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Separation of th& andB components of a microwave background polarization map or a weak lensing map
is an essential step in extracting science from it, but when the map covers only part of the sky and/or is
pixelized, this decomposition cannot be done perfectly. We present a method for decomposing an arbitrary sky
map into a sum of three orthogonal components that we term “Rirépure B,” and “ambiguous.” The
fluctuations in the pur& and B maps are due only to the and B power spectra, respectively, whereas the
source of those in the ambiguous map is completely indeterminate. This method is useful both for providing
intuition for experimental design and for analyzing data sets in practice. We show how to find orthonormal
bases for all three components in terms of bi-Laplacian eigenfunctions, thus providing a type of polarized
signal-to-noise eigenmodes that simultaneously separate both angular scale and polarization type. The number
of pure and ambiguous modes probing a characteristic angularéseddes as the map area ov&rand as the
map boundary length ove#, respectively. This implies that fairly round mapsith short perimeters for a
given areawill yield the most efficiente/B decomposition and also that the fraction of the information lost to
ambiguous modes grows towards larger angular scales. For real-world data analysis, we present a simple
matrix eigenvalue method for calculating nearly peand B modes in pixelized maps. We find that the
dominant source of leakage betweErand B is aliasing of small-scale power caused by the pixelization,
essentially since derivatives are involved. This problem can be eliminated by heavily oversampling the map,
but is exacerbated by the fact that tRepower spectrum is expected to be much larger thanBthmwer
spectrum and by the extremely blue power spectrum that cosmic microwave background polarization is ex-
pected to have. We found that a factor of 2 to 3 more pixels are needed in a polarization map to achieve the
same level of contamination by aliased power than in a temperature map. Oversampling is therefore much
more important for the polarized case than for the unpolarized case, which should be reflected in experimental
design.
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[. INTRODUCTION coupling. Polarization can thus become a good test of infla-
tion [9].

Detecting polarization of the cosmic microwave back- Most of the recent interest in polarization is based on its
ground (CMB) radiation has become one of the main goalsability to provide evidence for a stochastic background of
of the CMB community. Numerous experimental groups aregravity waves. It has been shown that the polarization field
currently searching for CMB polarizatiqd—5]. CMB polar-  on the sky can be decomposed into two parts, a scalar part
ization can potentially offer a vast amount of information usually calledE and a pseudoscalar part usually callgd
about our Universe. In general, polarization is very sensitivg 10,11]. The pseudoscalar part cannot be created by density
to the ionization history of the Universe. For example, onperturbations to linear order in perturbation theory. A detec-
large scales it can provide insight into the way the Universdion of the B component on large scales would thus indicate
reionized [6]. On degree scales, once the temperaturehe presence of a background of gravity waves, a prediction
anisotropies are well measured, the predicted polarizatioof inflationary model$12,13. Such a detection would deter-
can serve as a test of how and when recombination happenedne the energy scale of inflation and could provide a strin-
and could potentially lead to an important confirmation ofgent test of inflationary modeJ44]. On smaller scales, tH&
the big bang mod€]l7,8]. Moreover, because the bulk of the modes will most probably be dominated by secondary con-
polarization is produced at the last-scattering surface, itributions produced after last scattering, the leading one be-
should exhibit no correlation on scales larger than about oning gravitational lensing15]. A detection of these contribu-
degree unless there were superhorizon perturbations at digens could provide information about the distribution of
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matter all the way up to the last-scattering surface. There argive alternative definitions of these modes which will help
many proposals for how to detect and use this efféét—  clarify how this decomposition works on finite patches of
18]. In standard models, however, tBecomponent is likely  sky. In Sec. Il C we discuss the small-angle approximation.
to be quite difficult to detedt19-21]. Further details on properties of spin-two fields on the sphere

It is clear that a separation of the observed polarizatiorand theE/B decomposition may be found in, e.g., R423,
into E andB parts is crucial to much of the CMB polariza- 24], and references therein.
tion scientific program. It has been realized, however, that
real-world complications such as the finite size of the ob-
served patch can significantly reduce our ability to do a clean . o ) ] o
separation between the two components: when using a qua- 1his section is rather technical. Since all intuitive aspects
dratic estimator method for measuring tEeand B power of our results can be understood in terms of the much simpler
spectra, substantial “leakage” between the two was found oformulas that apply in the flat-sky approximation, some read-
naive estimates of the sensitivity needed to detecBthem- ~ S€ction as needed. . o
ponent that ignore such leakage can significantly underesti- The (linean polarization of the CMB is described in terms
mate the required sensitivity for an experiment aimed at de©f the Stokes paramete@gandU. The definition ofQ andU
tecting theB modes. In Ref[22] it was shown that in a finite depends on the coordinate system chosen. In this subsection
that there are also ambiguous modes, modes that receiVéll use spherical coordinates to defigeandU.
contributions to their power from bot& and B. The con- We will follow the notation of Ref[11]. The Stokes pa-
struction of the modes was done for a round patch working@meters can be combined to form a spin@+(iU) and a
in harmonic space. It was shown for each valuerothere ~ SPin —2 (Q—iU) combination. In the full sky these combi-
are two ambiguous modes. nations can be decomposed using spin-2 harmonics

The issue of separating andB has also generated inter-
est in the field of weak gravitational lensifig6—2§, where Q+iU=2 aym 2¥im: Q—iU=2 a om —2Yim.
the basic cosmological signal is expected to produce only an m Im '
E pattern in cosmic shear maps, and Benode therefore 1)
serves as an important test for other signals due to intrinsic | )
galaxy alignment or systematic errors. Although we do not It iS natural to introduce a scal&E) and a pseudoscalar
discuss weak lensing explicitly in this paper, our results ardB) field to describe polarization. The expansion coefficients
relevant to that case as well since the len€iiB problem is of these two fields inordinary spin-Q spherical harmonics
mathematically analogous. are

In this paper we revisit the issue Bfand B mode sepa-
ration, with two goals: to provide intuition for experimental
design and for efficiently analyzing data sets in practice. We (2
present a general derivation of the plEepure B and am-

A. Spin two notation

agim=—(agmta_m)/2, agm=i(azm—a_zm)/2.

. On the sphere, these two functions completely characterize
the polarization field11]. They are important physically be-
cause cosmological density perturbations cannot crBate
type polarization while gravitational waves cftD,11]. On

mall scaleB polarization can be generated by lensjia§],
%hd furthermoreB may turn out to be a good monitor of

functions of the bi-Laplacian on a finite patch. We then in-
troduce a way to obtain modes that are very nearly “pure”in
a pixelized map by solving a generalized eigenvalue proble
and discuss how this can be used to analyze real-world da

sets. foreground contamination, although at the moment nothing

The paper is organi;ed as follows. Secyion . estat_)lishe% known about how different foregrounds contributeEtor
some notation and reviews the mathematics underlying thg In terms ofag |,, andag |, the Stokes parameters can be
E/B decomposition of a polarization field. In Sec. Ill, we | o as[25] am am

s

show how to decompose the space of all polarization field
on a finite patch of sky into pure& modes, pureB modes,
and modes that are ambiguous with respect toBH8 de- Q= —E (ag mXymtiag imXam),
composition. Section IV presents examples of this decompo- Im

sition. In Sec. V, we present a method for finditrgearly)

pureE andB modes numerically for pixelized maps by solv- _ .

ing a generalized eigenvalue problem. Section VI presents U= % (88 imX1im ~13E ImX2)m) ©
examples. In Sec. VIl we show that aliasing of small-scale

power is the dominant source of “leakage” between the where  X;;n=(Yim+-2Yim)/2  and  Xom=(:Yim
andB modes. We summarize our conclusions in Sec. VIIl. — _,y, /2. These functions satisfX},,= —X1;_m and

X3im=—Xzj—m which together withag, ,=ag,-n and
ag,m=ap,—m MakeQ andU real quantities.

In this section we will review the definition df and B The spin-2 harmonics in Eql) can be related to the
modes to introduce all the relevant notation. We will alsousual spin-0 spherical harmonics by means of two first-order

IIl. EAND B MODES: NOTATION AND PRELIMINARIES
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differential operators, the spin-raising)(and spin-lowering spectra of the Stokes parameters and thos@ofand g

(8) operatorg11], which are defined in spherical coordinates differ by a factor (—2)!/(1+2)!~1"%.

by To clarify the relation between all these quantities, we can
think of weak gravitational lensing.g., Refs[26,27)). The

i J | shear variables are the analogues of the Stokes paranteters,
0=—sin 6 - +i cscaﬁ sin™* 6, 4 is the analogue of the projected mass density, aads the
analogue of the projected gravitational potential.
) J 9 We can use Eqg10) and (9) to show that
0=-—sin %60 ﬁ_i csceﬁ Sin® 4, (5)

V2(V2+2) e=[88(Q+iU)+35(Q—iU)]/2,
wheres is the spin of the function to which the operator is
being applied. When applied to the spin-weighted spherical 2(V24 D) =i 85(0+iU) — s 2
harmonics, these operators yield the following identities: v J¥p=1[00(Q+1U) ~03(Q-iU) J/2. (11)

e 1/2
OsYim=L(1 =) (1 + s+ D] 511 Yim, These equations show that we can take linear combinations

of second derivatives of the Stokes parameters and obtain

X — _ 1/2
OsYim=—[(I+8)(I=s+ D)™ 51 Yim. ®  variables that depend only d& or on B. (In the flat-sky
In particular, the spin-0 and spin-2 harmonics are related agPProximation, th2e left-hand sides of these equations are
follows: simply V°E and V“B, respectively. On the sphere, the rela-
tion is not so simple, but it is still true that the left-hand sides
NYim=[(=2)1/(1+2)11Y258Y,,,, depend only orE and B, respectively. We will use this to

project out theE and B contributions.
Y=L =211+ 2)1 Y258, - (7)
B. Vector notation

Another useful consequence of these relations is ) i i )
We can summarize the above results using a slightly dif-

- - (1+2)! ferent notation that will help clarify the analogy with vector
6666Ylm:6666Ylm:mYlm fields. We will use boldface to denote the polarization field
' written in the form of a vecton(S). We then define two
=(+2)(1+DII-1)Y, (B second-order differential operatdbg andDg,

or, equivalently, that when acting on spin-zero variables 1 30+ 88
De=3| _. 55— 58] (12
3355=05088=V2(V2+2), 9) I( )
since V2 corresponds to—I(I+1) in spherical-harmonic 1(i(50—39)
DB: = - = . (13)
space. 2\ 30+00
Equations(1), (2), and(7) can be combined to obtain
. . . . . Equation(10) now becomes
Q+iU=00(ye+ivs), Q—iU=38(e—iv), uation(10)
P: DE¢E+ DBIIDB1 (14)

e=—2 [(1=2)Y(1+2)11"8g 1 Yim _ N
Im the analogue of the gradient/curl decomposition. Moreover,

De andDg satisfy two important properties

— _ /
Y= %[a 21 (1+2)11"ag mYim.  (10) DL-Dg=D}: Dg=0, (15)

ThusQ andU can be written in terr“ns of s_eco"nd derivatives DE' De= Dg- Dg=V2(V2+2). (16)
of the scalar and pseudoscalar “potentialgr and g,

T S S Jaents S e .t

X . : atVxV=0. Substituting Eq(10) into Eq.(15) implies that
a grao_llent and a curl component. The dlffe_ren_ce for spin- a polarization field ongthg(sk))/ has ocrlﬂé a)s a?source, it
gggzri%&;ggﬁ d%ir;;’;gf%gt'smigzcond derivativesf the should satisfyDg- P=0 and if it is only due to 8 compo-
. . . T _

We pause to note that the reason whyand B are the ner|1t :thghouldt Sat'SPE:E' P_EO'B b it
focus of attention instead afg and ¢ is partly a matter of n this vector notation, Eq3) can be written as
convention. Perhaps more importantly, and B have the
same power spectrum on small scales as the Stokes param- pP= _Z ag 1mY e 1m+ s 1mYB.1m
eters, while the derivatives in ELO) imply that the power m ’ ’ ’
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IlI. ANATURAL BASIS FOR POLARIZATION FIELDS

On a manifold without boundary, any polarization field
can be uniquely separated into Brpart and &B part. But if
there is a boundarii.e., if only some subsed of the sky has
been observedthis decomposition is not unique. Let us first

In this subsection, we present some formulas valid in thentroduce some notation to clarify the problem.

small-angle(flat-sky) approximation. When working in this

Polarization fields living on{) form a normed vector

limit, it is more natural to measure the Stokes parametergpace with the inner product

with respect to a Cartesian coordinate syst&y instead of

the usual polar coordinate axis. In the flat-sky approxima-

tion, the differential operators reduce to simply

3=~ (3, +idy), (18)

0= —(dx—idy), (19
G~ 0;

De= 20,0y | (20
— 20,y

Dg= 0_,5_&)2/ . (21

(P,P’)EJQP-P’ dQ, (24)

and we say that two field® and P’ are orthogonal if
(P,P")=0. We refer to a polarization fiel® asE if it has
vanishing curl, i.e.,DE-PzO; B if it has vanishing diver-
gence, i.e.DE- P=0; pureE if it is orthogonal to allB fields;
and pureB if it is orthogonal to allE fields.

As long as(2 is simply connected, which we shall assume
throughout this paper, an equivalent definition ofeapolar-
ization field is one that can be derived from a potenital
via P=Dg¢e . (And, of course, an analogous statement holds
for B fields. As always, the analogy with the more familiar

Using the above expressions it is trivial to demonstrate thag2Se of vector fields holds: any curl-free field is the gradient

DL -Dg=D{-Dg=0 and thatDL-Dg=D}-Dg=V*. In the
flat-sky approximation|V?|>1 (that is, only modes with
eigenvalues much greater than one contribute significantly
so theV?(V?+2) operator in Eq(16) has reduced to the
bi-LaplacianV*.

De andDg are the spin-2 analogues of the familiar gradi-
ent and curl operators. ApplyinQg or Dg to a scalar field
givesE andB fields that have vanishing “curl” and “gradi-
ent,” respectively. Equation$20) and (21) show thatDg
=R-Dg, where the X2 matrix

-

simply performs a rotation takingQ——U and U—Q.

-1

0 (22

1

of a potential)

On the complete sky, every polarization field can be
uniquely represented as a linear combination ofEafield
and aB field, and allE fields are perpendicular to &l fields.

In other words, the space of all polarization fields is the
direct sum of two orthogonal subspaces: the space dt all
fields and the space of & fields.[One way to prove these
assertions is simply to use tlieand B spherical harmonics
defined in Eq.(17) as a basig.In this case, there is no dis-
tinction between ark field and a “pureE” field.

But if only some subset of the sky has been observed, so
that() is a manifold with boundary, then this decomposition
is not unique. One way to see this is to note that there are
modes that satisfy both the-mode andB-mode conditions
simultaneously. When we split a polarization field intoE&n
part and aB part, these “ambiguous” modes can go into

When drawing polarization fields as two-headed arrows witreither component. In order to make t&éB decomposition

length Q2+ U?)2 and angle tan'(U/Q)/2, this corresponds

to rotating the polarization direction by 45° at each point. In

other words, rotating the polarization directions oftafield
by 45° gives &B field.

The analogue of Eq17) is now given in terms of Fourier
modes

d?k —sin2 _
()= [ e £ g 180 oy | "
r=(§  k=k Zf’fi . 23)

In other words, theE/B decomposition becomes local in
Fourier space: the polarization direction of theeomponent
is parallel or perpendicular th whereas that of th& com-
ponent makes a 45° angle wikh

unigue, we must first project out the ambiguous modes.

In other words, the subspaces of Bllmodes and alB
modes are no longer orthogonal: in fact, they overlap. To
recapture orthogonality, we must restrict our attention to the
pure E andB subspaces. To be specific, the space of [re
modes is the orthogonal complement of the space oBall
modes, which includes both pu2 modes and ambiguous
modes. Similarly, the space of puBemodes is orthogonal to
both the pureE modes and the ambiguous modes. In sum-
mary, we can represent the space of all polarization fields on
Q) as a direct sum of three subspaces: pareure B, and
ambiguous.

In this section, we show explicitly how to construct ortho-
normal bases of purE modes, purd8 modes, and ambigu-
ous modes, so that we can unambiguously decompose any
polarization field into these three components. In R22]
this construction was presented for a cap working in har-
monic space. We here present the general formalism in real
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space. For simplicity, we work in th_e flat-sky approximation, tions. ThenDg f and Dgg are two of our “pureE” basis
although the construction works without this assumption.  functions. Their inner product is

We first construct the ambiguous modes. An ambiguous
modeP must be arE mode, sd®=Dg f for some scalar field
f. And it must also satisfy th&-mode conditionD}-P=0. f d?r DEf~DEg=f d?r fV“gz,uf d’rfg, (27)
Combining these, we get @ @ o

0=D[-Dg f=V*f. (250  where we have integrated by parts twice and used the bound-
ary condition onf to drop the boundary terms. Of course the

So we can make a pair of ambiguous mof@esf andDg f same argument withandg switched leads to the conclusion
out of any functionf that satisfiesV*f=0. All such bihar- that the inner product ia times the integral ofg. If A#,
monic functions are determined by their values and first dethen the integral must therefore vanish, anal#«, we can
rivatives on the boundary of the region, so it is straightfor-take a linear combination that orthogonalizes the two modes.
ward to form a basis of them simply by choosing a basis folWe choose to normalize all mod&sso that(P,P)=1.
the set of scalar functions on the boundary. In conclusion, the pur& modes, puré8 modes, and am-

In the quest of separating tHe and B contributions the biguous modes form a complete orthonormal basis for the
ambiguous modes are not very useful, since we cannot knogpace of all square-integrabfee., (P,P)<«] polarization
whether they are due to a cosmologi€abr B signal. If we  fieldsP in a sky region(). We found that a polarization field
are willing to assuméon either observational or theoretical is pureE if it has vanishing curl and is parallel or perpen-
grounds that E dominates oveB on the angular scale of dicular to the boundary, puif it has vanishing divergence
interest, then it may be sensible to assume that power founand makes a 45° angle with the boundary, and ambiguous if
in the ambiguous modes [ power. This does enhance the it has vanishing divergencand curl. These conclusions ap-
accuracy with which thé& power spectrum can be detected ply not only to the eigenmodes that we have constructed but

in a given data s€21]. more generally, by linearity, to any field. This means that we
Of much more use are the “pureZ and B modes. We can optionally decompose a polarization fi€ldhto its three
now give an explicit construction of these pure modes. components directly, without going through the step of ex-

Let the scalar fieldsz generate a purE modeDg e, and  panding it in eigenmodes. The puecomponentz is ob-
let Dy be any Bmode(not necessarily puieThe require-  tained by solving the bi-Poisson equati®fyg = DE- P with
ment for a pureE mode is that these be orthogonal: Dirichlet and Neumann boundary conditions and computing

Pc=Dgy¢e. The pureB componentPg is obtained analo-
2 _ ously, and the ambiguous componéhtis simply the re-
J;)d r(Deye) - (Deiip) =0. (26) %ainger, i.e.P,=P— P?;—PB. P i

If we use the explicit form$20) and(21) for the differential
operators and integrate by parts twice to m®geover to the
Dgig term, this reduces to a line integral around the bound- In this section we illustrate the above construction for two
ary of Q. (After integrating by parts, the surface integral worked examples: a disk in the flat-sky approximation and a
vanishes because it contaib%- Dg#g, which is zero. The  spherical cap.
line integral contains terms proportional #&¢ andi-V .

IV. WORKED EXAMPLES |

The conditions for a pur& mode are thereforél) /=0 on A. Disk
the boundanpQ) and(2) A- V=0 on the boundary(}. o )
In other words,ye must satisfy both Dirichlet and Neu- ~ Suppose that the observed region is a disk of raéus

mann boundary conditions simultaneously. Fortunately, th&ith R<1 radian, so that the flat-sky approximation is ap-

bi-Laplacian operator has a complete set of eigenfunctionBropriate. We begin with the ambiguous modes. We want to

that satisfy these boundary conditions. To form an orthogondfnd functionsf with V*f=0. Assume a separable solution

basis of pureE modes, all we have to do is find a complete f(r,#)=F(r)e™”. We know thatV*(V*f) =0, soVf must

set of such eigenfunctions and apply the operddarto  Pe a'harmonlc_; func_t|on. Th(_a most general solutiorVif

them. Similarly, if we apphyDg, we will have an orthogonal *r™e"™”. Solving this equation fof, we get two indepen-

set of pureB modes. The pur® modes can also be found by dent solutions

taking the purée modes and rotating the polarization at each [ Maim

point by 45°. The boundary conditions turns out to have a f(r,d)ci mi2 im;/) (28

simple geometrical interpretation: for a puEamode the po- e

larization on the boundary must be parallel or perpendicular

to the boundary; for a purB mode it must make a 45° angle As we expected, there are in general two solutions rper

with the boundary. (since there are two conditions we wish to impose on the
The proof that these basis functions are orthogonal idoundary. Each solution yields two ambiguous mod@sf

similar to the more familiar situation with eigenfunctions of andDgf, which turn out to be just rotations of each other.

the Laplacian. Lef andg be eigenfunctions oV* with ei- In the casen= 0, though, these two solutions do not yield

genvalues\ and u, and let them satisfy the boundary condi- any ambiguous modes, &:f=Dgf=0. The same is true
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FIG. 2. The first twom=0 pure E (left) and pureB (right)
modes for a disk.

a_ InkR I (kR)
b I (kR I (KR’ @D

So there will be solutions for all values & that satisfy
JIm=1/1. These roots can be computed numerically.
For largen, a good approximation for theth root with azi-
muthal quantum numban is

FIG. 1. Ambiguous modes of a disk. From top to bottam,
=1,2,3.
m
KnnR= 77'( n+ ) . (32
for the first of the twom=1 solutions, so there is only one 2

pair of ambiguous modes with= 1. This counting of modes ) _
agrees with Ref[22]. Figures 1-4 show the first few modes of each type. As

We now proceed to find the pue and pureB-modes. Noted above, there are no ambiguous modes mith0, one

One way to construct eigenfunctions %f is to take pair of ambiguous modes wittm|=1, and two for each
|m|>1. Only one of each pair is shown; the other is found by

rotating the whole pattern. Similarly, for each puEeand
pure B mode, a linearly independent mode can be obtained
by rotating the page.
wherea, is an eigenfunction oW? with eigenvalue\ and If our data covered the entire plane, we would construct a
a_, has eigenvalue-\. (These two are obviously degener- basis out of only the ordinary Bessel functiahs, excluding
ate eigenvalues oV* with eigenvaluex?, so we can take the modified Bessel functiorig,. In the limitkR— o, there-
linear combinations of them. Of course there are no wellfore, we expect the contribution fromy, to be small, and
behaved eigenfunctions &? with positive eigenvalue over indeed this is the case. The functibp grows exponentially
an entire manifold, but there are over a manifold with boundfor large argument, so in order to satisfy the Dirichlet bound-
ary, ary condition the coefficierth in Eq. (30) must be small. For
Once again we apply separation of variables in polar coa mode withkR>1, therefore, the ordinary Bessel function
ordinates. The angular dependencee8?. Then for any dominates except near the boundary. In this limit, the modi-
positive k, the Bessel functiod,(kr) has eigenvalue-k?  fied Bessel function takes over in a small region near the
and the modified Bessel functidn,(kr) has eigenvalu&?, boundary to “flatten out” the mode and make it satisfy the
so we can take our eigenfunctions f to be Neumann boundary condition.
It is worth noting that all modes except those witi+= 0
require that botlfQ andU be measured in the patch. Modes

f=a,+a_,, (29

— im¢
FmidF, @) =[@dm(kr) +DlIy(kr) ], (30 with m=0 depend only o for the pureE modes and only
on U for the pureB modes(with Q and U defined with
The boundary conditions tell us that respect to the polar coordinajes
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FIG. 3. Same as Fig. 2 witm=1. FIG. 4. Same as Fig. 2 witm=2.

B. Spherical cap and the remainder can be computed from recurrence rela-

. . . . tions.
This construction can be adapted to give the basis func- We can also construct the pueand B modes from the

tions for a sphenc_al cap without recourse to the fIat-§ky APassociated Legendre functions. Suppose we fix the azimuthal
proximation. In this case, the functions we are looking for

are eigenfunctions of the operator quantum numbem and look for eigenfunctions oV2(V?
+2) with eigenvaluek. We can construct one by taking a
V2(V2+2)=(V2+1)2—1. (33  linear combination of two associated Legendre functions
Px,mandP, n,, where\ . are the two roots of

The ambiguous modes will therefore be eigenfunctions of 5
the Laplacian with eigenvalues 0 ant2. These eigenfunc- [=Ae(he+D)+1]"=k+1. (37

tions can be written in terms of associated Legendre funcyne |efi-hand side is the eigenvalue &F3+ 1)?; recall that

tions Py, as the eigenvalue associated wikh,, is —I(I+1), and com-
pare this equation to E¢433). Just as in the case of the disk,

(34) there will be a discrete set &fs for which a linear combi-
nation of these two functions can satisfy both boundary con-
ditions.

Pom(Cos@)e'™m?
P, (cos@)em?,

famd 6, 0) =
for any integem.

The associated Legendre functidh,, is well-behaved V. PIXELIZED MAPS
over the entire sphere as long |as|<I, so there appear to
be four singularity-free solutions over the entire sphere. ) ) . o
These are mapped to zero By andDg, though, so they do  In this section we study the decomposition of polarization
not give ambiguous modes. This is of course as it should bd? finite pixelized maps. One possibility would be to search

If, however, the region of intere€? is a spherical cap  Laplacian operator. On scales much larger than the pixel
<®, then we permit functions that have singularities outsideSc@le, we would expect to recover modes that are approxi-

Q. In that case, there is one nontrivial ambiguous mode witdnately the same as those found above. The orthogonality of
m=+1, namelyP,.,e*'%, and two for everym with |m| pure E and B modes would not be expected to be perfect in

A. Eigenvalue formalism

>1. Thel =0 modes can be written explicitly as the discretized case, but on reasonably large scales it should
be close. The main drawback of this approach is that by
sing \m construction it explicitly assumes that baghandU are mea-
Pom(cos) = m) (35 sured at each pixel, so we would like to generalize the ap-

proach preserving its spirit and power.

We will adopt a different method in which a complete set
of E, B, and ambiguous modes can all be found at once by
solving a single eigenvalue problem. With this approach, we

(36) can find a basis of modes that approximate the [EiaedB
modes very wellexcept for modes with frequencies close to

Thel=1 modes are not so simple. The first one is

(cos#+2)sir? 6
P1a(cos6) = (1+cos6)?

023501-7



BUNN et al. PHYSICAL REVIEW D 67, 023501 (2003

the Nyquist frequency, where problems may be expected to Our aim is to construct a basis of vectors that span all the

arise no matter what approach one adppts space but are ordered by their relative contributions fidm
We assume that we have a map of a finite portion of theandB modes. In principle, we would like to find the gener-

sky composed ol pixels. In each pixel we could have mea- alized eigenvectors of something lile e=\gB-e. A prob-

sured bothQ and U; however, it is possible that in some or lem arises, however: we know thBthas a null spacéthe

all of them only one combination of the Stokes parameterspace of pureE modeg. So we regularize the problem by

was measured. We will denote the vector of measured Stokéstroducing a matridN= oI, with | the identity matrix and

parameter$, which will have dimension less than or equal o a very small constant. We then solve

to 2N. In terms of theE and B modes of the full sky, the

vectorP is given by (E+N)-e=Ag(B+N)-e. (42

If we chooseo? small enough, the matri+N is essentially
(38) equal toE in the subspace of purié modes and is propor-
tional to the identity matrix in the subspace of pienodes.
The converse holds fd+N. As a consequence, the eigen-
Ideally we want to find the pixelized analogues of the gare vectors with largexg will be very close to pureE modes.
pureB and ambiguous modes. A pugemode, which we will  Furthermore, with our choice of power spectra, the eigenvec-
denotee, should satisfyYg,-e=0 for all Im. A pure B tors will automatically separate in scale with larger scale
modeb satisfiesYg ,-b=0 for all Im. It is clear that one modes having a larger eigenvalue.
cannot find a solution to these sets of equations, i.e., to find There is an equivalent equation fBrmodes,
such are or b, since in general, we are trying to satisfy more
equations than we have components of Bheector. In prac- (B+N)-b=Ag(E+N)-b, (43
tice the number of constraints we need to satisfy is set by the o o
angular resolution of the experiment, which determines th&ut any modee satisfying Eq.(42) also satisfies Eq(43)
maximum| mode that has any appreciable power. Thus theVith Ag=1/Ag. _ _
difficulty of finding puree or pureb modes will increase as Ve can derive simple and useful properties of the eigen-
the distance between pixels gets larger compared to the ajalues and eigenvectors if we assume that at every pixel in
gular resolution of the experiment. Moreover, we also expect’® map we have botQ and U. We consider the simple
that the number of purg and pureB modes will decrease as tr_ansformatlon. where we rotate the polarization at every
the fraction of pixels where only one of the Stokes paramPixel by 45° (i.e., Q——U and U—Q). We denote this
eters is measured increases. transformationR,s. It is represented by a block diagonal

A pure E mode should satisfy matrix

P=- % (ag,imYemtagimYe,m-

0 -1
), (44)

S Coll Yo m 670 (39 (Rashy =i ( 1 o
where i,j label pixels. The matriceE and B satisfy
or, equivalently, RYs E-Rus=B and Ry B-Rys=E. MoreoverRYs Rys=1.
By substitution into Eq(42), it is straightforward to prove
that the vectoe’ = R,5- e also solves the eigenvalue equation
e.B-e=0; B=, CB|YB,,m~Yg’|m, (400  but with eigenvalue Mg . We conclude that if at every pixel
Im we have measured bot andU, modes that solve Eq42)
) come in pairs with eigenvalues: and 1Az . One member of
for any choice of power spectru@g, . An analogous state- the pair is preferentiallE and the other preferentiallg.
ment clearly holds for pur& modes In the next section we will present numerical examples to
gain intuition on how the eigenvalue problem works. First
. : we will motivate our choice ofC, spectra.
b“E-b=0; E=X CeYeum Yim (4D
Im B. Relation to bi-Laplacian formalism

for any C,. The matricesE andB give the contribution to To find the relation between our eigenvalue and bi-
the power in each mode from tHe and B components. In  Laplacian formalisms, we start by considering a vector sat-
order to find candidatE andB modes numerically, we must isfying the eigenvalue equation

choose a particular power spectrum; we will choose

Cee.pyl2m=(1—2)1/(1+2)! X W}, whereW; is the window (E+c?l)-e=\g(B+d?l)-e. (45)
function that describes the beam smearing. We will motivate__ + + o + N
this choice in the next subsection: in practice we found it to>INc€Dg-B=Dg-E=0, multiplying Eq.(45) by D andDg
work extremely well, making mixing between modes ex-Yields two scalar equations

tremely small and almost perfectly recovering the modes we . 5 .

obtained in the previous section with the bi-Laplacian. De-E-e=0“(Ag—1)Dg- &,

023501-8
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DL-B-e=c?(A\z'-1)D}-e (46) SE ' ' ' ' ™
108 b
108 .
We now proceed to show that with our choice of spectra 1% ]
Cgi=(1-2)!/(1+2)! the modes constructed using our bi- Br ]
Laplacian formalism solve Eq46). We take < olK ]
e :
N 7
V2(V242) =\ e (47) 10§ :
10-7 r L L L L L =
and assume thapg satisfies both Dirichlet and Neumann 1o (', ofz of4 ofe ofa i
boundary conditions. We can use the completeness relatio 1/imax
for spherical harmonics and our choice of spectra to write 100 , : -
BE L e F
x‘1V2<V2+2>¢E<0)=fdo'% Yim(0)Yien(0) (0 EE :
o 100 F :
< 0.{ :' s » msw s asn ® :
[+2)! 10 .
=J’ do'> CE|(—Y|m(49) o+ K a A i
m (1=2)! 10§ L 3 :
* ’ v %8:: C 111 -nl 1 L PR B | : ]
><Y|m(0 )¢E(0 ) (48) 102 108
l!
We can use the fact thatDL-Yen=[(1+2)!/ "
(I-=2)171%?y,,, to get FIG. 5. E/B eigenvalues for a cap. In the top panel we shaw

as a function of mode number. On the bottom we show the eigen-
values as a function of botlf; and|Z; as defined in Eq(55). We

2 __ — 6 5
de’ CoDL. Y oyt 0)-D 0 took 0°=4X10"°, a factor 10> smaller than the zero lag corre-
f % elDe YEIm(@)Yg im(0") Deye(0) lation function.

=NTIVAVEH2)e(0), (49 our two formalisms are identical when restricted to the pure
and B subspaces but differ in the ambiguous subspace.
In practice we will find that the modes calculated by solv-
ing the bi-Laplacian equation and the generalized eigenvalue
problem are almost identical. This can be understood by
looking at Eq.(51) and realizing that in most cases we will
be able to achieve very good separation, \ex 1. This im-
DE. E.ez)\*lDE-e. (50 plies that one only needs to add a very tiny amount of am-
biguous modes te in Eq. (51) to “correct it” and makea
Thus if we identify \"*=0?(A\g—1), Dgyg satisfies the zero (because\ is so large. This is especially so because
first of equationg46). The second equation i@6) is trivi-  under most circumstances the matrix elements of Eogimd
ally satisfied because being a pureE mode it follows that B in the subspace of ambiguous modes are comparable.
both B-e=0 andD}}-e=0.
We have just shown that modes constructed using the bi-
Laplacian formalism solve E¢46) rather than Eq(45). This
means that the vect@= D¢y actually satisfies

where we have integrated by parts using the boundary conE
ditions satisfied by . Finally we can factorize the bi-
Laplacian operatobf- Dg=V?(V2+2) and use our defini-
tions e=Dgyg and theE matrix to get

VI. WORKED EXAMPLES II

We begin by revisiting the cap example we solved in the

continuous case. We start by assuming that every pixel has
(E+c?l)-e=\(B+0o?l)-et+a, (5)  bothQ andU. We consider a fiducial experiment with a 0.2°
. . ) FWHM (full width at half maximum for the beam angular

wherea has to be an amb|guouTs modn?cause ithas to give resolution. The patch observed has a radius of 3.8° and con-
zero when acted upon by boBg andDg). The easiest way tains 351 pixeldthe spacing between pixels in both the ra-
to understand what is happening is to look at the structure ofljal and the tangential directions was set to 0.2° as)well
the E andB matrices in the basis of the eigenfunctions of the Figure 5 shows the eigenva|ues we obtained. As expected,

bi-LapIaCian. If we calla one of the basis vectors in the the eigenvectors come in pairs with eigenvah_m and

ambiguous space and contract Egjl) with it we find 1/\g. The eigenvectors with very small eigenvalues corre-
spond to pureB modes and those with very large ones to
ol E-e=a-a (52 pure E modes. The particular values of the eigenvalues

should not be given much importance as they depend on the
where we have also used the fact teavas a pureE mode.  value of the regularizing constant. What is important is
Thus the reason why there is an extra ambiguous mode ithat the large eigenvalues show the good degree of separa-
Eqg. (51) is that theE matrix can have nonzero elements tion that we have achieved.
mixing the purekE and ambiguous subspaces. In other words There is also a concentration of modesiatl. These
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. FIG. 7. On the left(right) we show the best tw8 type eigen-
FIG. 6. Examples of modes for a cap. We show the nine mOde§ectors for a 3% 32 (16x 64) pixel patch.

with lowest\g .

modes have two origins. First, modes on small scales, where W=e.-—-¢ (54
> o . P
our small ol regularization dominates over thHe and B

e s s o, aeet " Weyhere we ave invocuced— (1 +1)C 2. Using te
P ! 9 9 V\ﬁndow functions we can define an effectivefor each

that receive contributions from bothandB. Our method is . X ;
unable to separate between both types because they have 8de.’ the aver_a_gecalculated using the qupw function as

. Wweight. Specifically, we can define quantities
same eigenvalues.

In Fig. 6 we show the first nine eigenvectors, correspond- s [W(EB)
ing to the lowest nine eigenvalues. One immediately recog- [(EB)_ZI "
nizes in this set the purB modes discussed in Sec. IV A. of 2|VV|(E’B)
The first eigenvector corresponds to the lowest-orderO
mode. The next two are the lowast= 1 modes, which differ that give the averagefor the E andB contribution to a given
only by a rotation. Then come the secamg=0 mode, then ~mode.
the lowestm=2 modes, then the lowest=3 modes, and Figure 8 shows the window functions for the eigenvectors
finally the secondn=1 mode. The best niné modes, cor- that were plotted in Fig. 6. Note that the window functions
responding to the largest nine eigenvalues, are simply equare well localized il and each has a clear peak. Moreover,
to the ones plotted in Fig. 6 but with each polarization “vec-the modes in Fig. 6 are ordered in increasing ordefZpf
tor” rotated by 45°. Both of these are a consequence of our choice of power

Our method for finding modes can be used for any shapspectra.
of sky patch. In Fig. 7 we show the first two modes of a
square patch 3232 pixels on a side. Comparing with Fig. 6, VIl. ALIASING
it is clear that they are essentially the same modes as the two
first modes for the cap. We also show the first two modes in  The windowsW in Fig. 8 can be used to determine
a patch 1&64 pixels on a side. We have also checked thatvhere the leakage betwedhand B is coming from. The
these modes for the rectangle can be derived from the biotted line in all the panels gives an estimate of the Nyquist
Lapacian formalism. frequency in the map. The conclusion is clear: the contami-

To understand where the ordering of modes in Fig. 6 inating power is aliased power. For power that is aliased one
coming from, i.e., why the modes appear in that order in thecannot distinguistE from B. The remedy for this is to in-
figure, we will introduce window functions for each mode. crease the sampling in the map so as to further suppress the
We define aliased power.

The bottom panel of Fig. 5 shows the eigenvalues we
obtained for the cap but as a functionlgf and|Z;. We see
WIE:et_ e (53) that the modes with large values ® have a lowl Eﬁ and a
P IargeISﬁ, indicating that most of the contamination is com-

(55)
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1F mo A A A and then estimate the power spectrum by taking the square of
08 7 these variables.
;—gf E b 3 In terms of the realE andB, our B estimate can be written
02 F 'q i as
(1’ M H +H— ! 4
3 m=1 d2
os [ B3 = q .
0s 3 B(k)=f—2W(k—q>[sm2a E(q)+cos2x B(q)],
L-OA F 3 (2m)

(59

02 f

me2 where cosyr=Kk-qg/kq. This estimate has contributions from

1 L
08 F ,'": E both E and B. Only whenW is a delta function such that
L-g'j ] N a=0 do we avoid mixing. Th& contributions arise because
oz / '1 3 of two effects: the finite size of the sky patch and the pixel-
of P i i ization (causing aliasing The effect of the finite patch size
1E m=s ' ' E manifests itself as a finite width of the peaks of the window
ook 1 function, while the effect of aliasing is tha¥ has several
Fouf A peaks.
02 f We have shown how to construct modes that avoid con-

s

tamination due to the finite patch size. These modes are not
Fourier modes. In what follows we want to show that even in
the limit L—oe, there is still mixing due to pixelization. If

FIG. 8. Window functions for the modes shown in Fig. 6. Solid we take this limit the window function becomes a sum of
lines showW? and dashed lines show®, normalized to unit peak delta functions centered gt= 2(m,n)knyq, Wherem andn
height. are integers.

To consider a concrete example, we calculate the ratio of

ing from aliasing. The opposite is true for modes with low power inE andB in a mode with wave vectdt, produced
Ae. We also see that some of the modes with=1 receive by an initial field that only hade modes with a power spec-
contributions from large scales, an indication that these artrum C; and assuming an infinite but pixelized sky map. All
truly ambiguous modes. the wave vector;; =Ko+ 2(i,j) knyq Will contribute to this

We can understand our results intuitively by considering anode. We get
simple toy model, closely following the treatment in Ref.
[21]. We work in the small-angle limit and compute the Fou-

3
é o
g

rier components of the observed polarization field assuming (IB(ko)|?) _ Zij Sir? 2(ij — ¢0)C|ij ICy, (60)
they were observed over a square patch of kizdsing Eq. ~ 2 S co22(d —6)C, /C
(23) we obtain ([E(ko)[%) =i (ij—00)Cy, 1Cy,
wherel;;=|k;;| andl,=|ko|. Equation(60) shows that all
092¢) the aliased modes contribute Bocontamination because in
P(k)= f _ZW(k Q){E( )( sin(2¢)> general these modes do not havep? (— ¢, ) =mm.

It is important to note that the aliased power is suppressed
by the beam. As andj become larger, the magnitude of the
power on those scales decreases bec&ysds proportional
to W?, the beam window function. For example, if we con-
where we have defined the window function sider a mode with wave vector along the positivaxis, the

aliased mode with the smallest possible beam suppression
) _ has a power suppressed by a factor [ex@kyyq(Kn
A9> sink,L/2 sink,L/2 57) —|kol) 2], whereo, is the Gaussian width of the k);qea[n;rlg
sink,A 6/2 sink, A 02’ is related to the full width half max of the beaf®WHM) by
op=FWHM//8 In(2)]. For fixedk,, the suppression can be
with A6 the separation between pixels. The Nyquist wavemade as large as one wants by increasing,, that is by

+B(q) (56)

—sin(2¢)))
cog2¢)

W(k)=

number iskyyq=7/A 6. increasing the sampling of the map. If we want the beam to
The naive way to recover the andB components would produce a suppression fact8mwe need to choosg2k3 Nyq(1

be to combine the Fourier coefficierfisas one would do if —kol/Knyg) o2]=In(9, or equivalently FWHMA @

the patch were infinite. FdB for example, we would com-  ~0.5/In(S)/(1—[Ko|/Knyq)-

pute A point worth noting about aliasing is that the power

spectrum of the polarization is a rapidly growing function of
5 3 _ | and that theE power spectrum is expected to be much
B(k)=—sin2¢ Q(k)+cos2p U(k) (58) larger than thé3 one. Figure 9 shows the power spectrum for
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FIG_' 9. Polarization power spe_ctra im‘fDM_ model. The solid FIG. 10. Effect of measuring only one Stokes parameter on 20%
curve is forE produced by density perturbations and the d_aShedof the pixels chosen at random. The panels show the window func-
curve for theB component produced by tensor modes. The anisotrog, s for the first modes witm=0,1,2,3 when both Stokes param-

pies were COBE normalized gnd it Was assumed that the tensQiers are measurddolid lineg and when 20% are missirigashed
component was 10% of the anisotropies on these scales. lines).

E andB type polarization from gravity waves in a cold dark might have been expected, the level of contamination com-

matter model with a cosmological constatiCDM). The  j,+'trom modes of frequency around the Nyquist frequency
temperature spectra were Cosmic Background Explorej greatly increased.

(COBE) normalized and the tensor component was assumed
to be 10% of the temperature anisotropies on COBE scales.
The sharp increase in power betweeandB partially com- VIil. DISCUSSION

pensates the smearing by the beam. To give a rough feeling \ye have developed a formalism for measuring Ehend

of what sampling is needed to avoid aliasing we could asg components of polarized CMB maps or weak lensing maps

sume that we want the aliased power to be a factor of 10Q;,en the real-world complications of finite sky coverage and
smaller than the power we want to measure. For a temper%‘lxelization.

ture map that Would_ Correspond to a suppression f_aStor We have shown that by expanding a map in a particular
~ 10 while for polarization we would neeg~ 10° which basis, obtained by differentiating bi-Laplacian eigenfunc-
means that the ratio FWHM has to be a factoy2.5 larger  tions, it can be decomposed as a sum of three orthogonal
for polarization than for temperature, or equivalently that ON€omponents that we term pue pureB and ambiguous. The
needs a factor of 2.5 more pixels to obtain the same level %ureE component is orthogonal to @ modes and are there-
contamination. We conclude that one has to be particularlyge guaranteed to be caused by BErsignal (on the uncut
careful about alias?ng when dealing vyith polarization maps ifsky), and conversely for the pu&component. The ambigu-
one wants to obtain a clean separation betwe@mdB.  ous component is the derivative of a biharmonic function,
The effect of aliasing can be decreased by increasing thgnd the original map contains no information about whether
sampling of the map. It should be noted, however, that th: is due toE or B signal in the uncut sky. We also derived a
presence of holes, bad pixels or pixels with only one meagjscrete analogue of these results, applicable to pixelized sky
sured Stokes parameter in the map will have a similar effectnaps. Our results are useful both for providing intuition for

We illustrate this by considering a toy example. We artifi-syrvey design and for analyzing data sets in practice.
cially increase the noise varian¢the diagonal elements of

N) for a fraction of the pixels chosen at random. Figure 10
shows the window functions for the first nine modes in an
example where 20% of the measured Stokes parameter were To maximize our ability to separate and B, we clearly
assumed to have the large noise. For comparison, we alsgant to minimize the fraction of modes that are ambiguous.
show the original window functions. On large scales, theWe found that the ambiguous modes are specified along the
modes look essentially the same as the ones plotted in Fig. 6oundary of the map rather than in the two-dimensional in-
The effect of the missing pixels is very noticeable in the terior. This means that the number of pure and ambiguous
window function, the one that quantifies the leakage. Asmodes probing a characteristic angular saakeales as the

A. Implications for survey design
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map area ovep? and as the map boundary length ovgr the leakage, we now know how to remove it completely: by
respectively. It is therefore best to minimize the ratio of cir-eliminating the ambiguous modes.
cumference to area, i.e., to make the patch as round as pos- In practice, the way to do this is to compute two projec-
sible. tion matricesIlg and Ilg that project onto the subspaces
Almost all pure modegall except the ones witm=0 for ~ given by the eigenvectors of Eq. (42) with \g>\, and
the spherical cap examplare a combination of bot and ~ Ae<1/\,, respectively, for some large eigenvalue cutoff
U Stokes parameters, so to achieve unambigi/@ssepa- Ay, say A, =100. The three mapslg-P, Ilg-P and I
ration, one needs to measure both, with comparable sensitiv=[1g—1Ig]- P will then be approximately the purg, pure
ity throughout the map. B, and ambiguous components of the original nfgpvhich
With pixelized maps, we found that aliasing of small- can be directly used for visual inspection, cross correlation
scale power was a serious problem. Although it can in prinwith other maps, and systematic error tests. To measur the
ciple be eliminated by heavily oversampling the map, theandB power spectra, one compresses the original data vector
required oversampling is greater than for the unpolarized into two shorter one®: andPg by expanding it into the
case, both because derivatives are involved and becauggove-mentioned pur& and pureB eigenvectors, respec-
CMB polarization is expected to have an extremely bluetively. Since this is a mere matrix multiplication, the corre-
power spectrum. This has important implications for,sponding noise and signal covariance matrioehich the
e.g., the Planck satellite, where bandwidth constraints ofuadratic estimation method takes as inpate trivially
the telemetry have been mentioned as reasons to reduce tbemputed as well. These two data vectors will each have less
oversampling. It is crucial to bear in mind that the usualthan half the length oP. Since the time required by the
Nyquist rule of thumb that applies to unpolarized mapsquadratic estimator method scalesrds the finalE and B
may be insufficient for realizing the full scientific potential power spectrum calculations are therefore about an order of
of Planck's CMB polarization measurements because ongagnitude faster than in the origin@0] approach.
needs roughly a factor of 2 to 3 more pixels in a polarization It should be noted that the ambiguous modes are not use-
map to achieve the same level of contamination by aliasetess in all circumstances. If it has been established Ehat
power. dominates oveB (as is expected theoreticallpy observing
the pure modes, then it is safe to assume that most of the
B. Implications for data analysis power in the ambiguous modes Espower as well. In this
) _ _ case, the ambiguous modes can be used to reduce the errors
In Ref. [20], it was shown how a quadratic estimator ,, estimates of the power spectrum. This could be particu-
method could produce uncorrelated measurements oEthe 51y seful when attempting to constrain reionization wéth
andB power spectra from real-world data sets with arb|trarypower on the very largest angular scales attainable with a

sky coverage, pixelization, and noise properties, and thiga|axy-cut all-sky map, where a substantial fraction of the
method has been applied to both the POLARand PIQUE 5 4es will be ambiguous.

[5] data. The one annoying problem with this method was
that it gaveE/B leakage. Our present results allow us to
understand and eliminate this problem.

We now know that leakage is caused by the ambiguous The authors thank Ue-Li Pen for asking questions that
modes. The abovementioned scaling tells us that the fractiostimulated this work. Support was provided by NSF Grants
of modes probing a given angular scided™ ! that are am- No. AST-0071213, AST-0134999, AST-0098048, AST-
biguous scales ad ™!, in good agreement with the 0098606, and PHY-0116590, NASA Grants No. NAG5-9194
asymptotic behavior empirically found in Ref20]. Al- and NAG5-11099, and through the David and Lucile Packard
though Ref[20] presented a technique for removing most of Foundation and the Research Corporation.

ACKNOWLEDGMENTS

[1] B. Keatinget al, Astrophys. J. Lett560, L1 (200J. [7] P. J. E. Peebles, S. Seager, and W. Hu, Astrophys. J.334t.
[2] S. T. Staggs, J. O. Gundersen, and S. E. Churchiignowave L1 (2000.
Foregrounds edited by A. de Oliveira Costa and M. Tegmark, [8] S. J. Landau, D. D. Harari, and M. Zaldarriaga, Phys. Rev. D
ASP Conference Series, Vol. 18ASP, San Francisco, 1999 63, 083505(2001).
p. 299. [9] D. N. Spergel and M. Zaldarriaga, Phys. Rev. L&8, 2180
[3] M. M. Hedman, D. Barkats, J. O. Gundersen, S. T. Staggs, and  (1997.
B. Winstein, Astrophys. J. Letb48 L111 (200D. [10] M. Kamionkowski, A. Kosowsky, and A. Stebbins, Phys. Rev.

[4] J. B. Peterson, J. E. Carlstrom, E. S. Cheng, M. Kamion- D 55, 7368(1997.
kowski, A. E. Lange, M. Seiffert, D. N. Spergel, and A. Steb- [11] M. Zaldarriaga and U. Seljak, Phys. Rev. B5, 1830
bins, astro-ph/9907276. (1997.
[5] A. de Oliveira-Costa, M. Tegmark, M. Zaldarriaga, D. Barkats, [12] U. Seljak and M. Zaldarriaga, Phys. Rev. Le®8, 2054
J. O. Gundersen, M. M. Hedman, S. T. Staggs, and B. Win- (1997.
stein, astro-ph/0204021. [13] M. Kamionkowski, A. Kosowsky, and A. Stebbins, Phys. Rev.
[6] M. Zaldarriaga, Phys. Rev. B5, 1822(1997. Lett. 78, 2058(1997).

023501-13



BUNN et al. PHYSICAL REVIEW D 67, 023501 (2003

[14] W. H. Kinney, Phys. Rev. 38, 123506(1998. 063001(2001).
[15] M. Zaldarriaga and U. Seljak, Phys. Rev. B8, 023003 [21] E. F. Bunn, Phys. Rev. B5, 043003(2002.
(1998. [22] A. Lewis, A. Challinor, and N. Turok, Phys. Rev. @5, 023505
[16] J. Guzik, U. Seljak, and M. Zaldarriaga, Phys. Rev.6R (2002.
043517(2000. [23] M. Zaldarriaga, Phys. Rev. B4, 103001(2002).
[17] K. Benabed, F. Bernardeau, and L. van Waerbeke, Phys. Re{24] W. Hu and M. White, New Astron2, 323(1997.
D 63, 043501(2001. [25] M. Zaldarriaga, Astrophys. 503 1 (1998.
[18] W. Hu and T. Okamoto, astro-ph/0111606. [26] N. Kaiser, Astrophys. J98 26 (1998.
[19] A. Jaffe, M. Kamionkowski, and L. Wang, Phys. Rev.aQ, [27] W. Hu and M. White, Astrophys. b54, 67 (200J).
083501(2000. [28] R. Crittenden, P. Natarajan, U. L. Pen, and T. Theuns, Astro-
[20] M. Tegmark and A. de Oliveira Costa, Phys. Rev. &3, phys. J.568 20 (2002.

023501-14



