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Thickness of a mildly relativistic collisional shock wave

J. A. S. Lima
Departamento de Bica, UFRN, C.P. 1641, 59072-970, Natal RN, Brazil

A. Kandus and R. Opher
Departmento de Astronomia, IAG-USP, 05508-90(%) Baulo SP, Brazil
(Received 8 August 2002; revised manuscript received 2 October 2002; published 21 January 2003

We consider an imperfect relativistic fluid in which a shock wave develops and we discuss its structure and
thickness, taking into account the effects of viscosity and heat conduction in the form of sound absorption. The
junction conditions and the nonlinear equations describing the evolution of the shock are derived with the
corresponding Newtonian limit discussed in detail. As in the nonrelativistic regime, the thickness is inversely
proportional to the discontinuity in the pressure. However, new terms of purely relativistic origin are also
present. In particular, for a viscous polytropic gas, it is found that a purely viscous relativistic shock is thicker
than its nonrelativistic counterpart, while for pure heat conduction the contrary is true.
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[. INTRODUCTION thereby providing a more complete picture of relativistic
shock waves.

The theory of relativistic shock waves was pioneered The main aim here is to derive the equation for then-
more than 50 years ago by Tallj, with the related junction eralized Taub curve, as well as the general expression for
conditions and adiabats further discussed by IsfaglLi- the thickness of a plane shock wave in the weak relativistic
chnerowicz[3], and Thorne[4]. These results were estab- regime, taking into account both the classical dissipative
lished for a relativistic perfect simple fluid, and since they domechanismsheat conduction, bulk, and shear viscosiynd
not involve any characteristic length scale, the shock fronthe associated sound absorption process. We shall not ad-
was described by a mathematical Surface Of Zero thicknegess the important issue of diffusion in a relativistic fluid or
(abrupt transition Many studies have been made extendingapplicatipns of our results to astrophysical processes, both of
these works to the nonlinear regime of relativistic hydrody-Which will be left for future work.
namics, as well as to ideal relativistic magnetohydrodynam- The paper is structured as follows. In the next section, we
ics (e'g.' see the book by An|||}5] and references therein review br|eﬂy the Eckart formulation for a viscous and heat-

In this Work, we are interested in the shock wave theorwonducting relativistic Simple fluid. In Sec. I”, we derive the
for an imperfect relativistic fluid. It is well known that, for junction conditions, as well as the corresponding expressions
dissipative relativistic fluids, for scales smaller than the disfor the generalized Taub-Rankine-Hugoniot curves for a uni-
sipation scaleC associated withy/c, wherey is the viscos- ~dimensional shock wave in a nonequilibrium regime. The
ity or heat conduction coefficient arwis the speed of light, 9eneral expression for the thickness of the shock and its
ordinary Navier-Stokes formulas do not apfy]. We are ~ comparison with th_e n_on_relat|V|st|c I|m|t_ is derived in
concerned with fluid regimes whose characteristic lengths$ec. IV. The Newtonian limits for the remaining expressions
are larger than the dissipation scale, and therefore the clas@te discussed in the Appendix. The metric signature is
cal theory for dissipative fluids may be used. (+, == ).

All fluids are dissipative, and a nonrelativistic shock wave
propggating in a dissipative m_e_dium cannot, in general, t_)e Il IMPERFECT RELATIVISTIC FLUIDS:
cqn5|dere_d as an abrupt transition, bgt mstead_, as a region THE ECKART APPROACH
with a finite thickness. Its thickness is determined by the
dissipative coefficient§i.e., viscosity and heat conductivjty The relativistic theory of imperfect fluids rests on two
[7,8]. In addition, shock waves propagating through a gadasic ideas. The first one is the local equilibrium hypothesis
mixture that undergoes diffusion of one component show(LEH). It implies that for nonequilibrium fluids, state func-
characteristics similar to those due to dissipatiéh This tions (such as entropydepend locally on the same set of
fact affects not only the evolution of the wave but can alsathermodynamic variables as do equilibrium fluids. In particu-
have important effects on processes that depend upon ther, the usual thermodynamic temperature and pressure con-
features of the shock wave. cepts are maintained in the relativistic nonequilibrium re-

A pioneering study of this system was made many yeargime. The second idea is the existence of a local entropy
ago by Koch[10], who showed that if the shock velocity is source strengtlientropy variation per unit volume and unit
greater than a given critical value, relativistic interaction oftime), which is always non-negative, as required by the sec-
heat transfer and momentum transfer gives rise to an increasad law of thermodynamics. Mathematically, the LEH is rep-
in the velocity at the upstream end of the shock layer. Theaesented by the Gibbs law, whereas the entropy law takes the
purpose of our work is to discuss several aspects of thiform of a balance equation. Using these hypothesis in the
system that were not considered in the work by Kochfluid equations of motion, one finds an expression for the
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entropy source strength, as well as for the constitufplee-  wherex, ¢, and# are the classical phenomenological coef-
nomenologicalrelations. The perfect fluid equilibrium equa- ficients (thermal conductivity, bulk, and shear viscogiand

tions are recovered in the limit of a vanishing entropy pro-a,=u, ,u® is the four-acceleration. The bulk viscosity
duction rate. However, an important point of difference instressr, represents an irreversible negative pressure,éand

the treatment of relativistic and nonrelativisitic fluids by dif- is the scalar of expansio(‘divergence of 4'V6|0Ciw The
ferent authors should be stressed. In contrast to the Newtopgat fluxg” is orthogonal to the 4-velocity, i.eq“u,=0,
ian regime, in the relativistic domain, there exists an ambiyynereas the shear-viscosity tendbt”, is symmetric,ﬂtrace—
guity related to the possible choices of the macroscopicfree and spacelike.

hydrodynamic four-velocity. In the so-called Eckart formula- '
tion [11,12, the four-velocity is directly related to the par-
ticle flux, while in the Landau-Lifshitzs approagf], it is

defined by the energy flux. In principle, a general treatmen

For completeness, we recall that all dissipative fluxes
g*, andII*”, as well as their space-time derivatives, are of
{irst order of smallness in the equilibrium deviations. This is
should be able to deal with any of these “gauge” Choicesalso true of the space-time derivatives of the reversible ther-

[13]. For simplicity and for the sake of a simpler comparison™0dynamic quantities, p, p, o, andT. However, the source
with previous studies, in what follows we shall adopt the©f €ntropy, i.e., the divergence of the entropy flux
Eckart formulation.

The thermodynamic state of a relativistic simple fluid is
characterized by an energy-momentum tefist, a particle 72 q°q, Hagnaﬁ
current N*, and an entropy currer§®. The fundamental S’;MM:_T_ T +T’
equations are expressed by the conservation Ipagicles ¢ K K
and energy momentunand the entropy flux equation,

(€)

is a quantity of second order of smallness. In what follows,

N# =0, T#"=0, S% =0, 1 . . -
i v e @ we write the 4-velocity asu*=y(lp/c), where y=(1
whereN* is the particle fluxT#" the stress tensor, agt is ~ —v?/c?) "2 is the Lorentz factor.
the entropy flux(a comma denotes space-time derivatives
In the Eckart frame, the particle flux and stress tensor can be
written as[12,13 Ill. TAUB CURVES AND ENTROPY DENSITY CHANGE
N#=nu*, (2 We now consider the junction conditions for a plane
shock wave in a relativistic imperfect fluid and use them to
THY= yuku’— ph#’+ rh# derive the generalized Taub curve, as well as the associated
entropy density change for weak shocks. The thickness of the
+c Y grur+qlut) + 1T+, (3)  shock wave due to the presence of viscosity and thermal
. _ conduction and taking into account the acoustic damping is,
with the entropy flux given by then, derived.
q/-‘
St=nkgou*— T (4) A. Junction conditions
The quantities), p, p, o, T, andkg are the particle concen- In an ideal fluid, the relativistic junction conditions are

tration, energy density, pressure, specific entropsr par-  defined by the continuity equation for the particle curriit
ticle), temperature, and the Boltzmann constant, respectivelnd the momentum and energy fluxes, i.e., xieand O
The hydrodynamic 4-velocity* is normalized according to components of the energy-momentum tensor:

u“u,=1. The tensor

NX]=0, T=0, [T*]=0. 10
h,U«V:g,uv_u,uuV (5) [ ] C[ ] [ ] ( )

is the usual projector onto the local rest spaceu®f The

ireversible fluxessr, g, andTT*?, are defined by Square brackets denote the difference between the values of

any of the mentioned quantities at large distances in front of
the shock and inside it. We denote side one as(fifug up-

m={0, (6) stream side. Choosing the spatial component of the four-
velocity along thex axis, it follows thatu®=y, u*=yv*/c.
g“=xkh*"(T, —Ta,), (7)  The non-null components of the projector tensor =

—(u?, h%=—yu*, andh**=— 2. For convenience, the
density particle current will be expressedjasnyv. In this
#"= 5| heeu?, +hreus,  — zah’” , ®) way, the conservation of thexO0and xx components of the
“ “ 3 energy-momentum tensor takes the form
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v o i
T o (D
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(Wy=wyy))=—1{¢ 37| ¢ 3|2 yn TN Y+ ] end Ty YN aln Ty Tan |
(12
(w_w + I |7 ] +on|+25 i” T4 SyaTo |1 o0,
2\n (p=p)=—|{+t37 el dx c¥en|ontTt 7 2|0 TN
(13
where we have introduced the specific enthdlpgr particle,
+
w=2"P (14)

n

and usede’o: u*g,u*/cy, uf’xz u*a,u*/y. It has been assumed that at large distances from the shock, the flux is uniform, i.e.,
all gradients vanish.

B. Generalized Taub curve

In order to obtain the expression for the change in the entropy across the shock, we follow a procedure similar to that
adopted by Thorné4]. First we multiply Eq.(13) by (W/n+w;/n;) and then combine the result witf=n?(u¥)?c?
=n?(u¥)c?, obtaining

W w 4 W Wy ] j ain
20 X2\ 020 X2 _ oM - P B NN R
wou*e—wiui“+(p—py) n+n1 §+3n)7<n+n1)cnz{nc2 5 + 4N
Lok i1 W W 11 S T jaxn+ 15
cVenln T | ne TP YATT Cpln Ty A 1
Multiplying Eq. (12) by (wy+w;vy,), we get
4 j v|1i én
2.2 2.2\ _ - LA IR
(Woy —wiyp)= (§+377(W7/+W171)C 3 27n+‘9x
4 = 2+j21 + ! T+ yaT T j&"n+ 16
A\ am (Wy+Way1)) o j—Wx Toln Ty an| . (16)
Finally, subtracting Eq(16) from Eq.(15) and usingy?= 1+ (u*)2, we obtain
w W 4 1j] 1 1] oin
22 1 2 t
—wi=(p— —+ —|+| i+ - — || =+
we—wi=(p—p1) n g {ram|y7n 1 2¢l v, yn|l ez yn §xn1
+ + 2j2 y( ! 1) yaT+ ! T ! jaan (17)
K| Wy+Wyy;—2=Wyy;—| ——— —| |[{ — —T———|=—+dn|;.
YT LM i o) || T T @™ emeln oy

Equation(17) together with the definition gf/c [Eq. (11)] are the generalized Taub junction conditions for a plane shock wave
in an imperfect relativistic simple fluid.

C. Weak shock wave: Entropy density change the transition layer and inside it are small. Thus differentia-

tion with respect tox or ct increases the order of smallness

We now consider the weak shock case, i.e., that for whictby 1, i.e.,dV/dx is a quantity of second order of smallness.
all discontinuities are small. This means that differencesFrom Eq.(17), we see that the term involving the viscosity
such asv—Vq, p—p4, etc., between the values in front of coefficients is of third order, while for heat conduction, the
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terms proportional towWy+w; y,) are of second order. The Therefore, as in the nonrelativistic case, the entropy density
number particle conservation law can be written as change is proportional to the heat conduction coefficient. The
nonrelativistic limit of this expression is trivial and coincides
with the known expressiof].

(18)

IV. SHOCK WAVE THICKNESS
and considering that to lowest order, the temperature gradient

satisfied 13]
ueT , d
T (_p> 0’
T ml

the enthalpy density change, given by Efj7), can be ex-
pressed as

Relativistic or nonrelativistic shocks are described by an
evolving nonlinear wave. On the other hand, waves propa-
gating in a viscous, heat-conducting medium are damped.
This fact can be phenomenologically described by an extra
imaginary term in the dispersion relationship for the wave,
i.e., by writingw=v k—icLk?, wherew is the frequencyk
is the wave numbery is the sound speed, and is the
absorption lengthsee Refs[7,14]). The equation we are
seeking must be of the forfi7]

(19

2

W

Y
—W§=(p—pl)(W/n+W1/n)+K(W'y+W1'y1)|]—8XT 5

J J

E_Usa)f_vsapf&f:d-ﬁf' (23
—j aTJrL 1- il 0 (20
yc?n? X' ync ) || wheref is a suitable function that describes the wave profile.

To obtain this equation, we shall follow a two-step proce-
Note that the term proportional 6 is proportional toc=2  dure: we first find the nonlinear terfm the next subsection
through the dependence 6fon the four-velocity and time @nd then proceed to find the quasiacoustic damping contri-
derivative[cf. Eq. (18)]. bution (in the subsequent subsection
In the dissipationless regime, the resulting expression for
the Taub adiabat is formally very similar to the Newtonian
expression, as can be seen in R¢H.and[4]. For an im-

A. Nonlinear term in shock waves

Eq. (20), three new purely relativistic terms come into play. turbation. We havécf. Ref.[12])

In the Appendix, we show that ERO) yields the Newtonian

expression previously found in the literatueg., Ref[7]). 9 P 1 9 P
To find the expression for the difference in the entropy —putov—put(utp) —250— ov+ —d6v|=0,
density values far upstream and in the transition layer, we at X ¢z X
follow a standard proceduf@] and developn/n around its (24)
upstream value in powers op p;). We write the first law
of thermodynamics adw=dp/n+Tds, wheres is the en- (ut+p)|ddv d bvop J |
tropy per particle, and then we multiply by, using the T2 s ”(7_)(5” + ?E"'&p =0. (29
development ofv/n. Keeping the zeroth order wT in the
second term and integrating, we get Expandingx andp, we have
Jd [w 2 2
w2—w?=2w,T,(s—5s )+2Vﬁ( —py)+ —(—) _ < o 2
R T PN upot 5Pt 3| Spe) 2P (26
, 1w 5
X(P=p)* 3| | 7| (P—p)°  (2D) P=Po+ Ip, (27)
3 O’)p n <1

where uo and py are the background values. For a wave

As the derivatives oT andn are already of second order, we propagating to the left, we can writdv = —(c?/vs) Sp/(u

consider Wwy+w;yq)=2 wyy; in Eg. (20). With this ap-
proximation and comparing with EG21), we obtain the en-
tropy density change,
J
1—(—'0) 0
au n

AIVS S Y
ST e ™ e

(22

+p) and usingd/ dt=vd/ Ix in the second-order terms, EQ.
(25) can be written as

1 Jdév J Sp= 5 J 5 28
E(Mo+po)7+& p—m P 9P (29

and Eq.(24) as
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c? 9

d
vi ﬁtap (o po)g&)

B 2 ct
~ Y| (ot po) v
(29

Deriving Eq. (28) with respect tox and Eq.(29) with
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S T P 11
C 2(,u+p) C é’+§7] +K(,u,+p) C_U C_p
2
Us ap
+ K g—c—((ﬂ.) }. (35

observing that Weinberg’s expression is recovered when
C,(Cp)=nc,(ncy) andc=1. The above expression is the
same as the nonrelativistic resutee Ref.[7]), with (u

respect ta and subtracting the resulting expressions, we get- p) replacing the density of the rest mass and a relativistic

190 Jd 19 N d 5
veot ax\vgat ax) P
P | PSP 30
alat 2% p& Pl (30)
where
2 c? P
=\ 2| 5| > (31
[(Mo+po) ve | ap? S]
S (32
2 (motPo)

Substituting d/dt=vd/dx and eliminating d/dx in both
terms, we get

(1& d

where we define
1 vg )
o=z —a;—«a
p 2 C2 1 2

2 c?
(nt+p) 2

r?z,u
2| op2

S (ptp)| 34

This equation has the same form as does the nonrelauwsg‘;here we have defined the
one(see Ref[7]), with (x+ p) replacing the rest mass den-

correction proportional taT appears explicitly.

C. Solving for the thickness

The complete equation of the evolution of a shock wave is
obtained by adding to Eq.33) a term proportional to the
second derivative with respect xpwhich takes into account
the dissipation. The final equation is then
2

b‘p

op—vsa, 6p 5p cL (36)

J J

ot Usox

Following the usual analysig], we assume thadp has the
following dependence:

op=6p(§),

wherev,, is the velocity of the wave. With this solution, Eq.
(36) becomes

E=XFuut, (37)

d 1 ) d
az (UW—US)5p—§vSap5p —cLﬁép =0. (39
The solution to Eq(36) is then[7]

( )(X+vyt)
p=3(P+Pa)* (Pa-puarh oLy

(39

wherep; is the pressure far upstream apslis the pressure
far downstream. In the reference frame where the shock is at
rest, we have for the pressure variation

1 1 X
_E(p1+ p2)= E(pz_pl)tam’(x), (40)

thickness” of the shock by

sity, the relativistic energy density derived twice with respect 4cL

to the pressure, and the ratio of the sound speed to the light
speed appearing explicitly. The last term in the square brack-

ets is a purely relativistic correction.

B. Dissipative term of the shock wave equation

The acoustic relativistic damping length required by the

N Usap(pz_ Py’ (41

We see that this expression is identical in form to the non-
relativistic one and proportional to the inverse of the pressure
difference. The relativistic corrections are contained in the
factorsa,, andcL.

complete nonlinear equation of a shock wave was derived in

another context by Weinberdl4]. We refer the interested
reader to this work in order to see details of the derivation.

Here, we just quote the final expression,

D. Analysis of the thickness

In this subsection, we shall estimate the effect of the rela-
tivistic corrections to see if they increase or decrease the
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shock thickness. We shall examine them in the weak relativ- A w2 1
istic limit. We then write(see the Appendijx i D (47)
1) c2 (I'+1)

CL=ANg—A= ANR[ 1- (42) We see that, in this case, the relativistic shock is thicker than
the nonrelativistic one, with the increment proportional to the
and sound speed.

b. Only heat conductionf viscosity is absent, we obtain

Anr

AN A P 7
ap—vsaNR 7]—USQNR o~
Us@NR

: (43) A v o1
—=1-2— . (49)

with Ang, N, ang, 8ndz given in the Appendix. The non- In this case, the relativistic shock is thinner than its nonrel-

reIatl\ﬂsnc expression for the ShC;Ck thickness [ig] 6 ativistic counterpart and the correction is again proportional
=4alanr(pP2—P1), Wherea=A\g/vg. We must evaluate {5 the sound speed.

A CLaNR~l+ 7 A (44) E. Entropy density change

5_ vsapa_ ANR,

=
UsA@NR With the expression for the pressure given by &§), we

can express the entropy change as a function of the pressure
discontinuity. We begin by writing explicitly the derivatives

in the expression fo¥, namely Eq.(18) and replacing the

where the semiequality holds for the weak relativistic case
Using the expressions in the Appendix, we find

2 5 time derivative with d/dt=v¢dldx. Using dT/dx
1+(8+P>+v_sp(<9_8) = (9T/ap)(dpldx+ (9T/ds) ds/dx=(dT/dp)dp/dx and
A 202 pv2 27\ gp? . fjn/dx=(an/ap)sdp/dxf((9n/&s)pds/dx:(an/ap)sdp/dx.
§=1+ — 5 in Eq. (22) and evaluatingdp/dx from Eq. (40), we obtain
pc 2 L the following expression for the entropy density change in a
o Uslgp2 f in which the shock is at rest:
p ap?/ reference system in which the shock is at rest:
LA ) PR ap) LN | N (ﬂ) _Tsto) 1_('9_p)
p [\t iiar] T Y \oel onze | Lowd,
G2 4 k(1 1
v “5”)*5(?‘? X(ﬁ_n) 2oty (Pe- b0 (49)
v ap/ | 8cL cost(x/A)

For a more direct comparison of the relativistic thickness
with the standard Newtonian result, we consider a polytropié"’
gas and evaluate the above expression in two special cas
with viscosity alone and with thermal conduction alone.

here the factor in cL does not add an extra power in the
eed of light(see the Appendjx In the nonrelativistic case
1, the entropy reaches a maximum inside the sH8¢land

is of second order in the pressure discontinuity.
Polytropic gas

In a classical polytropic gas, the energy density and en- V- CONCLUSION

thalpy density are given by=c,T=p/(I'-1) and w In this paper, we have extended previous studies of shock
=c,T=Ip/(I'=1), wherelI'’=c,/c,=const, respectively. waves done in the nonrelativistic domain to the weak rela-
Hence ¢%c/dp?)¢=0 and ©p/dT)p=c,(I'=1) and 1¢, tivistic case. Considering dissipative relativistic fluids in the
—1/cp=(F—1)2T/Fp. Replacing these formulas in the range of validity of the Navier-Stokes-Fourier thed6y, we
classical expressions for the internal enesgy Eq. (45), we  have obtained expressions for the entropy density change

get and the shock thickness that coincide in form with nonrela-
tivistic ones. In each of the factors in the equations, purely

A v: 2y relativistic corrections appear explicitly. We studied the ex-

5 1+ 2 (I2—1) pression for the shock thickness for a polytropic gas and

analyzed the effect of corrections in two important limits
4 I'p defined by the presence of viscosity or heat conduction.
1 [(gﬂr 577) meT(F-l)} When only heat conduction is taken into account, the rela-
(46)  tivistic shock is thinner than for the nonrelativistic case. This
result can be understood by observing that heat conducting
fluids can develop “thermal discontinuitie$7,8], i.e., they
allow for discontinuities in the velocity, pressure, and density
a. Only viscositylf thermal conduction is absent, we find of the fluid flow, while the temperature remains constant. On

K (T'-1)°T

+2 I'p

4
(§+§7l
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the other hand, when only viscosity is present, the shockelativistic limit of 12(x+ p), neglecting the pressure since
thickness is larger than for its nonrelativistic counterpart andnmcsp in the nonrelativistic limit. Thus,y?(u+p)— u
hence, the tendency to erase singularities is stronger in the y’nmc+ y%e, wheree is the internal energy density, i.e.,
relativistic limit than in the Newtonian one. This difference the energy associated with internal degrees of freedom. In
in the effect of the relativistic corrections can also be underthe limit of small velocitiesnm— p/vy, wherep is the mass
stood as follows. Viscosity provides the mechanism to condensity and, thereforey’nmc@— ypc?=(1—v?/c?)~?pc?

vert a portion of kinetic energy of the gas flowing into the = pc?+ (1/2)pv2. Taking y=1 in the expression for the in-
discontinuity into heat. This conversion is equivalent to theternal energy density, we obtain the desired limyf(u
transformation of the energy of ordered motion of gas mol-+ p)— pc2+ (1/2)pv?+ pe, wheree is the internal energy
ecules into the energy of random motion by the dissipation oper particle.

molecular motion. In this respect, heat conduction has an
indirect effect on the conversion process since it only partici-
pates in the transfer of the energy of random motion of the
molecules from one point to another, but it does not directly At the limit c—< in Eq. (20), the terms in the square
affect the ordered motion. The corresponding relativistic corbrackets can be neglected. Thus,

rections seem to amplify these effects.

A comment on the entropy change is in order. When the
preshock gas has a low temperature, we are in the strictly
Newtonian limit and, in this sense, the fact that the entropy
density change reduces to its Newtonian analog is equivalenpy,
to requiring that the theory has the correct low-speed limit.
This fact contains no new information. But when the pre-
shock fluid has relativistic internal speeds, the shock weak- y2_ pl)v_v — .fwaXTzwar(p— pl)ﬂ + .EwlaxT.
ness does not imply a Newtonian propagation velocity of the n ng |
shock and, hence, this case is not covered by the Newtonian (A2)
treatment. In this sense, the result that we have obtained, that
the entropy change still reduces to the Newtonian expressioifaking the square root,
is new and potentially interesting.

Finally, it should be mentioned that although first-order 1 P 12
theories are successful in revealing the physics underlying a w[l—(p— pP1)— — .—aXT}
large class of phenomena, they present some experimental wnoJw
and theoretical drawbacks. In its classical version, the linear
constitutive equation§6)—(8) are not adequate at high fre- =W,
guencies or short wavelengths, as is manifested in experi-
ments on ultrasound propagation in rarefied gases and on
neutron scattering in liquids.5]. In addition, they also allow Assuming that p—p;) andd,T are small, we have
for the propagation of perturbations with arbitrarily high
speeds, which although unsatisfactory on classical grounds, 1 K
is completely unacceptable from a relativistic point of view. W( 1=5(P=PI5 73 ij&xT>
Furthermore, they do not have a well-posed Cauchy problem
and their equilibrium states are not stable. Several authors 1 K
have formulated relativistic second-order theories which cir- :Wl( 1+5(p— pl)m t3 maxT) (A4)
cumvent these deficienci¢$6—19. In a forthcoming paper,

we intend to extend our considerations to this class of theo- .
fies or, rearranging terms,

1. Nonrelativistic limit of the Taub curve

woow,
_+_
n

W2 —wi=(p=py)| -+
1

n jf(w+ w)a T, (AL)

K

+

1+(p_p1)wlnl T,

1/2
aXT} . (A3)

1 1
—+
n

1
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The nonrelativistic limit of the shock thickness is derived
from Egs.(34) and (35), the expressions for nonrelativistic
ap andL, respectively. Using the expression fof(u+p),

In this appendix, we obtain the nonrelativistic limits of the derived in the introduction to the Appendix, we rewrite Eq.
magnitudes discussed in this paper. We begin with the non34) for «, as
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v2 2 1
ap=—= —
P2 p(1+elpc?+plpc?) ve

92 ( N 8) 2 (A6)
| 5| P - U
ap? 2|, vipc®+e+p)
In the weak relativistic limit, we obtain
ap=aNr™ 7, (A7)
with
2 2
v 2 J ~
a’NR:ES _4_(_2) =viang, (A8)
pug p/
1 (e+p) v2 (628)
p=—{ 1+ ——~+=p| —| }. (A9)
pcz[ pvi 27\ ap?/

It is convenient to express the dispersion relationshifk as
=yowlvgt+iy’cLw?/ve, wherel is defined in Eq(35). Us-
ing (u+ p)/c®=p+(e+p)/c?, in the weak relativistic limit,
we have
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CL:ANR_)\:ANR 1-— y (A].O)
ANR
where
A= N Y A1l
NR=3, {t3m 2le, 76 (A11)
1 (+4 L kT2

Py {+3m|(e+p) EEAvIA

(A12)

with ¢c,=C, /p, the specific heat per unit mass.

Using Eqgs.(A7)—(A12) in Eq. (41) and taking the limit
c—c0, we obtain the standard, expression for the thick-
ness of a nonrelativistic shodk],

8a\V?
(02VI13p?)o(p2—P1)

(A13)
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