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Evaluating matrix elements relevant to some Lorentz violating operators
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Carlson, Carone, and Lebed have derived the Feynman rules for a consistent formulation of noncommutative
QCD. The results they obtained were used to constrain the noncommutativity parameter in Lorentz violating
noncommutative field theories. However, their constraint depended upon an estimate of the matrix element of
the quark level operatogp(—m) in a nucleon. In this paper we calculate the matrix elemenpefif), using
a variety of confinement potential models. Our results are within an order of magnitude agreement with the
estimate made by Carlsat al. The constraints placed on the noncommutativity parameter were very strong,
and are still quite severe even if weakened by an order of magnitude.
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I. INTRODUCTION AA2<102° 3

In the recent literature, a number of ways to modify thewhere 6 is a typical scale for elements of the mat#x”.
structure of space-time which can have experimental conse- However, the effective Lorentz violating operator was ob-
quences have been considered. In one of the most popultained from a one loop correction to the quark propagator,
scenarios, space-time is considered to become noncommui@nd the operator proportional te, 6" also contained a

tive at short distance scales, with space-time coordinates s&hctor (p—m). With B constant, the evaluation of- B fac-
isfying a commutation relation of the following forfd—7]:  tors out from the evaluation ofy—m), and our discussion is
focused on the latter.
[X",X"]=16"", (1) In [4] anad hocestimate was used for the matrix element
of the operator p—m), wherem is the current quark mass,

wherex* is a position four-vector promoted to an operator,in getting the limit in Eq.(3). The matrix elemen{p—m)
and #*” is a set ofc numbers antisymmetric in their indices. Was estimated to be aboMy/3~300 MeV, whereM\, is
The most striking effects of space-time noncommutativity ofth€ nucleon mass. However, it has been argued that the ex-
the form (1) are the Lorentz violating effects appearing in peqtatlon value of §—m) could be much less than this naive
field theories, which is a consequencedSf ande'kgV de-  estimatef9]. _ _
fining preferred directions in a given Lorentz frame. The aim of this paper is to calpulate the matnx element of

Juro et al.[3] have shown how to construct non-Abelian the operator g—m), using a variety of confinement poten-
gauge theories in noncommutative spaces from a consistené‘f’i" models, so as to evaluate the quality of the estimate made
relation. Using the same approach Carlsaral. [4] have N [4]. o ) o
derived the Feynman rules for a consistent formulation of 1he sample of potentials included four different confining
noncommutative QCD and they have computed the mogpotentials, twq of them purely Lorentz scalar an.d two of
dangerous, Lorentz violating operator that is generated’€m equal mixtures of scalar and vector. The first scalar
through radiative corrections. They have found that at theotential is a baglike potential
lowest order in perturbation theory, the formulation of non- V. if =R
commutative QCD that they have presented leads to Lorentz V(r)=[ 0 /_ ' 4
violating operators such 4§] 0 otherwise.
We also consider the one dimensional case for the nicety of

“ry, “ry, “UD) qq P
0"'90,,0, 6"'qo,, D0, and 6%'D,qo,D". the analytical result,

2
L . Vo if z=-al2 or z=al2,
In [4] the phenomenological implications of the first of V(z)= . (5)
these operators were studied in detail. Noting that contribu- 0 otherwise.

tions from the space-space part@®f” makeo ,,60*" act like

S , N K e The Vy—x limit gives, of course, the MIT bag model
a o-B interaction withB directly related to8", a limit was

" 10,11] if one does not consider the bag energy. We will
placed on the scale pf no'ncomr_nutatlvny. One u;ed the resulfonsider models of vectot scalar confinement next, using

of tests of Lorentz invariance in clock comparison experi-iy gne case a linear spatial potential and in the other case a
ments[8], which suggest that external- B like interactions  harmonic one:

are bounded at the 10 Hz level or fewx 10~ 3! GeV. Carl-

sonet al. [4] concluded that 1
4] V(r)= 5(1+ Y°)(Vo+Ar) (6)
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FIG. 2. One dimensional scalar square-well confinement.

FIG. 1. 3D scalar central confinement.

L this type of model, then one has to allow quarks to penetrate
_ O\ ~.2 the walls of the potential well with some finite probability.
v(r)= 2(1+ y)Crs. Y Therefore the height of the potentiddg, should be finite. A
) ] ) reasonable choice fafy andR can be obtained by fitting the
~ Finally we shall consider a purely scalar harmonic potenmode| parameters to obtain reasonable values, for example,
tial: for the mean square of the charge radius of the nuc{eén
V(r)=Cr? ) and for the axial vector coupling constayy. We get a good
' fit by choosingR=1.12 fm andV,=3 GeV for which we

In the following sections it will be assumed that the cur-find (r?)=0.64 fnf and g,=1.15, as compared to experi-
rent quark mass of 5-10 MeV can be neglected compared t@ental values of 0.76 ffiand 1.27, respectively12]. Solv-

the quark eigenenergy of several hundred MeV. ing Eq.(13) for this choice of parameters for the ground state
energy of a quark we fineE=348 MeV.
IIl. SCALAR SQUARE-WELL POTENTIAL Using the solutions given in Eg§ll) and(12), we find
For any given potentiaV, from the Dirac equation we (p—m)y=21 MeV. (14
have that _ . .
Exploration of the integrals appearing {W(r)) shows
(p—m) =V, (9 that({p—m)—0 as 1V, whenVy—oo.
It may be of some pedagogic value to give the equivalent
and therefore result for the 1D caséFig. 2). The wave function forz|
(b—m)=(V). (10 <al2 is just the free solution of the Dirac equation, and the

solutions for|z|>a/2 are obtained from the free solution by

In the three dimensional case, for the central poted{al)  the substitutiorE—E—V,. We obtain
presented in Eg4), the solutions of the Dirac equation for

the ground state, witm=0, in two regions (l)<R, and o T
(1) r>R (Fig. 1) have the following form (p—m)=2V, a,zll“ﬂdz_ 1raW2_ g2 (19
#(r)=N Jo(E) (s) (11) One can note immediately that when the height of the poten-
! Nio-Tj(EN) ’ tial Vo— o then(p—m)—0, unlessa— 0. For the choice of

parameters made above, we obtain
hiY(ikor)
0 0
(p—m)=14 MeV, (16)

gu(r)=Ny| . /VO_Eh(l) i X, (12
o r Vo+E ! (ikor) where for the ground state energy E we have used a value of
260 MeV, from the energy eigenvalue equation.

whereky= \/VOZ—EZ, jo,j1 are spherical Bessel functions,
andh{" ,h{" are spherical Hankel functions of the first kind. lIl. SCALAR + VECTOR LINEAR CONFINEMENT

The ground state energy can be found from the energy eigen- ) ] )
value equation Let us consider now the confinement problem of a spin

1/2 particle in a confining potential of the form
+kgR

(Vo+E)R]’ (13

J1(ER)=]o(ER) 1

V(r)=3(1+ YO)(Vo+Ar). (17)

while for Vy—o the eigenvalue equation i§,(ER)

=jo(ER), as is familiar from the MIT bag mod¢lL0,11]. This linear potential model for quark confinement was used
However, we know there are long range forces betweein [13] to calculate several properties of low lying baryons.

baryons. If one wants to accommodate long range forces itn [13] the authors assumed nonzero quark masses. The
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straightforward modification of the wave functions for the s 1,
case of vanishing current quark masses yields the following N=V8/(3ro\Vm), riE§=3, C= 5 Eor
solution for the lowest energy eigenstate of the Dirac equa-
tion for the potential17): where E, is the ground state eigenenergy angis a state
P dependent scale parameter.
_ (r) (s) Now we can calculate the matrix element of interest,
w(r)=N X, (18
o-p/ED(r)
-1
— (b-m)= [ w1+ )Cryds
PO=N gz a7 rAKra). 19 ) cls g,
13 . =f f(r)ZCrzdr=(—) =—. (26)
whereK = (NE) . The energy eigenvalue and the normal- 0 3 3

ization constani are given in Eq(20):
So, we can see that, in the case of scalavector confine-

\ay ) 3E ment of equal strengthgp—m) is determined only by the
E:VO_T’ N :4E—Vo' (20) spin independent part of the Dirac spinor and is equal to
one-third of the ground state energy. 6] it was also

In [13] an analytic expression was obtained for the mearshown that for three massless quarks in their lowssbrbit,
square charge radii of the baryons and 14] Ferreira ob- with energy eigenvalueg, for each quark, the center-of-
tained an analytic expression for the magnetic moment of thenass energy obtained with the potenti@B) is just Eo;
proton. We modified those expressions for the zero currerftence the nucleon mass in this modeMg = 2E, (instead
quark mass case and used them together with the energ§y My=3Eg, as in nonrelativistic and nonrecoil models
eigenvalue equatio(R0) to fit our model parameteré, and  Therefore,Eq=540 MeV and
. We chooseVy= —626 MeV and\=0.98 GeV/fm to fit
(r?)y exactly and give the value qi,, closest to the data (p—m)=180 MeV. (27
obtaining

V. PURE SCALAR HARMONIC POTENTIAL
E=420 MeV, (r%=0.76 fnf, and pu,=2.44 n.m.

(21 Tegen[15] considered scalat vector harmonic confine-
ment in calculating the weak neutron decay constaiig,
For the above mentioned values of the model parametergnd found too small a value fay /gy, compared to experi-
we find that ment. In[16] and [17], a pure scalar harmonic potential
V(r)=Cr? was studied numerically, and yielded more satis-

(p—m)=27 MeV. (220 factory results foig, and for the rms charge radius. We find
that
IV. SCALAR + VECTOR HARMONIC CONFINEMENT
Consider now a potential of the form <|b—m>=Cf0 r[f(r)?—g(r)?]dr, (28
V(r)= %(1+ y°)Cr2. (23)  wheref(r) andg(r) are defined as in Eq24).

We have fitted the numerical solution presented graphi-
cally in [16] with C=830 MeV/fn? to calculate our integral
of interest(28). The fitted wave functions are presented in
Fig. 3, and, as a benchmark for evaluation of the quality of
the fit, we have calculatet?) andg, and obtained values
of 0.61 fm and 1.26, respectively, as compared(td)

The solution of the Dirac equation with this potential is
given in[15]. The authors of 15] write the lowest energy
state Dirac spinor as

w(r)= L( |1i(r)/r X, (24) =0.64 fm andg,=1.26 found in[16].
JVam\ a-rg(r)ir Thus we obtained, without any additional tuning, the fol-
lowing result:
where x® is a Pauli spinor, with the normalization
Jytyd®r=[5(f2+g?dr=1. Then the upper and lower (p—m)=160 MeV. (29)
components of the solution are
; VI. SUMMARY
276.2
f(r)=N<a) e "o, In this paper we have calculated, for the ground state of

the quark in a nucleon, the matrix element of the operator

N ()2 (p—m), using a variety of confinement potential models,

g(r)y=— —(—) e*rZ/ZFS, (25) under the assumption that the constituent quarks obey the
N Dirac equation. The motivation has been to solidify the esti-
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We note that, in the case of scalar central confinement as
0.3 considered in Sec. I{p—m) vanishes as ¥, when V,
—oo, but it is different from zero in general. We note also
that the value of p—m) obtained for the scala# vector
linear confinement model is close to that obtained for a sca-
lar 3D potential well.

We have also shown that, in the case of scatavector
harmonic confinement of equal strengtip,—m) is deter-
Of0% 04 08 08 1 12 16 18 mined only by the spin independent part of the Dirac spinor
A r (fm)+++++ and is equal to one-third of the ground state energy.

—04] +, o For pure scalar harmonic confinement of the fovitr)
* + =Cr?, (p—m) was obtained using a fit to the numerical

r
++#H+w+++ solution of the Dirac equation presented graphically1i6],

and appears to have a value pretty close to that obtained for

Legend 0 the scalar+ vector harmonic confinement model.

RRR: ) Results obtained in this paper are within an order of mag-
nitude agreement with the estimate made by Carksoal.
[4]. The results obtained i¥] were used there to constrain
the noncommutativity parameter in Lorentz violating non-

entz violating noncomutative QCD, where some leading or-and are still quite severe even if weakened by an order of
der Lorentz violating effects are proportional to factors ofmagnitude. These results may be taken as a motivation to

o
[}
h

arbitrary units

FIG. 3. Fit to the numerical solution of the Dirac equation for a
pure scalar harmonic confinement.

(p—m). look for space-time noncomutativity in Lorentz-covariant
Interestingly, we found the following results: ways[18-21].
(b—m)
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