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Thickness of a mildly relativistic collisional shock wave
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We consider an imperfect relativistic fluid in which a shock wave develops and we discuss its structure and
thickness, taking into account the effects of viscosity and heat conduction in the form of sound absorption. The
junction conditions and the nonlinear equations describing the evolution of the shock are derived with the
corresponding Newtonian limit discussed in detail. As in the nonrelativistic regime, the thickness is inversely
proportional to the discontinuity in the pressure. However, new terms of purely relativistic origin are also
present. In particular, for a viscous polytropic gas, it is found that a purely viscous relativistic shock is thicker
than its nonrelativistic counterpart, while for pure heat conduction the contrary is true.
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I. INTRODUCTION

The theory of relativistic shock waves was pioneer
more than 50 years ago by Taub@1#, with the related junction
conditions and adiabats further discussed by Israel@2#, Li-
chnerowicz@3#, and Thorne@4#. These results were estab
lished for a relativistic perfect simple fluid, and since they
not involve any characteristic length scale, the shock fr
was described by a mathematical surface of zero thickn
~abrupt transition!. Many studies have been made extend
these works to the nonlinear regime of relativistic hydrod
namics, as well as to ideal relativistic magnetohydrodyna
ics ~e.g., see the book by Anile@5# and references therein!.

In this work, we are interested in the shock wave the
for an imperfect relativistic fluid. It is well known that, fo
dissipative relativistic fluids, for scales smaller than the d
sipation scaleL associated withx/c, wherex is the viscos-
ity or heat conduction coefficient andc is the speed of light,
ordinary Navier-Stokes formulas do not apply@6#. We are
concerned with fluid regimes whose characteristic leng
are larger than the dissipation scale, and therefore the cl
cal theory for dissipative fluids may be used.

All fluids are dissipative, and a nonrelativistic shock wa
propagating in a dissipative medium cannot, in general,
considered as an abrupt transition, but instead, as a re
with a finite thickness. Its thickness is determined by
dissipative coefficients~i.e., viscosity and heat conductivity!
@7,8#. In addition, shock waves propagating through a g
mixture that undergoes diffusion of one component sh
characteristics similar to those due to dissipation@9#. This
fact affects not only the evolution of the wave but can a
have important effects on processes that depend upon
features of the shock wave.

A pioneering study of this system was made many ye
ago by Koch@10#, who showed that if the shock velocity i
greater than a given critical value, relativistic interaction
heat transfer and momentum transfer gives rise to an incr
in the velocity at the upstream end of the shock layer. T
purpose of our work is to discuss several aspects of
system that were not considered in the work by Ko
0556-2821/2003/67~2!/023002~8!/$20.00 67 0230
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thereby providing a more complete picture of relativis
shock waves.

The main aim here is to derive the equation for the~gen-
eralized! Taub curve, as well as the general expression
the thickness of a plane shock wave in the weak relativi
regime, taking into account both the classical dissipat
mechanisms~heat conduction, bulk, and shear viscosity! and
the associated sound absorption process. We shall not
dress the important issue of diffusion in a relativistic fluid
applications of our results to astrophysical processes, bot
which will be left for future work.

The paper is structured as follows. In the next section,
review briefly the Eckart formulation for a viscous and he
conducting relativistic simple fluid. In Sec. III, we derive th
junction conditions, as well as the corresponding express
for the generalized Taub-Rankine-Hugoniot curves for a u
dimensional shock wave in a nonequilibrium regime. T
general expression for the thickness of the shock and
comparison with the nonrelativistic limit is derived i
Sec. IV. The Newtonian limits for the remaining expressio
are discussed in the Appendix. The metric signature
(1,2,2,2).

II. IMPERFECT RELATIVISTIC FLUIDS:
THE ECKART APPROACH

The relativistic theory of imperfect fluids rests on tw
basic ideas. The first one is the local equilibrium hypothe
~LEH!. It implies that for nonequilibrium fluids, state func
tions ~such as entropy! depend locally on the same set
thermodynamic variables as do equilibrium fluids. In partic
lar, the usual thermodynamic temperature and pressure
cepts are maintained in the relativistic nonequilibrium
gime. The second idea is the existence of a local entr
source strength~entropy variation per unit volume and un
time!, which is always non-negative, as required by the s
ond law of thermodynamics. Mathematically, the LEH is re
resented by the Gibbs law, whereas the entropy law takes
form of a balance equation. Using these hypothesis in
fluid equations of motion, one finds an expression for
©2003 The American Physical Society02-1
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entropy source strength, as well as for the constitutive~phe-
nomenological! relations. The perfect fluid equilibrium equa
tions are recovered in the limit of a vanishing entropy p
duction rate. However, an important point of difference
the treatment of relativistic and nonrelativisitic fluids by d
ferent authors should be stressed. In contrast to the New
ian regime, in the relativistic domain, there exists an am
guity related to the possible choices of the macrosco
hydrodynamic four-velocity. In the so-called Eckart formul
tion @11,12#, the four-velocity is directly related to the pa
ticle flux, while in the Landau-Lifshitzs approach@7#, it is
defined by the energy flux. In principle, a general treatm
should be able to deal with any of these ‘‘gauge’’ choic
@13#. For simplicity and for the sake of a simpler comparis
with previous studies, in what follows we shall adopt t
Eckart formulation.

The thermodynamic state of a relativistic simple fluid
characterized by an energy-momentum tensorTab, a particle
current Na, and an entropy currentSa. The fundamental
equations are expressed by the conservation laws~particles
and energy momentum! and the entropy flux equation,

N,m
m 50, T,n

mn50, S,m
m >0, ~1!

whereNm is the particle flux,Tmn the stress tensor, andSm is
the entropy flux~a comma denotes space-time derivative!.
In the Eckart frame, the particle flux and stress tensor can
written as@12,13#

Nm5num, ~2!

Tmn5mumun2phmn1phmn

1c21~qmun1qnum!1Pmn, ~3!

with the entropy flux given by

Sm5nkBsum2
qm

T
. ~4!

The quantitiesn, r, p, s, T, andkB are the particle concen
tration, energy density, pressure, specific entropy~per par-
ticle!, temperature, and the Boltzmann constant, respectiv
The hydrodynamic 4-velocityum is normalized according to
umum51. The tensor

hmn5gmn2umun ~5!

is the usual projector onto the local rest space ofua. The
irreversible fluxes,p, qm, andPmn, are defined by

p5zu, ~6!

qm5khmn~T,n2Tan!, ~7!

Pmn5hS hmaun,a1hnaum,a2
2

3
uhmnD , ~8!
02300
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wherek, z, andh are the classical phenomenological coe
ficients~thermal conductivity, bulk, and shear viscosity! and
an5un,aua is the four-acceleration. The bulk viscosit
stress,p, represents an irreversible negative pressure, anu
is the scalar of expansion~divergence of 4-velocity!. The
heat fluxqm is orthogonal to the 4-velocity, i.e.,qmum50,
whereas the shear-viscosity tensorPmn, is symmetric, trace-
free, and spacelike.

For completeness, we recall that all dissipative fluxesp,
qm, andPmn, as well as their space-time derivatives, are
first order of smallness in the equilibrium deviations. This
also true of the space-time derivatives of the reversible th
modynamic quantitiesn, r, p, s, andT. However, the source
of entropy, i.e., the divergence of the entropy flux

S;m
m 5

p2

zT
2

qaqa

kT
1

PabPab

2hT
, ~9!

is a quantity of second order of smallness. In what follow

we write the 4-velocity asum5g(1,vW /c), where g5(1
2v2/c2)21/2 is the Lorentz factor.

III. TAUB CURVES AND ENTROPY DENSITY CHANGE

We now consider the junction conditions for a pla
shock wave in a relativistic imperfect fluid and use them
derive the generalized Taub curve, as well as the associ
entropy density change for weak shocks. The thickness of
shock wave due to the presence of viscosity and ther
conduction and taking into account the acoustic damping
then, derived.

A. Junction conditions

In an ideal fluid, the relativistic junction conditions ar
defined by the continuity equation for the particle currentNx

and the momentum and energy fluxes, i.e., thexx and 0x
components of the energy-momentum tensor:

@Nx#50, c@T0x#50, @Txx#50. ~10!

Square brackets denote the difference between the value
any of the mentioned quantities at large distances in fron
the shock and inside it. We denote side one as the~far! up-
stream side. Choosing the spatial component of the fo
velocity along thex axis, it follows thatu05g, ux5gvx/c.
The non-null components of the projector tensor areh005
2(ux)2, h0x52gux, andhxx52g2. For convenience, the
density particle current will be expressed asj 5ngv. In this
way, the conservation of the 0x and xx components of the
energy-momentum tensor takes the form
2-2
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ng
v
c

[
j

c
5

j 1

c
, ~11!

~wg2w1g1!52S z1
4

3
h D j

c

g

n3 F j

c2

] tn

gn
1]xnG1

k

c S g21
j 2

c2

1

n2D H 1

cn
] tT1

c

j
g]xT2

T

cn2 F j

n

]xn

g
1] tnG J ,

~12!

j 2

c2 S w

n
2

w1

n1
D1~p2p1!52S z1

4

3
h D j

c

g2

n2 F j

c2

] tn

gn
1]xnG12

k

c
g

j 2

c2

1

n H 1

cn
] tT1

c

j
g]xT2

T

cn2 F j

n

]xn

g
1] tnG J ,

~13!

where we have introduced the specific enthalpy~per particle!,

w5
m1p

n
, ~14!

and usedu,0
0 5ux] tu

x/cg, u,x
0 5ux]xu

x/g. It has been assumed that at large distances from the shock, the flux is uniform
all gradients vanish.

B. Generalized Taub curve

In order to obtain the expression for the change in the entropy across the shock, we follow a procedure simila
adopted by Thorne@4#. First we multiply Eq. ~13! by (w/n1w1 /n1) and then combine the result withj 25n1

2(u1
x)2c2

5n2(ux)2c2, obtaining

w2ux22w1
2u1

x21~p2p1!S w

n
1

w1

n1
D52S z1

4

3
h Dg2S w

n
1

w1

n1
D j

cn2 F j

nc2

] tn

g
1]xnG

12
k

c
g

j 2

c2

1

n S w

n
1

w1

n1
D H 1

n

1

c
] tT1

c

j
g]xT2

T

cn2 F j

n

]xn

g
1] tnG J . ~15!

Multiplying Eq. ~12! by (wg1w1g1), we get

~w2g22w1
2g1

2!52S z1
4

3
h D ~wg1w1g1!

j

c

g

n3 F j

c2

] tn

gn
1]xnG

1
k

c S g21
j 2

c2

1

n2D ~wg1w1g1!H 1

cn
] tT1

c

j
g]xT2

T

cn2 F j

n

]xn

g
1] tnG J . ~16!

Finally, subtracting Eq.~16! from Eq. ~15! and usingg2511(ux)2, we obtain

w22w1
25~p2p1!S w

n
1

w1

n1
D1S z1

4

3
h Dg2g1w1

1

n2

j

c F 1

g1n1
2

1

gnGF j

c2

] tn

gn
1]xnG

1kFwg1w1g122
j 2

c2
w1g1

g

n S 1

g1n1
2

1

gnD G H g

j
]xT1

1

nc2
] tT2

T

c2n2 F j

n

]xn

g
1] tnG J . ~17!

Equation~17! together with the definition ofj /c @Eq. ~11!# are the generalized Taub junction conditions for a plane shock w
in an imperfect relativistic simple fluid.
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C. Weak shock wave: Entropy density change

We now consider the weak shock case, i.e., that for wh
all discontinuities are small. This means that differenc
such asV2V1 , p2p1, etc., between the values in front o
02300
h
,

the transition layer and inside it are small. Thus different
tion with respect tox or ct increases the order of smallne
by 1, i.e.,dV/dx is a quantity of second order of smallnes
From Eq.~17!, we see that the term involving the viscosi
coefficients is of third order, while for heat conduction, t
2-3
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terms proportional to (wg1w1g1) are of second order. Th
number particle conservation law can be written as

uan,a

n
52u, ~18!

and considering that to lowest order, the temperature grad
satisfies@13#

uaT,a

T
52S ]p

]m D
n

u, ~19!

the enthalpy density change, given by Eq.~17!, can be ex-
pressed as

w22w1
25~p2p1!~w/n1w1 /n!1k~wg1w1g1!H g

j
]xT

2
j

gc2n2
]xT1

T

gnc F12S ]p

]m D
n
GuJ . ~20!

Note that the term proportional toT is proportional toc22

through the dependence ofu on the four-velocity and time
derivative@cf. Eq. ~18!#.

In the dissipationless regime, the resulting expression
the Taub adiabat is formally very similar to the Newtoni
expression, as can be seen in Refs.@7# and @4#. For an im-
perfect relativistic fluid, the change in entropy in the tran
tion layer is also of second order in the pressure, just as
in the nonrelativistic case. However, as one may see f
Eq. ~20!, three new purely relativistic terms come into pla
In the Appendix, we show that Eq.~20! yields the Newtonian
expression previously found in the literature~e.g., Ref.@7#!.

To find the expression for the difference in the entro
density values far upstream and in the transition layer,
follow a standard procedure@4# and developw/n around its
upstream value in powers of (p2p1). We write the first law
of thermodynamics asdw5dp/n1Tds, wheres is the en-
tropy per particle, and then we multiply byw, using the
development ofw/n. Keeping the zeroth order inwT in the
second term and integrating, we get

w22w1
252w1T1~s2s1!12

w1

n1
~p2p1!1F ]

]p S w

n D G
s,1

3~p2p1!21
1

3 F ]2

]p2 S w

n D G
s,1

~p2p1!3. ~21!

As the derivatives ofT andn are already of second order, w
consider (wg1w1g1).2 w1g1 in Eq. ~20!. With this ap-
proximation and comparing with Eq.~21!, we obtain the en-
tropy density change,

s2s1.
k

T1
g1H g

j
]xT2

j

gc2n
]xT1

T

gnc F12S ]p

]m D
n
GuJ .

~22!
02300
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Therefore, as in the nonrelativistic case, the entropy den
change is proportional to the heat conduction coefficient. T
nonrelativistic limit of this expression is trivial and coincide
with the known expression@7#.

IV. SHOCK WAVE THICKNESS

Relativistic or nonrelativistic shocks are described by
evolving nonlinear wave. On the other hand, waves pro
gating in a viscous, heat-conducting medium are damp
This fact can be phenomenologically described by an e
imaginary term in the dispersion relationship for the wav
i.e., by writingv.vsk2 icLk2, wherev is the frequency,k
is the wave number,vs is the sound speed, andL is the
absorption length~see Refs.@7,14#!. The equation we are
seeking must be of the form@7#

S ]

]t
2vs

]

]xD f 2vsapf
]

]x
f 5cL

]2

]x2
f , ~23!

wheref is a suitable function that describes the wave profi
To obtain this equation, we shall follow a two-step proc
dure: we first find the nonlinear term~in the next subsection!
and then proceed to find the quasiacoustic damping co
bution ~in the subsequent subsection!.

A. Nonlinear term in shock waves

In order to find the nonlinear contribution, we need on
to consider equations for an ideal fluid. We consider now
local reference frame, in which the medium is at rest~co-
moving frame!, and letdv be a unidimensional velocity per
turbation. We have~cf. Ref. @12#!

]

]t
m1dv

]

]x
m1~m1p!F 1

c2
dv

]

]t
dv1

]

]x
dvG50,

~24!

~m1p!

c2 F]dv
]t

1dv
]

]x
dvG1Fdv

c2

]p

]t
1

]

]x
pG50. ~25!

Expandingm andp, we have

m5m01
c2

vs
2
dp1

1

2 S ]2m

]p2 D
s

dp2, ~26!

p5p01dp, ~27!

where m0 and p0 are the background values. For a wa
propagating to the left, we can writedv52(c2/vs)dp/(m
1p) and using]/]t5vs]/]x in the second-order terms, Eq
~25! can be written as

1

c2
~m01p0!

]dv
]t

1
]

]x
dp5

2

~m01p0!
dp

]

]x
dp ~28!

and Eq.~24! as
2-4
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c2

vs
2

]

]t
dp1~m01p0!

]

]x
dv

5vsH 2

~m01p0!

c4

vs
4

2S ]2m

]p2 D
s
J dp

]

]x
dp.

~29!

Deriving Eq. ~28! with respect tox and Eq. ~29! with
respect tot and subtracting the resulting expressions, we

S 1

vs

]

]t
2

]

]xD S 1

vs

]

]t
1

]

]xD dp

5S vs

c2
a1

]

]t
2a2

]

]xD Fdp
]

]x
dpG , ~30!

where

a15H 2

~m01p0!

c4

vs
4

2S ]2m

]p2 D
s
J , ~31!

a25
2

~m01p0!
. ~32!

Substituting ]/]t5vs]/]x and eliminating ]/]x in both
terms, we get

S 1

vs

]

]t
2

]

]xD dp2apdp
]

]x
dp50, ~33!

where we define

ap[
1

2 S vs
2

c2
a12a2D

5
1

2 F 2

~m1p!

c2

vs
2

2
vs

2

c2 S ]2m

]p2 D
s

2
2

~m1p!G . ~34!

This equation has the same form as does the nonrelati
one~see Ref.@7#!, with (m1p) replacing the rest mass den
sity, the relativistic energy density derived twice with resp
to the pressure, and the ratio of the sound speed to the
speed appearing explicitly. The last term in the square bra
ets is a purely relativistic correction.

B. Dissipative term of the shock wave equation

The acoustic relativistic damping length required by t
complete nonlinear equation of a shock wave was derive
another context by Weinberg@14#. We refer the interested
reader to this work in order to see details of the derivati
Here, we just quote the final expression,
02300
t
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t
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.

cL5
1

2~m1p! H c2S z1
4

3
h D1k~m1p!S 1

Cv
2

1

Cp
D

1kTFvs
2

c2
2

2

Cv
S ]p

]TD
n
G J , ~35!

observing that Weinberg’s expression is recovered w
Cv(Cp)5ncv(ncp) and c51. The above expression is th
same as the nonrelativistic result~see Ref.@7#!, with (m
1p) replacing the density of the rest mass and a relativi
correction proportional tokT appears explicitly.

C. Solving for the thickness

The complete equation of the evolution of a shock wave
obtained by adding to Eq.~33! a term proportional to the
second derivative with respect tox, which takes into accoun
the dissipation. The final equation is then

S ]

]t
2vs

]

]xD dp2vsapdp
]

]x
dp5cL

]2dp

]x2
. ~36!

Following the usual analysis@7#, we assume thatdp has the
following dependence:

dp5dp~j!, j5x1vwt, ~37!

wherevw is the velocity of the wave. With this solution, Eq
~36! becomes

d

dj F ~vw2vs!dp2
1

2
vsapdp22cL

d

dj
dpG50. ~38!

The solution to Eq.~36! is then@7#

p5
1

2
~p11p2!1

1

2
~p22p1!tanh

~p22p1!~x1vwt !

4~c/vs!~L/ap!
,

~39!

wherep1 is the pressure far upstream andp2 is the pressure
far downstream. In the reference frame where the shock
rest, we have for the pressure variation

p2
1

2
~p11p2!5

1

2
~p22p1!tanhS x

D D , ~40!

where we have defined the ‘‘thickness’’ of the shock by

D5
4cL

vsap~p22p1!
. ~41!

We see that this expression is identical in form to the n
relativistic one and proportional to the inverse of the press
difference. The relativistic corrections are contained in
factorsap andcL.

D. Analysis of the thickness

In this subsection, we shall estimate the effect of the re
tivistic corrections to see if they increase or decrease
2-5
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shock thickness. We shall examine them in the weak rela
istic limit. We then write~see the Appendix!

cL5LNR2l5LNRF12
l

LNR
G ~42!

and

ap5vs
2ãNR2h5vs

2ãNRF12
h

vs
2ãNR

G , ~43!

with LNR, l,ãNR, andh given in the Appendix. The non
relativistic expression for the shock thickness is@7# d
54a/ãNR(p22p1), wherea5LNR/vs

3 . We must evaluate

D

d
5

cLãNR

vsapa
.11

h

vs
2ãNR

2
l

LNR
, ~44!

where the semiequality holds for the weak relativistic ca
Using the expressions in the Appendix, we find

D

d
511

2vs
2

rc2

H 11
~«1p!

rvs
2

1
vs

2

2
rS ]2«

]p2D
s
J

F2

r
2vs

4S ]2r

]p2D
s
G

2
1

rc2

F S z1
4

3
h D ~«1p!1

kT

cv
S ]p

]TD
n
G

F S z1
4

3
h D1

k

2 S 1

cv
2

1

cp
D G . ~45!

For a more direct comparison of the relativistic thickne
with the standard Newtonian result, we consider a polytro
gas and evaluate the above expression in two special c
with viscosity alone and with thermal conduction alone.

Polytropic gas

In a classical polytropic gas, the energy density and
thalpy density are given by«5cvT5p/(G21) and w
5cpT5Gp/(G21), whereG5cp /cv5const, respectively
Hence (]2«/]p2)s50 and (]p/]T)n5cv(G21) and 1/cv
21/cp5(G21)2T/Gp. Replacing these formulas in th
classical expressions for the internal energy« in Eq. ~45!, we
get

D

d
511

vs
2

c2

2g

~G221!

2
1

rc2

F S z1
4

3
h D Gp

~G21!
1kT~G21!G

F S z1
4

3
h D1

k

2

~G21!2T

Gp G . ~46!

a. Only viscosity.If thermal conduction is absent, we fin
02300
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D

d
511

vs
2

c2

1

~G11!
. ~47!

We see that, in this case, the relativistic shock is thicker t
the nonrelativistic one, with the increment proportional to t
sound speed.

b. Only heat conduction.If viscosity is absent, we obtain

D

d
5122

vs
2

c2

1

~G221!
. ~48!

In this case, the relativistic shock is thinner than its nonr
ativistic counterpart and the correction is again proportio
to the sound speed.

E. Entropy density change

With the expression for the pressure given by Eq.~40!, we
can express the entropy change as a function of the pres
discontinuity. We begin by writing explicitly the derivative
in the expression foru, namely Eq.~18! and replacing the
time derivative with ]/]t5vs]/]x. Using dT/dx
5(]T/]p)sdp/dx1(]T/]s)pds/dx.(]T/]p)sdp/dx and
dn/dx5(]n/]p)sdp/dx1(]n/]s)pds/dx.(]n/]p)sdp/dx
in Eq. ~22! and evaluatingdp/dx from Eq. ~40!, we obtain
the following expression for the entropy density change i
reference system in which the shock is at rest:

s2s1.
k

T1
g1H F1

j
2

j

gc2n
G S ]T

]pD
s

2
T~vs1v !

gn2c2 F12S ]p

]m D
n
G

3S ]n

]pD
s
J vsap

8cL

~p22p1!2

cosh2~x/D!
, ~49!

where the factorc in cL does not add an extra power in th
speed of light~see the Appendix!. In the nonrelativistic case
@7#, the entropy reaches a maximum inside the shock@8# and
is of second order in the pressure discontinuity.

V. CONCLUSION

In this paper, we have extended previous studies of sh
waves done in the nonrelativistic domain to the weak re
tivistic case. Considering dissipative relativistic fluids in t
range of validity of the Navier-Stokes-Fourier theory@6#, we
have obtained expressions for the entropy density cha
and the shock thickness that coincide in form with nonre
tivistic ones. In each of the factors in the equations, pur
relativistic corrections appear explicitly. We studied the e
pression for the shock thickness for a polytropic gas a
analyzed the effect of corrections in two important lim
defined by the presence of viscosity or heat conducti
When only heat conduction is taken into account, the re
tivistic shock is thinner than for the nonrelativistic case. Th
result can be understood by observing that heat conduc
fluids can develop ‘‘thermal discontinuities’’@7,8#, i.e., they
allow for discontinuities in the velocity, pressure, and dens
of the fluid flow, while the temperature remains constant.
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the other hand, when only viscosity is present, the sh
thickness is larger than for its nonrelativistic counterpart a
hence, the tendency to erase singularities is stronger in
relativistic limit than in the Newtonian one. This differenc
in the effect of the relativistic corrections can also be und
stood as follows. Viscosity provides the mechanism to c
vert a portion of kinetic energy of the gas flowing into th
discontinuity into heat. This conversion is equivalent to t
transformation of the energy of ordered motion of gas m
ecules into the energy of random motion by the dissipation
molecular motion. In this respect, heat conduction has
indirect effect on the conversion process since it only part
pates in the transfer of the energy of random motion of
molecules from one point to another, but it does not direc
affect the ordered motion. The corresponding relativistic c
rections seem to amplify these effects.

A comment on the entropy change is in order. When
preshock gas has a low temperature, we are in the str
Newtonian limit and, in this sense, the fact that the entro
density change reduces to its Newtonian analog is equiva
to requiring that the theory has the correct low-speed lim
This fact contains no new information. But when the p
shock fluid has relativistic internal speeds, the shock we
ness does not imply a Newtonian propagation velocity of
shock and, hence, this case is not covered by the Newto
treatment. In this sense, the result that we have obtained,
the entropy change still reduces to the Newtonian express
is new and potentially interesting.

Finally, it should be mentioned that although first-ord
theories are successful in revealing the physics underlyin
large class of phenomena, they present some experim
and theoretical drawbacks. In its classical version, the lin
constitutive equations~6!–~8! are not adequate at high fre
quencies or short wavelengths, as is manifested in exp
ments on ultrasound propagation in rarefied gases and
neutron scattering in liquids@15#. In addition, they also allow
for the propagation of perturbations with arbitrarily hig
speeds, which although unsatisfactory on classical grou
is completely unacceptable from a relativistic point of vie
Furthermore, they do not have a well-posed Cauchy prob
and their equilibrium states are not stable. Several auth
have formulated relativistic second-order theories which
cumvent these deficiencies@16–19#. In a forthcoming paper
we intend to extend our considerations to this class of th
ries.
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APPENDIX

In this appendix, we obtain the nonrelativistic limits of th
magnitudes discussed in this paper. We begin with the n
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relativistic limit of g2(m1p), neglecting the pressure sinc
nmc2@p in the nonrelativistic limit. Thus,g2(m1p)→m
5g2nmc21g2«, where« is the internal energy density, i.e
the energy associated with internal degrees of freedom
the limit of small velocities,nm→r/g, wherer is the mass
density and, therefore,g2nmc2→grc25(12v2/c2)21/2rc2

.rc21(1/2)rv2. Takingg51 in the expression for the in
ternal energy density, we obtain the desired limit:g2(m
1p)→rc21(1/2)rv21re, wheree is the internal energy
per particle.

1. Nonrelativistic limit of the Taub curve

At the limit c→` in Eq. ~20!, the terms in the square
brackets can be neglected. Thus,

w22w1
25~p2p1!S w

n
1

w1

n1
D1

k

j
~w1w1!]xT, ~A1!

or

w22~p2p1!
w

n
2

k

j
w]xT5w1

21~p2p1!
w1

n1
1

k

j
w1]xT.

~A2!

Taking the square root,

wF12~p2p1!
1

wn
2

k

j w
]xTG1/2

5w1F11~p2p1!
1

w1n1
1

k

j w1
]xTG1/2

. ~A3!

Assuming that (p2p1) and]xT are small, we have

wS 12
1

2
~p2p1!

1

wn
2

1

2

k

j w
]xTD

5w1S 11
1

2
~p2p1!

1

w1n1
1

1

2

k

j w1
]xTD ~A4!

or, rearranging terms,

w2w15
1

2
~p2p1!S 1

n
1

1

n1
D1

k

j
]xT, ~A5!

which is the standard nonrelativistic expression for the Ta
curve @7#.

2. Nonrelativistic limit of the shock thickness

The nonrelativistic limit of the shock thickness is derive
from Eqs.~34! and ~35!, the expressions for nonrelativisti
ap andL, respectively. Using the expression forg2(m1p),
derived in the introduction to the Appendix, we rewrite E
~34! for ap as
2-7
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ap5
vs

2

2 H 2

r~11«/rc21p/rc2!

1

vs
4

2F ]2

]p2 S r1
«

c2D G
s

2
2

vs
2~rc21«1p!J . ~A6!

In the weak relativistic limit, we obtain

ap5aNR2h, ~A7!

with

aNR5
vs

2

2 F 2

rvs
4

2S ]2r

]p2D
s
G5vs

2ãNR, ~A8!

h5
1

rc2 H 11
~«1p!

rvs
2

1
vs

2

2
rS ]2«

]p2D
s
J . ~A9!

It is convenient to express the dispersion relationship ak
5gv/vs1 ig2cLv2/vs

3 , whereL is defined in Eq.~35!. Us-
ing (m1p)/c25r1(«1p)/c2, in the weak relativistic limit,
we have
y-

s

02300
cL5LNR2l5LNRF12
l

LNR
G , ~A10!

where

LNR5
1

2r F S z1
4

3
h D1

k

2 S 1

cv
2

1

cp
D G , ~A11!

l5
1

2r2c2 F S z1
4

3
h D ~«1p!1

kT

2

2

cv
S ]p

]TD
n
G ,

~A12!

with cv5Cv /r, the specific heat per unit mass.
Using Eqs.~A7!–~A12! in Eq. ~41! and taking the limit

c→`, we obtain the standardap expression for the thick-
ness of a nonrelativistic shock@7#,

d5
8aV2

~]2V/]p2!s~p22p1!
. ~A13!
-
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