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Primordial density perturbation in the curvaton scenario
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We analyze the primordial density perturbation when it is generated by a ‘‘curvaton’’ field different from the
inflaton. In some cases this perturbation may have large isocurvature components, fully correlated or anticor-
related with the adiabatic component. It may also have a significant non-Gaussian component. All of these
effects are calculated in a form which will enable direct comparison with current and forthcoming observa-
tional data.
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I. INTRODUCTION

It is now clear that the origin of structure in the Univer
is a primordial density perturbation, existing already wh
cosmological scales start to enter the horizon. Observatio
consistentwith the hypothesis that the density perturbation
perfectly adiabatic, Gaussian and scale independent, but
nificant departures from this state of affairs is still allowed
the data. In particular it is not excluded that the adiaba
density perturbation may be accompanied by a signific
isocurvature density perturbation@1,2#.

Inflation provides a natural origin for the perturbatio
since it converts the vacuum fluctuation of each light fr
scalar field into a classical scale-independent perturbat
One or more of these field perturbations may cause the
mordial density perturbation.

It is usually assumed that inflation involves a slowly ro
ing field, dubbed the inflaton, whose value determines
end of inflation. The perturbation in the inflaton field cann
cause an isocurvature perturbation, but does inevitably ca
at some level an adiabatic perturbation. The usual hypoth
@3# is that the inflaton is solely responsible for the observ
adiabatic density perturbation. Under this ‘‘inflaton hypot
esis’’ significant non-Gaussianity is excluded in the us
one-field models@4,5#. In multifield models, where there is
family of possible inflaton trajectories curved in field spac
significant non-Gaussianity is possible@6,7# but apparently
only at the expense of extreme fine-tuning of the initial co
dition that specifies the inflaton trajectory. Any isocurvatu
density perturbation must be caused by the perturbatio
some noninflaton field. Under the inflaton hypothesis t
means that the isocurvature density perturbation~if present!
depends on different physical parameters from the adiab
density perturbation. As a result, an isocurvature perturba
of observable magnitude would require fine-tuning of t
physical parameters, or else some as-yet unforseen con
tion between them.

An alternative hypothesis@8–11# is that the adiabatic den
sity perturbation originates from the perturbation in so

*Present address: School of Physics and Astronomy, Universi
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‘‘curvaton’’ field different from the inflaton. In this scenario
the adiabatic density perturbation is generated only after
flation, from an initial condition which corresponds to
purely isocurvature perturbation@12#.1 The object of the
present paper is to explore the nature of the primordial d
sity perturbation under this hypothesis. In the curvaton s
nario, significant non-Gaussianity may easily be present
cause the curvaton density is proportional to the square
the curvaton field. Also, the curvaton density perturbat
can lead, after curvaton decay, to isocurvature perturbat
in the densities of the various components of the cos
fluid. These, which we term ‘‘residual’’ isocurvature comp
nents, are either fully correlated or fully anti-correlated w
the adiabatic density perturbation, with a calculable and g
erally significant relative magnitude.

The paper is organized as follows. We deal in Sec. II w
the adiabatic perturbation and its possible non-Gaussia
In Sec. III we formulate the description of isocurvature p
turbations, in a way which will allow us to analyze CDM
baryon and neutrino perturbations in a unified manner.
Sec. IV we calculate the residual isocurvature perturbati
of cold dark matter~CDM! and baryons. In Sec. V we give
general formalism for describing the primordial neutrin
isocurvature perturbation, taking into account for the fi
time the crucial issue of lepton number. Then we use it
calculate the residual isocurvature neutrino perturbation.
conclusions are summarized in Sec. VI.

II. THE CURVATURE PERTURBATION

A. The curvature perturbation and the primordial density
perturbations

From the viewpoint of observation the ‘‘primordial’’ ep
och is the one a few Hubble times before the smallest c
mological scale approaches the horizon. Taking that scal
enclose say 106 solar masses, the primordial epoch corr
sponds to temperature of order 10 keV which is after nucl
synthesis. Leaving aside the possibility of a particle decay

of

1This conversion mechanism has been considered also in the
big-bang scenario@13,14#. In this scenario though, the require
scale-invariant curvaton field perturbations will be generated onl
the curvaton has a nontrivial coupling and for particular initial co
ditions @15,16#.
©2003 The American Physical Society03-1
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after nucleosynthesis, the content of the Universe at the
mordial epoch is therefore rather well known. There are p
tons, practically massless neutrinos, baryons and~assuming
it is already in existence! cold dark matter, with the radiation
dominating the energy density. The corresponding primor
density perturbation has an adiabatic mode

1

4

drg

rg
5

1

4

drn

rn
5

1

3

drB

rB
5

1

3

drcdm

rcdm
, ~1!

which leaves the local ratio of number densities unperturb
Nonadiabatic or isocurvature modes are defined by

SB[
drB

rB
2

3

4

drg

rg
~2!

Scdm[
drcdm

rcdm
2

3

4

drg

rg
~3!

Sn[
3

4

drn

rn
2

3

4

drg

rg
. ~4!

In this section we focus on the adiabatic mode, which
known to be the dominant one responsible for structure
mation, and return to the possible isocurvature modes in
next section.

The primordial adiabatic density perturbation is asso
ated with a spatial curvature perturbation. Following@17,18#
we define the curvature perturbationz on spatial slices of
uniform densityr with the line element

d,25a2~112z!d i j dxidxj . ~5!

The quantityz is related to the density perturbation,dr, and
curvature perturbation,c, on a generic slicing~using the
sign convention of Ref.@19#! by the gauge-invarian
formula2

z52c2HDt ~6!

52c2H
dr

ṙ
, ~7!

whereDt is the displacement of the generic slicing from t
uniform-density slicing. On superhorizon scalesz is practi-
cally identical with the curvatureR defined on slices or-
thogonal to comoving worldlines. The quantityz'R is use-
ful on such scales because it is time-independent@20–
22,18,3# provided that the pressure perturbation is adiaba
meaning thatdP5cs

2dr, where the adiabatic sound spe

cs
25 Ṗ/ ṙ. This is guaranteed if there exists a universal eq

2In general a gauge corresponds to a definite slicing and threa
of spacetime, but in this paper only the former is relevant so
‘‘gauge invariant’’ can be taken to mean ‘‘independent of the s
ing.’’
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tion of stateP(r). If the pressure perturbation is not adi
batic, then z'R changes according to the equatio
@20,21,23#

ż52
H

r1P
dPnad, ~8!

wheredPnad5dP2cs
2dr.

In the conventional inflaton model for the origin of stru
ture purely adiabatic perturbations are generated due to q
tum fluctuations in the single scalar field driving inflatio
Thus the curvature perturbation,z* , calculated shortly after
Hubble exit (k5aH) determines the curvature perturbatio
until that scale reenters the Hubble scale during the su
quent radiation or matter-dominated era. By contrast, we
interested in a scenario where the curvature perturbation
erated on large scales during inflation in the very early u
verse is negligible.

In the rest of this section we describe the generation of
large-scale curvature perturbation,z, in the curvaton sce-
nario, amplifying the outline given in the original paper@9#
~see also@24#!. We deal with the simplest version of th
curvaton scenario, where the curvature perturbation is cau
exclusively by a single ‘‘curvaton’’ field distinct from the
inflaton field.

B. Generating the curvaton field perturbation

During inflation the Hubble parameterH is assumed to be
slowly varying,eH[2Ḣ/H2!1. The inflaton~if it exists! is
supposed to produce a negligible curvature perturbation.
manding that it is~say! less than 1% of the observed valu
implies @3# V

*
1/4,231015 GeV, which in turn implies@5#

that the primordial gravitational waves will have no dete
able effect on the cosmic microwave background~CMB! an-
isotropy. Conversely, the detection of an effect would ru
out the curvaton hypothesis~an ‘‘antismoking gun’’! @25,24#.

The curvaton fields is supposed to be practically fre
during inflation, with small effective mass (uVssu!H2 where
a subscripts denotes]/]s). It follows that on superhorizon
scales there is a Gaussian perturbation with an approxima
scale-independent spectrum given by

P ds
1/2~k!'

H*
2p

, ~9!

where the * denotes the epoch of horizon exitk5aH. ~The
normalization of the spectrum@3# is such thatP ds

1/2 specifies
the typical magnitude of a spatial fluctuation inds on a
physical scalea/k.! The spectral index specifying the sligh
scale dependence is given by@9,25#

n21[d ln~Pds!/d ln k52hss22eH , ~10!

wherehss[Vss/3H2.
After the smallest cosmological scale leaves the horiz

the curvature perturbation remains negligible until after
curvaton starts to oscillate. As a result, the curvaton fi
evolves in unperturbed spacetime. To follow the evolution
is assumed that the curvaton field has no significant coup
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PRIMORDIAL DENSITY PERTURBATION IN THE . . . PHYSICAL REVIEW D 67, 023503 ~2003!
to other fields or, to be more precise, that the effect of a
coupling can be integrated out to give a possibly tim
dependent effective potentialV. With these assumptions, th
curvaton field smoothed on the smallest cosmological s
evolves along each comoving worldline according to the
perturbed field equation

s̈13Hṡ1Vs50. ~11!

Making the first-order approximation d„Vs(x,t)…
'Vss(t)ds(x,t), its inhomogeneous perturbation satisfie

d s̈13Hd s̈1Vssds50. ~12!

Assuming only that the evolution ofds is linear, the Gaus-
sianity and~slight! scale dependence of the original quant
are preserved. The fractional perturbationds(x)/s does not
evolve at all if the potential is either sufficiently flat~so that
s andds are both constant! or quadratic~so thats andds
satisfy the same equation!.

The field remains overdamped until the Hubble parame
falls below the curvaton massms . The curvaton field will
then start to oscillate about its vacuum value~taken to be
s50) with an amplitude which decreases with time. Even
the potential of the curvaton field is not quadratic, after a f
Hubble times we can make the approximationV' 1

2 ms
2s2.

The fractional field perturbation then has some cons
value,

S ds

s D5qS ds

s D
*

, ~13!

where the factorq is time-independent because the oscil
tion is around a quadratic minimum of the potential. In p
ticular, if the effective potential for the curvaton is quadra
~or sufficiently flat! throughout its evolution,q51. Using
Eq. ~9!, the spectrum of the fractional field perturbation
this stage is

P ds/s
1/2 5

q

2p

H*
s*

. ~14!

The energy density in the oscillating field is

rs~x,t !5ms
2 s̃2~x,t !, ~15!

wheres̃(x,t) is the amplitude of the oscillation. The pertu
bation in rs depends on the curvaton field perturbati
through both a linear and a quadratic term. Assuming, for
moment, that the linear term dominates~which we shall see
is demanded by the data! we have

drs

rs
'2

ds

s
52qS ds

s D
*

. ~16!

We shall return to consider the possible contribution from
quadratic term in Sec. II D.
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C. Generating the curvature perturbation

So far we have reached the epoch just after the Hub
parameter falls below the curvaton mass, and the curva
oscillation starts. At this stage, it is supposed that the do
nant energy density comes from radiation. The curvat
though, is supposed to be fairly long-lived, while decayi
comfortably before nucleosynthesis. So long as the de
rate is negligible (G!H), we havers}a23 and r r}a24,
leading tors /r r}a. It is this increase in the relative curva
ton energy density which generates the curvature pertu
tion.

To analyze the generation of the curvature perturbat
~and also, later on, to discuss possible isocurvature pertu
tions produced by the curvaton decay!, it is convenient to
consider the curvature perturbationsz i corresponding to the
separate components of the energy density. These are de
on slices of uniformr i , corresponding to the gauge-invaria
definition

z i[2c2HS dr i

ṙ i
D . ~17!

In particular, evaluatingzs for the curvaton on unperturbe
(c50) hypersurfaces when the curvaton starts to oscilla
we have

zs5
1

3

drs

rs
5

2

3
qS ds

s D
*

. ~18!

The total curvature perturbation~7! can then be written as th
weighted sum

z5~12 f !z r1 f zs ~19!

where the relative contribution of the curvaton to the to
curvature is given by

f 5
3rs

4r r13rs
. ~20!

Thus the curvaton perturbation,zs , can initially be de-
scribed as an isocurvature perturbation sincef→0, i.e.,
rs /r r→0, in the early-time limit.

Until the effect of curvaton decay becomes significant,
curvaton and radiation densities each satisfy their own
ergy conservation equationṙ i523H(r i1Pi). In this re-
gime, eachz i is constant on superhorizon scales@18#. The
evolution ofz on these scales is due solely to the change
f in Eq. ~19!, which yields

ż5 ḟ ~zs2z r !5H f ~12 f !~zs2z r !. ~21!

It is intuitively easy to see howz changes with time as the
curvaton density grows relative to the radiation,ḟ .0. It is
straightforward to check that Eq.~21! is consistent with Eq.
~8! where the nonadiabatic pressure perturbation is given

dPnad5
4r rrs

4r r13rs
~z r2zs!. ~22!
3-3
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LYTH, UNGARELLI, AND WANDS PHYSICAL REVIEW D 67, 023503 ~2003!
An adiabatic perturbationdr r / ṙ r5drs / ṙs corresponds to
the special case

z5z r5zs5const. ~23!

The curvaton scenario corresponds to the case where
curvature perturbation in the radiation produced at the en
inflation is negligible,z r'0. In the approximation of sudde
decay@9#, z r andzs both remain constant up until decay an
the curvature perturbation at decay is therefore

z' f deczs ~24!

'
2

3
f decqS ds

s D
*

, ~25!

where f dec is f at the decay epoch, conventionally defined
terms of the decay rate byHdec5G. We assume that afte
decay the pre-existing radiation is either insignificant or e
thermalizes with the decay products~with the possible ex-
ception of CDM!. Since we are assuming that there is on
one curvaton field, this is sufficient to ensure thatz on cos-
mological scales will retain the same value at the primord
epoch.

Going beyond the sudden decay approximation, we de
a numberr by

z5r zs ~26!

5r
1

3

drs

rs
~27!

5rq
2

3 S ds

s D
*

, ~28!

wherez is evaluated well after the epoch of curvaton dec
andzs is evaluated well before this epoch. In the limit whe
the curvaton completely dominates the energy density be
it decays,r 51. In other words, the sudden-decay appro
mation becomes exact in this limit. The reason is that in t
case the curvaton and its decay products constitute a s
fluid with a definiteP(r), so that they have constant curv
ture perturbation which is equal tozs . If the curvaton does
not dominate, one has to resort to numerical calculation
the coupled perturbation equations@26#, for which one finds

r'S rs

r D
dec

. ~29!

The prediction of the curvaton model for the spectrum of
curvature perturbation is

P z
1/25

2

3
rP ds/s

1/2 , ~30!

with P ds/s
1/2 given by Eq.~14!. The Cosmic Background Ex

plorer ~COBE! measurement of the CMB quadrupole anis
ropy requires@3#
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1/2~COBE!54.831025. ~31!

If the curvaton dominates the energy density before it dec
(r 51) this implies the following amplitude for the perturba
tions of the curvaton field

P ds/s
1/2 57.231025. ~32!

In other words, the typical field~and density! perturbation on
cosmological scales must be of order 1024 in that case. If the
curvaton does not dominate, we need at leastr *1024 to get
a spectrum of the correct magnitude~since the typical den-
sity perturbation can be at most of order 1!. We shall now see
how the observational bound on non-Gaussianity actually
quires a much higher value forr.

D. Possible non-Gaussianity of the curvature perturbation

From Eqs.~15! and ~27!, the curvature perturbation de
pends on the curvaton field perturbation through both lin
and a quadratic terms. So far we evaluated only the lin
contribution, which gives a Gaussian contribution to the c
vature perturbation. However, if the quadratic term in t
density perturbation of the curvaton field is not negligib
the total curvature perturbation will have a non-Gauss
(x2) component.

The relative magnitude of the quadratic term is conve
tionally specified@5# by a numberf NL ~NL meaning ‘‘non-
linear’’!, which nominally determines the non-Gaussian co
tribution to the Bardeen potential according to the formul

F5Fgauss1 f NLFgauss
2 . ~33!

The connection with the Bardeen potential is only nomin
because the relation betweenF andz is taken@5# to be

F52
3

5
z52

r

5

drs

rs
. ~34!

This relation is actually valid only on super-horizon sca
after matter domination, the correct relation at the primord
epoch being more complicated and involving the relat
neutrino density@3#.

Using Eq.~15! we have

drs

rs
52

ds

s
1

~ds!2

s2
. ~35!

Thus, using Eqs.~33! and~34!, the prediction of the curvaton
hypothesis is

f NL5
5

4r
. ~36!

At this point we have to remember that first-order cosm
logical perturbation theory is being assumed. Second-o
metric perturbations will also give a correctionF (2)(x), pre-
sumably with typical magnitude

uF (2)~x!u;Fgauss
2 . ~37!

It follows that the estimate Eq.~36! of f NL will be valid only
in the regimef NL@1 @and that smaller values off NL cannot
3-4
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PRIMORDIAL DENSITY PERTURBATION IN THE . . . PHYSICAL REVIEW D 67, 023503 ~2003!
even be defined, unlessF (2)(x) is itself the square of a
Gaussian quantity#. In other words, the validity of the esti
mate Eq.~36! requires that the curvaton contributes only
small fraction of the energy density just before it decays.
the opposite case that the curvaton dominates the de
before it decays, the non-Gaussianity calculated accordin
linear theory is lost in the ‘‘noise’’ of the unknown secon
order correction to cosmological perturbation theory.

Now we compare the prediction with present and futu
data on the CMB anisotropy. A recent analysis of the CO
data @27# yields u f NLu&23103, implying the constraintr
*631024. From Eqs.~30! and~31! we see that this bound
is equivalent toP ds/s

1/2 &0.1. Starting in 2003, data from th
Microwave Anisotropy Probe~MAP! satellite@28# will either
detect non-Gaussianity or giveu f NLu&20 @5# corresponding
to r *0.06. If non-Gaussianity is detected by MAP it w
clearly be above the noise of the second-order correct
Looking further ahead, the Planck satellite will either det
non-Gaussianity or giveu f NLu&5 @5# corresponding tor
*0.2. Apparent non-Gaussianity at the bottom end of t
range would however have to be checked against the sec
order order correction toF to make sure that the correctio
is negligible.

We have seen that the curvaton hypothesis can easily
significant non-Gaussianity. The reason is that the predic
curvature perturbation is proportional to the the perturbat
of the curvaton density, a quantity which depends on
squareof the curvaton field. The perturbation in the curvat
field is supposed to be Gaussian because it is suppose
have negligible interaction, making its Fourier compone
uncorrelated which is the definition of Gaussianity. But t
corresponding perturbation in the curvaton density is a lin
combination of the curvaton field perturbation and its squa
From a theoretical viewpoint the square could even domin
@29,8#, though as we have seen this is ruled out by the d

This is in sharp contrast with the situation for the inflat
hypothesis, in which the curvature perturbation is purely l
ear in the inflaton field perturbation. The inflaton can usua
be treated as a practically free field, making its perturbati
and the curvature practically Gaussian. In particular, for
usual single-field models, where there is an essenti
unique inflaton trajectory, the self-interaction of the inflat
field is the only relevant one and is kept small by the flatn
conditionse,h!1. As a result single-field models give@4#
u f NLu5u2e22hu&0.1 which is lost in the noise from th
second-order correction to cosmological perturbat
theory.3 In two-field models, where there is a family of po
sible inflaton trajectories curved in field space, the infla
field perturbation at the end of inflation will be a linear com
bination @30#

dfend}cosudf* 1sinudx* , ~38!

wheref* is the inflaton field at the time of horizon exit an
x* is the field orthogonal to it. By definition the slope of th

3The bound 0.1 comes from the observational bound on the s
tral index in the inflaton scenario,n2152h26e.
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potential vanishes in thex direction but the higher deriva
tives might in principle be present corresponding to a s
interaction big enough to generate significant no
Gaussianity. In particular there might be a cubic termMx3 in
the potential@31# ~with the unperturbedx* 50) or some-
thing more complicated@6#. This setup might generate sig
nificant non-Gaussianity, but it obviously requires a spec
choice of the inflaton trajectory. Even when such a choice
made initially, it might be destabilized by the quantum flu
tuation before cosmological scales start to leave the horiz

We conclude that a detection of non-Gaussianity by M
would strongly suggest that the primordial curvature pert
bation is produced by a curvaton field. Such a detect
would imply that the density of the curvaton before it deca
reaches no more than 6% of the total. In the opposite c
that the curvaton dominates before it decays, it gives a p
tically Gaussian curvature perturbation, just as in the infla
scenario.

III. ISOCURVATURE PERTURBATIONS

Thus far we have concentrated upon how the curva
introduces a large-scale curvature perturbation. Now we c
sider theisocurvatureperturbations that may be imprinted i
different particle species after the curvaton decay.

We adopt the ‘‘separate universe’’ viewpoint@18#, implicit
in practically all discussions of perturbations on superho
zon scales. At each epoch, it is assumed that each como
region with size much bigger than the Hubble distance lo
locally like some unperturbed~Robertson-Walker! universe.
If these ‘‘separate universes’’ are all identical, the cosmolo
cal perturbations are said to be adiabatic. Perturbation
matter fields then vanish on slices of uniform energy dens
and the curvature perturbationz is the only thing that needs
to be specified to determine the evolution of the pertur
tions after horizon entry.

If the ‘‘separate universes’’ are not identical there a
isocurvature perturbations, so-called because they evolve
dependently of the curvature perturbation on large sca
which can therefore be taken to vanish when consider
them. One way of specifying a generic isocurvature per
bation, dx, is to give its value on uniform-density slice
related to its value on a different slicing by the gaug
invariant equation

HS dx

ẋ
D

dr50

5HS dx

ẋ
2

dr

ṙ
D . ~39!

For a set of fluids with energy densityr i , the isocurvature
perturbations are instead conventionally defined by
gauge-invariant quantities

Si j 523HS dr i

ṙ i

2
dr j

ṙ j
D . ~40!

In terms of the individual curvature perturbations defined
Eq. ~17! this becomes

Si j 53~z i2z j !. ~41!
c-
3-5
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For fluids which are ‘‘decoupled’’~in the sense that there i
no energy transfer! and which have a definite equation
statePi(r i), thez i ’s are constant on superhorizon scales@18#
and hence so are the isocurvature perturbations~41!. In this
language, the curvaton density perturbation before it dec
corresponds to a constant isocurvature perturbationSsr
[3(zs2z r) which in the curvaton scenario (z r50) reduces
to Ssr[3zs .

At the ‘‘primordial’’ epoch, before the smallest cosmo
logical scale approaches the horizon, there are four ‘‘dec
pled’’ fluids namely the CDM, baryons, photons and neu
nos~taken to be massless!. The conventional definitions Eqs
~2!–~4! of the three isocurvature perturbations correspond

SB53~zB2zg! ~42!

Scdm53~zcdm2zg! ~43!

Sn53~zn2zg!. ~44!

In the standard single-inflaton scenario it is impossible
introduce isocurvature perturbations on large scales at
primordial epoch from the purely adiabatic perturbations
isting after the end of inflation@18#. But in the curvaton
scenario the nonadiabatic nature of the curvaton perturba
after inflation (SsrÞ0) means that it is possible for the cu
vaton to leave isocurvature perturbations after the curva
decays even on super-horizon scales, which we term
sidual’’ isocurvature perturbations.

In addition to the energy densities we shall need to c
sider number densitiesncdm, nB , nL , and nLi . They are
defined, respectively, as~i! the number density of CDM par
ticles,~ii ! the density of baryon numberB, ~iii ! the density of
lepton numberL and~iv! the densities of the three individua
lepton numbersLi ( i 5e, m or t). By the ‘‘primordial’’ era
any significant lepton number will be carried entirely by ne
trinos, makingnLi the difference between neutrino and a
tineutrino number densities. In the unperturbed Unive
each number density is proportional toa23 so long as the
corresponding quantity is conserved in a comoving volum

For each of these number densities, it will be useful
consider the curvature perturbationsz̃ i on slices of uniform
ni ,

z̃ i[2c2H
dni

ṅi

~45!

52c1
1

3

dni

ni
. ~46!

In a homogeneous universe the conserved number densni
obeys the evolution equation

ṅi13Hni50. ~47!

Allowing for large-scale perturbations about the strictly h
mogeneous background, we obtain the local evolution eq
tion for the first-order perturbation
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d ṅi13Hdni23ni ċ50, ~48!

assuming all spatial gradients~e.g., divergence of the par
ticles velocity field! are negligible on large scales. Combi
ing Eqs.~45!–~48! we obtain the evolution equation for th
curvature perturbation

ż̃ i50. ~49!

Hence we see thatz̃ i defined in Eq.~45! remains constant on
large scales so long as the particle numberni is conserved.

Equations~45! and ~49! are equivalent to the stateme
that the perturbation in the fractional number dens
(dni /ni) is conserved on flat (c50) spatial hypersurfaces
The perturbations in the number densities are best define
the flat slicing, becauseon this slicing the expansion rat
with respect to coordinate time is unperturbed@18#, leading
to the constancy of the fractional perturbations.

This is a significant extension to the case of interact
fluids of the result found in Ref.@18# for the constancy ofz i
for noninteracting fluids on large scales. It will prove a po
erful tool to describe the possible generation of isocurvat
perturbations after curvaton decay in what follows.

IV. RESIDUAL ISOCURVATURE MATTER
PERTURBATIONS

A. Residual isocurvature CDM perturbation

Without making any assumption about the nature of
CDM, we take the epoch of its creation as the one a
which its particle numberncdm is conserved. There are sev
eral candidates for the CDM particle, such as the axion,
lightest supersymmetric particle~LSP!, a stable massive par
ticle ~wimpzilla! or primordial black holes. For axions th
epoch of creation corresponds to the temperature;1 GeV at
which the effective axion mass rises above the Hubble
rameter, and for the conventional LSP it corresponds to
freeze-out temperature roughly of order 10 GeV. For ve
massive particles~wimpzillas! @32,33# or black holes@34,35#
the epoch of creation may be the end of slow-roll inflati
corresponding to an energy scaler1/4 up to 1016 GeV. In the
case of wimpzillas it may instead@36# be the epoch of ther-
mal inflation corresponding to perhapsr1/4;106 GeV. The
CDM might also be created as an out-of-equilibrium dec
product of the inflaton, the curvaton or some other partic

After CDM creation, conservation of the CDM particl
number ensures thatz̃cdm defined by Eq.~45! is constant on
superhorizon scales. When the CDM becomes nonrelativ
with constant mass,z̃cdm reduces tozcdm defined by Eq.~17!.
In most of the examples mentioned above, this occurs at
epoch of creation. It could happen though that that CD
created from out-of-equilibrium decay is initially relativistic
Also, the axion mass~induced by the QCD instanton! in-
creases after the epoch of creation, becoming constant
when the temperature falls to 100 MeV. In any case,z̃cdm
will certainly have reduced tozcdm by the primordial epoch.

To evaluate the primordial isocurvature perturbationScdm,
we assume that the primordialzg5z corresponding to a zero
3-6
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or small neutrino isocurvature perturbationzn2zg, postpon-
ing until Sec. V A the possibility of a significant neutrin
isocurvature perturbation. We can then rewrite Eq.~43! as

Scdm53~ z̃cdm2z!. ~50!

As we have mentioned, several different mechanis
have been considered for creating the CDM. In most ca
the creation mechanism does not involve any quantity w
an isocurvature perturbation, which means that at crea
the CDM has no isocurvature perturbation. To put it diffe
ently, the ‘‘separate universes’’ are in these cases identic
the epoch of CDM creation, which means that the num
density ncdm at creation depends only on the local ener
density.

The most usual way of obtaining CDM which has
isocurvature perturbation at creation is to suppose that it c
sists of axions, whose production in each region of sp
corresponds to the onset of the axion field oscillation in t
region. If the axion field has an isocurvature perturbation
CDM isocurvature perturbation will then be produced at
time of creation. However, the magnitude of the isocurvat
CDM perturbation produced in this way is unrelated to th
of the curvature perturbation. In other words, there is
reason why CDM originating from an oscillation of the axio
field should have a significant isocurvature density at
time of its creation. The same is true for all of the oth
CDM production mechanisms that have been considere
far.

In what follows we will assume that the CDM numb
density at the epoch of creation depends only on the lo
energy density. We expect this to be valid in the absenc
any nonadiabatic pressure perturbation, i.e., where the l
density also determines the local pressure. The only ex
tion will be the case that the CDM is produced by the c
vaton decay, which will require special treatment.

In the curvaton scenario where the CDM is created a
the curvaton has decayed~or in the inflaton scenario!, the
CDM isocurvature perturbation will still be zero at the ‘‘pr
mordial’’ epoch. The basic reason is that the ‘‘separate U
verses’’ in these cases remain identical. To proceed m
formally, the assumption that there is initially no isocurv
ture density perturbation means that the CDM number d
sity at creation is uniform (dncdm50) on slices of uniform
density~wherec52z). Hence we may evaluate the gaug
invariant expression~45! on a surface of uniform density t
obtain z̃cdm5z, with both sides constant. Going forward
the primordial epoch, when the CDM energy is conserved
that zcdm5 z̃cdm we find that the primordial CDM isocurva
ture perturbation,Scdm given by Eq.~43!, vanishes.

The situation is dramatically different if the CDM is cre
ated before the curvaton decays, or if it is created by
curvaton decay itself. In these cases, the process of curv
decay creates a ‘‘residual’’ isocurvature CDM perturbati
whose properties are closely tied to the curvature pertu
tion.

Consider the case that the CDM is created well before
curaton decays and well before the curvaton comes to do
nate the energy density@f ! 1 in Eq.~20!#. In this regime the
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Universe is practically unperturbed and thereforez̃cdm is
practically zero. At the primordial epoch this gives the r
sidual CDM isocurvature perturbation in Eq.~43! as

Scdm523z. ~51!

In the notation of Ref.@2# this corresponds to a maximum
correlation between curvature and CDM-isocurvature per
bations. The power spectra of the two perturbations have
same spectral index and the isocurvature perturbation ha
amplitude three times larger than the adiabatic one. Suc
large correlated perturbation is ruled out by current obser
tions which require@2,37#

UScdm

z U,1.5 at 95% C.l. ~52!

Our conclusion is that in the curvaton scenario,CDM can-
not be created before curvaton decays and while the to
curvature perturbation remains small,z!r zs. In particular
CDM creation just after inflation ends, such as might occ
in the case of wimpzillas or black holes, is incompatible w
the curvaton scenario.

If the CDM is created before the curvaton decays, b
when the curvaton density has become non-negligiblef
;1 in Eq.~20!, there will be a significant nonadiabatic pre
sure perturbation,dPnad given by Eq.~22!, at the epoch of
creation and we can no longer assume that the initial CD
number density is unperturbed on uniform density slices.
stead the actual number density at creation will depend
the mechanism by which the CDM is created, and we leav
detailed investigation of the different cases for future wo

Finally, we consider the case that the CDM is created
the decay of the curvaton itself. The epoch of CDM creat
then corresponds to the epoch when the curvaton deca
complete. The resulting local CDM density is then fixed m
tiple of the curvaton number density well before decay. T
fractional perturbations are thus equal and hence

z̃cdm5zs . ~53!

Using the definition ofr in Eq. ~26!, this gives at the primor-
dial epoch

Scdm53S 12r

r D z. ~54!

This is negligible if the curvaton comes to dominate before
decays (r 51), the physical reason being that the curvat
perturbation becomes an adiabatic curvature perturbation
it cannot leave behind any residual isocurvature perturbat
But if the curvaton decays before it dominates,r !1, there
will be large isocurvature perturbations in the CDM, incom
patible with existing observational constraints. Note that
the notation of Ref.@2# the curvature and isocurvature pe
turbations are anticorrelated, in which case the observatio
limit becomes
3-7
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UScdm

z U,0.2 at 95% C.l., ~55!

much stronger than that for correlated isocurvature pertu
tions. Observational limits on the amplitude of the anticor
lated isocurvature perturbations thus require the curvato
effectively dominate,r .0.9, if the CDM is created by the
curvaton decay.

B. Residual baryon isocurvature perturbation

Baryon numberB may be created directly, in which cas
we take the epoch of baryogenesis to be the one after w
B is conserved. AlternativelyB may be created through th
conversion ofL at the electroweak transition. In the latt
caseB-L is conserved, and for the present purpose we m
take the epoch of baryogenesis as the one whenB-L is cre-
ated. Depending on what type of mechanism operates,
epoch of baryon creation in this sense may be anywhere f
the end of inflation to the electroweak transition. To keep
notation simple we take the relevant quantity to beB from
now on, with the understanding thatB is to be replaced by
B-L if that is the relevant quantity.

Until the QCD transition atT;100 MeV, B represents
the difference between the abundances of the typically r
tivistic particles and antiparticles carrying baryon numb
and cannot usefully be associated with an energy densit
this situation we need to usez̃B the curvature perturbation o
slices of uniformnB @given in Eq. ~45!#. This quantity is
constant on large scales at all times after baryon creat
and it reduces tozB @Eq. ~17!# after the QCD transition when
baryon number is carried by nonrelativistic nucleons and
clei.

The theoretical situation for the baryon isocurvature p
turbation is similar to the one for CDM. We make the re
sonable assumption that the baryon number density at
epoch of baryogenesis depends only on the local energy
sity, unless baryogenesis comes the curvaton decay itse
baryogenesis occurs after the curvaton decays, there wi
no primordial baryon isocurvature perturbation. If inste
baryon number is generated well before curvaton decay,
well before the curvaton dominates, there will be a la
residual baryon isocurvature perturbation,

SB523z. ~56!

In contrast with the CDM case, such a perturbation is s
marginally compatible with current observational data@2#.
The effect on the CMB angular power spectrum of a bary
isocurvature perturbation is essentially the same as that
CDM-isocurvature perturbation but the size of the effect
diminished by a factorVB /Vcdm due to the smaller densit
of baryonic matter@39#, so the constraint in Eq.~52! be-
comes

USBU,1.5S VcdmD at 95% C.l. ~57!

z VB
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An isocurvature perturbation of the form given in Eq.~56!
will either be ruled out or observed in the near future, p
viding in the latter case a smoking gun for the curvat
scenario.

The final possibility is that baryon number is produced
the out-of-equilibrium decay of the curvaton itself, as is t
case if we identify the curvaton with the right-hande
sneutrino of Ref.@38#. Then we have at the primordial epoc
in the sudden decay approximation,

SB53S 12r

r D z. ~58!

Current observational limits on the amplitude of such an
ticorrelated baryon-isocurvature mode require that the cu
ton must dominate the density at decay,r .0.6, if the curva-
ton itself is responsible for baryogenesis.

V. NEUTRINO ISOCURVATURE PERTURBATIONS

A. The general formalism

In this section we discuss the possibility of a neutri
isocurvature density perturbation. As far as we are aware
treatment is the first one taking into account the crucial is
of lepton number.

The era of thermal equilibrium for neutrinos ends ju
before nucleosynthesis, which almost certainly means
this era determines the abundances of neutrinos and
neutrinos at the later ‘‘primordial’’ epoch.~We are not in this
paper considering the possibility that the curvaton dec
after nucleosynthesis, and for the present purpose we
count too the possibility that it decays between neutrino
coupling and nucleosynthesis.! Taking that for granted, there
is no neutrino isocurvature if the lepton number at dec
pling is negligible, because the primordial abundance of
neutrinos is then determined entirely by the photon tempe
ture @39#.

We therefore consider the case of nonzero lepton num
densitynLi , with i 5e, m or t. While the neutrinos are ef
fectively massless and in equilibrium, with temperatureTn

this corresponds to occupation numbers

f i~E!5@exp~E/Tn7j i !11#21, ~59!

for neutrinos and antineutrinos with energyE. This gives the
following expressions for thetotal energy densityr i of neu-
trinos and antineutrinos, and the lepton number densitynLi
equal to thedifferencebetween the number densities of ne
trino and antineutrinos@40#:

r i

rg
5

7

8 S Tn

Tg
D 4

Ai ~60!

nLi

ng
52.15S Tn

Tg
D 3

Bi , ~61!

where
3-8



bl
h

on
es

th

q
w
m

ar

e

is

av
a
b

te
e
-

d
ec
o

on
th

ion

, is
ur-
and

n
rba-
s,

am-

id in
ni-
-

r-

are
ber

we

he
ities

PRIMORDIAL DENSITY PERTURBATION IN THE . . . PHYSICAL REVIEW D 67, 023503 ~2003!
Ai5F11
30

7 S j i

p D 2

1
15

7 S j i

p D 4G , ~62!

Bi5F S j i

p D1S j i

p D 3G , ~63!

and

rg5
p2

15
Tg

4 , ~64!

ng5
2.40

p2
Tg

3 . ~65!

In the usual case that the lepton asymmetry is negligi
these expressions start to become valid at reheating, and
with Tn5Tg until positron annihilation, after which

Tn5~4/11!1/3Tg . ~66!

In the case of significant lepton asymmetry that we are c
sidering, there is significant neutrino mixing and the expr
sions become valid only whenTn5Tg falls to a few MeV.
The subsequent evolution is more complicated than in
usual case so that the thermal distribution Eq.~59! is not
precisely maintained@40#, but following the usual practice
we make the approximation that it is maintained so that E
~59!–~66! are all valid after positron annihilation. From no
on we take the expressions to refer to that era. The asym
try parametersj i are then constant since the neutrinos
travelling freely leading toni}Tn

3}1/a3.
Big-bang nucleosynthesis~BBN! and large-scale structur

~LSS! constrainje and ujmu21ujtu2. If the favored large
mixing angle~LMA ! solution to the solar neutrino problem
is correct, neutrino oscillations ensure that thej i have a com-
mon valuej @41#. In that case, the BBN-LSS constraint
@42# 20.01,j,0.07. With this constraint,unperturbedlep-
ton number densities are almost certainly too small to h
any observable effect on the CMB anisotropy or large-sc
structure~LSS!. We shall see, though, that this need not
the case for the residual isocurvature perturbation.

Final confirmation of the LMA is expected in a few
months from the Kamland reactor experiment@43#, but we
shall nevertheless allow independent asymmetry parame
in our analysis. In that case BBN and CMB-LSS togeth
give constraints onujmu5ujtu ~assumed equal for conve
nience! and je which are much weaker, namelyujm,tu<2.5
and ujeu<0.30 @42#. Note that these limits were obtaine
assuming a purely adiabatic primordial perturbation sp
trum and hence serve only as a rough guide in the case
correlated curvature and neutrino isocurvature perturbati

For each individual neutrino species we can calculate
curvaturez i on uniform-r i hypersurfaces from Eqs.~17! and
~60!

z i2zg5S dTn

Tn
2

dTg

Tg
D1

1

4

Ai8

Ai

dj i

p
, ~67!
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and the curvaturez̃ i on uniform-nLi hypersurfaces given
from Eqs.~45! and ~61! as

z̃ i2zg5S dTn

Tn
2

dTg

Tg
D1

1

3

Bi8

Bi

dj i

p
, ~68!

where Ai85(60/7)Bi and Bi85113(j i /p)2. Only when
dj i50 do these two quantities coincide.

As we have noted, a neutrino isocurvature perturbat
due to the first term in Eqs.~67! and ~68!, representing a
perturbation in the neutrino to photon temperature ratio
extremely unlikely since it would have to be generated d
ing the extremely short era between neutrino decoupling
nucleosynthesis. We here take the first term to be zero.

Following the path that we trod for the CDM and baryo
number perturbations, we define the isocurvature pertu
tions in the number densities of the three lepton number

S̃i5
dnLi

ni
2

dng

ng
~69!

53~ z̃ i2zg!. ~70!

They determine the perturbations in the asymmetry par
eters,

dj i

p
5

Bi

Bi8
S̃i'

j i

p
S̃i , ~71!

where the final equality is valid in the regime (j i /p)2!1.
These expressions refer to the primordial era, and are val
the early Universe only back to the epoch of positron an
hilation at T;MeV. While they are valid, the lepton num
bersLi are conserved and the curvature perturbationz̃ i on
slices of uniformnLi is constant. At early times though, co
responding toT bigger than a few MeV, neutrino mixing
becomes significant and the individual lepton numbers
not defined. Instead there is only the total lepton num
density and its perturbation,

nL5( nLi ~72!

S̃L5
dnL

nL
2

dng

ng
~73!

53~ z̃L2zg!. ~74!

The total lepton numberL is well defined in the early Uni-
verse after the epoch of lepton number creation, which
take to be the one after whichL is conserved. WhileL is
conserved, the curvature perturbationz̃L on slices of uniform
nL is constant.

The three primordial quantitiesni and their perturbations
Si are not in general determined bynL and SL . They are
however determined if the large mixing angle solution to t
solar neutrino problem is correct because the three quant
are then equal
3-9
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nLi5
1

3
nL ~75!

S̃i5S̃L . ~76!

If one or more neutrino masses are big enough to giv
significant amount of dark matter, it will be necessary
insert thedj i into the initial occupation number Eq.~59!,
propagating this initial condition forward with evolutio
equations. In that case the initial condition requires a kno
edge of the three individual isocurvature perturbationsSi .
Here we make instead the opposite approximation of m
less neutrinos. Then, the only required initial condition is
isocurvature perturbation in the total neutrino energy den
which is specified by the derived quantitySn , defined by Eq.
~4!. This quantity may be calculated using

zn5
( r iz i

( r i

, ~77!

taking r i from Eq. ~60! andz i from Eq. ~67!. The result is

Sn5
45

7

( Bi~dj i /p!

( Ai

, ~78!

5
45

7

( ~Bi
2/Bi8!S̃i

( Ai

'
15

7 ( S j i

p D 2

S̃i , ~79!

where the final approximation is valid for (j i /p)2!1.
As far as we are aware, this is the first time that expr

sions for the neutrino isocurvature perturbation have b
given in the most realistic case where it is determined by
~perturbed! lepton asymmetry. The effect of the neutrin
isocurvature perturbations has never been tested agains
servational data while including nonzero chemical potent

B. Induced matter isocurvature perturbations

Now we address an issue that is relevant for calcula
the amplitude of CDM and baryon isocurvature perturbatio
in the presence of a neutrino isocurvature perturbation. In
presence of the latter, the equalityzg5zn5z breaks down,
and instead we have

z5~12Rn!zg1Rnzn5zg1
Rn

3
Sn , ~80!

whereRn[rn /(rn1rg) is the fraction of the final radiation
density in neutrinos, andRn'0.41 for j i!1.

The amplitude of the CDM and baryon isocurvature p
turbations, calculated assumingz5zg , acquire an additiona
term
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Scdm/B53~zcdm/B2zg!53~zcdm/B2z!1RnSn . ~81!

Hence for CDM/baryons created after curvaton decay~or in
the inflaton scenario!, for which z̃cdm/B5z, we now have a
nonzero isocurvature matter perturbation

Scdm/B5RnSn , ~82!

for CDM/baryons created before curvaton decay, w
z̃cdm/B50, we have

Scdm/B523z1RnSn , ~83!

while for CDM/baryons created by curvaton decay, w
z̃cdm/B5zs , we have

Scdm/B53S 12r

r D z1RnSn. ~84!

If Sn!z, thenzg can be identified to high accuracy withz,
and the changes inScdm/B induced by the neutrino isocurva
ture perturbations represent a small correction.

These changes do not correspond to any change in
evolution of the CDM or baryons in the early Universe. Th
would be avoided if we worked instead with the quantiti
Ŝcdm/B53(z̃cdm/B2z), that define the perturbations on slice
of uniform total density@Eq. ~39!#. These quantities are in
dependent ofSn so that, for example, they always vanish
the CDM or matter is created after curvaton decay with
density depending only on the local energy density. In
similar way, the quantitiesŜi53(z̃ i2z) reflect the early
Universe situation more directly than the quantitiesS̃i , as we
shall see when discussing leptogenesis from curvaton de
In all cases though, the unhatted quantities are those c
monly used at the ‘‘primordial’’ era, as a starting point fo
the forward evolution of the perturbations.

C. The residual neutrino isocurvature perturbation

Now we wish to discuss the residual neutrino isocurvat
perturbation in the curvaton scenario, along the same line
for the CDM and baryons. To do this, we assume that
LMA solution is correct so that the primordial lepton numb
densities have a common value, determined by the total
ton number density that is conserved in the early Univer
Since the lepton asymmetry is small in that case, the neut
isocurvature perturbation is given to high accuracy by E
~79!,

Sn'
45

7 S j

p D 2

S̃L , ~85!

where the common asymmetry parameterj satisfies the nu-
cleosynthesis constraintuju,0.07.

To evaluateS̃L we can follow closely the previous discus
sions of CDM and baryon number. We take the epoch
creation of lepton numberL to be the one at which this
quantity starts to be conserved. We assume that the le
number isocurvature perturbation at creation is zero or n
3-10
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ligible, except in the case that lepton number is created
the curvaton decay. If lepton number is created after curva
decay,S̃L50 and there is no neutrino isocurvature perturb
tion.

If lepton number is created well before curvaton dec
and well before the curvaton dominates the energy dens

S̃L523zg , ~86!

giving

Sn52
135

7 S j

p D 2

zg . ~87!

For uju,0.07 and using Eq.~80!, we have

uSnu,0.01z. ~88!

This is very small and may never by observable.
Finally, if lepton number is created by out-of-equilibriu

curvaton decay,4

S̃L'3S 12r

r D z. ~89!

If the curvaton does not dominate before it decays, this gi

Sn'
135

7 S 12r

r D S j

p D 2

z ~90!

uSnu,0.01
12r

r
z&15z, ~91!

where the final inequality comes from the current bounds
the non-Gaussianity parameter,f NL , given in Eq.~36!. This
upper bound represents a large anticorrelated neutrino iso
vature component which may already be incompatible w
current data, though this possibility is yet to be tested aga
observations. If MAP further constrains the non-Gauss
parameter,f NL , ~rather than detecting non-Gaussianity! the
bound will becomeuSnu,0.2z.

We note that the neutrino isocurvaturevelocitymode con-
sidered by Bucheret al. @39# is hard to generate in a curvato
scenario, since we would expect any velocity perturbat
left on large scales after the curvaton decay to be suppre
by factors of order (k/aH)2 with respect to the~almost scale-
invariant! density perturbation, i.e., generated only by spa
gradients in the curvaton field.

VI. CONCLUSIONS

In this paper we have reviewed the mechanism by wh
a curvaton field can generate a large-scale density pertu
tion after inflation, and gone on to investigate the nature
the primordial perturbation that is produced. In many cosm
logical models the curvaton scenario can reproduce

4The exact formula isŜL53z(12r )/r whereŜL53(z̃L2z), but
the difference is negligible in the regime (j/p)2!1.
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purely adiabatic and Gaussian density perturbation~curva-
ture perturbation! that is familiar from the inflaton scenario
In another regime though, it can give large non-Gaussian
and/or a large ‘‘residual’’ isocurvature perturbation which
completely correlated with the curvature perturbation a
can in principle be present in any or all of the baryon
matter, the CDM and the three neutrino species.

The non-Gaussianity of the curvature perturbationz arises
if the curvaton fails to dominate the energy density before
decays. The perturbation is described by ax2 distribution,
whose non-Gaussianity is parametrized by

f NL5
5

4r
, ~92!

wherer is approximately given by the curvaton density ju
before decay, as a fraction of the total. Starting in 20
results from MAP satellite@28# will either detect this non-
Gaussianity or show that the curvaton density is at leas
few percent of the total when it decays.

The residual isocurvature perturbation in CDM or bar
onic matter arises if the CDM or baryon number is crea
either before curvaton decay, or by the curvaton decay its
If it is created~significantly! before curvaton decay and be
fore the curvaton dominates the energy density, the isocu
ture perturbation is given by

Scdm523z, ~93!

and similarly for baryons. This large, correlated isocurvat
perturbation is ruled out by observation for CDM. In oth
words, CDM cannot be created significantly before curva
decay and before the curvaton dominates. This is a str
constraint on the cosmology, implying for example that t
curvaton scenario is inconsistent with the CDM creation j
after the end of inflation. For baryons the perturbation a
plitude is close to current observational limits and will b
ruled out or detected in the near future, providing in the lat
case a smoking gun for the curvaton scenario.

If the CDM or baryon number is created by the curvat
decay itself,

Scdm53S 12r

r D z, ~94!

and similarly for baryons. Unlessr is close to 1, this large
anticorrelated contribution is ruled out by observation
both CDM and baryons. In other words, the curvaton de
cannot create CDM or baryons unless the curvaton do
nates the energy density before it decays.

For the neutrino isocurvature perturbation we have p
sented an analysis which, for the first time, includes the c
cial issue of lepton number, and is relevant for any cosm
ogy. Although general formulas are given, we focus on
case where the ratio of the neutrino and photon tempera
is unperturbed, because the late decoupling of neutri
makes it very hard to see how it could be otherwise. We a
focus on the case that thee, m andt lepton number densities
are equal, which will be ensured by mixing in the early Un
verse at least if the large mixing angle solution to the so
neutrino problem is correct.
3-11
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LYTH, UNGARELLI, AND WANDS PHYSICAL REVIEW D 67, 023503 ~2003!
With these assumptions, the isocurvatureenergydensity
perturbationSn of massless neutrinos is related to the lep
numberdensity isocurvature perturbationS̃L by

Sn5
45

7 S j

p D 2

S̃L , ~95!

where j is the lepton asymmetry parameter, related to
lepton number density byj54.02(nL /ng). If the lepton
number density is of order the baryon number density a
usually supposed,uju;1029, the neutrino isocurvature pe
turbation will be completely undetectable. Observationa
though, the lepton density is subject only to the nucleos
thesis bounduju,0.07, which may allow a detectable pertu
bation. However neutrino isocurvature perturbations in
presence of a significant lepton asymmetry have never b
tested against observations.

In the curvaton scenario, the formulas for the resid
isocurvature perturbationS̃L are the same as those for th
CDM and baryon perturbations. If leptogenesis occurs a
curvaton decay there is no residual neutrino isocurvature
turbation. If it is significantly before curvaton decay and b
fore the curvaton dominates,S̃L523z and uSnu,0.01z
which may never be observable. The interesting result co
in the third case, that the curvaton decay itself causes le
genesis. ThenS̃L53„(12r )/r …z, and if the curvaton does
not dominate before decay we have a neutrino isocurva
perturbation whose magnitude is related to the n
Gaussianity parameterf NL55/4r ,
e
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Sn'
135

7 S j

p D 2S 4

5
f NL21D z. ~96!

If the present bound on non-Gaussianity,u f NLu,2000, is
saturated this permits a huge effect, presumably alre
ruled out by observation, and even the expected MAP bo
on u f NLu,20 will still allow a significant effect. Observa
tional bounds onf NL andSn in this scenario should be ob
tained jointly, taking into account the correlation of these tw
quantities with each other and with the curvature pertur
tion z.

In summary, we have shown that different curvaton s
narios offer a number of distinctive observational predictio
which may be tested by forthcoming experiments.

Note added.A related paper by Moroi and Takahashi@11#
discussing the case of matter isocurvature perturbation
the curvaton scenario appeared while this work was
progress.
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