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Nontrivial generalizations of the Schwinger pair production result
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We present new, nontrivial generalizations of the recent Tomaras-Tsamis-Woodard extension of the original
Schwinger formula for charged pair production in a constant electric field. That extension generalized the
Schwinger result to electric fields;(x..) dependent upon onar the other light-cone coordinates, or x_,
X.=X3*Xq; the present work generalizes their result to electric fidldéx, ,x_) dependent upoiboth
coordinates. Displayed in the form of a final, functional integral, or equivalent linkage operation, our result
does not appear to be exactly calculable in the general case; and we give a simple, approximate example when
E3(xJr x_) is a slowly varying function of its variables. We extend this result to the more general case where
E can point in a varying direction, and where an arbitrary magnetic Beisl present; both extensions can be
cast into the form of Gaussian-weighted functional integrals over well defined factors, which are amenable to
approximations depending on the nature and variations of the fields.
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A recent, nontrivial generalization of Schwinger’'s 1951 exact statement here requires the evaluation of an additional
calculation of the probability/vol sec fa* e~ production in  (and nontrivial functional integral; however, for certain situ-

a constant electric field has been given by Tomaras, Tsamations, such as particle production in the overlap volume of a
and WoodardTTW) [1] in which the electric field may de- pair of high intensity laser$4], reasonable kinematic ap-
pend upon either light-cone coordinates= X3+ Xy, but not  proximations are surely justified. If

upon both. The form of their result is exactly the same as .
Schwinger’q 2], which raises the question as to whether fur-

ther generalizations are possible, and if so, what form they INPo=—7 21 n
would take.

Shortly after the TTW paper appeared, a second and indenotes the logarithmic density of the exact vacuum-
dependent calculation of pair production in an electric fieldpersistence probability density of the Schwinger constant
depending on either, or x_ was performed3] using func-  field calculation, the main result of this paper can be ex-
tional techniques, and verifying the result of Reff]. Those pressed as
functional methods are here employed to attempt a further .
generalization to the case where the electric field depends B aE? 1
upon both light-cone variableE=E3(x, ,x_). The result is InPo= = E n2®
more complicated than the original Schwinger form, al-
though the importantand nontrivial essential singularity in ~ with E=E(x, ,X_), m,=na/gE, J(N1,A2)=0(A1—A2)\>
the region of small coupling is apparently preserved. Thet 6(A,—N{)N1— A\, and

2
—nmm“/gE
9 M,

n=1

1
— ( _ 1)ne4m27nfféd)\ld)\2[§/5u+()\1)]J()\1,)\2)[5/5U(xz)]Co{ngJ di E(XJr _ m—lv +()\),X, _ m_ll} ()\)):| (1)
0

v,.—0

where the “linkage operation” of Eq1) may be cast into a only one variablex, or x_, M,—1, and the TTW exten-
corresponding functional integral. It does not seem to be possion of the Schwinger result is obtained.

sible to evaluate Ed1) exactly, although kinematic approxi- We hold to the notation and technique of R&], begin-
mations are certainly possible. One of these will be useching with the exact statement of the vacuum persistence am-
below to illustrate the formula. Note that E depends on plitude in the absence of radiative corrections
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<O|S|0>:eL[Aext]. 2) the probability of producingat least one charged pair is
P;=1-P{. Note thatL[A] is really L[F], sinceL is rig-
orously gauge invariant; but we shall continue to use the

The vacuum persistence probability of the present problemyvector-potential description, beginning with the exact Frad-
here calledP, is then given byP =exd2Re.[Aq], and  kin representatiof5]

1(=ds . s 82
LA:——f —e SMex ifds’
[Al==3 oS ‘{ 0 ; Sva(s')

XJO|4xe—igff,ds’uM(s’)AM(x—fg'u)tr(egfgds'a.F(x—fg'v))+

4
w

—(9—0). 3

UI_LHO

The functional linkage operation of E¢B) may be recast into that of a Gaussian-weighted functional integral, since
eif(s)ds[ﬁzlévz(s/)]f_[v]|Uﬂ0:Nf d[v]e(imngdwz(s/)ﬂv]

for arbitrary F{v], with the normalizatiorN given by

N‘1=f d[v]exr{%f:dwz(s’)

The linkage formulation, which dispenses with normalization constants, is somewhat more convenient, and will be followed
whenever possible.

To represent a given, external field in thedBection, we may ChOOSAM:(/&l Asz,A0)—(0A3,A0)—(0A, ,A_) with
A, =0, A.(X)=3,n%A,(x; ,x_). Here,n%=(0,0,171), so thatn.-a=a.=az*a, Note thatn?=n?=0, n,-n_
=2, and thatp-A—pzA;—poAo=3(p+A_+p_A,). We shall choose the gauge specified Ay=0, so thatA?=A2?
+A A_=0, andE(X, ,X_)=— (A, 1dx ) (X4 ,X_).

As in Ref.[3], we extract the ,(s") dependence inside the argumentsigfandF
functional form of unity into Eq(3), replacingZ[[$ v.(s"),/§ v_(s")] by

uv» Or of A, andE, by introducing a

f d[m]fd[u,]f[u+<s'>,u,<s'>]5 u+(s'>—f0‘°"v+<s"> 5 u,<s')—f:'v,(s"> (@

where thed-functional notation means that when the regiors @&s-broken up into many small intervals labeled by the discrete
indicess;, i=1, ... N (with N—«, subsequently 5[Q(s’)]—>HiN215(Q(si)).

Note that since we are treating eagh(s’) as a continuougalthough not necessarily differentiapleinction ofs’, the
u-.(s’) introduced in Eq(4) have, at least, a continuous first derivative.

Each § function of Eq.(4), and the overalls functional, may be written in terms of a standard Fourier representation; so
that, in the continuous limit, Eq4) may be replaced by

Ner d[u+]f d[U,]f[UJr(S’),U,(S’)]f d[Q+]f d[Q,]eifgds/[u+(5')ﬂ+(5’)+u*(S')Q*(S/)]
X e 10 (8§ v () +0_(5')/§ v (5] (5)

whereN’ is an appropriate normalization factarhich disappears from the final reul¢Vith the aid of Abel’s trick, the last
exponential factor of Eq5) may be written as

exq’ —i J'Osds’vﬂ(s’)

so that the entire -linkage operation is immediate:

S S
nﬁﬁf,d§’9+(s”)+nﬁf,ds”Q,(S”)
S S
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ol [3ds[ 8%/ 802(s")] i[5 S () [P~ GAL(S) ~ Nk J3 ds"0 . (s")—n” f2, ds"0 (8] =

—exp[—|de p-omus) -t [0 —ne 0 H ®)

where we have used the notatidn(s’)=A,(x; —u,(s’),x_—u_(s’ )) As in Ref.[3], the explicitly quadrati€), and() _
terms of the exponential factor of E(f) are removed becausé =n? =0 but there remains a nonzefb, - ) _ cross term,
so that Eq.(6) becomes

S S S S !
exp[—isp2+ing ds’A+(s’)+2ip+f ds’s’Q+(s’)+2ip,f ds’s’Q,(s’)—Zigf ds’Q+(s’)J'S ds’"A.(s")
0 0 0 0 0
. S S
—4i J'OdSlJ'OdSZQ+(Sl)h(SlaSZ)Q(SZ)} (7)

whereh(s;,s,) = 0(S;—5,)S,+ 0(S,—S1)s1=3(S1+S,—|S1—S,|) is that function of proper time which always appears when
constructing representations Gf[ A] [6]. In writing Eq. (7), we have used the “inverse” form of Abel's manipulation.
Performing thef d*p, one requires

f d4pefisp2+ip-[n_gng(s’)+2n+f(S) s’Q+(s’)+2n_fg s'Q_(s")]

:72 exp[4|f f dsldSZSL(sl)( )Q (s5)+ —f s'Q, ’)gjOSA+(s’)} (8

where we have again used the propertied =n? =0, n,-n_=2. The new(), Q_ term of Eq.(8) may be combined with
the previous, like term of Eq(7), forming the combination eXp-4if[5Q,JQ_}, J(S1,S,) =h(s1,S,) —(S1S,) /s; and the
functional integral ovef).. may be written as

e4if[5/5u+(51)]J(Sl,Sz)[6/5u,(52)]N72J' d[QJr]J d[Q7]eifgds’u,(5’)(),,(s’)eifgdsfgl+(s')[u+(s’)+Zg(s’/s)fgds"AJr(Srr)_zgfgrds,,AJr(sn)]

. S, S ’
:e4lf(5/5u+)3(5/5u)5[u_(sl)]5|:u+(s/)+zg;j d§IA+(S//)_ngS dS/IA+(S//) ) (9)
0 0

Equation(9) is multiplied by theu..-dependent factor where|det(su/ 5f)| is the determinant of the transformation
< from the variableau, (s’) to the variables(s’), the latter

tr(egfgds""F(x+”+(S')'X“(S')))+=4cos>ﬁgf ds'E(s’)) given by the argument of thé functional produced by the
0 Jd[Q]. Here,u(s’) is the solution of the integral equation

(10

where E(s')=E(x;—u,(s"),x_—u_(s")). The

fd[u,]fd[u_] may be evaluated by transferririigy an in- , s fs

tegration by parts over each variable the differential U(S')ZZQ[J'S ds”A+(s”)——f ds'A.(s")

8l du.. operators which act upon th®functionals of Eq(9) 0 sJo

to equivalent operations upon the dependence of Eq10)

(11)

AJ(alou)(alou-) with u_(s')=0, corresponding to the other functional of

Eqg. (9).
By exactly the same arguments ag 3, the only possible
solution to Eq.(11) is u(s’)=u’(s’)=0, which means that,
u_(s")=0u, (s")=u(s") as in[3],

eéfe

X cosi‘( gfosds’ E(s’))
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ou gsEx, ,x_)
deté_f sinh(gsE(x, ,x_)) (12

with the difference that thi& can depend upon both, andx_ .
The sign ofE entering into Eqs(10) and(12) is irrelevant, and we shall suppose it is positive. Our expression[fai can
therefore be put into a form which closely resembles that of Schwinger, and of RRef.

_ 4 —.sm2 9E 4ismP[ fdN1dN, [ 8180 (N 1)TI(Aq . Np) [8/80_(Np)]
L[A]= fd f smh(gsE)e 1072 +(Ag 172 2
1
X cosh gsj d)\E(x+—m1v+()\),x_—m1v_()\))} —(g—0). (13
0
v,.—0

In writing Eq. (13), we have observed that, in the interval giab/(o/ov)3(5/5v ) 71y, - 4 |
0-s, any continuous function-(s’) may be given by a

Fourier series representation as a functiongfg), and we - T

therefore replaceu.(s') by m Yv.(s'/s)=m tv.()\), _de[‘]]fd[M]fd[X*]e ’ af‘])” 'bJ'JX*

where\=s'/s, and the factom™! is inserted for dimen-

sional reasongand will cancel away when the functional
derivativesé/ Sv .- are takei However, because

v,—0

(14)

and mean field or stationary phase approximations derived
for the right-hand side of Eq14). Perhaps the simplest ap-
oU.(Sq) 1 proximation of all occurs whenE(x, ,x_)=E,(x,)
m =8(81—8)= 55(’\1—’\2)’ +E_(x_), a form suggested by recent estimates of pair pro-
B duction in the overlap region of two, crossed, high intensity
laserg[4]. If all the derivatives ofE of order higher than the

5vi(31):5()\ —\,) second are neglected,
o +(Sy) v
1
one must adopt the relations/du. (s')=(m/s)[ &/ Jod)\Et(Xi_m_lvi()\))

dv.(N\")]. After extracting an overall factor af J(\q,\2)

is understood to be given by IE . (X4)
=E.(X:)—m~ f d\v . ()\)—
J(N1,N2) = O(N 1= N)Not O(N2—Ng)Ng1—NgNs.
m2t o PPE.(Xs)
. S . +——] dAvi(N\)———+
Extracting the Re[ A] from an expression involving an op- 2 Jo N

*

erator such as that of E¢L3) requires some further thought,

and we therefore imagine that the linkage operator of Eq. iwhich hat the f |
(13) is expanded in powers dt so that the rotation of con- ich approximation assumes that the fractional variations
of the electric field are very small over distances on the order

tours— —i 7 is permitted; here, that expansion yields powers
of  4mPrf Y8180, (\)1I(A\L o) [8/6v_(A,)], which Of the Compton wavelength. . o
generate real results becauseaand all of its derivative are Then, itis easy to see that the linkage operation yields
real. Under this contour rotation, one again finds that the

contributions to Re[A] arise from zeroes of the denomina- M —coa{a
tor sin@7E), occurring forr— r,—ie, 7,=nw/gE; and we

then sum up alD-dependent terms, so that

2
QaZy-+alyy)

ex;{ —4a%a,a_R

(15

1
—5Trin(1+ a’y,y_l)

o1
2Rd[A]=— %f AXE? Y, e " MIEM,(x, )
=t where a=4mn/gE,  a.=nm(d/ix.)InEMD), 7.
_ S _ =(nw/E)(#%/x%)E, E=E,+E_ and
with M,, defined in Eq.(1). This seems to be as far as the
exact analysis can be performed. N
Without approximation,_the Iinkage op(_eration of Ef3) Q:f f d)\ld)\2<)\1 )\2>
may be converted to a pair of functional integrals, 0

|
l+a 7+7|)
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1

R= J f dhgdN (N[ I(1+a%y y-1)THN,)
0

with

1
LN A ) =(Nq[l[Np) = Jo dNI(N1,N)J(N, N o).

PHYSICAL REVIEW D 67, 016003 (2003
Note that, formally, for largen, R~n~% while a®x,x_
~n%, so that the exponential terms of E45) cannot grow
rapidly with n. One therefore infers that the essential singu-
larity structure of the original Schwinger result is preserved.
For an electric fielde, which depends upox, , one can
retain the conditiolA_=A, =0, but requireA, to depend
onx, , as well asx, andx_ . One then introduces variables
u,(s’") andQ, (s'), and following the above analysis finds

L[A]:#f:d—:eismzf d4xf d[u+]fd[u,]f d[u, Jtr(e%& F),

S

s @M (818u,)3(8l6u_) +if(8l6u,)I(8lu,)

An integration by part on the. , u, dependence then al-
lows the linkage operator to act upon theef’rf(g‘T'F)+ term

! S, S /" S’ /!
u+<s>+2g;f A+<s)—2gf AL(s")
0 0

S[u_(s")]dlu.(s")]. (16)

(OB (egfg"'F)Jr. Following techniques developed for uni-
tary OEg[7], the present OE can be approximately evaluated

only; and one sees that the Jacobian of the transformatiognalytically whenE and B directions change in ways that

between thai..(s') andf(s’) variables is exactly the same
as in Eq.(12), except that her&=E;(x, ,x_,x,). If we
restrictE to lie in the 3 direction, then again, e‘{fg"'F)Jr
—4cost(f3ds'gE(s’)) and the limitsu.=u, =0 are to be
taken after the linkage operator of E46) acts upon thei.. ,
u, dependence inside 4 cd$ds’'gE(s’)), with E
=Ez(Xxy —u,(s"), x_u_(s), x, —u,(s")).

For arbitraryE andB fields, one must include at the very
beginningA, (x,, X_, X;) #0, although it is still conve-
nient to retain the gauge conditioh.=0. Now there will
appear in this final generalization of EJ.6) the extra factor

S S 2
f-[u]zexp{—igfods”Af(s”)Jrig/s( fodg'm(s"))

where, following the notation of Eq6), A, (s')=A, (X4
—u,(s'),x_.—u_(s"),x,—u,(s")), and Fu] multiplies

can be characterized as slowly varyiritadiabatic”) or
rapidly fluctuating (“stochastic”); and the same linkage
operator as in Eq(16) is then to act upon the product
f[u](egfcs)"'F)+ . Note that there will appear another Jaco-
bian, involved in the variable change fram(s’) to f, (s'),
as in Eq.(12), and both Jacobians will simultaneously in-
volve E and B. Alternatively, if one wishes to avoid the
direct evaluation of these Jacobians, one can rewrite this gen-
eralization of Eq.(16) in terms of functional integrals, and
attempt to use mean field or stationary phase methods for
their approximate evaluation. This extension of Eldf) pro-
vides a functional representation lofA] appropriate for the
most general choice d and B fields. When the latter are
constants, and in particular f&=0, it reduces immediately
to Schwinger’s 1951 solution, while it generates a definition
of L[A] at any stage inbetween.

Finally, a more symmetric formulation, explicitly depend-
ing only on theF ,, may be obtained by starting from for-

the trace of the now more complicated ordered exponentiahula

LIAI== 3]

< e—igfgds’v#(s')u,,(s')fé)\d)\FM(x—)\u(s’))tr(egfgg. F(x—u(s’))) . —(g—0)

1°°dS_.mg d4p.522. s .S _irsy S
_f ?e is fdAXf Welfo(5 | v )e|p~f0vN/f d[Q]j d[U]eIIOUMQ#e oo v
aa

17

where every factor ofSyds”u#(s”) has been replaced hy,(s"). Performing the linkage operatiofid*p and fd[Q], then

leads to the result
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i ~ds —ism? 4 - if(818u,)I(818u,) gfio-F Q
LIAl= 55| ae d*xI] | dlulA[u,]le u Wir(e/o” Fy, e (18)
7 Jo S =1

!

s S 1
Alu,l= 5{%(5,)_29[0“”( (s’ —s)— E) fo NANF ,,(X—=Au(s"))u,(s")

Q=—ing:ds’ fol)\d)\ fol)\’d)\’f:ds”uy(s’)ug(s”)FW(x—)\u(s’))FM(x—)\u(s”))

1
8(s'—8")— g}.

The only solutions for each,(s") allowed by the product of where the unit, operator in this space is given by
the four § functional of Eq.(18) areu,,(s")=0, although the
Jacobians obtained from each variable changgs’)
—f,(s") will each be unity only for the Schwinger case of
constant F,,; in this latter situation, the
exdlif(&/du,)(&/du,)] operation may be recast into that of ~ With «=2gE, one has (s|S|s;)=«(s;/s), and
soluble Gaussian functional integrals over thgs'), lead-  (S1|©|s;)= k(s —s;), so thatM =S5—0.

S
1I=J- ds’|s’){s’|, sothat(s;|s;)=5(S1—Sy).
0

ing back to Schwinger’s original result. The quantity dgtsf/du, ] can be written as eXpin(1
+M)], and a direct evaluation of the latter’s exponential fac-
ACKNOWLEDGMENT tor proceeds as follows. With triniM)=trin(1+S—0)

=trin(1-©)+trin(1+ S[1/(1-0)]), it is easy to see that
J.A. was supported in part by a CNRS/Brown Accord.

1
APPENDIX <51 16 52> =8(81~52) + k0(s12)

We present here an independent calculation of the deter- X[1+ kSyo+ (kS22 + - - -]
minant of Eq.(12), defined by the transformation from the s s
functional coordinates . (s') to f(s'), where =(s1|1|sp) +€“°K(5,|O[sz)e™ %2,

s’ s s’ S12=517S;
f(s')=u.(s")+2g —f ds”A+(s")—f ds’A_(s")
s Jo 0 so that
(A1)

S——|s,) = 14 [ ds ket =
andA,(s")=A, (X, —u,(s'),x_—u_(s")). Because of the S1 1-0 S2) = s 5 S ke
delta functionals of Eq9), everyu_(s’) =0, while the only
possible solution of (s’) =0 corresponds ta, (s') =0; this _ 5 K(5— )
latter point has been discussed in H&f,, but for complete- K e :
ness is reproduced below. o

The inverse determinant, constructed from the quantity Similarly,

1 \? 1
of(sy) Sy <sl (S ) sz> :Q<sl S sz>
—= - —— - 1-0 1-0 '
UL (s,) d(s1—s3)+29 S 0(sy—Sz) |E(X4 ,X-)
1
=(s1[/(1+M)]sy) (A2) Q=—[e°~1-«s]

is therefore to be evaluated at.(s’) =0, as stated. Refer- so that
ence[3] displays that determinant as the solution of a rel-
evant differential equation; here, one follows a direct evalu- 1 \" ne1 [ S1) e(s—sy)
ation, by introducing the operators S1 Sm S2)=Q" "k YA 2

and hence

B

st

s s
SZKJ ds’f ds’
0 0

S S
®=Kf ds’f ds’é(s’ —s")|s' (s
0 0

In

1rs—
jpro

Sz>:K

—) e"(sfsz)iln(lJr Q)
s Q

or
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1 1 s Sy (s sp and therefore
— | = — fe— K(STS1
trin 1+Sl_® an(1+Q)deslx S e
_ 1(s
=In(1+Q). u’'(0)=u’(s)=2g| A(X; ,Xx_)— EJ ds’A(x,—u(s"),x_)
0
Further, (AB)

(s1In(1=0)|sp)=—(51|(O+30%+30°+ .. .)|s))
P 2 which may or may not be zero. Let us suppose that the right-
1+ o512t 5(312)24— . } hand sidgRHS) of Eq. (AB) is positive, and it then follows
' : that u(s’) must vanish at(at least one point, says;, 0

so that the only contribution to this quantity’s trace, with =S1=S; and that as,, u’(s,) must be negative. But from

s;=s,, and 6(0)=1/2, comes from its leading term, trin(1 Eq.,(AS) one sees that, iti(sy)=0, thenu’(sy)=u’(0)
—@)=—~«g2. With 1+ Q= (1/ks)[e*5— 1], one finds =u’(s), and has the wrong sign. Therefore, there must be at

least two other points, one in the interval between 0 sind

= K0(512)

2  [«ks and the other betweesy ands, whereu will vanish with a
exdtrin(1+M)]= K—SSWW(?) (A3)  negative slope. But, again, from EG\5), wheneveru van-
ishes its slope is the same, here assumed positive. The argu-
and the inverse of this factor produces exactly the requirednent can be repeated indefinitely, and the only possible con-
determinant of Eq(12). clusion is thatu’(s)=0, for all pointss’ in the interval
Finally, and for completeness and clarity, we present théetween 0 ands. Then, from Eq.(A5), it follows that
argument that the only solution of the restrictioi{s’) =0 u’(s’)=0. This is the reason why both @éu, /5f] and
for all 0<s’<s corresponds tai_(s')=0. Since it is clear the functional-operation factor in the equation following Eq.
from Eq.(9) that allu_(s')=0, and allA_=0, we suppress (10) are evaluated at..(s")=0; and for the latter factor, this
the + subscripts, and consider the solutions of limit is taken after the functional derivatives are performed.
One final remark, to insure clarity. The replacement, just
after Eq.(16), of the trace of the ordered exponenti@E),
tr(e9/0d5'>"F) | by 4cosh(3ds'gE(s')), when E points in
one direction(e.g., the 3 directiononly, is easy to see using
where A(s") =A(x. —u(s'),x-), E(s)=E(x.—U(s').X-)  the old-fashioned representation
=—JAlox, .
Since u(s’) was defined agjds’v(s"), wherev(s")
corresponds to a velocity at proper tinsé (see[6]), we . [0 o3 (10
assume on physical grounéand even for virtual particles YuTlasYa T g0 YT g g
thatv is a continuous function of its argument, although no
restriction is placed on its derivatives. Henggs') is a con-
tinuous function with(at least a continuous first derivative. where o5 is the Pauli matrix; in this way,o-F
Evaluating u(s’) at s'=0 and ats’'=s, shows that —a3E;. Since a3 commutes with itself, the com-

’ s’ (s
u(s’)= 2gJ: ds'A(s") - 2g ?Jo dS'A(s")  (A4)

u(0)=u(s)=0. Further,u’(s’) is given by mutator [ o F(sy),0-F(sy)] vanishes for any points,;
1 and s,, and the OE may be replaced by an ordinary ex-
S . . . .
u'(s')=2gA(s')—2 _J ds'A(S" A5 ponential. Then, a simple expansion in powersgopro-
(5)=20A(s) gS 0 (") (A5 duces for the trace the result 4cofus gE(s')).
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