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LISA response function
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The orbital motion of the Laser Interferometer Space Antenna~LISA! introduces modulations into the
observed gravitational wave signal. These modulations can be used to determine the location and orientation of
a gravitational wave source. The complete LISA response to an arbitrary gravitational wave is derived using a
coordinate free approach in the transverse-traceless gauge. The general response function reduces to that found
by Cutler for low frequency, monochromatic plane waves. Estimates of the noise in the detector are found to
be complicated by the time variation of the interferometer arm lengths.
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I. INTRODUCTION

In this paper we derive the response of the Laser Inter
ometer Space Antenna~LISA! to an arbitrary gravitationa
wave. Our detector response function includes the full orb
motion and is valid at all frequencies. Previous treatme
have either assumed that LISA is stationary with respec
the background sky@1–3#, or have been limited to the low
frequency limit@4,5#.

The LISA mission@6# calls for three spacecraft to orb
the Sun in an equilateral triangular formation. The center-
mass for the constellation, known as the guiding center,
lows a circular orbit at 1 AU and has an orbital period of o
year. In addition to the bulk motion of the detector about
Sun, the triangular formation will cartwheel about the gu
ing center in a clockwise manner as seen by an observe
the Sun. The orbital motion introduces frequency~Doppler!,
amplitude, and phase modulation into the observed grav
tional wave signal. These effects have been calculated in
low frequency limit, where the antenna pattern is well a
proximated by a quadrupole, and the Doppler modulation
due to the guiding center motion. At higher frequencies
antenna pattern becomes more complicated, and the ‘‘
ing’’ Doppler modulation due to the cartwheel motion has
be included.

The divide between high and low frequencies roughly
incides with the divide between gravitational waves w
wavelengths shorter or longer than the arms of the dete
To be precise, the dividing line is the transfer frequencyf *
[c/(2pL), where L is the unperturbed distance betwe
spacecraft@2#. For LISA, with its mean arm length of 5
3106 km, the transfer frequency has an approximate va
of 10 mHz. Above the transfer frequency the antenna pat
is distinctly nonquadrapolar@7#. The frequencies at which
the guiding center and rolling motion impart measurable
fects are easily estimated. Since both the guiding center
cartwheel motions have periods of one year, the Dopp
modulations will enter as sidebands separated by the m
lation frequency f m51/yr. Equating the modulation fre
quency to the Doppler shift,d f .(v/c) f , for motion with
velocity v yields the characteristic frequencyf v5c fm /v at
which Doppler modulation becomes measurable. Assum
53106 km armlengths the cartwheel turns with veloci
v/c50.19231025, while the guiding center moves with ve
0556-2821/2003/67~2!/022001~7!/$20.00 67 0220
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locity v/c50.99431024. Thus, the Doppler modulation du
to the guiding center’s motion becomes measurable at
quencies abovef gc50.3 mHz, while the rolling cartwhee
motion becomes important abovef r516 mHz. This demon-
strates that at low frequencies only the bulk motion of t
detector needs to be considered, while at high frequencies
cartwheel motion also needs to be included.

Our calculations are performed using the coordinate-f
approach introduced in Ref.@3# ~see also Ref.@8# for a
closely related approach!. This allows our results to be ap
plied to any variation on the current LISA design, or to a
follow on mission. The low frequency limit of our genera
detector response function yields a simple result that can
shown to agree with Cutler’s@4#. Throughout this paper we
use natural units whereG5c51, however, we will report all
frequencies in terms of Hertz.

II. DETECTOR RESPONSE

The detector response to a gravitational wave source
cated in then̂ direction can be found using Barycentric c
ordinates (t,x) and the transverse-traceless gauge to desc
a plane gravitational waveh(q,V̂) propagating in theV̂5

2n̂ direction. The surfaces of constant phase are given
j5t1n̂•x5const. A general gravitational wave can be d
composed into two polarization states:

h~j,n̂!5h1~j!e11h3~j!e3 ~1!

wheree1 ande3 are the polarization tensors

e15û^ û2 v̂ ^ v̂,

e35û^ v̂1 v̂ ^ û. ~2!

The basis vectorsû, v̂ and the source locationn̂ can be
expressed in terms of the location of the source (u,f) ac-
cording to

û5cosu cosf x̂1cosu sinf ŷ2sinu ẑ

v̂5sinf x̂2cosf ŷ

n̂5sinucosf x̂1sinu sinf ŷ1cosu ẑ. ~3!
©2003 The American Physical Society01-1
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Following the Doppler tracking calculations described
Ref. @3#, we find that the optical path length between spa
craft i and spacecraftj may be written as

l i j ~ t i !5E
i

j
Agmndxmdxn5uxj~ t j !2xi~ t i !u

1
1

2
@ r̂ i j ~ t i ! ^ r̂ i j ~ t i !#:E

i

j

h@j~l!#dl. ~4!

Here gmn5hmn1hmn and ux2yu denotes the Cartesian dis
tance betweenx andy. The unit vector

r̂ i j ~ t i !5
xj~ t j !2xi~ t i !

l i j ~ t i !
~5!

points from spacecrafti at the time of emission,t i , to space-
craft j at the time of reception,t j . Finally, the quantityj(l)
is the parametrized wave variable

j~l!5t~l!2V̂•x~l!. ~6!

Explicitly, the time and position depend on the parametri
tion in the following way:

t~l!5t i1l ~7!

x~l!5xi~ t i !1l r̂ i j ~ t i !. ~8!

The variation in the Cartesian distance between the sp
craft can be separated into a contribution due to the Sun
other Solar System bodies, and a small perturbation du
the gravitational wave. Denoting the unperturbed spacec
locations byx0(t) and integrating the geodesic equation f
the metricgmn yields

uxj~ t j !2xi~ t i !u5uxj
0~ t j !2xi

0~ t i !u

1 r̂ i j ~ t i !•E j

h@ t2V̂•xj~ t !#•
dxj~ t !

dt
dt

2 r̂ i j ~ t i !•E i

h@ t2V̂•xi~ t !#•
dxi~ t !

dt
dt.

~9!

The gravitational wave dependent terms in the above eq
tion can be ignored as they are down by a factor ofv
5udx(t)/dtu.1024 compared to the leading order gravit
tional wave contribution described in Eq.~4!. Thus we may
write

l i j ~ t i !5 l i j
0 ~ t !1d l i j ~ t i ! ~10!

where

l i j
0 ~ t i !5uxj

0~ t j !2xi
0~ t i !u, ~11!

and
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d l i j ~ t i !5
1

2

r̂ i j ~ t i ! ^ r̂ i j ~ t i !

12V̂• r̂ i j ~ t i !
:E

j i

j j
h~j!dj. ~12!

Here we have used

dj~l!

dl
512V̂• r̂ i j ~ t i ! ~13!

to make a change of variables in the integration. Defin
H(a,b) to be the antiderivative of the gravitational wave

H~a,b![E
b

a

h~j!dj ~14!

simplifies our expression further to

d l i j ~ t i !5
1

2

r̂ i j ~ t i ! ^ r̂ i j ~ t i !

11n̂• r̂ i j ~ t i !
:H~j j ,j i !, ~15!

where we have used the relationshipV̂52n̂. To leading
order inh, the time of receptiont j is defined in terms of the
time of emissiont i by the implicit relation

l i j
0 ~ t i !5uxj

0@ t i1 l i j
0 ~ t i !#2xi

0~ t i !u. ~16!

The gravitational wave can be decomposed into freque
components

h~j!5E
2`

`

h̃~v!eivjdv, ~17!

which allows us to write

H~a,b!5E
2`

` h̃~v!

iv
~eiva2eivb!dv ~18!

and

d l i j ~ t i !5 l i j ~ t i !E
2`

`

D~v,t i ,n̂!:h̃~v!eivj idv ~19!

where the one-arm detector tensor is given by

D~v,t i ,n̂!5
1

2
@ r̂ i j ~ t i ! ^ r̂ i j ~ t i !#T~v,t i ,n̂! ~20!

and the transfer function takes the form

T~v,t i ,n̂!5sincF v

2v i j
@11n̂• r̂ i j ~ t i !#G

3expF i
v

2v i j
@11n̂• r̂ i j ~ t i !#G . ~21!

Here v i j 51/l i j (t i) is the angular transfer frequency for th
arm.

The connection between the optical path length variati
and the detector output depends on the interferometer de
The original proposal was to use laser transponders at
1-2
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end-stations to send back a phased locked signal. A m
recent proposal is to eliminate the transponders and
LISA into a virtual interferometer where the signal is p
together in software. The raw ingredients for this proced
are the phase differences between the received and tran
ted laser light along each arm. The signal transmitted fr
spacecrafti that is received at spacecraftj at time t j has its
phase compared to the local reference to give the ou
F i j (t j ). The phase difference has contributions from the
ser phase noise,C(t), optical path length variations, sho
noisens(t) and acceleration noisena(t):

F i j ~ t j !5Ci~ t i !2Cj~ t j !12pn0@d l i j ~ t i !1D l i j ~ t i !#1ni j
s ~ t j !

2 r̂ i j ~ t i !•~ni j
a ~ t j !2nj i

a ~ t i !!. ~22!

Here t i is given implicitly by t i5t j2 l i j (t i) and n0 is the
laser frequency. We have included the variations in the o
cal path length caused by gravitational waves,d l i j (t i), and
those caused by orbital effects,D l i j (t i). In what follows we
will ignore the orbital contributions to the phase shift as th
can be removed by high pass filtering. The subscripts on
noise sources identify the particular component that is
sponsible:Ci is the phase noise introduced by the laser
spacecrafti, ni j

s denotes the shot noise in the photodetec
on spacecraftj used to measure the phase of the signal fr
spacecrafti, andni j

a denotes the noise introduced by the a
celerometers on spacecraftj that are mounted on the optica
assembly that points toward spacecrafti.

The three LISA spacecraft will report six phase differen
measurements which can then be used to construct a va
of interferometer outputs. The simplest are the three Mich
son signals that can be formed by choosing one of the sp
craft as the vertex and using the other two as end-stati
The Michelson signal extracted from vertex 1 has the for

S1~ t !5F12~ t2!1F21~ t !2F13~ t3!2F31~ t !, ~23!

wheret2 and t3 are given implicitly by

t25t2 l 21~ t2!

t35t2 l 31~ t3!. ~24!

Unfortunately, the Michelson signals will be swamped
laser phase noise, so a more complicated virtual interfer
eter signal has to be used. TheX variables are a set of thre
Michelson-like signals that cancel the laser phase noise@9#.
The X signal extracted from vertex 1 has the form

X1~ t !5F12~ t2!2F12~ t11t22t !1F21~ t !2F21~ t1!

2F13~ t3!1F13~ t11t32t !2F31~ t !1F31~ t1!.

~25!

The timest1 , t2 and t3 are defined implicitly:
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t15t2 l 12~ t1!2 l 21~ t2!

5t2 l 13~ t1!2 l 31~ t3!

t25t2 l 21~ t2!

t35t2 l 31~ t3!. ~26!

Given a gravitational wave signalh(q,V̂), a model of the
instrument noise, and a description of the interferomete
orbit, we can use Eqs.~15!, ~22! and ~25! to calculate the
detector response. Since the entire calculation is perform
in Barycentric coordinates, the timet that appears in Eqs
~23! and ~25! is not the timet measured by the clock on
spacecraft 1. They are related by the standard time dila
formula dt5dtA12v1

2(t). However, since we only need t
work to leading order inv, there is no need to distinguis
betweent andt.

Our expression for the LISA response is much more co
plicated than the previous approximate descriptions. T
time-variation of the optical path lengths is the main cause
the difficulty. It is responsible for the implicit relations tha
riddle the calculation. The path length variations have th
main causes—intrinsic, tidal, and pointing. The intrins
variations are part and parcel of the cartwheel orbit, wh
only keeps the distance between the spacecraft consta
leading order in the orbital eccentricity. The tidal variatio
are caused by the gravitational pull of other Solar Syst
bodies, most notably the Earth and Jupiter. The pointing c
rections are a relativistic effect caused by the finite propa
tion speed of the lasers, which means that the space
move between transmission and reception. The latter ef
can be separated from the others:

l i j ~ t i !5Li j ~ t i !@11 r̂ i j ~ t i !•vj~ t i !1O~v2!# ~27!

wherevj is the velocity of spacecraftj and

Li j ~ t i !5uxj~ t i !2xi~ t i !u. ~28!

Ignoring tidal distortions and working to second order in t
orbital eccentricitye, the orbits described in the Appendi
yield

L12~ t !5LS 11
e

32F15 sinS a1
p

6 D2cos~3a!G D , ~29!

and similar, yet slightly different, expressions forL13(t) and
L23(t). Here a(t)52p f mt1k is the orbital phase andf m
51/yr is the orbital frequency. The mean arm lengthL is
related to the eccentricitye and semimajor axisa by L
52A3ae. SettingL553109 m yields e50.00965'1022.
The spacecraft have velocities of orderv'2p f ma'1024.
Using these numbers we see that the lowest order intri
variation is far larger than the pointing variation. The tid
variations turn out to be comparable to the intrinsic variat
@6# and therefore should not be ignored.

III. STATIC LIMIT

As a point of reference, we can apply our general meth
to a static, equal arm detector interacting with a monoch
matic, plane-fronted gravitational wave propagating in t
1-3
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V̂52n̂ direction with principle polarization axesp andq:

h~ f ,j!5A1e2p i f (t1n̂•x)e11A3e2p i f (t1n̂•x)e3, ~30!

whereA1 andA3 are complex constants and

e15 p̂^ p̂2q̂^ q̂,

e35 p̂^ q̂1q̂^ p̂. ~31!

Defining the polarization anglec52arctan(v̂•p/û•p) we
have

e15cos 2c e12sin 2c e3,

e35sin 2c e11cos 2c e3. ~32!

Thus, in terms of the general decomposition~1! we have

h1~ t !5~A1cos 2c1A3sin 2c!e2p i f (t1n̂•x),

h3~ t !5~A3cos 2c2A1sin 2c!e2p i f (t1n̂•x).
~33!

The signal portion of theX variable defined in Eq.~25!
reduces to

X1
s~ t !52pn0~d l 12~ t22L !2d l 12~ t24L !1d l 21~ t2L !

2d l 21~ t23L !2d l 13~ t22L !1d l 13~ t24L !

2d l 31~ t2L !1d l 31~ t23L !!. ~34!

In terms of the strainx1(t)5X1
s(t)/(2pLn0) we have

x1~ t !5D~ n̂, f !:h~ f ,j!sin2~ f / f * ! ~35!

where

D~ n̂, f !5
1

2
@~ r̂ 12^ r̂ 12!T~ r̂ 12•n̂, f !2~ r̂ 13^ r̂ 13!T~ r̂ 13•n̂, f !#

~36!

and

T~s, f !5
1

2 FsincS f ~11s!

2 f *
DexpS 2 i

f

2 f *
~32s! D

1sincS f ~12s!

2 f *
DexpS 2 i

f

2 f *
~12s! D G . ~37!

Orienting the detector in thex2y plane according to Fig. 2
of Ref. @1#, we have

r̂ 125cos~p/12!x̂1sin~p/12!ŷ

r̂ 135cos~5p/12!x̂1sin~5p/12!ŷ. ~38!

Combining these expressions with Eqs.~2! and ~3! yields
02200
~ r̂ 12^ r̂ 12!:e
15

1

2
~~11cos2u!sin~2f1p/3!2sin2u!

~ r̂ 12^ r̂ 12!:e
35cosu sin~2f2p/6!

~ r̂ 13^ r̂ 13!:e
15

1

2
„~11cos2u!sin~2f2p/3!2sin2u…

~ r̂ 13^ r̂ 13!:e
352cosu sin~2f1p/6!. ~39!

The above collection of equations~35!–~39! fully define the
detector response in the static limit. TheX variable response
x1(t) is related to the Michelson responses1(t) by

s1~ t !5x1~ t !sin22~ f / f * !5D~ n̂, f !:h~ f ,j!. ~40!

Our expression~40! for s1(t) agrees with that quoted in Re
@3#. In the low frequency limit,f ! f * , the transfer function
reduces to unity,T51, and

s1~ t !5~A1F1~u,f,c!1A3F3~u,f,c!!e2p i f t . ~41!

The beam pattern factors

F1~u,f,c!5
1

2
~ r̂ 12^ r̂ 122 r̂ 13^ r̂ 13!:e

1

F3~u,f,c!5
1

2
~ r̂ 12^ r̂ 122 r̂ 13^ r̂ 13!:e

3

~42!

take their familiar form@10#:

F15
A3

2 S 1

2
~11cos2u!cos 2f cos 2c

2cosu sin 2f sin 2c D
F35

A3

2 S 1

2
~11cos2u!cos 2f sin 2c

1cosu sin 2f cos 2c D . ~43!

Notice that the overall factor ofA3/2 compared to a detecto
with 90° arms comes out naturally in our calculation.

IV. LOW FREQUENCY LIMIT

As a further point of reference, we can apply our gene
result to the low frequency limit considered in Ref.@4#. The
low frequency limit is defined by the conditionf ! f * ,
where f * [1/(2pL) is the typical transfer frequency alon
each arm. A LISA mission withL553109 m arms has a
transfer frequency off * 50.00954'1022 Hz. The motion of
the LISA constellation is included to leading order in th
eccentricity, and the gravitational wave is taken to be mo
chromatic, plane-fronted and propagating in theV̂52n̂ di-
rection:
1-4
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h~ t,x!5A1e1cos@2p f ~ t1n̂•x!#

1A3e3sin@2p f ~ t1n̂•x!#. ~44!

The two orthogonal polarizations have constant real am
tudesA1 andA3 . The basic Michelson signal considered
Cutler @4# takes the form

s1~ t !5
d l 12~ t22L !1d l 21~ t2L !

2L

2
d l 13~ t22L !1d l 31~ t2L !

2L
. ~45!

This expression ignores the time variation of the armleng
due to higher order terms in the orbital eccentricity or p
turbations from other Solar System bodies. Using Eq.~15!
we find

s1~ t !5F1~ t !A1cos„2p f @ t1n̂•x1~ t !#…

1F3~ t !A3sin„2p f @ t1n̂•x1~ t !#…, ~46!

where

F1~ t !5
1

2
~cos 2c D1~ t !2sin 2c D3~ t !!

F3~ t !5
1

2
~sin 2c D1~ t !1cos 2c D3~ t !!, ~47!

and

D1~ t ![@ r̂ 12~ t ! ^ r̂ 12~ t !2 r̂ 13~ t ! ^ r̂ 13~ t !#:e1

D3~ t ![@ r̂ 12~ t ! ^ r̂ 12~ t !2 r̂ 13~ t ! ^ r̂ 13~ t !#:e3. ~48!

The expression for the strain in the detector can be r
ranged using double angle identities to read:

s1~ t !5A~ t !cos@2p f t1fD~ t !1fP~ t !#. ~49!

The amplitude modulationA(t), frequency modulation
fD(t) and phase modulationfP(t) are given by

A~ t !5@„A1F1~ t !…21„A3F3~ t !…2#1/2 ~50!

fD~ t !52p f n̂•x1~ t !

52p f a sinu cos~a2f! ~51!

fP~ t !52arctanS A3F3~ t !

A1F1~ t !
D . ~52!

Using the orbits described in the Appendix, the coordina
of each spacecraft are given to leading order in the ecc
tricity by
02200
i-

s
-

r-

s
n-

x5a cos~a!1ae~sina cosa sinb2~11sin2a!cosb!

y5a sin~a!1ae~sina cosa cosb2~11cos2a!sinb!

z52A3aecos~a2b!, ~53!

wherea52p f mt1k is the phase of the guiding center an
b52np/31l is the relative phase of each spacecraft in
constellation (n50,1,2). The unit vectorsr̂ i j (t) can be de-
rived from the coordinates given in Eq.~53!. Putting this all
together yields

D1~ t !5
A3

64
@236 sin2u sin@2a~ t !22l#1~31cos 2u!

3~cos 2f„9 sin 2l2sin@4a~ t !22l#…

1sin 2f„cos@4a~ t !22l#29 cos 2l…!

24A3 sin 2u~sin@3a~ t !22l2f#

23 sin@a~ t !22l1f#!# ~54!

and

D3~ t !5
1

16
@A3 cosu~9 cos~2l22f!2cos@4a~ t !

22l22f#!26 sinu~cos@3a~ t !22l2f#

13 cos@a~ t !22l1f#!#. ~55!

Finally, for circular Newtonian binaries, the polarizatio
anglec can be related to the angular momentum orientat
L̂→(uL ,fL) by

tanc52
v̂•p

û•p
5

L̂•û

L̂• v̂

5
cosu cos~f2fL!sinuL2cosuLsinu

sinuLsin~f2fL!
, ~56!

where we have used

p5n̂3L̂. ~57!

The parametersk andl define the initial location and orien
tation of the LISA constellation. They are related to t
quantitiesf̄0 anda0 in Cutler’s @4# equations~3.3! and~3.6!
according tok5f̄0 and l53p/41f̄02a0. Our compact
expression~49! for the low frequency limit agrees with Cut
ler’s @4# result, but the agreement is by no means obvio
The equality can be established using a computer alge
program or by direct numerical evaluation.

V. SPECTRAL NOISE

The variation in the optical path length will be reflected
the noise transfer functions. For example, the noisen21

s (t)
enters into theX variable as

N~ t !5n21
s ~ t !2n21

s ~ t1!. ~58!
1-5



re

to

.
th

c

sid
in

cu

S
f

he
th
th
e
w

to

and
-

ri-
at

es

tion
ed.

is
gh

n

e

an

rst
tric

ase

NEIL J. CORNISH AND LOUIS J. RUBBO PHYSICAL REVIEW D67, 022001 ~2003!
Writing n21
s (t)5n(t) and assuming that the arm lengths a

fixed, l 31(t1)5 l 31(t3)5L, yields the standard result

N~ f !5n~ f !~12e2i f / f
* !, ~59!

and

SN~ f !54 sin2S f

f *
DSn~ f !. ~60!

HereSn( f ) is the noise spectral density in the photodetec
and we have used the assumption

^n~ f !n* ~ f 8!&5d~ f 2 f 8!Sn~ f !, ~61!

where the angular brackets denote an ensemble average
situation is much more complicated when the arm leng
vary since

N~ f !5n~ f !2
1

2pE n@ t1~ t !#e2p i f tdt. ~62!

Becausel (t) varies with a one year period, the transfer fun
tion will develop sidebands atf 6n fm wheren takes integer
values. Working to zeroth order inv and lowest order ine we
have

t1~ t !.t22L12~ t !. ~63!

Using the expression~29! for L12(t) and the expansion

eix sin(2p f mt)5 (
k52`

`

Jk~x!e2p i f mkt, ~64!

where Jk is a Bessel function of the first kind of orderk,
allows us to write

N~ f !5n~ f !2 (
j 52`

`

(
k52`

`

n@ f 1~ j 13k! f m#

3e2i f / f
* e2i f m( j 13k)/ f

* eip( j 23k)/6Jj S 15e f

16f *
D

3JkS e f

16f *
D . ~65!

The dependence on the Bessel functions tells us that the
bands only become significant for frequencies approach
f * /e'1 Hz. Below the transfer frequencyf * ;10 mHz it is
safe to ignore the time variation of the arm lengths in cal
lations of the noise transfer functions.

VI. DISCUSSION

We have shown that our general expression for the LI
response function reproduces the standard static and low
quency limits. However, we have said little about how t
general result should be used. Given a specific model for
orbit, such as the simple Keplerian model described in
Appendix, it is possible to solve the implicit relations for th
detector orientation, arm lengths and emission times, as
02200
r

The
s

-

e-
g

-

A
re-

e
e

e

did in Eqs.~27!, ~29! and ~63!. These can then be used
give explicit expressions for the Michelson orX variables.
We did not quote these expressions as they are very large
not very informative. Ultimately, any application that re
quires the full LISA response function is likely to be nume
cal. It is a simple matter to write a computer program th
returns the LISA response function using Eqs.~25!, ~22! and
~15!. If one is only interested in sources with frequenci
below ;5 mHz, the low frequency approximation~49! will
suffice, but for accurate astrophysical parameter estima
above 5 mHz, the full LISA response function has to be us
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APPENDIX: KEPLERIAN SPACECRAFT ORBITS

For a constellation of spacecraft in individual Kepleria
orbits with an inclination ofi 5A3e the coordinates of each
spacecraft are given by the expressions

x5r ~cos~A3e!cosb cosg2sinb sing!

y5r ~cos~A3e!sinb cosg1cosb sing!

z52r sin~A3e!cosg, ~A1!

whereb52np/31l (n50,1,2) is the relative orbital phas
of each spacecraft in the constellation,g is the ecliptic azi-
muthal angle, andr is the standard Keplerian radius

r 5
a~12e2!

11e cosg
. ~A2!

Herea is the semimajor axis of the guiding center and has
approximate value of 1 AU.

To get the above coordinates as a function of time we fi
note that the azimuthal angle is related to the eccen
anomaly,c, by

tanS g

2D5A11e

12e
tanS c

2 D , ~A3!

and the eccentric anomaly is related to the orbital ph
a(t)52p f mt1k through

a2b5c2e sinc. ~A4!

For small eccentricities we can expand Eqs.~A3! and~A4! in
a power series ine to arrive at

g5~a2b!12e sin~a2b!1
5

2
e2sin~a2b!

3cos~a2b!1•••. ~A5!

Substituting this series into Eq.~A1! and keeping terms only
up to ordere gives us
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x5a cos~a!1ae~sina cosa sinb2~11sin2a!cosb!

y5a sin~a!1ae~sina cosa cosb2~11cos2a!sinb!

z52A3aecos~a2b!. ~A6!
D

D

02200
These are the desired coordinates of each spacecraft
function of time. Notice that by keeping only linear terms
the eccentricity we are neglecting the variation in the opti
path length. The path length will change due to the Kepler
orbits, but these effects enter atO(e2) and above.
-
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