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Evaluating matrix elements relevant to some Lorentz violating operators
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Carlson, Carone, and Lebed have derived the Feynman rules for a consistent formulation of noncommutative
QCD. The results they obtained were used to constrain the noncommutativity parameter in Lorentz violating
noncommutative field theories. However, their constraint depended upon an estimate of the matrix element of
the quark level operator (p”2m) in a nucleon. In this paper we calculate the matrix element of (p”2m), using
a variety of confinement potential models. Our results are within an order of magnitude agreement with the
estimate made by Carlsonet al. The constraints placed on the noncommutativity parameter were very strong,
and are still quite severe even if weakened by an order of magnitude.
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I. INTRODUCTION

In the recent literature, a number of ways to modify t
structure of space-time which can have experimental co
quences have been considered. In one of the most pop
scenarios, space-time is considered to become noncomm
tive at short distance scales, with space-time coordinates
isfying a commutation relation of the following form@1–7#:

@ x̂m,x̂n#5 iumn, ~1!

wherex̂m is a position four-vector promoted to an operat
andumn is a set ofc numbers antisymmetric in their indice
The most striking effects of space-time noncommutativity
the form ~1! are the Lorentz violating effects appearing
field theories, which is a consequence ofu0i and« i jku ı de-
fining preferred directions in a given Lorentz frame.

Jurc̆o et al. @3# have shown how to construct non-Abelia
gauge theories in noncommutative spaces from a consist
relation. Using the same approach Carlsonet al. @4# have
derived the Feynman rules for a consistent formulation
noncommutative QCD and they have computed the m
dangerous, Lorentz violating operator that is genera
through radiative corrections. They have found that at
lowest order in perturbation theory, the formulation of no
commutative QCD that they have presented leads to Lor
violating operators such as@6#

umnq̄smnq, umnq̄smnD” q, and umnDmq̄snrDrq.
~2!

In @4# the phenomenological implications of the first
these operators were studied in detail. Noting that contri
tions from the space-space part ofumn makesmnumn act like
a sW •BW interaction withBW directly related tou i j , a limit was
placed on the scale of noncommutativity. One used the re
of tests of Lorentz invariance in clock comparison expe
ments@8#, which suggest that externalsW •BW like interactions
are bounded at the 1027 Hz level or few310231 GeV. Carl-
sonet al. @4# concluded that
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uL2<10229, ~3!

whereu is a typical scale for elements of the matrixumn.
However, the effective Lorentz violating operator was o

tained from a one loop correction to the quark propaga
and the operator proportional tosmnumn also contained a
factor (p”2m). With BW constant, the evaluation ofsW •BW fac-
tors out from the evaluation of (p”2m), and our discussion is
focused on the latter.

In @4# anad hocestimate was used for the matrix eleme
of the operator (p”2m), wherem is the current quark mass
in getting the limit in Eq.~3!. The matrix element̂p”2m&
was estimated to be aboutMN /3'300 MeV, whereMN is
the nucleon mass. However, it has been argued that the
pectation value of (p”2m) could be much less than this naiv
estimate@9#.

The aim of this paper is to calculate the matrix element
the operator (p”2m), using a variety of confinement poten
tial models, so as to evaluate the quality of the estimate m
in @4#.

The sample of potentials included four different confini
potentials, two of them purely Lorentz scalar and two
them equal mixtures of scalar and vector. The first sca
potential is a baglike potential

V~r !5H V0 if r>R,

0 otherwise.
~4!

We also consider the one dimensional case for the nicet
the analytical result,

V~z!5H V0 if z<2a/2 or z>a/2,

0 otherwise.
~5!

The V0→` limit gives, of course, the MIT bag mode
@10,11# if one does not consider the bag energy. We w
consider models of vector1 scalar confinement next, usin
in one case a linear spatial potential and in the other ca
harmonic one:

V~r !5
1

2
~11g0!~V01lr ! ~6!

or
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V~r !5
1

2
~11g0!Cr2. ~7!

Finally we shall consider a purely scalar harmonic pot
tial:

V~r !5Cr2. ~8!

In the following sections it will be assumed that the cu
rent quark mass of 5–10 MeV can be neglected compare
the quark eigenenergy of several hundred MeV.

II. SCALAR SQUARE-WELL POTENTIAL

For any given potentialV, from the Dirac equation we
have that

~p”2m!c5Vc, ~9!

and therefore

^p”2m&5^V&. ~10!

In the three dimensional case, for the central potentialV(r )
presented in Eq.~4!, the solutions of the Dirac equation fo
the ground state, withm50, in two regions (I)r,R, and
(II) r.R ~Fig. 1! have the following form

c I~r !5NIS j 0~Er !

i s• r̂ j 1~Er !
D x (s), ~11!

c II ~r !5NIIS h0
(1)~ ik0r !

2s• r̂AV02E

V01E
h1

(1)~ ik0r !D x (s), ~12!

wherek05AV0
22E2, j 0 , j 1 are spherical Bessel function

andh0
(1) ,h1

(1) are spherical Hankel functions of the first kin
The ground state energy can be found from the energy ei
value equation

j 1~ER!5 j 0~ER!F 11k0R

~V01E!RG , ~13!

while for V0→` the eigenvalue equation isj 1(ER)
5 j 0(ER), as is familiar from the MIT bag model@10,11#.

However, we know there are long range forces betw
baryons. If one wants to accommodate long range force

FIG. 1. 3D scalar central confinement.
01770
-

to

n-

n
in

this type of model, then one has to allow quarks to penet
the walls of the potential well with some finite probabilit
Therefore the height of the potential,V0, should be finite. A
reasonable choice forV0 andR can be obtained by fitting the
model parameters to obtain reasonable values, for exam
for the mean square of the charge radius of the nucleon^r 2&
and for the axial vector coupling constantgA . We get a good
fit by choosingR51.12 fm andV053 GeV for which we
find ^r 2&50.64 fm2 and gA51.15, as compared to exper
mental values of 0.76 fm2 and 1.27, respectively@12#. Solv-
ing Eq.~13! for this choice of parameters for the ground sta
energy of a quark we findE5348 MeV.

Using the solutions given in Eqs.~11! and ~12!, we find

^p”2m&521 MeV. ~14!

Exploration of the integrals appearing in^V(r )& shows
that ^p”2m&→0 as 1/V0, whenV0→`.

It may be of some pedagogic value to give the equival
result for the 1D case~Fig. 2!. The wave function foruzu
,a/2 is just the free solution of the Dirac equation, and t
solutions foruzu.a/2 are obtained from the free solution b
the substitutionE→E2V0. We obtain

^p”2m&52V0E
a/2

`

c̄cdz5
E

11aAV0
22E2

. ~15!

One can note immediately that when the height of the pot
tial V0→` then^p”2m&→0, unlessa→0. For the choice of
parameters made above, we obtain

^p”2m&514 MeV, ~16!

where for the ground state energy E we have used a valu
260 MeV, from the energy eigenvalue equation.

III. SCALAR ¿ VECTOR LINEAR CONFINEMENT

Let us consider now the confinement problem of a s
1/2 particle in a confining potential of the form

V~r !5
1

2
~11g0!~V01lr !. ~17!

This linear potential model for quark confinement was us
in @13# to calculate several properties of low lying baryon
In @13# the authors assumed nonzero quark masses.

FIG. 2. One dimensional scalar square-well confinement.
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straightforward modification of the wave functions for th
case of vanishing current quark masses yields the follow
solution for the lowest energy eigenstate of the Dirac eq
tion for the potential~17!:

C~r !5NS F~r !

s•p/EF~r !
D x (s), ~18!

F~r !5A K

4p Ai 82~a1!

1

r
Ai ~Kr 1a1!, ~19!

whereK5(lE)1/3. The energy eigenvalueE and the normal-
ization constantN are given in Eq.~20!:

E5V02
la1

K
, N25

3E

4E2V0
. ~20!

In @13# an analytic expression was obtained for the me
square charge radii of the baryons and in@14# Ferreira ob-
tained an analytic expression for the magnetic moment of
proton. We modified those expressions for the zero cur
quark mass case and used them together with the en
eigenvalue equation~20! to fit our model parametersV0 and
l. We chooseV052626 MeV andl50.98 GeV/fm to fit
^r 2& exactly and give the value ofmp , closest to the data
obtaining

E5420 MeV, ^r 2&50.76 fm2, and mp52.44 n.m.
~21!

For the above mentioned values of the model parame
we find that

^p”2m&527 MeV. ~22!

IV. SCALAR ¿ VECTOR HARMONIC CONFINEMENT

Consider now a potential of the form

V~r !5
1

2
~11g0!Cr2. ~23!

The solution of the Dirac equation with this potential
given in @15#. The authors of@15# write the lowest energy
state Dirac spinor as

c~r !5
1

A4p
S i f ~r !/r

s• r̂ g~r !/r
D x (s), ~24!

where x (s) is a Pauli spinor, with the normalizatio
*c†cd3r 5*0

`( f 21g2)dr51. Then the upper and lowe
components of the solution are

f ~r !5NS r

r 0
De2r 2/2r 0

2
,

g~r !52
N

A3
S r

r 0
D 2

e2r 2/2r 0
2
, ~25!
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N5A8/~3r 0Ap!, r 0
2E0

253, C5
1

9
E0

3 ,

whereE0 is the ground state eigenenergy andr 0 is a state
dependent scale parameter.

Now we can calculate the matrix element of interest,

^p”2m&5E c̄
1

2
~11g0!Cr2cd3r

5E
0

`

f ~r !2Cr2dr5S C

3 D 1/3

5
E0

3
. ~26!

So, we can see that, in the case of scalar1 vector confine-
ment of equal strengths,^p”2m& is determined only by the
spin independent part of the Dirac spinor and is equal
one-third of the ground state energy. In@16# it was also
shown that for three massless quarks in their lowest 1s orbit,
with energy eigenvaluesE0 for each quark, the center-of
mass energy obtained with the potential~23! is just E0;
hence the nucleon mass in this model isMN52E0 ~instead
of MN53E0, as in nonrelativistic and nonrecoil models!.
Therefore,E05540 MeV and

^p”2m&5180 MeV. ~27!

V. PURE SCALAR HARMONIC POTENTIAL

Tegen@15# considered scalar1 vector harmonic confine-
ment in calculating the weak neutron decay constantgA /gV
and found too small a value forgA /gV , compared to experi-
ment. In @16# and @17#, a pure scalar harmonic potentia
V(r )5Cr2 was studied numerically, and yielded more sat
factory results forgA and for the rms charge radius. We fin
that

^p”2m&5CE
0

`

r 2@ f ~r !22g~r !2#dr, ~28!

where f (r ) andg(r ) are defined as in Eq.~24!.
We have fitted the numerical solution presented grap

cally in @16# with C5830 MeV/fm2 to calculate our integra
of interest~28!. The fitted wave functions are presented
Fig. 3, and, as a benchmark for evaluation of the quality
the fit, we have calculated̂r 2& andgA and obtained values
of 0.61 fm and 1.26, respectively, as compared to^r 2&
50.64 fm andgA51.26 found in@16#.

Thus we obtained, without any additional tuning, the fo
lowing result:

^p”2m&5160 MeV. ~29!

VI. SUMMARY

In this paper we have calculated, for the ground state
the quark in a nucleon, the matrix element of the opera
(p”2m), using a variety of confinement potential mode
under the assumption that the constituent quarks obey
Dirac equation. The motivation has been to solidify the e
4-3
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mates of the noncommutativity parameter of canonical~Lor-
entz violating! noncomutative QCD, where some leading o
der Lorentz violating effects are proportional to factors
^p”2m&.

Interestingly, we found the following results:

^p”2m&

55
21 MeV for 3 Dscalar central potential,

27 MeV for scalar1vector linear potential,

180 MeV for scalar1vector harmonic potential,

160 MeV for pure scalar harmonic potential.

~30!

FIG. 3. Fit to the numerical solution of the Dirac equation for
pure scalar harmonic confinement.
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We note that, in the case of scalar central confinemen
considered in Sec. II,̂p”2m& vanishes as 1/V0 when V0

→`, but it is different from zero in general. We note als
that the value of̂ p”2m& obtained for the scalar1 vector
linear confinement model is close to that obtained for a s
lar 3D potential well.

We have also shown that, in the case of scalar1 vector
harmonic confinement of equal strengths,^p”2m& is deter-
mined only by the spin independent part of the Dirac spin
and is equal to one-third of the ground state energy.

For pure scalar harmonic confinement of the formV(r )
5Cr2, ^p”2m& was obtained using a fit to the numeric
solution of the Dirac equation presented graphically in@16#,
and appears to have a value pretty close to that obtained
the scalar1 vector harmonic confinement model.

Results obtained in this paper are within an order of m
nitude agreement with the estimate made by Carlsonet al.
@4#. The results obtained in@4# were used there to constrai
the noncommutativity parameter in Lorentz violating no
commutative field theories. The constraints were very stro
and are still quite severe even if weakened by an orde
magnitude. These results may be taken as a motivatio
look for space-time noncomutativity in Lorentz-covaria
ways @18–21#.
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