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On n-n̄ oscillations of ultracold neutrons
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The ultracold neutron~UCN! storage experiment for searching forn-n̄ oscillations is discussed. The figure
of merit of the UCN experiment with respect to a beam experiment is considered. The effect of neutron

collisions with the walls on the production rate of then̄ component is analyzed.
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I. INTRODUCTION

This work continues the discussion@1–10# of the merits
and disadvantages of ultracold neutrons~UCN!s for the
search forn-n̄ oscillations. The question here is, how d
collisions with the walls affect the transition ofn to n̄? If the
walls do not affect this transition the probability ofn̄ gen-
eration by a single neutron in the storage vessel is q
large, proportional tots

2 , where ts is the storage time. If

every collision with the wall eliminates ann̄ component,
then antineutrons can be produced only during the free fl
time t5t f between two consecutive collisions, and the pro
ability of n̄ production in the storage vessel is proportional
t f
2(ts /t f)5t f ts , where the number of free flightsts /t f , or the

number of collisions with the walls, is introduced. Howev
collisions with the walls can even hamper the transition on

to n̄. In that case the production ofn̄ by a single neutron in
the storage vessel becomes even lower. We need to s
how collisions with the walls affectn̄ generation to find the
most favorable conditions for a possible real experiment

II. FIGURE OF MERIT

To have a quantitative criterion for the utility of UCNs fo
the searching forn-n̄ oscillations we need to define the
figure of merit compared to neutrons of higher energies.
do that, suppose we have a steady state source with the M
wellian flux density

dF~v !5F0

v3dvdV

2pvT
4

exp~2v2/vT
2!, ~1!

whereF0 is the total neutron flux density,v is the neutron
velocity, vT is the thermal velocityA2mkBT, T is the tem-
perature,m is the neutron mass,kB is the Boltzmann con-
stant, anddvdV is the interval of velocities and solid angle
acceptable in an experiment.

A. Production of n̄ in a beam experiment

In a beam experiment the number of events is prop
tional to number of neutronsdNbn(v) used in the experi-
ment, which is equal to the product of the beam density~1!,
the beam cross sectionSb , and the total time of measure
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ment tm : dNbn(v)5dF(v)Sbtm . To find the total number
of producedn̄ we must multiplydNbn(v) by the probability
p15(t f /t)2 of n̄ creation for every one neutron, wheret f is
the flight time in the experimental device. The experimen
device in a beam experiment is characterized by the areSt

of the target, where then̄ are registered, and by the distan
L of the target from the source. The parametersSt and L
define the element of solid angleV5St /L2 in Eq. ~1!, and
the neutron free flight timet f5L/v in the probabilityp1.
Thusp15(L/vt)2.

Since in a beam experiment all velocities are accepta
we integrate overv, and find that the total number ofn̄
produced in the beam is

Nbn̄5tmF0Sb

St

L2E0

` vdv

2pvT
4

e2v2/vT
2 L2

t2
5tm

F0

4pvT
2t2

SbSt .

~2!

Now we need to compare this numberNbn̄ to the number
Nucn̄ of n̄ produced in a UCN storage experiment.

B. Production of n̄ in a UCN experiment

In a UCN storage experiment we have a bottle withNn
neutrons in it, stored for timets , which cannot be larger than
the neutron decay timet0. The spectrum of the neutrons i
the bottle is represented by the spectral densityr(v). In the
case when we can neglect gravity, the spectral densit
related toNn via

Nn5VE
v2,vc

2
r~v !d3v, ~3!

wherevc is the limiting velocity of the bottle walls, andV is
its volume. In the case when the height of the bottle is hig
than zc5vc

2/2g, whereg is the free fall acceleration,Nn is
represented by the integral

Nn5SE
0

zc
dzE r~Av212gz!d3v, ~4!

where S is the area of the bottle bottom, andr(v) is the
neutron spectrum near the bottom@11#.
©2003 The American Physical Society04-1
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The bottle is filled with neutrons by a source through
window, the dimensions of which can be characterized by
same areaSb as the cross section of the beam. If the fillin
process is infinitely long and losses of neutrons in the bo
are neglected, then the spectral densityr(v) in the bottle is
determined from the requirement that the number of ingo
neutrons from the incident flux is equal to the number
outgoing ones:

dF~v !cosu5v cosur~v !d3v, ~5!

whereu is the angle of the neutron velocity with respect
the entrance window of the bottle. Accounting for losses a
for the finiteness of the filling time, if the latter is sufficient
long, will cause some corrections to these formulas, wh
are not essential for our estimations here.

Substitution of Eq.~1! into Eq. ~5! gives

r~v !5~F0/2pvT
4!exp~2v2/vT

2!. ~6!

Usually vc
2!vT

2 , sor(v) can be approximated as

r~v !5r~v !5~F0/2pvT
4!Q~0,v2,vc

2!, ~7!

whereQ(x) is a step function which is equal to unity whe
the inequality in its argument is satisfied, and zero in
opposite case. With this density the numberNn in the bottle
is

Nn55
2

3
VF0

vc
3

vT
4

for Eq.~3!,

4

15
SzcF0

vc
3

vT
4

5
2

15
S

vc
2

g
F0

vc
3

vT
4

for Eq.~4!.

~8!

It is seen that according to Eq.~8! the larger is the volumeV
or areaS, the larger is the numberNn in the bottle. However,
the largerV or S, the longer is the filling timet in , which
should not be less than the filling time constantt in , andt in
should not be larger than the neutron decay timet0. The
filling time constant can be estimated as the emptying t
constanttout of the bottle with windowSb . This constant is
defined as the ratio ofNn to the number of neutrons outgoin
through the windowSb per unit time. This number is

Ṅn5SbE
0,u,p/2

v cosur~v !d3v

5Sb

F0

2pvT
4

pvc
4

4

5F0Sb

vc
4

8vT
4

.

Thus
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tout5
Nn

Ṅn

5H 16V

3Sbvc
for Eq.~3!

16Svc

15gSb
for Eq. ~4!

J 't0 . ~9!

It follows that V<(3/16)vct0Sb andS<(15/16)Sbgt0 /vc .
It is seen that forSb'0.01 m2 and vc55 m/s the most

appropriate bottle is a room of heightzc and floor area
'16 m2, so in the following we consider only the case~4!.

The number ofn̄ created in a UCN storage experiment

Nn̄~t0!5^p1&Nn~t0!, ~10!

where^p1& is the probability ofn̄ creation by a single neu
tron. If collisions with the walls do not affect production o
n̄, the probability will be (ts /t)25(t0 /t)2. The number of
storage cycles performed during the measurement timetm
cannot be larger thantm/2ts5tm/2t0. Thus the total number
of n̄ that can be registered with 100% efficiency can be
timated as

Nn̄~ tm!5
tmt0

t2

2

15
F0S

vc
2

2g

vc
3

vT
4

,

and the figure of merit of the UCN compared to the be
experiment becomes

Fm5
Nn̄~ tm ,UCN!

Nn̄~ tm ,beam!
5

8p

15

vc
2

2g
~vct0!

S

SbSt

vc
2

vT
2

. ~11!

For S'St510 m2, Sb50.01 m2, vc55 m/s, and vT
52200 m/s we obtainFm59.

However, if every collision with the wall eliminates som
n̄, then ^p1&5t0t f /t2, where t f is the average flight time
between two consecutive collisions with the walls. In th
caseFm contains an additional small factort f /t0 which is of
the order of 1023 for t f51 s.

To be more precise it is necessary to calculate the ave
flight time. To do that we calculate the average number
collisions per unit time per neutron with the walls in a ta
cylinder of radiusr in the presence of gravity. This number
defined as the ratioṄw /Nn of the number of neutrons strik
ing the walls per unit time to the total number of particles
the bottle. The nominator can be represented as the
Ṅw5Ṅ11Ṅ2, whereṄ1 is the number of neutrons strikin
the bottom per unit time, andṄ2 is that for the sidewalls. The
first part is

Ṅ15F0S
vc

4

8vT
4

5pr 2F0

vc
4

8vT
4

.

The second part is
4-2
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Ṅ252pr E
0

zc
dzE

0

vc
v2dvr~Av212gz!

3E
0,u,p/2

v cosudV

5
prF0

vT
4 E

0

zc
dzE

2gz

vc
2

~v222gz!
dv2

2

5
prF0

4vT
4 E

0

zc
dz~vc

222gz!2

52pr
vc

2

2g

F0

24

vc
4

vT
4

.

Thus Ṅw /Nn5(15/48)(3g/vc1vc /r ), which means thatt f
'0.4 s. This shows that the additional small factor is ev
smaller:t f /t05431024.

However, we should take into account that it is not
simple selection of neutrons withv,vc from the density~7!
that is used for UCN accumulation in a bottle. In practi
one uses a convertor with temperatureTc!T, which en-
hances Eq.~7! by the gain factorG(T,Tc) depending onT
andTc . Thus the total number of UCNs~8! and the figure of
merit ~11! must be multiplied by thisG factor, which in the
case of solid deuterium is of the order of 103, and in the case
of superfluid 4He is estimated to be even higher.

Moreover, then̄ component can survive during sever
collisions Me f f with the walls @10#, which additionally in-
creases the outcome ofn̄.

With these two factors the figure of merit of the UC
experiment becomes

Fm5GMe f f

t f

t0
S 8p

15

vc
2

2g
~vct0!

S

SbSt

vc
2

vT
2D

5
48

15

rzcGMe f f

~3r /21zc!~vct0! S 8p

15

vc
2

2g
~vct0!

S

SbSt

vc
2

vT
2D ,

~12!

and for the same parameters as above it becomes of the
4Me f f , which demonstrates that the numberMe f f is very
important.

III. EFFECT OF COLLISION WITH THE WALL ON n̄
PRODUCTION

The effect of collisions with the walls was first discuss
in @4#, where they were said to cause dephasing of then and
n̄ components. However, it was not shown why dephas
spoils the rate ofn̄ production.

In @5# it was argued that the relativen-n̄ phase is com-
pletely randomized at every collision, which means that
probability of n̄ production is proportional tot f ts . However,
in @6# it was claimed that then-n̄ phase shift per wall colli-
01600
n
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sion is a well behaved parameter, and the loss of sensiti
of UCN experiments is due only to the high absorption r
for the n̄ component at the collisions.

Here we study once again the role of collisions with t
walls. We can certify that the role is usually destructive
though with some small probability then̄ component is even
created at every collision. Below we first estimate the pro
ability of creation, and then discuss how dephasing a
losses at reflections affect then̄ produced during free flight
between two consecutive collisions.

The neutron inside the storage vessel will be conside
as a free particle without accounting for discreteness of
levels, as was suggested in@5#, because then̄ component in
the vessel is not stationary. Its storage time is of the orde
1 s, which means that every discrete level has a width co
parable to or larger than the distance between the levels
was argued in@6#.

A. Estimation of n̄ component created by a neutron at a
single collision with the wall

Our approach to this problem is the same as the one u
in @12,13# for the description of reflection of polarized neu
trons from a magnetized mirror, when the magnetization
noncollinear to the external magnetic field. The neutron w
two componentsn andn̄ is a two-level system, and it can b
described by a spinor@7,8# c, the upper component of which
is n, and the lower component isn̄. Thus c5mcn1nc n̄ ,
wherem,n are complex numbers andcn,n̄ are eigenspinors
of the Pauli matrix sz : szcn,n̄56cn,n̄ , normalized to
unity.

In general, the wave function of the particle, which w
call the ‘‘Neutron,’’ with upper case letter N, is described b
a spinorC(r,t), which satisfies the Schro¨dinger equation

i
d

dt
C5@2D1U1Hzsz1Hxsx#C, ~13!

whereU is some interaction energy, the same for both co
ponents,Hz is some energy of opposite sign for the tw
components,Hx is the field, that causes then-n̄ transition,
sx,z are Pauli matrices, and for simplicity we use units
which \2/2m51. The energyU contains, in particular, an
imaginary part2 iU 9, responsible for the free Neutronb
decay.

After Neutron creation its energy is fixed, so we mu
look for a stationary solution of Eq.~13!:

C~r,t !5exp~2 ivt !C~r!, C~r!5exp~ i k̂r!c0 , ~14!

wherek̂5ek̂, k̂[k(2Hs)5Av2V2Hs, e is a unit vec-
tor pointing in the direction of propagation, the vectorH has
componentsH5(Hx ,Hz), s5(sx ,sz), andc0 is a spinor,
containing some fixed mixture ofn andn̄ components at the
moment of collision.

Let us see what happens at the collision with the wall. T
potentialsU8 andH8 inside the matter may be different from
U andH outside it. Thus, if we suppose that the wall occ
4-3
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pies a semi-infinite half spacex.0, the stationary Schro¨-
dinger equation for the neutron becomes

@2D2v1~U1Hs!Q~x,0!1~U81H8s!Q~x.0!#C~r!

50, ~15!

where Q(x) is a step function equal to 1 or 0, when th
inequality in its argument is or is not satisfied, respective
We use the stationary equation, because we are interest
elastic reflection from the wall. All inelastic processes th
lead to inelastic scattering and ton,n̄ losses can be include
in Eq. ~15! via the imaginary parts ofU8 and Hz8 . In the
following we omitU in Eq. ~15!, because we can incorpora
it into v.

The solution of Eq.~15! can be represented in the form

C~r!5exp~ ikir i!c~x!,

whereki are parallel to the wall components of the neutr
wave vector. Substitution into Eq.~15! reduces it to a one
dimensional equation

@2d2/dx22k21HsQ~x,0!1~U81H8s!Q~x.0!#c~x!

50, ~16!

wherek5Av2ki
2 is normal to the wall component of th

neutron wave vector in the absence of external fields.
The solution of Eq.~16!, which contains the inciden

wave
in
en

in

01600
.
in

t

c0~r!5Q~x,0!exp~ i k̂x!j0 ~17!

at x,0, contains also the reflected and refracted ones w
reflection r and refractiont matrix amplitudes found by
matching the three waves at the interface. This match
gives @12#

r̂5@k~2sH!1k8~2sH8!#21@k~2sH!2k8~2sH8!#,
~18!

wherek(2sH)5Ak22sH, k8(2sH8)5Ak22U82sH8.
To find the amplitude ofn̄ creation at a single collision with
the wall we need to find the matrix element^n̄ur̂un&. To
calculate it we use the following relations valid for an arb
trary function f (x) and arbitrary vectorsa andb:

f ~sa!5
1

2
@ f ~a!1 f ~2a!#1

1

2

sa

a
@ f ~a!2 f ~2a!#,

f ~sa! f ~2sa!5 f ~a! f ~2a!, ~188!

1

f ~sa!
5

f ~2sa!

f ~a! f ~2a!
, ~sa!~sb!5~ab!1 i @ab#s.

~189!

Using these rules we transform expression~18! to the follow-
ing:
r̂5

k~H !k~2H !1k8~H8!k8~2H8!2
sH

2H
k2k18 1

sH8

2H8
k1k28 1 i

s@HH 8#

2HH8
k2k28

k~H !k~2H !1k8~H8!k8~2H8!1
1

2
k1k18 1

HH 8

2HH8
k2k28

, ~19!

wherek(6H)5Ak26H, k8(6H8)5Ak26H8, k65k(H)1k(2H), andk68 5k8(H8)1k8(2H8). The transitionsn-n̄ are
provided by the matricessx andsy , so the amplitude of this transition is

^n̄urun&5

2
Hx

2H
k2k18 1

Hx8

2H8
k1k28 1

HxHz82HzHx8

2HH8
k2k28

k~H !k~2H !1k8~H8!k8~2H8!1
1

2
k1k18 1

HH 8

2HH8
k2k28

. ~20!
.

This expression can be simplified, if we suppose thatHx8
'Hx!Hz!Hz8, which means that the transition rates
vacuum and matter are the same, and the energy differ

for n and n̄ states in matter is considerably higher than
vacuum. If the energy differenceH in vacuum is consider-
ably lower than the neutron energyk2, then we can approxi-
mate k(H)'k(2H)'k and k2'H/k. As a result the
ce

relation ~20! is reduced to

^n̄urun&5
Hx

H8

k2k28 2H8k8~2H8!

k@k1k8~H8!#@k1k8~2H8!#
. ~21!

We see that the amplitude is of the order ofHx /k2

!Hxt f /\, so in the following we can completely ignore it
4-4
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B. The number of n̄ created in an ideal spherical bottle
without gravity

To estimate the role of phases and absorption inn̄ genera-
tion it is sufficient to consider the simplest case of a spher
bottle of radiusR with ideal walls and without gravity. This
means that the reflection from the walls is always specu
and the flight paths between consecutive collisions with
walls for a given angle of incidence are equal.

In the following we neglect the decrease with time of t
n state because of neutron decay, transitions to then̄ state,
and losses at every collision with the walls. We consider
neutron during the storage timets as a particle with then
state normalized to unity, and its wave function before
first collision with the wall is equal tojn without any phase.
After that the wave function of then state acquires phase
appearing at every collision and accumulated during f
propagations between collisions. Thus, before themth colli-
sion with the wall the wave function is (enrn)m21jn , where
en is the phase factoren5exp(iknl f) accumulated along the
flight path l f between collisions,kn5Ak22Hz'k2Hz/2k,
k5AE, and rn is the reflection amplitude, which we ap
proximate by exp(ixn) with real phasexn appearing at every
collision with the walls. All the parametersl f ,xn depend on
the Neutron energyE and the angle of incidenceu on the
wall.

The particle in then state creates ann̄ state and we cal-
culate its amplitude. Following the notations of@7# let us
denote the amplitude of then̄ state before themth collision
with the wall bybm21, and findbm . This amplitude consists
of two parts:bm5bm8 1bm9 , wherebm8 5en̄r n̄bm21 is related

to reflection of then̄ component with the reflection ampl
tuder n̄ and propagation in free space between themth and
(m11)st collisions described by the phase factoren̄

5exp(ikn̄l f) with kn̄5Ak21Hz'k1Hz/2k. Back transition
from n̄ to n is neglected.

The second part is created by then component,
which before themth collision was (enrn)m21jn . After
mth reflection and propagation to the (m11)st collision,
the wave function of this n component become
c5(enrn)m21exp(ik̂l f)rnjn , where k̂n5Ak222Hs
'k2Hs/k. Since

exp~2 iHsl f /k!5cos~Hl f /k!2 i
Hs

H
sin~Hl f /k!,

whereH5AHx
21Hz

2'Hz , the product exp(ik̂l f)jn contains

an n̄ component with amplitudeeg, where

e5exp~ ikl f !, g5
Hx

H
sin~Hl f /k!5t f /t.

Thus

bm9 5~enrn!m21a, a5rneg. ~22!

Now we can put down the recurrence relation forbm :
01600
al

r,
e

e

e

e

bm5en̄r n̄bm211~enrn!m21a. ~23!

Let us denotebm5(enrn)m21axm ; then the recurrence re
lation ~25! is reduced to

xm5qxm2111, q5
r n̄

rn

en̄

e
5reif,

r5ur n̄u, f5Hz

l f

k
1x n̄2xn , ~24!

with x151. The recurrence relation~24! has solutionxm
5(12qm)/(12q), which means that

bm5~enrn!m21
12qm

12q
a. ~25!

The parameterr in Eq. ~24! is less than unity,r25ur n̄u2

512m, because of absorption and scattering of then̄ com-
ponent. We suppose that absorption is the main part ofm and
neglect scattering. Absorptionm means registration ofn̄ with
probability m.

The total numberNn̄ of n̄ per single Neutron in a storag
experiment is equal to the sumNn̄5Nn̄

81Nn̄
9 of the number

of n̄ registered inM11 collisions with the walls during
storage before emptying the vessel,Nn̄

8 , and of accumulated

neutrons, that are registered after emptying the vessel,Nn̄
9 :

Nn̄5Nn̄
81Nn̄

95m (
m52

M11

ubm21u21ubM11u2

5mp (
m52

M11 U12qm21

12q U2

1pU12qM

12q U2

, ~26!

where p5ugu25t f
2/t2 and M11'M5ts /t f5tsk/ l f . From

Eq. ~26! it follows that, if q5r, i.e.,f50, then in the limit
m→0 or r→1, the first partNn̄

8 becomes 0, because nothin

is registered at the walls, and the secondNn̄
9 , @the last term in

Eq. ~26!# becomesM2p5ts
2/t2, which means the coheren

accumulation ofn̄ during storage. This shows that we ca
call f the ‘‘decoherence phase’’ although this phase is coh
ently added at every collision with the wall.

In the general case, whenr,1 andf5” 0 the number ofn̄
@Eq. ~26!# after summation is

Nn̄5
mp

u12qu2
FM22 ReS q

12qM

12q D1uqu2
12uqu2M

12uqu2 G
1pU12qM

12q U2

, ~27!

where Re(x) denotes the real part ofx. If rM!1, i.e., 1/M
!m!1, we can neglectqM and reduce Eq.~27! to the form
4-5
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Nn̄5
mp

u12qu2
FM1

1

m
1

22 Re~q!13uqu2

12uqu2
G

5
4p

16 sin2~f/2!1m2
@Mm1214 sin2~f/2!#

5
tst f

t2
Me f f , ~28!

where we introduced the effective number of collisions

Me f f5
4m

16 sin2~f/2!1m2
. ~29!

We should take into account that forf50 the denominator
in Eq. ~29! is m2. ThusMe f f,4/m. If m50.1 we can have
Me f f540. In that case the UCN experiment, according to
figure of merit~12!, for G51000 becomes 160 times mo
effective than the beam experiment.

However, iff is not small, thenMe f f'm/4, which means
that the UCN experiment is more or less effective only
m'1, i.e., then̄ component is completely absorbed at eve
collision with the wall.

As was pointed out in@7#, it is possible to manipulate th
decoherence phasef by changing the external fieldHz . The
phasef consists of two parts. The first onef15Hl f /k
5(H/k2)kl f is related to free flight, and the second one

f25x n̄2xn

522FarccosS k

Aun̄
D 2arccosS k

Aun
D G

522 arccosS k21Aun2k2Aun̄2k2

AunAun̄
D ~30!

is related to the difference of the reflection phases. We
show that these two parts can compensate each other. T
that we represent the phasef in its full form, where l f
52R cosu, andk in Eq. ~30! is replaced by its normal com
ponentk cosu, u being the incidence angle. For simplicit
we introduce dimensionless variablesy25k2/un̄ and x
5y cos(u). In these variables the phasef becomes

f~x,y!5a
x

y2
22 arccos~s@x21A1/s22x2A12x2# !,

~31!

wherea52HR/Aun̄ and s5Aun̄ /un are dimensionless pa
rameters. IfR and s are given, say,R51 m and s250.9
~according to@14# this is possible!, then we can choose th
external fieldH to getf,m in a sufficiently wide range ofx
andy.

In Fig. 1 the phasef is represented in a wide range ofx
for y51 anda50.15, which corresponds toH of the order
of 1025 G.
01600
e

f

n
do

To get some information about the dependence ofMe f f on
the energyk2 we can average Eq.~29! over the angleu:

^Me f f~y!&5E
0

y 2xdx

y2

4m

16 sin2@f~x,y!/2#1m2
. ~32!

The result is presented in Fig. 2 for the same parameters
Fig. 1, and form50.1.

It is seen that in a sufficiently wide energy range the
fective number of collisions is larger than 10, which acco
ing to Eq. ~12! means high efficiency of the UCN exper
ment.

C. Nonideal vessel

It is clear that with the same parameters as those found
the ideal bottle we have good conditions for a storage exp
ment even in a nonideal bottle with rough wall surfaces a
with the gravity field included. Indeed, we can easily rep
sent the totaln̄ componentbm21 before themth collision, if
just before the first collision with the wall the neutron is
the statejn :

bm215(
j 52

m

a~ j !)
i 51

j 21

en~ i !rn~ i !)
i 5 j

m

en̄~ i !r n̄~ i !

5)
i 51

m

en~ i !rn~ i !(
j 52

m

a~ j !)
i 5 j

m

q~ i !,

where

FIG. 1. f(x,1) for a50.15 ands250.9.

FIG. 2. Me f f(y) for a50.15, s250.9, andm50.1.
4-6
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a~ i !5rn~ i !e~ i !g~ i !, g~ i !5
Hx

H
sinS H

l i

k D ,

q~ i !5r~ i !exp~ if i !,

en~ i !5exp~ iknl i !, en̄~ i !5exp~ ikn̄l i !, e~ i !5exp~ ikl i !,

l i is the free flight path in the flight before thei th collision
with the wall,rn,n̄( i ) are reflection amplitudes with angles
the (i 21)st collision of

rn~ i !5exp~ ixn@ i # !, r n̄~ i !5r~ i !exp~ ix n̄@ i # !,

r~ i !5ur n̄~ i !u, f i5H
l i

k
1x n̄~ i !2xn~ i !,

and we seten(1)rn(1)51 andr n̄(2)en̄(2)51.
All that can be illustrated by Fig. 3, where the horizon

line represent the Neutron in the statejn . The points on it
represent collision moments, and the segment after thei th
point represents the phase factoren( i )rn( i ). The vertices
a( i ) represent then̄ component created by the Neutron aft
the i th collision with the wall. The inclined lines represe
the history of then̄ component: the points on them are t
collisions, which correspond to multiplication byr n̄ , and the
segments after them are phase factorsen̄( i ).

The set of points on the vertical line at thei th collision
represent the coherent sumbm21 of all the n̄ components
surviving to this point.

The fraction ofn̄ registered during storage is

Nn̄
85U (

m52

M

m~m!(
j 52

m

a~ j !)
i 5 j

m

q~ i !U2

,

wherem(m) is the absorption probability at themth colli-
sion. The fraction ofn̄ created during storage and register
with 100% efficiency after emptying the vessel is

FIG. 3. Diagram ofn̄ accumulation in storage vessel.
01600
l

Nn̄
95U(

j 52

M

a~ j !)
i 5 j

M

q~ i !U2

.

Thus

Nn̄5U (
m52

M

m~m!(
j 52

m

a~ j !)
i 5 j

m

q~ i !U2

1U(
j 52

M

a~ j !)
i 5 j

M

q~ i !U2

,

~33!

and it is easy to check that Eq.~33! is reduced to Eq.~27!
when allm(m) andq( i ) are equal.

The flight pathsl i and angles at reflections are rando
and thereforeq( i ) are also random variables; however, f
small m and small H'1025 G, all the phasesf( i ) are
small, and we can replaceq( i ), m( i ) with ^q&1dq, m( i )
5^m&1dm, where^x& is an average value ofx anddx is a
random variable with zero average. Calculations with av
age ^m& and ^q& will give the same result as for the idea
spherical bottle, and the corrections related todqdm, even
for large dispersionŝ (dq)2&'^q&2, and ^(dm)2&5^m&2

will not spoil the result essentially.

IV. CONCLUSION

In this paper we derived a figure of merit for an UC
experiment compared to a beam experiment~12!, and inves-
tigated the requirements to get high efficiency of the UC
experiment.

We investigated also once again the effect of UCN co
sions with the wall onn̄ production. We found that collisions
can even produce then̄ component; however, the probabilit
of such production@Eq. ~21!# is negligible.

We considered also the effect of absorption~the coeffi-
cient m) and of the phase differencef of the n and n̄ com-
ponent propagations and reflection from the walls. W
showed that the effective number of flights~29! Me f f be-
tween collisions, during which then̄ component is accumu
lated, can be large,Me f f}1/m, if f<m, but becomes small
Me f f}m,1, whenf@m.

We have also shown that with an external magnetic fi
we can control the phase differencef and reduce it to get
high Me f f in a wide range of UCN spectra inside the stora
bottle, as is shown in Fig. 2.

Our considerations confirm and give additional suppor
the results of@6,7#.
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