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Separation of theE andB components of a microwave background polarization map or a weak lensing map
is an essential step in extracting science from it, but when the map covers only part of the sky and/or is
pixelized, this decomposition cannot be done perfectly. We present a method for decomposing an arbitrary sky
map into a sum of three orthogonal components that we term ‘‘pureE,’’ ‘‘pure B,’’ and ‘‘ambiguous.’’ The
fluctuations in the pureE andB maps are due only to theE andB power spectra, respectively, whereas the
source of those in the ambiguous map is completely indeterminate. This method is useful both for providing
intuition for experimental design and for analyzing data sets in practice. We show how to find orthonormal
bases for all three components in terms of bi-Laplacian eigenfunctions, thus providing a type of polarized
signal-to-noise eigenmodes that simultaneously separate both angular scale and polarization type. The number
of pure and ambiguous modes probing a characteristic angular scaleu scales as the map area overu2 and as the
map boundary length overu, respectively. This implies that fairly round maps~with short perimeters for a
given area! will yield the most efficientE/B decomposition and also that the fraction of the information lost to
ambiguous modes grows towards larger angular scales. For real-world data analysis, we present a simple
matrix eigenvalue method for calculating nearly pureE and B modes in pixelized maps. We find that the
dominant source of leakage betweenE and B is aliasing of small-scale power caused by the pixelization,
essentially since derivatives are involved. This problem can be eliminated by heavily oversampling the map,
but is exacerbated by the fact that theE power spectrum is expected to be much larger than theB power
spectrum and by the extremely blue power spectrum that cosmic microwave background polarization is ex-
pected to have. We found that a factor of 2 to 3 more pixels are needed in a polarization map to achieve the
same level of contamination by aliased power than in a temperature map. Oversampling is therefore much
more important for the polarized case than for the unpolarized case, which should be reflected in experimental
design.
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I. INTRODUCTION

Detecting polarization of the cosmic microwave bac
ground~CMB! radiation has become one of the main go
of the CMB community. Numerous experimental groups
currently searching for CMB polarization@1–5#. CMB polar-
ization can potentially offer a vast amount of informatio
about our Universe. In general, polarization is very sensi
to the ionization history of the Universe. For example,
large scales it can provide insight into the way the Unive
reionized @6#. On degree scales, once the temperat
anisotropies are well measured, the predicted polariza
can serve as a test of how and when recombination happ
and could potentially lead to an important confirmation
the big bang model@7,8#. Moreover, because the bulk of th
polarization is produced at the last-scattering surface
should exhibit no correlation on scales larger than about
degree unless there were superhorizon perturbations a
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coupling. Polarization can thus become a good test of in
tion @9#.

Most of the recent interest in polarization is based on
ability to provide evidence for a stochastic background
gravity waves. It has been shown that the polarization fi
on the sky can be decomposed into two parts, a scalar
usually calledE and a pseudoscalar part usually calledB
@10,11#. The pseudoscalar part cannot be created by den
perturbations to linear order in perturbation theory. A det
tion of theB component on large scales would thus indica
the presence of a background of gravity waves, a predic
of inflationary models@12,13#. Such a detection would dete
mine the energy scale of inflation and could provide a str
gent test of inflationary models@14#. On smaller scales, theB
modes will most probably be dominated by secondary c
tributions produced after last scattering, the leading one
ing gravitational lensing@15#. A detection of these contribu
tions could provide information about the distribution
©2003 The American Physical Society01-1
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matter all the way up to the last-scattering surface. There
many proposals for how to detect and use this effect@16–
18#. In standard models, however, theB component is likely
to be quite difficult to detect@19–21#.

It is clear that a separation of the observed polarizat
into E andB parts is crucial to much of the CMB polariza
tion scientific program. It has been realized, however, t
real-world complications such as the finite size of the o
served patch can significantly reduce our ability to do a cl
separation between the two components: when using a
dratic estimator method for measuring theE and B power
spectra, substantial ‘‘leakage’’ between the two was found
large angular scales@20#. In Ref. @21# it was shown that
naive estimates of the sensitivity needed to detect theB com-
ponent that ignore such leakage can significantly undere
mate the required sensitivity for an experiment aimed at
tecting theB modes. In Ref.@22# it was shown that in a finite
patch, modes that are onlyE or only B can be constructed bu
that there are also ambiguous modes, modes that rec
contributions to their power from bothE and B. The con-
struction of the modes was done for a round patch work
in harmonic space. It was shown for each value ofm there
are two ambiguous modes.

The issue of separatingE andB has also generated inte
est in the field of weak gravitational lensing@26–28#, where
the basic cosmological signal is expected to produce only
E pattern in cosmic shear maps, and theB mode therefore
serves as an important test for other signals due to intri
galaxy alignment or systematic errors. Although we do
discuss weak lensing explicitly in this paper, our results
relevant to that case as well since the lensingE/B problem is
mathematically analogous.

In this paper we revisit the issue ofE andB mode sepa-
ration, with two goals: to provide intuition for experiment
design and for efficiently analyzing data sets in practice.
present a general derivation of the pureE, pureB and am-
biguous modes in real space, and relate them to the ei
functions of the bi-Laplacian on a finite patch. We then
troduce a way to obtain modes that are very nearly ‘‘pure’
a pixelized map by solving a generalized eigenvalue prob
and discuss how this can be used to analyze real-world
sets.

The paper is organized as follows. Section II establis
some notation and reviews the mathematics underlying
E/B decomposition of a polarization field. In Sec. III, w
show how to decompose the space of all polarization fie
on a finite patch of sky into pureE modes, pureB modes,
and modes that are ambiguous with respect to theE/B de-
composition. Section IV presents examples of this decom
sition. In Sec. V, we present a method for finding~nearly!
pureE andB modes numerically for pixelized maps by sol
ing a generalized eigenvalue problem. Section VI prese
examples. In Sec. VII we show that aliasing of small-sc
power is the dominant source of ‘‘leakage’’ between theE
andB modes. We summarize our conclusions in Sec. VII

II. E AND B MODES: NOTATION AND PRELIMINARIES

In this section we will review the definition ofE and B
modes to introduce all the relevant notation. We will al
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give alternative definitions of these modes which will he
clarify how this decomposition works on finite patches
sky. In Sec. II C we discuss the small-angle approximati
Further details on properties of spin-two fields on the sph
and theE/B decomposition may be found in, e.g., Refs.@23,
24#, and references therein.

A. Spin two notation

This section is rather technical. Since all intuitive aspe
of our results can be understood in terms of the much sim
formulas that apply in the flat-sky approximation, some re
ers may wish to skip straight to Sec. II C and revisit th
section as needed.

The~linear! polarization of the CMB is described in term
of the Stokes parametersQ andU. The definition ofQ andU
depends on the coordinate system chosen. In this subse
we review definitions that are valid for the full sky, so w
will use spherical coordinates to defineQ andU.

We will follow the notation of Ref.@11#. The Stokes pa-
rameters can be combined to form a spin 2 (Q1 iU ) and a
spin 22 (Q2 iU ) combination. In the full sky these comb
nations can be decomposed using spin-2 harmonics

Q1 iU 5(
lm

a2,lm 2Ylm , Q2 iU 5(
lm

a22,lm 22Ylm .

~1!

It is natural to introduce a scalar~E! and a pseudoscala
~B! field to describe polarization. The expansion coefficie
of these two fields in~ordinary spin-0! spherical harmonics
are

aE,lm52~a2,lm1a22,lm!/2, aB,lm5 i ~a2,lm2a22,lm!/2.

~2!

On the sphere, these two functions completely characte
the polarization field@11#. They are important physically be
cause cosmological density perturbations cannot creatB
type polarization while gravitational waves can@10,11#. On
small scalesB polarization can be generated by lensing@15#,
and furthermoreB may turn out to be a good monitor o
foreground contamination, although at the moment noth
is known about how different foregrounds contribute toE or
B. In terms ofaE,lm andaB,lm the Stokes parameters can b
written as@25#

Q52(
lm

~aE,lmX1,lm1 iaB,lmX2,lm!,

U52(
lm

~aB,lmX1,lm2 iaE,lmX2,lm!, ~3!

where X1,lm5(2Ylm122Ylm)/2 and X2,lm5(2Ylm

222Ylm)/2. These functions satisfyX1,lm* 52X1,l 2m and
X2,lm* 52X2,l 2m which together with aE,lm* 5aE,l 2m and
aB,lm* 5aB,l 2m makeQ andU real quantities.

The spin-2 harmonics in Eq.~1! can be related to the
usual spin-0 spherical harmonics by means of two first-or
1-2
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differential operators, the spin-raising (Z) and spin-lowering
(Zp) operators@11#, which are defined in spherical coordinat
by

Z52sins uF ]

]u
1 i cscu

]

]fGsin2s u, ~4!

Zp52sin2s uF ]

]u
2 i cscu

]

]fGsins u, ~5!

wheres is the spin of the function to which the operator
being applied. When applied to the spin-weighted spher
harmonics, these operators yield the following identities:

ZsYlm5@~ l 2s!~ l 1s11!#1/2
s11Ylm ,

ZpsYlm52@~ l 1s!~ l 2s11!#1/2
s21Ylm . ~6!

In particular, the spin-0 and spin-2 harmonics are related
follows:

2Ylm5@~ l 22!!/ ~ l 12!! #1/2ZZYlm ,

22Ylm5@~ l 22!! ~ l 12!! #1/2ZpZpYlm . ~7!

Another useful consequence of these relations is

ZpZpZZYlm5ZZZpZpYlm5
~ l 12!!

~ l 22!!
Ylm

5~ l 12!~ l 11!l ~ l 21!Ylm ~8!

or, equivalently, that when acting on spin-zero variables

ZpZpZZ5ZZZpZp5¹2~¹212!, ~9!

since ¹2 corresponds to2 l ( l 11) in spherical-harmonic
space.

Equations~1!, ~2!, and~7! can be combined to obtain

Q1 iU 5ZZ~cE1 icB!, Q2 iU 5ZpZp~cE2 icB!,

cE52(
lm

@~ l 22!!/ ~ l 12!! #1/2aE,lmYlm ,

cB52(
lm

@~ l 22!!/ ~ l 12!! #1/2aB,lmYlm . ~10!

ThusQ andU can be written in terms of second derivativ
of the scalar and pseudoscalar ‘‘potentials’’cE and cB ,
which are directly related toE andB. Equation~10! is analo-
gous to the fact that a vector field can be written as a sum
a gradient and a curl component. The difference for spi
fields is that one can write them assecond derivativesof the
scalar and pseudoscalar potentials.

We pause to note that the reason whyE and B are the
focus of attention instead ofcE andcB is partly a matter of
convention. Perhaps more importantly,E and B have the
same power spectrum on small scales as the Stokes pa
eters, while the derivatives in Eq.~10! imply that the power
02350
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spectra of the Stokes parameters and those ofcE and cB
differ by a factor (l 22)!/( l 12)!; l 24.

To clarify the relation between all these quantities, we c
think of weak gravitational lensing~e.g., Refs.@26,27#!. The
shear variables are the analogues of the Stokes parameteE
is the analogue of the projected mass density, andcE is the
analogue of the projected gravitational potential.

We can use Eqs.~10! and ~9! to show that

¹2~¹212!cE5@ZpZp~Q1 iU !1ZZ~Q2 iU !#/2,

¹2~¹212!cB5 i @ZpZp~Q1 iU !2ZZ~Q2 iU !#/2.
~11!

These equations show that we can take linear combinat
of second derivatives of the Stokes parameters and ob
variables that depend only onE or on B. ~In the flat-sky
approximation, the left-hand sides of these equations
simply ¹2E and¹2B, respectively. On the sphere, the rel
tion is not so simple, but it is still true that the left-hand sid
depend only onE and B, respectively.! We will use this to
project out theE andB contributions.

B. Vector notation

We can summarize the above results using a slightly
ferent notation that will help clarify the analogy with vecto
fields. We will use boldface to denote the polarization fie
written in the form of a vectorP5(U

Q). We then define two
second-order differential operatorsDB andDE ,

DE5
1

2 S ZZ1ZpZp

2 i ~ZZ2ZpZp!
D , ~12!

DB5
1

2 S i ~ZZ2ZpZp!

ZZ1ZpZp
D . ~13!

Equation~10! now becomes

P5DEcE1DBcB , ~14!

the analogue of the gradient/curl decomposition. Moreov
DE andDB satisfy two important properties

DE
†
•DB5DB

†
•DE50, ~15!

DE
†
•DE5DB

†
•DB5¹2~¹212!. ~16!

Equation~15! is the spin-two analogue of the familiar fac
that¹3¹50. Substituting Eq.~10! into Eq.~15! implies that
if a polarization field on the sky has onlyE as a source, it
should satisfyDB

†
•P50 and if it is only due to aB compo-

nent it should satisfyDE
†
•P50.

In this vector notation, Eq.~3! can be written as

P52(
lm

aE,lmYE,lm1aB,lmYB,lm ,
1-3
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YE,lm5S X1,lm

2 iX2,lm
D , YB,lm5S iX2,lm

X1,lm
D . ~17!

C. Small-angle approximation

In this subsection, we present some formulas valid in
small-angle~flat-sky! approximation. When working in this
limit, it is more natural to measure the Stokes parame
with respect to a Cartesian coordinate system~x,y! instead of
the usual polar coordinate axis. In the flat-sky approxim
tion, the differential operators reduce to simply

Z52~]x1 i ]y!, ~18!

Zp52~]x2 i ]y!, ~19!

DE5S ]x
22]y

2

2]x]y
D , ~20!

DB5S 22]x]y

]x
22]y

2 D . ~21!

Using the above expressions it is trivial to demonstrate
DB

†
•DE5DE

†
•DB50 and thatDE

†
•DE5DB

†
•DB5¹4. In the

flat-sky approximation,u¹2u@1 ~that is, only modes with
eigenvalues much greater than one contribute significan!,
so the¹2(¹212) operator in Eq.~16! has reduced to the
bi-Laplacian¹4.

DE andDB are the spin-2 analogues of the familiar gra
ent and curl operators. ApplyingDE or DB to a scalar field
givesE andB fields that have vanishing ‘‘curl’’ and ‘‘gradi-
ent,’’ respectively. Equations~20! and ~21! show thatDB
5R•DE , where the 232 matrix

R[S 0 21

1 0 D ~22!

simply performs a rotation takingQ°2U and U°Q.
When drawing polarization fields as two-headed arrows w
length (Q21U2)1/2 and angle tan21(U/Q)/2, this corresponds
to rotating the polarization direction by 45° at each point.
other words, rotating the polarization directions of anE field
by 45° gives aB field.

The analogue of Eq.~17! is now given in terms of Fourie
modes

P~r !5E d2k

~2p!2 FE~k!S cos 2f
sin 2f D1B~k!S 2sin 2f

cos 2f D Geik•r,

r5S x
yD , k5kS cosf

sinf D . ~23!

In other words, theE/B decomposition becomes local i
Fourier space: the polarization direction of theE component
is parallel or perpendicular tok whereas that of theB com-
ponent makes a 45° angle withk.
02350
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III. A NATURAL BASIS FOR POLARIZATION FIELDS

On a manifold without boundary, any polarization fie
can be uniquely separated into anE part and aB part. But if
there is a boundary~i.e., if only some subsetV of the sky has
been observed!, this decomposition is not unique. Let us fir
introduce some notation to clarify the problem.

Polarization fields living onV form a normed vector
space with the inner product

~P,P8![E
V

P•P8 dV, ~24!

and we say that two fieldsP and P8 are orthogonal if
~P,P8!50. We refer to a polarization fieldP as E if it has
vanishing curl, i.e.,DB

†
•P50; B if it has vanishing diver-

gence, i.e.,DE
†
•P50; pureE if it is orthogonal to allB fields;

and pureB if it is orthogonal to allE fields.
As long asV is simply connected, which we shall assum

throughout this paper, an equivalent definition of anE polar-
ization field is one that can be derived from a potentialcE
via P5DEcE . ~And, of course, an analogous statement ho
for B fields. As always, the analogy with the more famili
case of vector fields holds: any curl-free field is the gradi
of a potential.!

On the complete sky, every polarization field can
uniquely represented as a linear combination of anE field
and aB field, and allE fields are perpendicular to allB fields.
In other words, the space of all polarization fields is t
direct sum of two orthogonal subspaces: the space of aE
fields and the space of allB fields. @One way to prove these
assertions is simply to use theE andB spherical harmonics
defined in Eq.~17! as a basis.# In this case, there is no dis
tinction between anE field and a ‘‘pureE’’ field.

But if only some subset of the sky has been observed
that V is a manifold with boundary, then this decompositio
is not unique. One way to see this is to note that there
modes that satisfy both theE-mode andB-mode conditions
simultaneously. When we split a polarization field into anE
part and aB part, these ‘‘ambiguous’’ modes can go in
either component. In order to make theE/B decomposition
unique, we must first project out the ambiguous modes.

In other words, the subspaces of allE modes and allB
modes are no longer orthogonal: in fact, they overlap.
recapture orthogonality, we must restrict our attention to
pureE andB subspaces. To be specific, the space of purE
modes is the orthogonal complement of the space of aB
modes, which includes both pureB modes and ambiguou
modes. Similarly, the space of pureB modes is orthogonal to
both the pureE modes and the ambiguous modes. In su
mary, we can represent the space of all polarization fields
V as a direct sum of three subspaces: pureE, pure B, and
ambiguous.

In this section, we show explicitly how to construct orth
normal bases of pureE modes, pureB modes, and ambigu
ous modes, so that we can unambiguously decompose
polarization field into these three components. In Ref.@22#
this construction was presented for a cap working in h
monic space. We here present the general formalism in
1-4
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space. For simplicity, we work in the flat-sky approximatio
although the construction works without this assumption.

We first construct the ambiguous modes. An ambigu
modeP must be anE mode, soP5DE f for some scalar field
f. And it must also satisfy theB-mode conditionDE

†
•P50.

Combining these, we get

05DE
†
•DE f 5¹4f . ~25!

So we can make a pair of ambiguous modesDE f andDB f
out of any functionf that satisfies¹4f 50. All such bihar-
monic functions are determined by their values and first
rivatives on the boundary of the region, so it is straightf
ward to form a basis of them simply by choosing a basis
the set of scalar functions on the boundary.

In the quest of separating theE and B contributions the
ambiguous modes are not very useful, since we cannot k
whether they are due to a cosmologicalE or B signal. If we
are willing to assume~on either observational or theoretic
grounds! that E dominates overB on the angular scale o
interest, then it may be sensible to assume that power fo
in the ambiguous modes isE power. This does enhance th
accuracy with which theE power spectrum can be detecte
in a given data set@21#.

Of much more use are the ‘‘pure’’E and B modes. We
now give an explicit construction of these pure modes.

Let the scalar fieldcE generate a pureE modeDEcE , and
let DBcB beany Bmode~not necessarily pure!. The require-
ment for a pureE mode is that these be orthogonal:

E
V

d2r ~DEcE!•~DBcB!50. ~26!

If we use the explicit forms~20! and~21! for the differential
operators and integrate by parts twice to moveDE over to the
DBcB term, this reduces to a line integral around the bou
ary of V. ~After integrating by parts, the surface integr
vanishes because it containsDE

†
•DBcB , which is zero.! The

line integral contains terms proportional tocE and n̂•¹cE .
The conditions for a pureE mode are therefore~1! cE50 on
the boundary]V and ~2! n̂•¹cE50 on the boundary]V.

In other words,cE must satisfy both Dirichlet and Neu
mann boundary conditions simultaneously. Fortunately,
bi-Laplacian operator has a complete set of eigenfuncti
that satisfy these boundary conditions. To form an orthogo
basis of pureE modes, all we have to do is find a comple
set of such eigenfunctions and apply the operatorDE to
them. Similarly, if we applyDB , we will have an orthogona
set of pureB modes. The pureB modes can also be found b
taking the pureE modes and rotating the polarization at ea
point by 45°. The boundary conditions turns out to have
simple geometrical interpretation: for a pureE mode the po-
larization on the boundary must be parallel or perpendicu
to the boundary; for a pureB mode it must make a 45° angl
with the boundary.

The proof that these basis functions are orthogona
similar to the more familiar situation with eigenfunctions
the Laplacian. Letf andg be eigenfunctions of¹4 with ei-
genvaluesl andm, and let them satisfy the boundary cond
02350
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tions. ThenDE f and DEg are two of our ‘‘pureE’’ basis
functions. Their inner product is

E
V

d2r DE f •DEg5E
V

d2r f ¹4g5mE
V

d2r f g, ~27!

where we have integrated by parts twice and used the bo
ary condition onf to drop the boundary terms. Of course th
same argument withf andg switched leads to the conclusio
that the inner product isl times the integral offg. If lÞm,
then the integral must therefore vanish, and ifl5m, we can
take a linear combination that orthogonalizes the two mod
We choose to normalize all modesP so that~P,P!51.

In conclusion, the pureE modes, pureB modes, and am-
biguous modes form a complete orthonormal basis for
space of all square-integrable@i.e., (P,P),`] polarization
fieldsP in a sky regionV. We found that a polarization field
is pureE if it has vanishing curl and is parallel or perpe
dicular to the boundary, pureB if it has vanishing divergence
and makes a 45° angle with the boundary, and ambiguou
it has vanishing divergenceand curl. These conclusions ap
ply not only to the eigenmodes that we have constructed
more generally, by linearity, to any field. This means that
can optionally decompose a polarization fieldP into its three
components directly, without going through the step of e
panding it in eigenmodes. The pureE componentPE is ob-
tained by solving the bi-Poisson equation¹4cE5DE

†
•P with

Dirichlet and Neumann boundary conditions and comput
PE5DEcE . The pureB componentPB is obtained analo-
gously, and the ambiguous componentP? is simply the re-
mainder, i.e.,P?5P2PE2PB .

IV. WORKED EXAMPLES I

In this section we illustrate the above construction for tw
worked examples: a disk in the flat-sky approximation an
spherical cap.

A. Disk

Suppose that the observed region is a disk of radiuR
with R!1 radian, so that the flat-sky approximation is a
propriate. We begin with the ambiguous modes. We wan
find functions f with ¹4f 50. Assume a separable solutio
f (r ,f)5F(r )eimf. We know that¹2(¹2f )50, so¹2f must
be a harmonic function. The most general solution is¹2f
}r meimf. Solving this equation forf, we get two indepen-
dent solutions

f ~r ,f!} H r meimf,
r m12eimf. ~28!

As we expected, there are in general two solutions pem
~since there are two conditions we wish to impose on
boundary!. Each solution yields two ambiguous modesDEf
andDBf , which turn out to be just rotations of each other

In the casem50, though, these two solutions do not yie
any ambiguous modes, asDEf 5DBf 50. The same is true
1-5
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for the first of the twom51 solutions, so there is only on
pair of ambiguous modes withm51. This counting of modes
agrees with Ref.@22#.

We now proceed to find the pureE- and pureB-modes.
One way to construct eigenfunctions of¹4 is to take

f 5al1a2l , ~29!

whereal is an eigenfunction of¹2 with eigenvaluel and
a2l has eigenvalue2l. ~These two are obviously degene
ate eigenvalues of¹4 with eigenvaluel2, so we can take
linear combinations of them. Of course there are no w
behaved eigenfunctions of¹2 with positive eigenvalue ove
an entire manifold, but there are over a manifold with boun
ary.!

Once again we apply separation of variables in polar
ordinates. The angular dependence iseimf. Then for any
positive k, the Bessel functionJm(kr) has eigenvalue2k2

and the modified Bessel functionI m(kr) has eigenvaluek2,
so we can take our eigenfunctions of¹4 to be

f mk~r ,f!5@aJm~kr !1bIm~kr !#eimf. ~30!

The boundary conditions tell us that

FIG. 1. Ambiguous modes of a disk. From top to bottom,m
51,2,3.
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I m~kR!

Jm~kR!
52

I m8 ~kR!

Jm8 ~kR!
. ~31!

So there will be solutions for all values ofk that satisfy
Jm8 /Jm5I m8 /I m . These roots can be computed numerica
For largen, a good approximation for thenth root with azi-
muthal quantum numberm is

kmnR5pS n1
m

2 D . ~32!

Figures 1–4 show the first few modes of each type.
noted above, there are no ambiguous modes withm50, one
pair of ambiguous modes withumu51, and two for each
umu.1. Only one of each pair is shown; the other is found
rotating the whole pattern. Similarly, for each pureE and
pure B mode, a linearly independent mode can be obtain
by rotating the page.

If our data covered the entire plane, we would construc
basis out of only the ordinary Bessel functionsJm , excluding
the modified Bessel functionsI m . In the limit kR→`, there-
fore, we expect the contribution fromI m to be small, and
indeed this is the case. The functionI m grows exponentially
for large argument, so in order to satisfy the Dirichlet boun
ary condition the coefficientb in Eq. ~30! must be small. For
a mode withkR@1, therefore, the ordinary Bessel functio
dominates except near the boundary. In this limit, the mo
fied Bessel function takes over in a small region near
boundary to ‘‘flatten out’’ the mode and make it satisfy th
Neumann boundary condition.

It is worth noting that all modes except those withm50
require that bothQ andU be measured in the patch. Mode
with m50 depend only onQ for the pureE modes and only
on U for the pureB modes~with Q and U defined with
respect to the polar coordinates!.

FIG. 2. The first twom50 pure E ~left! and pureB ~right!
modes for a disk.
1-6
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B. Spherical cap

This construction can be adapted to give the basis fu
tions for a spherical cap without recourse to the flat-sky
proximation. In this case, the functions we are looking
are eigenfunctions of the operator

¹2~¹212!5~¹211!221. ~33!

The ambiguous modes will therefore be eigenfunctions
the Laplacian with eigenvalues 0 and22. These eigenfunc
tions can be written in terms of associated Legendre fu
tions Plm as

f amb~u,f!5H P0m~cosu!eimf

P1m~cosu!eimf ,
~34!

for any integerm.
The associated Legendre functionPlm is well-behaved

over the entire sphere as long asumu< l , so there appear to
be four singularity-free solutions over the entire sphe
These are mapped to zero byDE andDB , though, so they do
not give ambiguous modes. This is of course as it should
there are no ambiguous modes over the entire sphere.

If, however, the region of interestV is a spherical capu
<Q, then we permit functions that have singularities outs
V. In that case, there is one nontrivial ambiguous mode w
m561, namelyP061e6 if, and two for everym with umu
.1. The l 50 modes can be written explicitly as

P0m~cosu!5S sinu

11cosu D m

. ~35!

The l 51 modes are not so simple. The first one is

P12~cosu!5
~cosu12!sin2 u

~11cosu!2 , ~36!

FIG. 3. Same as Fig. 2 withm51.
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and the remainder can be computed from recurrence r
tions.

We can also construct the pureE andB modes from the
associated Legendre functions. Suppose we fix the azimu
quantum numberm and look for eigenfunctions of¹2(¹2

12) with eigenvaluek. We can construct one by taking
linear combination of two associated Legendre functio
Pl1m andPl2m , wherel6 are the two roots of

@2l6~l611!11#25k11. ~37!

The left-hand side is the eigenvalue of (¹211)2; recall that
the eigenvalue associated withPlm is 2 l ( l 11), and com-
pare this equation to Eq.~33!. Just as in the case of the dis
there will be a discrete set ofk’s for which a linear combi-
nation of these two functions can satisfy both boundary c
ditions.

V. PIXELIZED MAPS

A. Eigenvalue formalism

In this section we study the decomposition of polarizati
in finite pixelized maps. One possibility would be to sear
for eigenfunctions of a discretized version of the b
Laplacian operator. On scales much larger than the p
scale, we would expect to recover modes that are appr
mately the same as those found above. The orthogonalit
pureE andB modes would not be expected to be perfect
the discretized case, but on reasonably large scales it sh
be close. The main drawback of this approach is that
construction it explicitly assumes that bothQ andU are mea-
sured at each pixel, so we would like to generalize the
proach preserving its spirit and power.

We will adopt a different method in which a complete s
of E, B, and ambiguous modes can all be found at once
solving a single eigenvalue problem. With this approach,
can find a basis of modes that approximate the pureE andB
modes very well~except for modes with frequencies close

FIG. 4. Same as Fig. 2 withm52.
1-7
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BUNN et al. PHYSICAL REVIEW D 67, 023501 ~2003!
the Nyquist frequency, where problems may be expecte
arise no matter what approach one adopts!.

We assume that we have a map of a finite portion of
sky composed ofN pixels. In each pixel we could have me
sured bothQ andU; however, it is possible that in some o
all of them only one combination of the Stokes paramet
was measured. We will denote the vector of measured Sto
parametersP, which will have dimension less than or equ
to 2N. In terms of theE and B modes of the full sky, the
vectorP is given by

P52(
lm

~aE,lmYE,lm1aB,lmYB,lm!. ~38!

Ideally we want to find the pixelized analogues of the pureE,
pureB and ambiguous modes. A pureE mode, which we will
denotee, should satisfyYB,lm•e50 for all lm. A pure B
modeb satisfiesYE,lm•b50 for all lm. It is clear that one
cannot find a solution to these sets of equations, i.e., to
such ane or b, since in general, we are trying to satisfy mo
equations than we have components of theP vector. In prac-
tice the number of constraints we need to satisfy is set by
angular resolution of the experiment, which determines
maximum l mode that has any appreciable power. Thus
difficulty of finding puree or pureb modes will increase as
the distance between pixels gets larger compared to the
gular resolution of the experiment. Moreover, we also exp
that the number of pureE and pureB modes will decrease a
the fraction of pixels where only one of the Stokes para
eters is measured increases.

A pure E mode should satisfy

(
lm

CBliYB,lm•ei250 ~39!

or, equivalently,

et
•B•e50; B5(

lm
CBlYB,lm•YB,lm

† , ~40!

for any choice of power spectrumCBl . An analogous state
ment clearly holds for pureB modes

bt
•E•b50; E5(

lm
CElYE,lm•YE,lm

† ~41!

for any CEl . The matricesE andB give the contribution to
the power in each mode from theE and B components. In
order to find candidateE andB modes numerically, we mus
choose a particular power spectrum; we will choo
C(E,B) l /2p5( l 22)!/( l 12)!3Wl

2, whereWl
2 is the window

function that describes the beam smearing. We will motiv
this choice in the next subsection: in practice we found it
work extremely well, making mixing between modes e
tremely small and almost perfectly recovering the modes
obtained in the previous section with the bi-Laplacian.
02350
to

e

s
es

d

e
e
e

n-
ct

-

e

e
o
-
e

Our aim is to construct a basis of vectors that span all
space but are ordered by their relative contributions fromE
andB modes. In principle, we would like to find the gene
alized eigenvectors of something likeE•e5lEB•e. A prob-
lem arises, however: we know thatB has a null space~the
space of pureE modes!. So we regularize the problem b
introducing a matrixN5s2I , with I the identity matrix and
s2 a very small constant. We then solve

~E1N!•e5lE~B1N!•e. ~42!

If we chooses2 small enough, the matrixE1N is essentially
equal toE in the subspace of pureE modes and is propor
tional to the identity matrix in the subspace of pureB modes.
The converse holds forB1N. As a consequence, the eige
vectors with largelE will be very close to pureE modes.
Furthermore, with our choice of power spectra, the eigenv
tors will automatically separate in scale with larger sc
modes having a larger eigenvalue.

There is an equivalent equation forB modes,

~B1N!•b5lB~E1N!•b, ~43!

but any modee satisfying Eq.~42! also satisfies Eq.~43!
with lB51/lE .

We can derive simple and useful properties of the eig
values and eigenvectors if we assume that at every pixe
the map we have bothQ and U. We consider the simple
transformation where we rotate the polarization at ev
pixel by 45° ~i.e., Q→2U and U→Q). We denote this
transformationR45. It is represented by a block diagon
matrix

~R45! i j 5d i j S 0 21

1 0 D , ~44!

where i , j label pixels. The matricesE and B satisfy
R45

t
•E•R455B and R45

t
•B•R455E. MoreoverR45

t
•R455I .

By substitution into Eq.~42!, it is straightforward to prove
that the vectore85R45•e also solves the eigenvalue equatio
but with eigenvalue 1/lE . We conclude that if at every pixe
we have measured bothQ andU, modes that solve Eq.~42!
come in pairs with eigenvalueslE and 1/lE . One member of
the pair is preferentiallyE and the other preferentiallyB.

In the next section we will present numerical examples
gain intuition on how the eigenvalue problem works. Fi
we will motivate our choice ofCl spectra.

B. Relation to bi-Laplacian formalism

To find the relation between our eigenvalue and
Laplacian formalisms, we start by considering a vector s
isfying the eigenvalue equation

~E1s2I !•e5lE~B1s2I !•e. ~45!

SinceDE
†
•B5DB

†
•E50, multiplying Eq.~45! by DE

† andDB
†

yields two scalar equations

DE
†
•E•e5s2~lE21!DE

†
•e,
1-8
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E/B DECOMPOSITION OF FINITE PIXELIZED CMB MAPS PHYSICAL REVIEW D67, 023501 ~2003!
DB
†
•B•e5s2~lE

2121!DB
†
•e. ~46!

We now proceed to show that with our choice of spec
CEl5( l 22)!/( l 12)! the modes constructed using our b
Laplacian formalism solve Eq.~46!. We take

¹2~¹212!cE5lcE ~47!

and assume thatcE satisfies both Dirichlet and Neuman
boundary conditions. We can use the completeness rela
for spherical harmonics and our choice of spectra to writ

l21¹2~¹212!cE~u!5E du8(
lm

Ylm~u!Ylm* ~u8!cE~u8!

5E du8(
lm

CEl

~ l 12!!

~ l 22!!
Ylm~u!

3Ylm* ~u8!cE~u8!. ~48!

We can use the fact that DE
†
•YE,lm5@( l 12)!/

( l 22)!#1/2Ylm to get

E du8(
lm

CElDE
†
•YE,lm~u!YE,lm

† ~u8!•DEcE~u8!

5l21¹2~¹212!cE~u!, ~49!

where we have integrated by parts using the boundary c
ditions satisfied bycE . Finally we can factorize the bi
Laplacian operatorDE

†
•DE5¹2(¹212) and use our defini-

tions e5DEcE and theE matrix to get

DE
†
•E•e5l21DE

†
•e. ~50!

Thus if we identify l215s2(lE21), DEcE satisfies the
first of equations~46!. The second equation in~46! is trivi-
ally satisfied becausee being a pureE mode it follows that
both B•e50 andDB

†
•e50.

We have just shown that modes constructed using the
Laplacian formalism solve Eq.~46! rather than Eq.~45!. This
means that the vectore5DEcE actually satisfies

~E1s2I !•e5l~B1s2I !•e1a, ~51!

wherea has to be an ambiguous mode~because it has to give
zero when acted upon by bothDE

† andDB
†). The easiest way

to understand what is happening is to look at the structur
theE andB matrices in the basis of the eigenfunctions of t
bi-Laplacian. If we calla one of the basis vectors in th
ambiguous space and contract Eq.~51! with it we find

a t
•E•e5a•a, ~52!

where we have also used the fact thate was a pureE mode.
Thus the reason why there is an extra ambiguous mod
Eq. ~51! is that theE matrix can have nonzero elemen
mixing the pureE and ambiguous subspaces. In other wo
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our two formalisms are identical when restricted to the p
E andB subspaces but differ in the ambiguous subspace

In practice we will find that the modes calculated by so
ing the bi-Laplacian equation and the generalized eigenva
problem are almost identical. This can be understood
looking at Eq.~51! and realizing that in most cases we w
be able to achieve very good separation, i.e.,l@1. This im-
plies that one only needs to add a very tiny amount of a
biguous modes toe in Eq. ~51! to ‘‘correct it’’ and makea
zero ~becausel is so large!. This is especially so becaus
under most circumstances the matrix elements of bothE and
B in the subspace of ambiguous modes are comparable

VI. WORKED EXAMPLES II

We begin by revisiting the cap example we solved in t
continuous case. We start by assuming that every pixel
bothQ andU. We consider a fiducial experiment with a 0.2
FWHM ~full width at half maximum! for the beam angular
resolution. The patch observed has a radius of 3.8° and
tains 351 pixels~the spacing between pixels in both the r
dial and the tangential directions was set to 0.2° as well!.

Figure 5 shows the eigenvalues we obtained. As expec
the eigenvectors come in pairs with eigenvalueslE and
1/lE . The eigenvectors with very small eigenvalues cor
spond to pureB modes and those with very large ones
pure E modes. The particular values of the eigenvalu
should not be given much importance as they depend on
value of the regularizing constants2. What is important is
that the large eigenvalues show the good degree of sep
tion that we have achieved.

There is also a concentration of modes atl51. These

FIG. 5. E/B eigenvalues for a cap. In the top panel we showlE

as a function of mode number. On the bottom we show the eig
values as a function of bothl eff

E and l eff
B as defined in Eq.~55!. We

took s25431026, a factor 1025 smaller than the zero lag corre
lation function.
1-9
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BUNN et al. PHYSICAL REVIEW D 67, 023501 ~2003!
modes have two origins. First, modes on small scales, wh
our small s2I regularization dominates over theE and B
matrices, will havelE51. Second, as we discussed in t
previous sections, there are large-scale ambiguous m
that receive contributions from bothE andB. Our method is
unable to separate between both types because they hav
same eigenvalues.

In Fig. 6 we show the first nine eigenvectors, correspo
ing to the lowest nine eigenvalues. One immediately rec
nizes in this set the pureB modes discussed in Sec. IV A
The first eigenvector corresponds to the lowest-orderm50
mode. The next two are the lowestm51 modes, which differ
only by a rotation. Then come the secondm50 mode, then
the lowestm52 modes, then the lowestm53 modes, and
finally the secondm51 mode. The best nineE modes, cor-
responding to the largest nine eigenvalues, are simply e
to the ones plotted in Fig. 6 but with each polarization ‘‘ve
tor’’ rotated by 45°.

Our method for finding modes can be used for any sh
of sky patch. In Fig. 7 we show the first two modes of
square patch 32332 pixels on a side. Comparing with Fig. 6
it is clear that they are essentially the same modes as the
first modes for the cap. We also show the first two mode
a patch 16364 pixels on a side. We have also checked t
these modes for the rectangle can be derived from the
Lapacian formalism.

To understand where the ordering of modes in Fig. 6
coming from, i.e., why the modes appear in that order in
figure, we will introduce window functions for each mod
We define

Wl
E5et

•

]E

]pl
•e, ~53!

FIG. 6. Examples of modes for a cap. We show the nine mo
with lowestlE .
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Wl
B5et

•

]B

]pl
•e, ~54!

where we have introducedpl5 l ( l 11)Cl /2p. Using the
window functions we can define an effectivel for each
mode, the averagel calculated using the window function a
a weight. Specifically, we can define quantities

l eff
~E,B!5

( l lWl
~E,B!

( lWl
~E,B! ~55!

that give the averagel for theE andB contribution to a given
mode.

Figure 8 shows the window functions for the eigenvect
that were plotted in Fig. 6. Note that the window functio
are well localized inl and each has a clear peak. Moreov
the modes in Fig. 6 are ordered in increasing order ofl eff

B .
Both of these are a consequence of our choice of po
spectra.

VII. ALIASING

The windowsWl
E in Fig. 8 can be used to determin

where the leakage betweenE and B is coming from. The
dotted line in all the panels gives an estimate of the Nyqu
frequency in the map. The conclusion is clear: the conta
nating power is aliased power. For power that is aliased
cannot distinguishE from B. The remedy for this is to in-
crease the sampling in the map so as to further suppres
aliased power.

The bottom panel of Fig. 5 shows the eigenvalues
obtained for the cap but as a function ofl eff

E and l eff
B . We see

that the modes with large values oflE have a lowl eff
E and a

large l eff
B , indicating that most of the contamination is com

s
FIG. 7. On the left~right! we show the best twoB type eigen-

vectors for a 32332 (16364) pixel patch.
1-10
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E/B DECOMPOSITION OF FINITE PIXELIZED CMB MAPS PHYSICAL REVIEW D67, 023501 ~2003!
ing from aliasing. The opposite is true for modes with lo
lE . We also see that some of the modes withlE51 receive
contributions from large scales, an indication that these
truly ambiguous modes.

We can understand our results intuitively by considerin
simple toy model, closely following the treatment in Re
@21#. We work in the small-angle limit and compute the Fo
rier components of the observed polarization field assum
they were observed over a square patch of sizeL. Using Eq.
~23! we obtain

P̃~k!5E d2q

~2p!2 W~k2q!FE~q!S cos~2f!

sin~2f! D
1B~q!S 2sin~2f!

cos~2f! D G , ~56!

where we have defined the window function

W~k!5S Du

L D 2 sinkxL/2

sinkxDu/2

sinkyL/2

sinkyDu/2
, ~57!

with Du the separation between pixels. The Nyquist wa
number iskNyq5p/Du.

The naive way to recover theE andB components would
be to combine the Fourier coefficientsP̃ as one would do if
the patch were infinite. ForB̃ for example, we would com-
pute

B̃~k!52sin 2f Q̃~k!1cos 2f Ũ~k! ~58!

FIG. 8. Window functions for the modes shown in Fig. 6. So
lines showWl

B and dashed lines showWl
E , normalized to unit peak

height.
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and then estimate the power spectrum by taking the squa
these variables.

In terms of the realE andB, ourB estimate can be written
as

B̃~k!5E d2q

~2p!2 W~k2q!@sin 2a E~q!1cos 2a B~q!#,

~59!

where cosa5k•q/kq. This estimate has contributions from
both E and B. Only whenW is a delta function such tha
a50 do we avoid mixing. TheE contributions arise becaus
of two effects: the finite size of the sky patch and the pix
ization ~causing aliasing!. The effect of the finite patch size
manifests itself as a finite width of the peaks of the windo
function, while the effect of aliasing is thatW has several
peaks.

We have shown how to construct modes that avoid c
tamination due to the finite patch size. These modes are
Fourier modes. In what follows we want to show that even
the limit L→`, there is still mixing due to pixelization. If
we take this limit the window function becomes a sum
delta functions centered atq52(m,n)kNyq , wherem and n
are integers.

To consider a concrete example, we calculate the ratio
power inE andB in a mode with wave vectork0 produced
by an initial field that only hadE modes with a power spec
trum Cl and assuming an infinite but pixelized sky map. A
the wave vectorsk i j 5k012(i , j )kNyq will contribute to this
mode. We get

^uB̃~k0!u2&

^uẼ~k0!u2&
5

( i j sin2 2~f i j 2f0!Cl i j
/Cl 0

( i j cos2 2~f i j 2u0!Cl i j
/Cl 0

, ~60!

where l i j [uk i j u and l 0[uk0u. Equation~60! shows that all
the aliased modes contribute toB contamination because i
general these modes do not have 2(f l i j

2f l 0
)5mp.

It is important to note that the aliased power is suppres
by the beam. Asi and j become larger, the magnitude of th
power on those scales decreases becauseCl is proportional
to Wl

2, the beam window function. For example, if we co
sider a mode with wave vector along the positivex axis, the
aliased mode with the smallest possible beam suppres
has a power suppressed by a factor exp@22kNyq(kNyq

2uk0u)sb
2#, wheresb is the Gaussian width of the beam@sb

is related to the full width half max of the beam~FWHM! by
sb5FWHM/A8 ln(2)]. For fixedk0 , the suppression can b
made as large as one wants by increasingkNyq , that is by
increasing the sampling of the map. If we want the beam
produce a suppression factorS we need to choose@2kNyq

2 (1

2uk0u/kNyq)sb
2#5 ln(S), or equivalently FWHM/Du

'0.5Aln(S)/(12uk0u/kNyq).
A point worth noting about aliasing is that the pow

spectrum of the polarization is a rapidly growing function
l and that theE power spectrum is expected to be mu
larger than theB one. Figure 9 shows the power spectrum f
1-11
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BUNN et al. PHYSICAL REVIEW D 67, 023501 ~2003!
E andB type polarization from gravity waves in a cold da
matter model with a cosmological constant~LCDM!. The
temperature spectra were Cosmic Background Explo
~COBE! normalized and the tensor component was assu
to be 10% of the temperature anisotropies on COBE sca
The sharp increase in power betweenE andB partially com-
pensates the smearing by the beam. To give a rough fee
of what sampling is needed to avoid aliasing we could
sume that we want the aliased power to be a factor of
smaller than the power we want to measure. For a temp
ture map that would correspond to a suppression factoS
;102 while for polarization we would needS;105 which
means that the ratio FWHM/Du has to be a factorA2.5 larger
for polarization than for temperature, or equivalently that o
needs a factor of 2.5 more pixels to obtain the same leve
contamination. We conclude that one has to be particul
careful about aliasing when dealing with polarization map
one wants to obtain a clean separation betweenE andB.

The effect of aliasing can be decreased by increasing
sampling of the map. It should be noted, however, that
presence of holes, bad pixels or pixels with only one m
sured Stokes parameter in the map will have a similar eff
We illustrate this by considering a toy example. We art
cially increase the noise variance~the diagonal elements o
N! for a fraction of the pixels chosen at random. Figure
shows the window functions for the first nine modes in
example where 20% of the measured Stokes parameter
assumed to have the large noise. For comparison, we
show the original window functions. On large scales,
modes look essentially the same as the ones plotted in Fi
The effect of the missing pixels is very noticeable in theE
window function, the one that quantifies the leakage.

FIG. 9. Polarization power spectra in aLCDM model. The solid
curve is for E produced by density perturbations and the das
curve for theB component produced by tensor modes. The aniso
pies were COBE normalized and it was assumed that the te
component was 10% of the anisotropies on these scales.
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might have been expected, the level of contamination co
ing from modes of frequency around the Nyquist frequen
is greatly increased.

VIII. DISCUSSION

We have developed a formalism for measuring theE and
B components of polarized CMB maps or weak lensing m
given the real-world complications of finite sky coverage a
pixelization.

We have shown that by expanding a map in a particu
basis, obtained by differentiating bi-Laplacian eigenfun
tions, it can be decomposed as a sum of three orthog
components that we term pureE, pureB and ambiguous. The
pureE component is orthogonal to allB modes and are there
fore guaranteed to be caused by anE signal ~on the uncut
sky!, and conversely for the pureB component. The ambigu
ous component is the derivative of a biharmonic functio
and the original map contains no information about whet
it is due toE or B signal in the uncut sky. We also derived
discrete analogue of these results, applicable to pixelized
maps. Our results are useful both for providing intuition f
survey design and for analyzing data sets in practice.

A. Implications for survey design

To maximize our ability to separateE and B, we clearly
want to minimize the fraction of modes that are ambiguo
We found that the ambiguous modes are specified along
boundary of the map rather than in the two-dimensional
terior. This means that the number of pure and ambigu
modes probing a characteristic angular scaleu scales as the

d
-
or

FIG. 10. Effect of measuring only one Stokes parameter on 2
of the pixels chosen at random. The panels show the window fu
tions for the first modes withm50,1,2,3 when both Stokes param
eters are measured~solid lines! and when 20% are missing~dashed
lines!.
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map area overu2 and as the map boundary length overu,
respectively. It is therefore best to minimize the ratio of c
cumference to area, i.e., to make the patch as round as
sible.

Almost all pure modes~all except the ones withm50 for
the spherical cap example! are a combination of bothQ and
U Stokes parameters, so to achieve unambiguousE/B sepa-
ration, one needs to measure both, with comparable sens
ity throughout the map.

With pixelized maps, we found that aliasing of sma
scale power was a serious problem. Although it can in p
ciple be eliminated by heavily oversampling the map,
required oversampling is greater than for the unpolari
case, both because derivatives are involved and bec
CMB polarization is expected to have an extremely b
power spectrum. This has important implications f
e.g., the Planck satellite, where bandwidth constraints
the telemetry have been mentioned as reasons to reduc
oversampling. It is crucial to bear in mind that the usu
Nyquist rule of thumb that applies to unpolarized ma
may be insufficient for realizing the full scientific potenti
of Planck’s CMB polarization measurements because
needs roughly a factor of 2 to 3 more pixels in a polarizat
map to achieve the same level of contamination by alia
power.

B. Implications for data analysis

In Ref. @20#, it was shown how a quadratic estimat
method could produce uncorrelated measurements of thE
andB power spectra from real-world data sets with arbitra
sky coverage, pixelization, and noise properties, and
method has been applied to both the POLAR@1# and PIQUE
@5# data. The one annoying problem with this method w
that it gaveE/B leakage. Our present results allow us
understand and eliminate this problem.

We now know that leakage is caused by the ambigu
modes. The abovementioned scaling tells us that the frac
of modes probing a given angular scalel;u21 that are am-
biguous scales asl 21, in good agreement with the
asymptotic behavior empirically found in Ref.@20#. Al-
though Ref.@20# presented a technique for removing most
k,

an

on
b-

ts
in

02350
-
os-

iv-

-
e
d
se

e
,
n
the
l
s

e
n
d

is

s

s
on

f

the leakage, we now know how to remove it completely:
eliminating the ambiguous modes.

In practice, the way to do this is to compute two proje
tion matricesPE and PB that project onto the subspace
given by the eigenvectorse of Eq. ~42! with lE.l* and
lE,1/l* , respectively, for some large eigenvalue cuto
l* , say l* 5100. The three mapsPE•P, PB•P and @ I
2PE2PB#•P will then be approximately the pureE, pure
B, and ambiguous components of the original mapP, which
can be directly used for visual inspection, cross correlat
with other maps, and systematic error tests. To measure tE
andB power spectra, one compresses the original data ve
P into two shorter onesPE andPB by expanding it into the
above-mentioned pureE and pureB eigenvectors, respec
tively. Since this is a mere matrix multiplication, the corr
sponding noise and signal covariance matrices~which the
quadratic estimation method takes as input! are trivially
computed as well. These two data vectors will each have
than half the length ofP. Since the time required by th
quadratic estimator method scales asn3, the final E and B
power spectrum calculations are therefore about an orde
magnitude faster than in the original@20# approach.

It should be noted that the ambiguous modes are not
less in all circumstances. If it has been established thaE
dominates overB ~as is expected theoretically! by observing
the pure modes, then it is safe to assume that most of
power in the ambiguous modes isE power as well. In this
case, the ambiguous modes can be used to reduce the e
on estimates of theE power spectrum. This could be particu
larly useful when attempting to constrain reionization withE
power on the very largest angular scales attainable wit
galaxy-cut all-sky map, where a substantial fraction of t
modes will be ambiguous.
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