponding dilaton equation derived from them,&lément densityi.e., dilaton factore?, respectivelye ¢): _
and gauge potentials, they are not, when instead considering
O¢p=—1/6e>? F2. (45  the dilaton scalaw itself, which diverges to— (respec-
tively +o0) at the throat of the wormhole. Although this
Here the divergence and the Laplacian are defined based orpases no problem for the smoothness of the corresponding
volume element densitjg|?e~¢. Except for the manifest

9N fact, Bronnikov's wormhole solutions turn out to be highly
1A manifestation of the “weak/strong coupling duality” of string unstable(cf. [6]). This is also the case for the recently found
theory. “ghostly” massless wormhole solution of ArmeniaPicon [16],
Note thatX_ is non-negative, considered as a functiorpof as discussed by Shinkai and Haywatd].
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TABLE |. PPN parameters for charged static spherically symmetric metrics.

2m B y v asymptotics
GDC/magnetic
ADCl/electric r. 1+1/6 €2 1+1/6 € O(€?)
GDClelectric ro+r_ 1+1/3¢? (1+x)°1t n. a.
GHSIE frame r. 1+1/4 €2 1 0O(€%
GHS/S frame ro—r_ 1 (1+x)/(1—x) O(€')
Reissner-Nordstro re+r_ 1-1/2€ 1 0O(€%

dilaton factors(which just smoothly vanish thexethe geo- rameters for thea?=1 GHS solutions(parametrized by
metric interpretation in terms of a corresponding nondegen(M,Q, ¢,),%* where M:=r /2, g?:=r .r_,?? q:=Qe™ %),
erate volume element density cannot anymore be strictlypoth in theE frame and in thesSframe, and on the other hand
maintained, as it is not manifestly positive. This must in factwith the PPN parameters of the Reissner-Norastroetric,
be considered a flaw, albeit not a serious one, as the physicalso given in the same fofth
interpretation does not suffer.
ds?=—\2dt?+ N "2dr2+r2dQ?,
V. INTERPRETATION
o _ o where N2:=(1—r /r)(1—r_]r). (46)
A. GDC/ADC and Einstein’s equivalence principle

Let us emphasize that the GDC theory presented here i this PPN approximation, the metric has the following
still a metric theory, in the sense that massive point sourcesisotropic” form:
move on timelikegeodesic®f the metric, when expressed in
a G frame. This can be most easily seen by noting that the ~ ds?=—[1—2m/r+2(m/r)? g]dt>+ (1+2m/r y)
volume integral over the GDC Lagrangian for a point par- 2. 24m2
ticle effectively splits into the volume integral over the “geo- X(dre+r7dQs). (47)
metric” part of the Lagrangian plus a conventional line inte-

42\ 1/2 H Fati
gral m/ (x")™*dr, which by variation of the arc length then we can collect the results in the Table |, where also the

leads to the standard geodesic equatfon. asymptotic behavior of is given fore—o. As for the elec-
As the alternative coupling scheme seems to be too arti- ymp 9 ; '

. B . . . 2 . .
ficial to be really believed, we introduce the point particle "¢ GDC solutione is limited by e°<3/2, in this case an
term “by hand” into theA frame Lagrangian. Therefore Ein- asymptotic expression does not make sense. The metrics for

stein’s equivalence principléEEP is satisfied both for the the GDC and ADC wormholes agree, so they share a com-

GDC and(trivially) ADC formulations. mon table entry. .

However, for both the standard GHS and the generalizeg Before proﬂceedm_g, let us observe that &ﬁ_fame GHS
GHS solution the validity of the EEP is undecided, as an cornucopion solution, being degenergtq A=r-), has
equivalent to a coupling scheme to external sources has ngfmlshmgPP.N massn and SO does not fit into the tablg (
been formulated. In the following we will therefore simply and y undefined This applies also to both the zero-mass

assumethe EEP to hold also for the corresponding string-rnagnetr']C GDCl arl;d de_lectrlchADC SOIl:t'onS’.WhT[g:to'
inspired theory. This will allow us in the following to inter- ¢ or eerl]veny _O |/es, Wleri most empltlca a alcomes
pret the parametrized post-Newtoni@PN parametemfor ~ [T0M, we have|e[=|g/m|<1. Assumingr,~m, we also

= - 2.2 2.
all solutions considered as the mass of the gravitationdf@veX:=r-/r.=2/3(q/r.)"~e*(m/r,)°<1, so all these
source. metrics areequally viable having g~ y~1.

However, applied to charged elementary parti¢lebere
up to now no PPN data seems to ekisiie corresponding
show significant differences in their dependence on the “spe-
However, the compatibility with the EEP is not sufficient cific charge” ratio g/m. This is most pronounced for the
for the viability of a generalized theory of gravity, as it does smooth SSS metric, wherg~ 2. For the smooth electric
not refer to any particular solution. A framework to check metric, taking the charge and mass of the electron, we get the
just this (in particular, SSS solutiongs well known under  factor €2~ 10°°, which is essentially the smallest of Dirac’s
the name of parametrized post-Newton{@®PN approxima-  big numbers.
tion (cf. Will [18]). We will give in tabular form only the
resulting most important parameters mags3, andy, and
compare them on the one hand with the corresponding pa-2ly is not necessarily to be identified with the PPN mass.
22Note that we have to rescale with 1/y2 in order to have
common conventions.
20This can also be justified with a “pure dust” model of matter, 2Note that this form of the metric is only possiblenif=q?, i.e.,
based on relativistic thermodynamigsaper in preparation e<1.

Setting e:=q/m, x:=r_/r, and assumingn+0, r,+0,

B. PPN viability and experimental verifiability
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This would lead for the electric ADC metric to significant
effects near the wormhole throatsr _~q?/m, which for
the electron is of the order of thdassical electron radius
re;~3x10 3 cm. For the magnetic GDC metric, this esti-

PHYSICAL REVIEW D67, 024002 (2003

smooth SSS metrics can thus for: 0 be characterized by
the two physically meaningful parametears g, wherem
>0, g#0, whereas the massless solutions=0) are un-
charged =0) and are uniquely characterized by their “sca-

mate does change less than one order of magnitude, wheg charge”r _=0.

taking g=e/2« (corresponding the Dirac’s charge quantiza-
tion) and assuming the mass of the protons1836m,,
giving a throat “radius” of about & 10~ cm. The energies
corresponding to these distandasew MeV) would be well
within the reach of present-day experimental technology.

In comparison, for theSframe GHS metric deviations
would appear only at distancésnd corresponding energjes
of the order ofr ~e, which is even one order of magnitude
smaller than the Planck length,~2x 103 cm.

Of course, magnetic monopoles have not been observed

(not even by their characteristic electromagnetic signature
However, for the possible dilatonic effects of electrically
charged particles the situation looks more favorable. A real

Incidentally, the conserved total energy residing in the
Maxwell field can be straightforwardly calculated, givigg
=3m for both types | and Il andE = g%/m<3m for type Ill,
indicating that there is gravitational binding energy\ jE
<2m, saturated for type | and Il. Note that there is consis-
tency in the sense that the vanishing of the nrassorre-
sponds to the vanishing both of the chamgand the Max-
well field F.

D. Energy conditions; repulsion

Due to fairly general theorems, in the context of classical
gravity (e.g., Friedman, Schleich and Wtt9], cf. also Vis-

istic estimate of the effects involved would have to take intoser’s monography12]), wormhole metrics like the smooth

account anot yet existing quantum field theory adapted to
curved backgrounds with nontrivial topology.

C. Zero-mass solutions; boundedness of mass

From a formal geometric viewpoint, the classical
Reissner-Nordstrm family of metrics are equally meaning-

SSS metrics would necessarily somewhere exhibit “exotic
matter,” in the form of regions with negative energy density
of the material sourc® The Maxwell stress tensv,, evi-
dently obeys automatically even the dominant energy condi-
tion (DEC) and was used as the only material source in our
system of field equations; moreover it was coupled in the
“orthodox” way (up to a dilaton factor in the case of the

ful for zero and even negative values of their mass paramglectric ADC solution on the right-hand side of the field

eters: only the character of their everpresent singularities &duation. G—0'-0"=M,

r=0 change to the worse. From a physical standpoint, on

respectively G—0'+0"

& e?”’M. Therefore it can be said that our solutions riat

would like to be able to exclude such negative-mass solycontain any exotic matter, their material sources obeying the
tions. In the classical Einstein theory for isolated systemsPEC. This is also evident in th& frame, where the KG
and assuming suitable energy conditions, this has beetiress tensofadding to the Maxwell stress tensor multiplied

achieved only fairly recentlysee references given in Wald

[9D).

The boundedness of the mass=0, is, however, guar-

by the dilaton factor obeys the DEC. In fact, the energy
tensor for our dilaton metrics does even obey the strong en-
ergy condition(SEQ, which plays a prominent role in the

anteed by the families of charged SSS solutions describedngularity theorems of classical gravity.

above, when insisting osmoothness

First, the particular solutions with, =0, r _>0 have
smooth metrics withvanishing massm=0. As the corre-
sponding chargg necessarily vanishes, they argcuum so-
lutions of GDC/ADC gravity**

Now, let us assume negative massi.e., r,<0. Then
we must necessarily also hawve<0 if the solution is to be
charged. But then the transformatior>p(r) to regular co-
ordinates fails to produce a metric locally regularpé0),

So how does it come that there seems to be a “repulsive
force” holding open the throat of the wormhole? This can be
seen by invoking the Raychaudhuri identity for geodesics.
First note that this identity cannot be applied directly in the
G frame, as the field equations involve extra geometric terms
besides the Einstein tensor. Mapping geodesics fromGhe
frame or from theA frame to theE frame (where Einstein’s
equations formally holdwill result in additional nongeode-

sic terms:li=0—U=1/2[(u-d¢) u+g ‘d¢]. Such terms

regularity can also not be achieved by any other map. Re~d¢ are also known from Nordstno's scalar theory

main the uncharged possible solutions with<0. This
means necessarily_ =0, but this is exactly the negative-

of gravitation (a precursor of Einstein’s metric thegry/
These additional terms also prevent the Raychaudhuri

mass Schwarzschild metric, which is well known to have aidentity from being applied. For the smooth SSS metrics

naked singularity® Therefore as claimed, for the family of
smooth SSS solutions there must be kwwer mass bound

(and r>2m) they have a repulsive effectg *d¢
=1/2r _/r?3 (X, IX_)¥2n, (n,:=X%23,), which for type |

m=0, in order that the metric remains smooth. The nonflat

26The few known “nonexotic” wormhole solutions of the classical

%Closely related uncharged massless wormhole solutions havidlaxwell-Einstein theorye.g., Schein and Aichelbuf@0]) in fact

been investigated very recently by ArméridePicon [16], although
for a “ghostly” KG/dilaton scalar.

break some of the standard assumptions, like having closed timelike
lines.

2The positive-mass Schwarzschild metrics would also be ex- 2’For a short history of scalar-tensor theories of gravitation, see

cluded by smoothness.

Brans[21].
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and type Il becomes unbounded at the former locus of the It would be also be highly desirable to have genetat
throat, where the metric is now singular. Therefore whertionary spherically symmetric GDC/ADC solutions. Some
interpreted in theE frame, test particles seem to be alwaysbasic questions in this context: are there still smooth charged
effectively repelledby the object “sitting” atp=0. In con- wormhole solutions? Do nontrivial geometric vacuum solu-
trast, being driven by~ %, the singular electric SSS GDC tions again exist? Does the “magnetic-electric dilemma” still

solution would always appear to attract the test particle. ~ Persist? Can stability be proven to hold in a general sense?
A satisfactory answer to these questions would of course

challenge the role of classical relativity and the correspond-
ing (nondilatonig black holes.

With respect to the criteria mentioned in the Introduction, Applications to the different setting of cosmology would
we have been able to show that among the class of Maxwelbe particularly interesting: there is the possibility that the
Einstein-dilaton Lagrangians there exist two essentially dif-dilaton could again act repulsively, thus contributing to the
ferent couplings allowing for well-behaved static sphericallyobserved accelerated cosmic expansion.
symmetric solutions. However, only the GDC Lagrangian T_he dlverge global spacetime models derivable from the
admits a simple coupling scheme. Moreover, it has an immeblasic extensions described here could also serve as "sa_nd-
diate geometric interpretation in terms of a volume manifold.Poxes” to develop and test some other fundamental theories

When it comes to making a choice between alternative” ;ltuat|ons where Fhe two-dimensional formulations are too
Lagrangian-based theories of dilaton gravity, of course it delimited to be realistic.
pends on the weight one is willing to give to the existence of
well-behavedi.e., smooth solutions and to the generality of
MED Lagrangians. In the context of classical gravity, the
“regularizing” nature of the GDC/ADC dilaton could be | want to express my gratitude to Peter Aichelburg for
welcomed as a “new degree of freedom” to tame some ofuseful suggestions. After submitting this paper for publica-
the inherent divergences. The main obstacle is, however, stition, | learned that a MED Lagrangian essentially equivalent
the “magnetic” nature of the geometric GDC solutions, to ours was already postulated by Cadoni and Mign&Xaj,
whereas for the “electric” ADC solutions, it is their lack of with the primary aim of having a 4D generalization of the 2D
geometric interpretation and the nonuniqueness of a correlackiw-Teitelboim theor$? Although they emphasized the
sponding coupling scheme. There are no indications tha?D aspects, they also noted that the corresponding 4D field
more “sophisticated” Lagrangians could resolve this di- equations admit nonsingulélout apparently geodesically in-
lemma. complete¢ magnetically charged black hole solutions.

The stability of the smooth wormhole solutions has not
been touched in our work, and constitutes the major open—
issue. However, in view of the fulfillment of all the energy 28For a recent review of 2D dilaton gravity, see Grumiller, Kum-
conditions, the prospects seem to be promising. mer, and Vassilevich23].

VI. CONCLUSIONS
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