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We study the cosmological consequences of nonconstant brane world moduli in five-dimensional brane
world models with bulk scalars and two boundary branes. We focus on the case where the brane tension is an
exponential function of the bulk scalar field,exp(@d). In the limit «—0, the model reduces to the
two-brane model of Randall and Sundrum, whereas larger valuesaibw for a less warped bulk geometry.

Using the moduli space approximation we derive the four-dimensional low-energy effective action from a
supergravity-inspired five-dimensional theory. For arbitrary values,dhe resulting theory has the form of a
biscalar-tensor theory. We show that, in order to be consistent with local gravitational observatiassto be

small (less than 10?) and the separation of the branes must be large. We study the cosmological evolution of
the interbrane distance and the bulk scalar field for different matter contents on each branes. Our findings
indicate that attractor solutions exist which drive the moduli fields towards values consistent with observations.
The efficiency of the attractor mechanism crucially depends on the matter content on each brane. In the
five-dimensional description, the attractors correspond to the motion of the negative tension brane towards a
bulk singularity, which signals the eventual breakdown of the four-dimensional description and the necessity of
a better understanding of the bulk singularity.
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I. INTRODUCTION Brans-Dicke type theories, which drives the theory towards
four-dimensional general relativity during the cosmological
One of the most exciting ideas which has originated fromevolution by generating very small matter couplings of the
theories of particle physics beyond the standard model is thahoduli[37—-39. If this is the case, there could be cosmologi-
our universe could be a three-dimensional objeetlled a cal consequences of the time-evolution of the moduli, such
brang embedded in a higher-dimensional spdtte bulk. as varying constants, time-varying masses, etc., leading to
Special attention has been paid to models in which the bullobservational consequences, such as in the cosmic micro-
is five dimensional. For these models, cosmological consewvave background radiation, large scale structures, time-
guences have been worked out in particular for the cases eofarying constants, equivalence principle violations, and so
heterotic M theory—a five-dimensional theory with two on. Indeed, there is another motivation for our work: namely,
branes, which are the boundaries of the bulk spacetsee the claim of a time-varying fine-structure constant made in
e.g.[1-7]))—and the Randall-Sundrum modd,9], in both  [40] and[41]. If this claim is confirmed by future observa-
the version with one brane and two brarese e.g[10-21]).  tions, this would suggest that at least some moduli fields are
In the case of the latter model, the bulk spacetime is highlynot stabilized but slowly varying.
warped (in fact, the bulk is an anti—-de Sitter spacetime In this paper we investigate the cosmological evolution of
whereas in heterotic M theory the bulk is “slightly” warped. moduli fields arising in brane world models and address the
Another essential ingredient in heterotic M theory is the ex-question of whether there is a cosmological attractor for the
istence of a bulk scalar field, whereas in the original Randallbrane world moduli. We also analyze the conditions under
Sundrum model there is no such bulk scalar. It was latewhich conditions such an attractor would be efficient enough
introduced in order to stabilize the interbrane distancdor the theory to agree with local experiments in the labora-
[22,23. tory and/or strong field limit$42]. We study these issues in
It was shown in several papers that the resulting four-a broad class of models encapsulating features from both the
dimensional theories at low energies in both models hav&®andall-Sundrum models and heterotic M theory, i.e. a
much in common with(multi)scalar-tensor theories, where warped background with a bulk scalar field.
the interbrane distance and the bulk scalar field degree of The paper is organized as follows. In the next section we
freedom play the role of scalar degrees of freedom in thaliscuss the five-dimensional theory and derive in detail the
gravitational sector of the effective four-dimensional theoryeffective low-energy action from the moduli space approxi-
[24-37. From the cosmological point of view it is interest- mation, giving also the resulting field equations in the Ein-
ing to investigate the consequences of these moduli. Alstein frame. In Sec. lll we clarify the conditions under which
though it is usually assumed that these moduli fields ar¢he theory would predict time-varying coupling constants,
stabilized by some unknown mechanism in the early unisuch as the fine-structure constant, and investigate the con-
verse[33—34§, it is imaginable that they are not stabilized by straints imposed by strong field limits. Cosmological consid-
some potential. Instead, it might be that there is a cosmologierations and solutions to the field equations are presented in
cal attractor mechanism at work, similar to the one found inSec. IV, and we conclude in Sec. V.

0556-2821/2003/62)/02351213)/$20.00 67 023512-1 ©2003 The American Physical Society



BRAX, van de BRUCK, DAVIS, AND RHODES PHYSICAL REVIEW 7, 023512 (2003

II. MODULI SPACE APPROXIMATION a(z) =(1—4ka22) l/4a2, 9

In this section we derive the four-dimensional low-energy
effective action using the moduli space approximation. Fofvhile the scalar field solution is
the gravitational sector, our derivation follows closely that in
[43]. We begin with the description of the static configura- 1
tion, which was derived from supergravitg4]. h=— Zln(1—4ka22). (10

A. The static configuration . .
. ] ) ~In the a—0 we retrieve the AdS profile
The bulk action consists of two terms which describe

gravity and the bulk scalar field dynamics: a(z)=e"¥. (12)

1
Sbu”(:—zf d®x —95<R— 2[(071,/1)24— Ul]l. (1) Notice that in that case the scalar field decouples altogether.
2Ks Also, notice that there is a singular point in the bulkzat
Further, our setup contains two branes. One of these branes L/4ka?, for which the scale factor vanishes. This will be
T P : : . ?r%portant for the discussion on the cosmological evolution in
has a positive tension, the other brane has a negative tensmgec v

They are described by the action In the following we will discuss the moduli space ap-

3 proximation. We will put matter on the branes as well as
__ 2| a5 supersymmetry breaking corrections to the brane potentials.
Sprane - Zxéf PxV=0sUsd(2), @ Two of the moduli of the system are the brane positions. That
is, in the solution above the brane positions are arbitrary. In
3 the moduli space approximation, these moduli are assumed
Sprane = + —Zf d>x\—gsUgd(2,). 3 to be spacetime dependent. We denote the position of brane 1
2K with z;=¢(x”) and the position of brane 2 wittz,
=o(x*). We consider the case where the evolution of the
brane is slow. This means that in constructing the effective
four-dimensional theory we neglect terms likeg()®.
In addition to the brane positions, we need to include the
g\ 2 graviton zero mode, which can be done by replacipg,
U :(_> — Ué. (4)  with a spacetime dependent tengpy,(x*). Thus, we have
Iy two scalar degrees of freedom, namely the positions of the
two branes which we will denote witkb(x*) and o (x*),
and the graviton zero modg,, (see[45] and[46]). As we
will see below, in the coordinate system in which the branes
1 move, the kinetic terms of the moduli come from the bound-
= | d%./— ary terms alone.
S KE V-8, ® It would also be possible to consider another coordinate
system, in which the branes are fixed. Then, the moduli are a
whereK is the extrinsic curvature of the individual branes. spacetime dependent part which can be added to the bulk
We impose &,-symmetry at the position of each brane.  scalar field solutiorf10) and the 55-component of the metric
The solution of the system above can be derived fromensor becomes a four-dimensional effective field. In addi-
Bogomol'nyi-Prasad-SommerfielBPS like equations of tion, we have the graviton zero-mode. Thus, the number of
the form moduli fields is independent of the coordinate system.
Note that the moduli space approximation is only a good
- ,_ Vs © approximation if the time-variation of the moduli fields is
a 4"’ V= ay’ small. This should be the case for late-time cosmology well
after nucleosynthesis, which we are intereste(@rii47] and
where '=d/dz for a metric of the form [48] the moduli space approximation was also used in the

context of brane worlds
ds’=dz*+a%(z) n,,dx“dx". (7) 9

In these expressions; andz, are the(arbitrary positions of
the two braneslUg is the superpotentialy, the bulk poten-
tial energy of the scalar field, is given by

We will also include the Gibbons-Hawking boundary term
for each brane, which has the form

We will particularly focus on the case where the superpoten- B. Moduli space approximation: The gravitational sector

tial is an exponential function: Let us first consider the bulk action. Replacing, with

9,.,(x*) in Eq. (7) we have for the Ricci scald®=R*)/a?
+R, whereR is the Ricci-scalar of the backgrourid). We

The valuesx= 1/\/3,— 1/\/12 were obtained in a theory with explicitly use the background soluti¢@) and(10), so thatR
supergravity in singular spacg44]. The solutions read will not contribute to the low-energy effective action. Also,

Ug=4ke*’, 8
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in this coordinate system, where the branes move, there is no a’ (9¢h)2
contribution from the part of the bulk scalar field. Collecting K=4—|1- > |- (22
everything we therefore have a 4a

1 1 The terms for the second brane can be obtained analogously.
Sbulkzz_f dzd4xa4\/—g4—2R(4) Using the BPS conditions and keeping only the kinetic
K5 a terms, we get for the Gibbons-Hawking boundary terms

— 4 4
_f dhe/=auf($ IR, 2 +i2 d*x\=gsa%(H)Up()(9h)% (29
with s
1 (o _ 8 d*x\—g4a?(o)Ug(0)(do)>. (24)
f<<z>,<r>=K—é ¢dza2<z>. (13 42

We remind the reader thai(z) is given by Eq.(9). Collecting all terms we find

We now turn to the boundary terms. It is clear that the
integrals(2) and(3) do not contribute to the effective action SMSA:f d?x /_94{ f(p,0)R@
for the same reason thRtdoes not contribute. Let us there-
fore turn our attention to the Gibbons-Hawking boundary

terms. N §a2(¢) UB(¢>)(a¢)2
First, it is not difficult to construct the normal vectors to 4 KE
the brane:
3 U
1 - 28%0) —S(o)(aaF] : (25
nt=——-—"—(9*¢la®—1). (14 Ks
J1+(d¢)?la®
Note that the kinetic term of the field has the wrong sign.
Then the induced metric on each brane is given by This is an artifact of the frame we use here. As we shall show
ind1 o 4 below, it is possible to go to the Einstein frame with a simple
9 =8°(9)9,,— 9,3, b, (19  conformal transformation, in which the sign in front of the
_ kinetic term is correct for both fields.
9yo=a*(o)g},— 9,00,0. (16) The effective action is valid for any model based on
supergravity-inspired five dimensional models with two
Thus, branes. In particular it is worth noticing that there is no po-

- L . tential for the moduli. The moduli describe flat directions

parer. s . 5 reflecting the no-force condition on boundary branes for

gT=al(@)V =gy 1 2a2(¢)(‘9¢) (7 Bpslike systems.

’ The effective action for the two modulb and o has a

nice interpretation in terms of supergravity. This is expected

(d0)?|. (19 as we started from a two-brane system satisfying BPS con-
] ditions. The resulting effective action has a supergravity

) . structure. Indeed one can write the Einstein-Hilbert term and
So the Gibbons-Hawking boundary terms take the form e kinetic terms of the moduli as

V=gM2=a%(0)\/—g4| 1

T 28%(0)

1 [ 1 ] 1 _
— | d*a*—g4 1— ad)? K, 19 J Ay = By g g= m
Kgf 94_ 2a2(¢)( ®) _ (19 d*x= 04| f($,0)R O+ Z 00959, D "D
1 [ _ + L ocacto Eaﬂf} (26)
—Zf d*xa*V=g4 1-———(d0)?|K. (20) [N ’
Ks | 2a“(o) ]
where
The trace of the extrinsic curvature tensor can be calculated
from 1 _ 1 _
¢=§(<I>+¢>), o=5(2+2). (27
1
K=——9d,[\V—0g5n*]. 21
V—0s pN=95n7] 1 In terms of supergravity, the fieldb and are the scalar
parts of two chiral multiplets. One can read off the Kahler
Neglecting higher order terms this gives potential for these two moduli fields as
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K=—3Inf. (29) o=QsinhR. (37)

In the Randall-Sundrum case, we retrieve that To go to the Einstein frame we perform a conformal trans-

K=—3In(e" K(®+D) e*k(z*g)). 29 formation:
i i i i 9= Q%9 (39)
Notice that in that case one can rewrite the Kahler potential uv uv
as B Then[49]
K=—3k(®+®d)—3In(1—e KTD), (30
[g@R=\"5| R (70 (39
where 9 g Q2 -
T=3-® (3D

Collecting everything we get the action in the Einstein frame

is the radion superfield. Moreover we immediately see that{where we now drop the tilde
in the Randall-Sundrum case, the figkdcan be eliminated

by a Kahler transformation; this shows that one of the two S 1

modl_JIi dgcouples, _Ieaving only_ the radion as the relevant EFT 2kK§(2a2+1)
physical field. We will retrieve this result later when we ana-

lyze the equations of motion. 1202 (9Q)2
Coming back to the action above, we redefine the fields in Xf d*x\—g R-—F>—
the following way: 1+2a° Q
d%=(1—4ka?¢p)?P, (32) _ (9R)2|. (40)
2a%+1
o?=(1-4ka?0)?”, (33

Clearly, in this frame both fields have the correct sign in
with front of the kinetic terms. Note that foe—0 (i.e. the
Randall-Sundrum cagehe Q field decouples. In this case,

_ 2a2+1_ a4 the field R plays the role of the radion, i.e. it measures the
T 402 (34 distance between the branes. Furthermore, we can identify
the gravitational constant:
then, the gravitational sector can be written as )
16mG=2kkZ(1+2a?). (41)
3 1
Susa= 2kK§(2a2+ 1) C. Moduli space approximation: The matter sector
In the following we introduce matter as well as supersym-
4y [~ ~2  ~o\ 1 (4) metry breaking potential/(Q,R) and W(Q,R) on each
Xf dx 94{@ IR brane. We begin with the potentials: to first order in the
moduli space approximation we get
6 ~ ~
+ [(0¢)?=(d0)?]|. (39
2a%+1 d*x\—g4la*()V(4)] (42)

This is an action of the form of a multiscalar tensor .~ , = ~,. ;.2 :
theory, in which one scalar field has the wrong sign in frontWith a(¢) = ¢ . The expression for a potentir on

of the kinetic term. Furthermore, in this frame there is ath€ S€cond brane is similar witi(¢) replaced bya(o). In
peculiar point where the factor in front 6& can vanish, t_he Einstein frame we hav@ropping the tilde from the met-

namely wheng= o, which corresponds to colliding branes. e

We will call the frame in which the action has the form of the

equation above thbulk frame j
It is useful to go to the Einstein frame. In order to avoid

dx \/—_ng 8a2/(1+2a?) (coshR)#(1+ 2(12)V( Q,R)

mixed terms like §,4)(9*c), we shall define two new
fields? )" e) Ef d*xv=gVer(Q.R), (43
$=Q coshR, (36) where we have defined
Veff(Qa R) — Q78a2/(1+ 2a2)(COShR)4/(l+ Zaz)v(Q, R) )
Do not confuse the Ricci scal& with the new fieldR. (44)
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The expression fowW(Q,R) in the Einstein frame is sg}):sg})(qfl,AZ(Q,R)gw)
f d*x/=gQ 8«71+ 2% (sinhR) Y1+ 229W(Q,R) SP=s2(W,,B2(Q,R)g,.), (48)
In this expression we have used the fact that, in going to the
= | d%./—q
_J d™XV=gWer(Q.R), 49 Einstein frame, the induced metrics on each brane transform
with a different conformal factor, which we denote with
where andB. We have neglected the derivative terms in the moduli
Ba2/(1+202) o 4(1+ 20 fields when considering the coupling to matter on the brane.
Wer(Q,R)=Q (sinhR) W(Q,R). They lead to higher order operators which can be easily in-

(46) corporated. The energy-momentum tensor in the Einstein

For matter, the action has the form frame is defined as

(1) 2
e
whereg® denotes thénducedmetric on each brane an,
the matter fields on each brane. Note that we do not couplwith an analogous definition for the energy-momentum ten-

the matter fieldsV; to the bulk scalar field, and thus not to sor for matter on the second brane.
the fieldsQ andR. In going to the Einstein frame, we get In the Einstein frame, the total action is therefore

S=Sh (Y105t and SP=80(¥,,g5?),

M M

(49

12a% (9Q)? 6 i .
R 2 Q? 2a2i1 Y fdxﬁ[vﬁ(QRHWeﬁ(QR)]

1
- 4 _
SEF_leGfd XNT9

+S(¥,,A%Q,R)g,,)+SP(¥,,B%(Q,R)g,,). (50)

The theory derived has a form similar to the one discussg8ldr51], although we have here two scalar degrees of freedom
in general. However, these scalar fields couple differently to the two matter types on each individual brane.

D. The field equations in the Einstein frame

From the action derived above we can now derive the field equations for the metric and the two scalar degrees of freedom
in the Einstein frame. They are

2

1
(0,Q)(9,Q)— Eg,w(f?Q)2

G,,=8mG(TH)+ T —g,, Vet 0,,Wer) +

14202 Q2
T | OuRR) = %gw(amz} (5D
OR-84C 1+62a2 ﬁ;/Reff+ (9Z\sﬁ_ag).r(1)_a(Rz)T(2)} (52)
0Q (9Q7_  1+2a°[#Ver aweﬁ_a(l)T(l)_a(z)T(z)}_ 53
Q? Qd 1202 [ 9Q ~ dQ °° Q

In these expressiond() is the trace of the energy- w_ A 2 9InB
momentum tensor for each brane’s matter; the coupling func- APRT IR R GR
tions af)) and oy are defined as

(55

We will give the expressions for these quantities in the next
section and discuss solutions to the field equations in a cos-

alnA
- mological setting in Sec. IV. Because of the coupling of the

o="g =g (54
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moduli.to. the branes, cosmological matter is not conserved %:a(¢)Qm, X=X\, (62)
but satisfies

Clearly, in this frame the mass of the scalar field becomes
time-dependent.

We can apply the same technique to vector bosons with
&ction

D, T =ag(d"Q)Ti+ ag(d'R)T; (56)

for each type of matter=1,2. In deriving this equation we
have assumed that the matter fields obey the equation
motion. Notice that matter nonconservation is directly linked

to the spacetime variations of the moduli fields. S, =— 4_92J \/_—ng,BLngxFMPFM 63)
lll. COUPLINGS TO MATTER AND STRONG FIELD
CONSTRAINTS We find that in the Einstein frame
In this section we will be interested in the coupling of ge=0, (64)

matter living on both branes to the bulk. In particular we will

pay particular attention to the constraints imposed by strongis expected vector bosons are conformally coupled and

field limits. ThiS, in turn, leads to stringent constraints on thetherefore the gauge Coup"ng constant is time_independent.
parameterr and the allowed values of the fieRl Finally let us deal with Dirac fermions:

Let us first notice that matter on the branes couples to the
induced metric. The form of the induced metric implies that — —
we have to deal with a bimetric theory. This is a general Sm:f V=0s(iygD ,g—myy), (65)
result for moving branes. In the following we will only be

interested in the nonderivative couplings between the twQynhere Y& are the gamma matrices for the induced metric.

moduli and the matter fields. Indeed we are dealing with gsjng the results derived {#52], we can rewrite the action as
low energy expansion and derivative interaction leading to

higher order operators. If need be, these derivative interac- —— _ —
tions can easily be incorporated in the following. Sm:f V=0l y*D p—mal(d)Qiy], (66)
First of all couplings to the two branes result from a La-

grangian where we have used the conformality of the coupling of

massless Weyl fermions and definafi=[a($)Q]¥%.
f V=08Lm(Pm,08), (570  Again we find that fermion masses become time-dependent

where ¢, can either be a scalar, fermion or vector boson m=a(¢)Qm. (67)

field. We will study each case separately. Let us start with a
scalar field, i.e. the Lagrangian is given by Notice that the time dependence of the fermion and scalar

masses is the same. This is not true when comparing differ-
21 ent particle species on the positive tension brane with species
ﬁm_igB Iu$d, 8=V (dp). (58) on the negative tension brane. However, particles on the
negative tension brane are candidates for dark méttiey
We first write the boundary action in terms of the Einsteincouple to the standard model particles only via gragvity
frame metricg=Q?2g leading to Constraints imposed on dark matter by equivalence principle
violations are less restrictive.
\/—~ 5 T 4 4 In conclusion we see that, in the Einstein frame, the only
—9[a’($)Q2°g""9,dgd, P —a%($) QA V(ds)], time-dependent couplings in the matter Lagrangian are the
(59) masses. Indeed, in a general frame we have the following

invariant relating Newton’s constant to masses:
whereQ?=1/f(¢,0). Now we can redefine the scalar field

$=a(¢$)Q¢g in such a way that the action becomes | =GmP=Gm?, (68)
\/—~ ¢ which is a dimensionless quantity. In particular we find that
f 9 a(¢4)Q in the frame where masses are time-independent the Newton
constant becomes time-dependent. As sudives the true
up to derivative interactions. Let us apply this to a simplemeasure of time variations in the brane-world models that we
renormalizable potential consider.
The fact that the coupling constants are frame-

, (60

947d, b3, d—a*($)QV

1, 4 independentsee Eq(64)] and therefore spacetime indepen-
V= §m R (61) dent means that in the theory we consider we would not
expect a time-varying fine-structure constant, as reported in
In the Einstein frame, the couplings become [40,41]. In order to explain a time-varying coupling constant,
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one needs to couple vector bosons directly to the bulk scalaFhis already rules out the supergravity model basedrxén
field and thus t&@Q andR. We do not consider this possibility =1/12[44]. The smallness o indicates a strongly warped

in this paper.

bulk geometry such as an anti—de Sitter spacetime. In the

Let us now consider the constraints imposed by thecasea=0, we can easily interpret the bound Bnindeed in
strong-field limits. For that it is convenient to write the that case

moduli Lagrangian in the form of a nonlinear sigma model

with kinetic terms

Yo' dg), (69)

where i=1,2 labels the modulip’=Q and ¢?>=R. The
sigma model couplings are here
120 1 6

. ypee——. 70
14242 Q% RR 11242 (70

YQQ™

Notice the potential danger of the— 0 limit, the RS model,

tanhR=e kKo~ ¢) (78

i.e. this is nothing but the exponential of the radion field
measuring the distance between the branes. We retrieve the
well-known fact that gravity experiments require the branes
to be sufficiently far apart. Whea+ 0 but small, one way of
obtaining a small value oR is for the hidden brane to be-
come close to the would-be singularity whexéor)=0. In

the following we will analyze the cosmological behavior of

where the coupling t& becomes very small. In an ordinary the present model and in _particular_the robustness of the
Brans-Dicke theory with a single field, this would corre- cOnditionR<1 to cosmological evolution.

spond to a vanishing Brans-Dicke parameter which is ruled

out experimentally. Here we will see that the coupling to
matter is such that this is not the case. Indeed we can writ
the action expressing the coupling to ordinary matter on our

éV. COSMOLOGICAL EVOLUTION OF THE TWO BRANE
SYSTEM

brane as

(71

Sn=Su(¢m.A%9), A=a($)Q,

L : f
where we have neglected the derivative interaction anq
expresse"ng=A§. Notice thatA enters in both the coupling

As we have seen from the last section, the figldas to
be small today in order for the theory to be in agreement
with observations. This required smallnessRotould result
rom one of the following possible features of our model:
irstly, the minimum ofV g or Wy could be at small values
of R, and consequentlR would have been driven towards

of matter to the brane and the time variation of masses. Agis minimum in the very early universe; the form of the
such it represents the actual time-dependence of couplings {ibtential has to be derived from an underlying theory, whose

our models. Let us introduce the parameters

ag=dglnA, ar=dgInA. (72
We find that{ A =4/(1+2a?)]
A=Q~ “M2(coshR)M*, (73)
leading to
a®\ 1 \ tanhR
aQZ—Ta, aR=—"p (74
Observations constrain the parameter
0= aa; (75

to be less than 10° [53]. We obtain therefore a bound on

4 a? . tant’R 78
31+2a% 6(1+2a?)
The bound implies that
<102, R=<0.2. (77

form is unknown. A much more interesting alternative is that
R could be driven towards small values during the late cos-
mological evolution, i.e. after nucleosynthesis, via an attrac-
tor mechanism. In scalar-tensor theories such a mechanism is
well known (see e.g[37-39) and the question we address
in this section is whether such an attractor mechanism exists
for the brane world models we have discussed so far. Clearly,
in our model there arewo moduli fields,Q andR, and even

if Ris rapidly driven towards small values, there is the dan-
ger that the dynamics of th@ field has no attractor behavior.
This could jeopardize the cosmology of the model we con-
sider. Furthermore, even if such an attractor mechanism ex-
ists, it is nota priori clear whether it is efficient enough.

To address these important issues, we now discuss cosmo-
logical solutions to Eqs51), (52) and(53). In this case the
field equations are as follows(# 0): The Friedmann equa-
tion reads

) 87G
H :T(P1+P2+Veﬂ+ Wer)

+ 20" >+ L g (79
1+2a? l+2a2l\ ’

’The parameteB which defines the coupling of matter to the where we have define@=exp¢. The second Einstein equa-

second brane is similarly defined B~ a(o)().

tion is
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H+H2=—EZE( +3p;+p,+3
3 (P17 OP1T P2 OP2

2V g 2W,g) 4at gL R
o = 142027 14242
(80)
The field equations foR and ¢ read
. . 1+20?[ Ve  IWeg
— (1)
R+3HR=—87G—— | —"+—="+ak
x<p1—3pl>+a§)<pz—3pz>}. (81)
. : 1+20?[ Vg  IWeg
+3H¢=—87G + +alP)
o+3fe 1202 | 0 9 7
X(p1—3p1>+a55’<p2—3p2>] (82)
For the model we consider here, we have
2a? 2a?
1) _ 2)_
ay’'= , ay’= , 83
¢ 14+2a2" ¢ 142a? @3
tanhR (tanhR) *
(1)— 2)_
ay’= , apl=——— 84
R 14242 142a? 4

We will study numerical solutions of the system in more
detail below, but if we consider matter on the positive ten-
sion brane only we can draw some conclusions concernin

the evolution of the fieldg) andR:

We considerer that throughout the radiation- and matter;

dominated eras the potentidlsy and Wey are negligible.

This is a similar condition to that imposed in quintessence
models. Then, in the radiation-dominated era, the traces o

the energy-momentum tensors vanish, implying that
p=a?

in such a way thaR remains small if it is small initially.

R=a"3, (85)
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p1+3Hp1~—2a%p1¢ (86)
where we assume that both and Ry are small to comply
with the tests of the equivalence principle. Assuming that the
energy density of matter dominates the expansion rate, the
solutions to these equations are given by

a —3-2a213 t 23— 44?127
P1=Po| 5o , a=ag E) (87)
together with
_ +1| a
b= do §”a—0'
—-1/3 )23
R=R;| — +R2(— (88)
to to

as soon as>ty. Note, that this solution is consistent with
our assumptions on the expansion rate as long sssmall
att=ty. Notice further thaR converges towards zero, hence
retrieving general relativity at late times and that the change
of the expansion rate is of ordef and therefore small. The
solution above is in good agreement with the numerical so-
lution described below. We therefore conclude that during
the matter-dominated eRis driven to zero, provide® was
small at the beginning of the matter era.

A. Numerical results

We now describe numerical solutions of the cosmological
gquations. There are different interesting cases to study.
Firstly, all matter types could live on the positive tension
brane; a more intriguing alternative might be that the dark
matter lives on the negative tension brane, whereas radiation
nd baryons live on the positive tension brane. We will dis-
uss these cases below.

1. No potentials

We begin the analysis with the assumption that the poten-
tials V and W are identically zerdin other words, that the

Moreover, there is no change to the time dependence of therane potentials are unbroken from their supersymmetric val-

scale factor.

ue9; thus, we follow the evolution of the fields during radia-

In the matter-dominated era, the equations of motion reaion and matter domination. Both matter and radiation live

871G 2a? . 1 .
H2=——"p;+ ¢? R?
3 3(1+2a?) 1+2a?
B+ 3HR= — TN R HzR
+ - 6 P1 ~_7 ’

together with the conservation equation

on the positive tension brane. The calculations are made with
a=0.01.

The evolution ofR and ¢ is shown in Figs. 1 and 2,
respectively. One can clearly see that during radiation domi-
nation both fields are frozen in, because the trace of the
energy-momentum tensor is effectively zero. Soon after mat-
ter becomes important, both fields are forced to evolve due to
the nonvanishing trace of the matter energy-momentum ten-
sor. For the initial conditions we have chosen, the constraint
R<0.2 can be fulfilled. However, R is initially large, it has
not enough time during matter domination to evolve to small
enough values. Thus, there is a constraint fRdtas to be
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08¢} N
06| N

04}

02t

1+2

= 1+2
10 10? 1

10* 10? 1

FIG. 1. The evolution oR with different initial conditions for FIG. 3. The evolution oR with different initial conditions for
the case of radiation and matter on the positive tension brane and ribe case of radiation and matter on the positive tension brane and
matter on the negative tension brane. We find Ras$ driven to-  pressureless matter on the negative tension brane. We fin® that
wards zero. driven towards zero for all cases. Note, that if the raiio/p,

grows,R evolves faster towards zero. The ratiosgf p, are given

small enough during radiation domination. by 0, 0.11, 0.25, 0.42, and 0.5, for the curves from the right to the

If we put matter on the second brane as well, the evoluleft.
tion of R is modified, as can be seen in Fig(ske Fig. 4 for o
the evolution ofé). For these cases, the matter on the seclhe dark energy. However, we do_ not address the coincidence
ond brane never dominates the expansion of the univers@roPlem, nor do we want to provide a model for dark energy
However, due to the coupling functioff?z), the evolution of 1N thls paper(_for a discussion about dark energy arising in
R and ¢ is affected strongly by matter on the second brane.part'c_Ie physics models, see ei56-64 and references_
Indeed, as can clearly be sed®,is driven faster towards therein. Instead, we use the simplest model for the potential,
small values even with only a small amount of matter on théﬁamely We assume t.h.al has the form of an exponential .
second brane. The fielg stays constant longer after radia- potential. To be specific, we assume that supers_ymmetry IS
tion domination if there is matter on the second brane. broken by tuningJ away from the form(8) by setting

.We conclude that there is a cosmological a_ttractor _whlch V=(T—1)4ke”. (89)
drives R towards small values and that the efficiency is en-
hanced if the energy density of matter on the second brane igere, T#1 is a supersymmetry breaking parametgrig the
not negligible initially. bulk scalar fieldl Expressed in terms ap andR we have

2. Including potentials V(4,R)=4(T—1)ke™ 1207 $/(1+207)

We now include potentials on the branes. We will study X(COShR)(474a2)/(1+2a2) (90)
the case where there is only a potential on the positive ten- '
sion brane. For the potential we assume that it starts to domotice that forR close to zero, this is nothing but an expo-
nate the energy density only recently in the cosmic historynential model with the fields playing the role of a quintes-
because we are interested in the evolution of the modulience field. In the following we will setk{T—1) such that

fieldsR and ¢. In principle, both¢ andR are candidates for

the universe starts to accelerate at a redshift around 1.

phi phi

27 21

15+ 151}

1} 1t

05} 05}
1+2 1+z

10*

10?

1

10*

102

1

FIG. 2. The evolution ofp for different initial conditions with
the same cosmology as in Fig. 1.

FIG. 4. The evolution ofp for different initial conditions with
the same cosmology as in Fig. 3.
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Omega phi

1
08} 2t
0.6 L 1.5 r
04} ¢
02! 05t

1+2 1+2
10* 102 1 10* 10° 1
FIG. 5. Evolution of the density paramet@r as a function of FIG. 7. Evolution of the field$ as a function of redshift with

redshift for radiation, matter and the scalar fields. When the potendifferent initial conditions. Note that when the potential energy
tial of the moduli dominates, the universe is accelerating. Note, tha$tarts to dominate$ changes its time-evolution.
in order to explain the values for the energy density of dark energy,
one has to fine-tune the parameters of the theory. For these plots W@r a recent discussionWe have plotted the evolution of
have seta=0.01. The dark matter lives on the positive tension for different initial conditions, one with initial conditions
brane, there is no matter on the negative tension brane. leading to an evolution in agreement with observati@fig.

8) and one extreme case which is ruled out by nucleosynthe-

The evolution of the cosmological parameters is shown irfiS constraintsFig. 9). Therefore the initial conditions for
Fig. 5. After the usual matter dominated era, the universéhe fields R andp are not arbitrary, but constrained by nu-
becomes dominated by the potential energy of the fields angleosynthesisThe details of the evolution df are strongly

starts to accelerate. dependent on the matter contents on the branes.
The evolution forR is shown in Fig. 6. We have chosen
the same initial conditions foR as in Fig. 1 and it can be B. The five-dimensional picture

seen that the evolution dr is not much affected by the  \5ing applied the four-dimensional effective theory to
presence of a potential which dominates today. In Fig. 7 Weosmajogy, we turn our attention to the five-dimensional in-

have plotted the evolution of. Note that as soon as the grpretation of the solutions above. Specifically, we consider
potential dominates the expansion, the evolutiorpdb af- 14 prane positions, which are related withand R via Egs.

fected. (32), (33), (36) and (37). They are shown in Fig. 10. It be-
comes clear from Eq(37), that R=0 corresponds tar
3. Time-variation of masses or the gravitational constant = 1/4k4?, i.e. the negative tension brane is attracted towards
As explained in Sec. Ill, the quantitly defined in Eq. the singularity. Negative values & do not make sense in

(68), is an invariant under conformal transformations. Thisthis description, when the transformatio(®2), (33), (36)
quantity specifies the variation of masses in the Einstei@nd (37) are applied. Therefore, cosmological solutions
frame (or the gravitational constant in the frame where thebased on the moduli space approximation in whRhis
masses on the positive tension brane are time-independentfegativedo not have a sensible five-dimensional interpreta-
The variation of the gravitational constag@nd therefore of tion.

I) is constrained by nucleosynthesiee e.g[54] and[55]

I o

1.01 |
1.008
1.006
1.004

1.002

1+z

10* 102 1

FIG. 8. Evolution ofl/1, [Eq. (68)] for initial conditions which
are allowed by nucleosynthesis. The value of the gravitational con-
FIG. 6. Evolution of the fieldR as a function of redshift with  stant at nucleosynthesis was of order one percent larger than its
different initial conditions. The constraint todayRe<0.2. value today.
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(N matter we have on the branes, near the singular point, i.e.
24 Q=0 (¢=—=) andlor R=0, the potential term in the
25 Klein-Gordon equations must dominate. This can be

achieved by an inverse-power law potential. A second ingre-

2 dient is that for consistency with the limit— 0, the deriva-

18 tive of the potential must be proportional @w* or some
higher powelfsee Eq(53)]. A simple example of a potential
1.6 which fulfills these requirements is
I Vaa=Vo(Q“R) 7. 01
12
1+2 However, once the negative tension brane is repelled from

10% 102 1 the singularity, the fiel®R grows again and is at the present
. o N . epoch, generically, too large to be consistent with observa-
FIG. 9. Evolution ofl/l, [Eq. (68)] for initial conditions which  tjons. Therefore, adding a potential which repels the branes

are forbidden by nucleosynthesis. from the singularity jeopardizes the valuable properties of
the attractor mechanism during the matter dominated epoch.
There are two obvious interpretations of this result: This can be easily understood: the attractor mechanism is

(i) At the singularity(i.e. atR=0) the negative tension due to the coupling functions$” and &’ appearing in the
brane will be destroyed. There is only one remaining scalaKlein-Gordon equatioit81). If at some point during the mat-
degree of freedom. The late time evolution is essentially ter dominated epoch these terms become negligible com-
that of a one brane system. pared to the potential term, the fieRiwill be driven by the

(i) The negative tension brane is repelled from the singugradient of the potential. For the potential above, this will be
larity. It is tempting to speculate that the repelling can betowards larger values &. Then, at some point the potential
described by an effective potential in the effective four-term in the Klein-Gordon equation becomes negligible again
dimensional description. This option will be briefly discussedcompared to the matter-coupling terms, which drReo-
below. wards smaller values until the potential term dominates

Thus, for a complete understanding of brane cosmologygain. During this interplay between the terms in the Klein-
with a bulk scalar field and two branes one needs a betteBordon equationR will be driven towards larger and larger
understanding of the singularity, which might appear fromvalues because the density of matter drops and it takes more
string theory (for a discussion on singularities in string and more time for the potential term to be negligible. The
theory see e.g65] and[66]). Nevertheless, we would like to expansion of the universe is never dominated by the potential
emphasize that the net effect remains the sdrnis:initially energy of the moduli fields for the potentidl).

attracted towards small values. What happens in the dark energy dominated regime? This
depends clearly on the nature of the dark energy. If the fields
C. Avoiding the singularity? ¢ and R are responsible for dark energy, then we need to

. hat duri h domi q h th modify the potential at larg®, as otherwiseR will be too
Given that during the matter dominated epoch the N€08nrge to be consistent with observations and, as explained

tive t_ensiorj brane is attracted towards a sing'ularity, we W,i"above, the potential91), for example, will not lead to an
now investigate the response of the system with the adoptiog. ce|erating universe. An example which delivers an accel-
of t_he se_cond option mentioned above; i.e. we apld a potenti rating universe would be the potenti®0) added to Eq.
which drives the branes away from the singularity. What argqy) *However, this corresponds to the situation where the
the conditions for such a potential? First, whatever type of -, potential has a minimum @&<1, which has to be

fine-tuned. A cyclic universe can be modeled by the inclu-
Xs sion of a potential which is negative in value for some range
- —— of the moduli fieldq48].

If instead the dark energy has a different origin and is a
field which is confined on a brane, then there is an important
interplay between the potential term and the coupling term in
Eq. (81). We will investigate this possibility in future work.

1+z
104 102 1 V. CONCLUSIONS

-1 In this paper we have investigated the cosmological evo-

lution of brane world moduli for a general class of brane

world models with two boundary branes and a bulk scalar

field. The theory we have used contains the Randall-
FIG. 10. Evolution of the brane positions for the cosmology asSundrum model as a special case. The parametegulates

in Fig. 5. how strongly the bulk geometry is warped; small values of

-2
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correspond to highly warped geometries, whereas large vatension brane towards a bulk singularity. WhRs-0, the
ues ofa correspond to only slightly warped geometries.  negative tension brane hits the singularity. Negative values

We have obtained the four-dimensional effective theoryof R correspond to the situation where the singularity is be-
from the five-dimensional theory using the moduli space aptween the branes. As the four-dimensional solution suggests
proximation. As we are interested in late time cosmology.an oscillating behavior oR around 0, one has to be careful
namely from nucleosynthesis on, the moduli space approXiwhen interpreting this behavior. Indeed, a proper understand-
mation should be accurate enough. We have discussed obsg{g of the singularity is absolutely necessary in order to fully
vational constraints and found that the parametenust be  ynderstand the cosmology of the two brane system. In the
small, pointing towards a warped bulk geometry. Furthercase with the brane repelled by the singularity we have ar-
more, the fieldR must be small enough today, meaning thatgued that in this case the details of the evolution of the two
the distances between the branes must be large enough. prane system can be significantly altered.

As long as matter is not directly coupled to the bulk scalar  we would like to emphasize again that the class of brane
field, and therefore t@p andR, the theory predicts that cou- world models we have considered in this paper predicts the
pling constants such as the fine-structure constant are ngpupling functiong83) and(84). These functions control the
spacetime dependent. Thus, if the observations maf#0in  evolution of the fieldsp andR and the coupling to the dif-
and [41] hold, more complicated models of brane worlds ferent matter species.
have to be investigated.

Finally, we have discussed the cosmological evolution of
the moduli fields. We focused in particular on the question of ACKNOWLEDGMENTS
whetherR is driven towards small values during the cosmo-
logical evolution in order to be consistent with observations We are grateful for discussions about the moduli space
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