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LISA response function
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The orbital motion of the Laser Interferometer Space Anteii8A) introduces modulations into the
observed gravitational wave signal. These modulations can be used to determine the location and orientation of
a gravitational wave source. The complete LISA response to an arbitrary gravitational wave is derived using a
coordinate free approach in the transverse-traceless gauge. The general response function reduces to that found
by Cutler for low frequency, monochromatic plane waves. Estimates of the noise in the detector are found to
be complicated by the time variation of the interferometer arm lengths.
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[. INTRODUCTION locity v/c=0.994x 10 *. Thus, the Doppler modulation due
to the guiding center’s motion becomes measurable at fre-
In this paper we derive the response of the Laser Interferquencies abové.=0.3 mHz, while the rolling cartwheel
ometer Space Antenn@ISA) to an arbitrary gravitational motion becomes important abo¥g=16 mHz. This demon-
wave. Our detector response function includes the full orbitastrates that at low frequencies only the bulk motion of the
motion and is valid at all frequencies. Previous treatmentsletector needs to be considered, while at high frequencies the
have either assumed that LISA is stationary with respect teartwheel motion also needs to be included.
the background sky1-3], or have been limited to the low Our calculations are performed using the coordinate-free
frequency limit[4,5]. approach introduced in Ref3] (see also Ref[8] for a
The LISA mission[6] calls for three spacecraft to orbit closely related approaghThis allows our results to be ap-
the Sun in an equilateral triangular formation. The center-ofplied to any variation on the current LISA design, or to any
mass for the constellation, known as the guiding center, folfollow on mission. The low frequency limit of our general
lows a circular orbit at 1 AU and has an orbital period of onedetector response function yields a simple result that can be
year. In addition to the bulk motion of the detector about theshown to agree with Cutler®]. Throughout this paper we
Sun, the triangular formation will cartwheel about the guid-use natural units whei®=c=1, however, we will report all
ing center in a clockwise manner as seen by an observer &equencies in terms of Hertz.
the Sun. The orbital motion introduces frequeribppplen,
amplitude, and phase modulation into the observed gravita- Il. DETECTOR RESPONSE
tional wave signal. These effects have been calculated in the o
low frequency limit, where the antenna pattern is well ap- The detector response to a gravitational wave source lo-
proximated by a quadrupole, and the Doppler modulation igated in then direction can be found using Barycentric co-
due to the guiding center motion. At higher frequencies thedrdinates (,x) and the transverse-traceless gauge to describe
antenna pattern becomes more complicated, and the “rolla plane gravitational wavh(g, Q) propagating in the)=
ik:lg Dtl)pdpl(ejr modulation due to the cartwheel motion has 10 _{ girection. The surfaces of constant phase are given by
e include
The divide between high and low frequencies roughly co-
incides with the divide between gravitational waves with
wavelengths shorter or longer than the arms of the detector. AL " %
To be precise, the dividing line is the transfer frequehgy h(&m=h.(e" +hx(oe @
=c/(2mL), whereL is the unperturbed distance betweenwheree™ ande* are the polarization tensors
spacecraff2]. For LISA, with its mean arm length of 5

£=t+n-x=const. A general gravitational wave can be de-
composed into two polarization states:

X 10° km, the transfer frequency has an approximate value e"=ueu-veu,
of 10 mHz. Above the transfer frequency the antenna pattern
is distinctly nonquadrapolaf7]. The frequencies at which e<=u®v+o®u. 2)

the guiding center and rolling motion impart measurable ef-

fects are easily estimated. Since both the guiding center arithe basis vectorsl, v and the source location can be
cartwheel motions have periods of one year, the Doppleexpressed in terms of the location of the souréed( ac-
modulations will enter as sidebands separated by the modweording to

lation frequencyf,,=1/yr. Equating the modulation fre-

quency to the Doppler shiftgf=(v/c)f, for motion with U=C0S6 COS¢X+ €0osh sin py —sin 6z

velocity v yields the characteristic frequendéy=cf,,/v at R R R

which Doppler modulation becomes measurable. Assuming v =SiNnpX—Ccos¢py

5x10° km armlengths the cartwheel turns with velocity

v/c=0.192<10"°, while the guiding center moves with ve- n=sin Acos¢x -+ sin 6 sin ¢y + cosz. 3
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Following the Doppler tracking calculations described in 1
Ref.[3], we find that the optical path length between space- ol (t) = >
crafti and spacecraft may be written as

lij(t) = fi]VQMVdX”dXV:|Xj(tj)—Xi(ti)|

gt ert) (4
— = . h . 2
1-Q-ri(t) s (&) 12

Here we have used

dé(N) N
a1t 13

1. - j
+ =i () er(t; :fh N)]dN. 4
pLhutern;t)] i L&) @ to make a change of variables in the integration. Defining
H(a,b) to be the antiderivative of the gravitational wave
Hereg,,=7,,+h,, and|x—y| denotes the Cartesian dis-

tance betweem andy. The unit vector _ J’a
H(a,b)=| h(é{)d 14
i (a,b) b(f)f (14
rij(t) = I (t) (5) simplifies our expression further to
points from spacecraftat the time of emissiort; , to space- S (t)= 1 M () ®r(t) HE &) 15
craft] at the time of receptiort, . Finally, the quantity(\) i)=5 1+n-1(t) (&8,

is the parametrized wave variable
) where we have used the relationstip=—n. To leading
EN)=t(N) = Q- x(N). (6)  order inh, the time of reception; is defined in terms of the

o _ - _time of emissiort; by the implicit relation
Explicitly, the time and position depend on the parametriza-

tion in the following way: 15 (t) = DLt + 15 () 1=t (16)
t(N)=t;+\ (7) The gravitational wave can be decomposed into frequency
components
X(N) =X (t;) +NTjj(t;). ®) .
h(§)=f h(w)e'“‘dw, a7

The variation in the Cartesian distance between the space-
craft can be separated into a contribution due to the Sun and
other Solar System bodies, and a small perturbation due iof
the gravitational wave. Denoting the unperturbed spacecraft

hich allows us to write

locations byx’(t) and integrating the geodesic equation for H(a,b)= fx M(eiwa_emb)dw (18)
the metricg,,, yields - 1O
[i(t) = xi(t) [ =) —xC(t)] and
~ j ~ dXJ(t) _ . ~LLT iwé
+rij(ti)-f h[t—{-x;(1)] ——dt olij () =1;;(t;) __Dlat; n):h(w)e'“ido (19
- i ~ dx;(t) where the one-arm detector tensor is given b
“iyt- [ =001 S5 a given by
~ 1. A -
9 D(‘Uitivn):E[rij(ti)@)rij(ti)]ﬂwyti,n) (20)

The gravitational wave dependent terms in the above equayng the transfer function takes the form
tion can be ignored as they are down by a factorvof

=|dx(t)/dt|=10"*% compared to the leading order gravita- . ) A
tional wave contribution described in E@). Thus we may To,t,n)=sing 5 ——[1+n-r;(t;)]
write .
L w ~A A
i () =15 () + 8l () (10) e kv [1+n-ryt]|. (D
where Here w;; = 1/;;(t;) is the angular transfer frequency for the
arm.
15 (t) =[x (t) = x ()], (11) The connection between the optical path length variations
and the detector output depends on the interferometer design.
and The original proposal was to use laser transponders at the
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end-stations to send back a phased locked signal. A more ty=t—1,(ty) —ly(ty)

recent proposal is to eliminate the transponders and turn

LISA into a virtual interferometer where the signal is put =t—115(t1) = l31(ta)

together in software. The raw ingredients for this procedure

are the phase differences between the received and transmit- ta=t=lx(ty)

ted laser light along each arm. The signal transmitted from ty=t—lg(ts). (26)

spacecraft that is received at spacecrafat timet; has its
phase compared to the local reference to give the outputiven a gravitational wave signéi(g,{}), a model of the
®j;(t;). The phase difference has contributions from the lainstrument noise, and a description of the interferometer’s
ser phase noiseC(t), optical path length variations, shot orbit, we can use Eq<15), (22) and (25) to calculate the
noisens(t) and acceleration noige?(t): detector response. Since the entire calculation is performed
in Barycentric coordinates, the tintethat appears in Egs.
N ) — (1 ot ot S [+ (23) and (25) is not the timer measured by the clock on
@ij (1)) = Ci(ti) = €t )+ 2mwol O1ij (1) + Al (t) ]+ i () spacecraft 1. They are related by the standard time dilation
_Fij(ti) -(N3(t)) —nd(t). (22) formuladrzdt\/l—vzl(t). However, since we only need to
work to leading order iy, there is no need to distinguish
L L . betweent and 7.
Heret; is given implicitly by tj=t;—1;;(tj) and v is the oy expression for the LISA response is much more com-
laser frequency. We have mclud.ed-the variations in the Opt'plicated than the previous approximate descriptions. The
cal path length caused by gravitational wava;(t;), and  time-variation of the optical path lengths is the main cause of
those caused by orbital effects|;;(t;). In what follows we  the difficulty. It is responsible for the implicit relations that
will ignore the orbital contributions to the phase shift as theyriddle the calculation. The path length variations have three
can be removed by high pass filtering. The subscripts on thmain causes—intrinsic, tidal, and pointing. The intrinsic
noise sources identify the particular component that is revariations are part and parcel of the cartwheel orbit, which
sponsible:C; is the phase noise introduced by the laser oronly keeps the distance between the spacecraft constant to
spacecrafi, nf‘j denotes the shot noise in the photodetectodeading order in the orbi_tal _eccentricity. The tidal variations
on spacecraff used to measure the phase of the signal fronre caused by the gravitational pull of other Solar System
spacecraft, andn? denotes the noise introduced by the ac-bodies, most notably the Earth and Jupiter. The pointing cor-

j . L ..
celerometers on spacecrgfthat are mounted on the optical "€ctions are a relativistic effect caused by the finite propaga-

assembly that points toward spaceciaft tion speed of the Iasgrs,_ which means that the spacecraft

The three LISA spacecraft will report six phase differenceMOve between transmission and reception. The latter effect
measurements which can then be used to construct a variefn Pe separated from the others:
of interferometer outputs. The simplest are the three Michel- -
son signals that can Ee formed by%hoosing one of the space- 1 (6) =L (IL+T3,(6) - vj(t) + O(?)] @7
craft as the vertex and using the other two as end—stationwhere\,j is the velocity of spacecraftand
The Michelson signal extracted from vertex 1 has the form

Lij () =[x;(t;) —xi(t))]. (28)

Si(1) =D o(ty) + Poa(t) = Pys(ta) —Pay(t),  (23)  Ignoring tidal distortions and working to second order in the
orbital eccentricitye, the orbits described in the Appendix

wheret, andt; are given implicitly by yield
e _ T
to=t—1,(t,) Lyo(t)=L 1+3—2 15si a+€ —coq3a)l||, (29
ty=t—lgy(ts). (24) and similar, yet slightly different, expressions foyy(t) and

Log(t). Here a(t)=2xf t+ « is the orbital phase and,,
) ) _ =1/yr is the orbital frequency. The mean arm lengdths
Unfortunately, the Michelson signals will be swamped by g|ated to the eccentricite and semimajor axisa by L
laser phase noise, so a more complicated virtual interferom—zz\/gae_ SettingL =5x 10° m yields e=0.00965<10"2.
eter signal has to be used. THevariables are a set of three 11,4 spacecraft have velocities of order 27 f a~10"%.

Michelson-like signals that cancel the laser phase ni@§e  jging these numbers we see that the lowest order intrinsic

The X signal extracted from vertex 1 has the form variation is far larger than the pointing variation. The tidal
variations turn out to be comparable to the intrinsic variation
Xi(1) =D o(ty) = Pty +t—1) + DPoyy(t) — Pyy(ty) [6] and therefore should not be ignored.
=D y3ts) + P ya(ty Htg—t) = Day(t) + Pay(ty). lIl. STATIC LIMIT
(29 As a point of reference, we can apply our general method
to a static, equal arm detector interacting with a monochro-
The timest,, t, andt; are defined implicitly: matic, plane-fronted gravitational wave propagating in the
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Q= —n direction with principle polarization axgsandq:
h(f’g):A+e2wif(t+ﬁ~x)€++AXeZWif(t+ﬁ~x)€X' (30)

whereA, andA, are complex constants and

€ =pop-qaq,
€=peq+q®p. (31
Defining the polarization angley= —arctan{-p/u-p) we
have
€ =cos2ye" —sin2ye”,
€“=sin2ye" +cos 2y e”. (32
Thus, in terms of the general decompositidhn we have
h. ()= (A, COS 2+ Ay sin 22 (t+1-X),

hy(t)= (A0S 20— A, sin 242 (t+1-X),
(33

The signal portion of theX variable defined in Eq(25)
reduces to

— Sl yy(t—3L)— 8l 1t —2L) + 8l 14t —4L)

—Olgy(t—L)+ Sl3(t—3L)). (34
In terms of the straix,(t) =Xj(t)/(27Lv,y) we have
X (t)=D(n,f):h(f,&)sir(f/f,) (35

where

n 1 . ,\ PO n n "~ o~
D(n,f)= E[(r12®r12)7'(r12~ N, f)—=(ryg®riz) 7(riz-n,f)]

(36)
and
1] [f(1+5s)  f
7(s,f):§ smc{T exr{—lﬁ(’&—s))
~[f(1—-y9)  f
+3|nc{ o1, exr{—lzf*(l—s)) . (37

Orienting the detector in the—y plane according to Fig. 2
of Ref.[1], we have

r 1,=cog 7/12)x+ sin( 7/12)y
r 13= COg 57/ 12)X + sin(5/12)y. (38)

Combining these expressions with E¢2). and (3) yields
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- ~ 1
(r12®r12):e+=§((1+cosz0)sin(2¢+ /3) — Sirf )
(F 1507 1,): €< =c0os6 sin(2¢— 7/6)

- “ 1
(r13®r13):e+ZE((1+c0526)sin(2¢— /3) — Sirf 0)

(130T 13): €<= — oSO sin( 2+ 7/6). (39

The above collection of equatiori35)—(39) fully define the
detector response in the static limit. THevariable response
X41(t) is related to the Michelson responsgt) by

s;(t)=x,(t)sin"2(f/f,)=D(n,f):h(f,&). (40)

Our expressiorn40) for s;(t) agrees with that quoted in Ref.
[3]. In the low frequency limitf<f, , the transfer function
reduces to unity/=1, and

s1()=(ATF7(0,5,4)+AF*(0,,¢))e*™ . (41)

The beam pattern factors

1. " " “
F'(0,¢,9)= z(r12®r12_r13®r13):€+

X 1. ” - - X
F (9,05,1//):E(r12®r12_r13®r13)3€
(42
take their familiar form[10]:

Fr= ?(%(l+co§0)0032¢0082¢

—€0s0 sin 2¢ sin 2¢)

V3

1 .
FX= 7(E(Hco§0)c052¢sm 2

+cosé sin 2¢ cos 21//) . (43

Notice that the overall factor of3/2 compared to a detector
with 90° arms comes out naturally in our calculation.

IV. LOW FREQUENCY LIMIT

As a further point of reference, we can apply our general
result to the low frequency limit considered in Rpf]. The
low frequency limit is defined by the conditioh<f,,
wheref,=1/(2mL) is the typical transfer frequency along
each arm. A LISA mission with.=5x10° m arms has a
transfer frequency of, =0.00954=10 2 Hz. The motion of
the LISA constellation is included to leading order in the
eccentricity, and the gravitational wave is taken to be mono-
chromatic, plane-fronted and propagating in fhe —n di-
rection:
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h(t,x):A+€+co$2Wf(t+ﬁ.x)] x=acog a)+ae(sina cosa sinB— (1+ sirfa)cosp)
+Ay€sin2mf(t+n-x)]. (44) y=asin(a)+ae(sina cosa cosB— (1+coga)sinB)
The two orthogonal polarizations have constant real ampli- Z=— J3aecoga—p), (53

tudesA™ andA, . The basic Michelson signal considered by

Cutler[4] takes the form wherea=27ft+ « is the phase of the guiding center and

B=2nm/3+\ is the relative phase of each spacecraft in the

Sl (t—2L) + 8l (t—L) constellation 6=0,1,2). The unit vectors;;(t) can be de-
si(t)= oL rived from the coordinates given in E¢p3). Putting this all
together yields
Ol15(t—2L)+ 8l 41(t—L
U )+ 6lay(t—L) 45 ) Ne o
2L D (t)=a[—365m’-03|r{2a(t)—2)\]+(3+00520)

This expression ignores the time variation of the armlengths . o _
due to higher order terms in the orbital eccentricity or per- x(cos 2p(9 sin 2 —sinf 4a(t) =2\])
turbations from other Solar System bodies. Using @d) +sin2¢(cog4a(t)—2N]—9 cosA))
we find

— 43 sin 20(sin 3a(t)— 2\ — ¢]

si(t)=F " ()A, cod27f[t+n-x,(1)]) —3sifa(t)—2\+ ¢])] (54)

+FX(t)Agsinaf[t+n-x,(1)]), 48 and

where 1
D*(1)= 14 3 cosh(9 cog2\ —2¢) —cog 4a(t)
+ 1 + ; X
Fr(t)=3(cos D7 (1) —sin2y D™(1)) —2\—2¢])—6 sinB(cog 3a(t) — 2\ — @]
+3cofa(t)—2N+¢])]. (55)

Finally, for circular Newtonian binaries, the polarization
angley can be related to the angular momentum orientation

L—(6.,¢.) by

FX(t)=%(sinZd;D*(tHcosZ/;DX(t)), (47)

and
+ " ° " e + = P = L-u
DT()=[rit)®@r(t) —rix(t)@ryat)]ie tany=—~—==—=
u-p L-v
DX ()=[r12()®T A1) —T 1) ®T (1) ]:€°.  (48) cosé cog ¢— ¢ )sin . —cosh, sin b
= — , (56
sing sin(¢— 1)
The expression for the strain in the detector can be rear-
ranged using double angle identities to read: where we have used
si(t)=A(t)cod 2mft+ ¢p(t) + dp(t)]. (49) p=nxL. (57)
The amplitude modulationA(t), frequency modulation The parameters and\ define the initial location and orien-
¢p(t) and phase modulatiogp(t) are given by tation of the LISA constellation. They are related to the

quantitiesg, anday in Cutler's[4] equationg3.3) and(3.6)

T (ATET())2 X (+1)271/2 i
A =[(ATFT ()" +(AF™(1)7] (50) according tox= ¢, and A =37/4+ ¢o— ag. Our compact
- expression(49) for the low frequency limit agrees with Cut-
¢p(t)=27fn-x, (1) ler’s [4] result, but the agreement is by no means obvious.
The equality can be established using a computer algebra
=2mfasingcoda— ¢) (51)  program or by direct numerical evaluation.

V. SPECTRAL NOISE
(52

dp(t)= —arctar(

A FX(t)

AFT()) The variation in the optical path length will be reflected in
the noise transfer functions. For example, the naiSgt)

Using the orbits described in the Appendix, the coordinategnters into theX variable as

of each spacecraft are given to leading order in the eccen-

tricity by N(t) =n3(t) —n3(ty). (58)
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Writing n3,(t) =n(t) and assuming that the arm lengths aredid in Egs.(27), (29) and (63). These can then be used to

fixed, I 35(t1) =134(t3) =L, yields the standard result give explicit expressions for the Michelson Hrvariables.
it We did not quote these expressions as they are very large and
N(f)=n(f)(1—e""x), (59 not very informative. Ultimately, any application that re-

quires the full LISA response function is likely to be numeri-
cal. It is a simple matter to write a computer program that
f returns the LISA response function using E@5), (22) and
Sn(f)=4 sinz(f—) S.(f). (600  (15. If one is only interested in sources with frequencies
* below ~5 mHz, the low frequency approximati¢a9) will
I,suffice, but for accurate astrophysical parameter estimation
above 5 mHz, the full LISA response function has to be used.

and

Here S, (f) is the noise spectral density in the photodetecto
and we have used the assumption

(n(f)n*(f"))=8(f—1")S,(f), (61) ACKNOWLEDGMENTS
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1 _ :
N(H =n(f)— Ef a[tu(H)]e27dt, 62 APPENDIX: KEPLERIAN SPACECRAFT ORBITS

For a constellation of spacecraft in individual Keplerian
Becausd(t) varies with a one year period, the transfer func-0rbits with an inclination of = J3e the coordinates of each
tion will develop sidebands 4t nf,,, wheren takes integer ~SPacecraft are given by the expressions
values. Working to zeroth order inand lowest order ie we

have x=r(cog \/§e)cos,8 cosy—sinBsinvy)
ti(t)=t—2L5(1). (63) y=r(cos(\/§e)sinﬁ cosy+cosBsiny)
Using the expressiofR9) for L,,(t) and the expansion z=—r1 sin(\/3e)cosy, (A1)

ix sin(2af 1) - it Kt whereB=2n=/3+\ (n=0,1,2) is the relative orbital phase
€ m =k;_m Je(x) e~ me, (64 of each spacecraft in the constellationjs the ecliptic azi-
muthal angle, and is the standard Keplerian radius
where J, is a Bessel function of the first kind of ordér

A2
allows us to write a(l—e’)

= 1l+ecosy’ (A2)
N(f)=n(f)— > D n[fH(j+3K)f] Herea is the semimajor axis of the guiding center and has an
j==e k== approximate value of 1 AU.
15 f To get the above coordinates as a function of time we first
><ez”’f*ez”m(j*3")’f*e‘”(j3")’6JJ-(—f> note that the azimuthal angle is related to the eccentric
161, anomaly,, by
XJ ef ) (65) [1+e [y
W —=1. Y
16f Zl=~/"—tan =
* tar( 5 1= etar( k (A3)

The dependence on the Bessel functions tells us that the side- . . .
bands only become significant for frequencies approachingnd the eccentric anomaly is related to the orbital phase
f, /e~1 Hz. Below the transfer frequendy ~ 10 mHz it is a(t) =2mf i+« through

safe to ignore the time variation of the arm lengths in calcu-

. ) . — B=y—esiny. A4

lations of the noise transfer functions. a=p=y v (Ad)
For small eccentricities we can expand E@s3) and(A4) in

VI. DISCUSSION a power series i to arrive at
We have shown that our general expression for the LISA 5

response function reproduces the standard static and low fre- v=(a—B)+2esin(a—B) +§e23in(a— B)

qguency limits. However, we have said little about how the

general result should be used. Given a specific model for the xXcofa—B)+---. (A5)

orbit, such as the simple Keplerian model described in the
Appendix, it is possible to solve the implicit relations for the Substituting this series into EGA1) and keeping terms only
detector orientation, arm lengths and emission times, as wep to ordere gives us
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x=acog a)+ae(sina cosa sinB— (1+sirfa)cosp) These are the desired coordinates of each spacecraft as a
function of time. Notice that by keeping only linear terms in

y=asin(a)+ae(sina cosa cosp— (1+cosa)sinB) the eccentricity we are neglecting the variation in the optical
path length. The path length will change due to the Keplerian

z=—/3aecog a— B). (AB) orbits, but these effects enter @(e?) and above.
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