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Nontrivial generalizations of the Schwinger pair production result
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We present new, nontrivial generalizations of the recent Tomaras-Tsamis-Woodard extension of the original
Schwinger formula for charged pair production in a constant electric field. That extension generalized the
Schwinger result to electric fieldsE3(x6) dependent upon oneor the other light-cone coordinates,x1 or x2 ,
x65x36x0; the present work generalizes their result to electric fieldsE3(x1 ,x2) dependent uponboth
coordinates. Displayed in the form of a final, functional integral, or equivalent linkage operation, our result
does not appear to be exactly calculable in the general case; and we give a simple, approximate example when
E3(x1 ,x2) is a slowly varying function of its variables. We extend this result to the more general case where

EW can point in a varying direction, and where an arbitrary magnetic fieldBW is present; both extensions can be
cast into the form of Gaussian-weighted functional integrals over well defined factors, which are amenable to
approximations depending on the nature and variations of the fields.
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A recent, nontrivial generalization of Schwinger’s 195
calculation of the probability/vol sec fore1e2 production in
a constant electric field has been given by Tomaras, Tsa
and Woodard~TTW! @1# in which the electric field may de
pend upon either light-cone coordinatesx65x36x0, but not
upon both. The form of their result is exactly the same
Schwinger’s@2#, which raises the question as to whether f
ther generalizations are possible, and if so, what form t
would take.

Shortly after the TTW paper appeared, a second and
dependent calculation of pair production in an electric fi
depending on eitherx1 or x2 was performed@3# using func-
tional techniques, and verifying the result of Ref.@1#. Those
functional methods are here employed to attempt a fur
generalization to the case where the electric field depe
upon both light-cone variables,E5E3(x1 ,x2). The result is
more complicated than the original Schwinger form,
though the important~and nontrivial! essential singularity in
the region of small coupling is apparently preserved. T
o
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0556-2821/2003/67~1!/016003~7!/$20.00 67 0160
is

s
-
y

n-

er
ds

-

e

exact statement here requires the evaluation of an additi
~and nontrivial! functional integral; however, for certain situ
ations, such as particle production in the overlap volume o
pair of high intensity lasers@4#, reasonable kinematic ap
proximations are surely justified. If

ln P05
aE2

p2 (
n51

`
1

n2 e2npm2/gE, a5
g2

4p

denotes the logarithmic density of the exact vacuu
persistence probability density of the Schwinger const
field calculation, the main result of this paper can be e
pressed as

ln P085
aE2

p2 (
n51

`
1

n2 e2npm2/gEMn

with E5E(x1 ,x2), tn5np/gE, J(l1 ,l2)5u(l12l2)l2
1u(l22l1)l12l1l2, and
Mn5~21!ne4m2tn**0
1dl1dl2[d/dv1(l1)]J(l1 ,l2)[d/dv2(l2)]cosFgtnE

0

1

dlE„x12m21v1~l!,x22m21v2~l!…GU
v6→0

~1!
am-
where the ‘‘linkage operation’’ of Eq.~1! may be cast into a
corresponding functional integral. It does not seem to be p
sible to evaluate Eq.~1! exactly, although kinematic approx
mations are certainly possible. One of these will be u
below to illustrate the formula. Note that ifE depends on
s-

d

only one variablex1 or x2 , Mn→1, and the TTW exten-
sion of the Schwinger result is obtained.

We hold to the notation and technique of Ref.@3#, begin-
ning with the exact statement of the vacuum persistence
plitude in the absence of radiative corrections
©2003 The American Physical Society03-1
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^0uSu0&5eL[Aext] . ~2!

The vacuum persistence probability of the present probl
here calledP08 , is then given byP085exp†2ReL@Aext#‡, and
01600
,

the probability of producing~at least! one charged pair is
P18512P08 . Note thatL@A# is really L@F#, sinceL is rig-
orously gauge invariant; but we shall continue to use
vector-potential description, beginning with the exact Fra
kin representation@5#
ollowed

ete

; so
L@A#52
1

2E0

`ds

s
e2 ism2

expF i E
0

s

ds8(
m

d2

dvm
2 ~s8!

G E d4p

~2p!4 eip•*0
sds8v(s8)

3E d4xe2 ig*0
sds8vm(s8)Am(x2*0

s8v)tr(eg*0
sds8s•F(x2*0

s8v))1U
vm→0

2~g→0!. ~3!

The functional linkage operation of Eq.~3! may be recast into that of a Gaussian-weighted functional integral, since

ei *0
sds[d2/dv2(s8)]F@v#uv→05NE d@v#e( i /4)*0

sdsv2(s8)F@v#

for arbitraryF@v#, with the normalizationN given by

N215E d@v#expF i

4E0

s

dsv2~s8!G .
The linkage formulation, which dispenses with normalization constants, is somewhat more convenient, and will be f
whenever possible.

To represent a given, external field in the 3ˆ direction, we may chooseAm5(AW' ,A3 ,A0)→(0,A3 ,A0)→(0,A1 ,A2) with
AW'50, A6(x)5(mn6

m Am(x1 ,x2). Here, n6
m 5(0,0,1,71), so thatn6•a5a65a36a0. Note thatn1

2 5n2
2 50, n1•n2

52, and thatp•A→p3A32p0A05 1
2 (p1A21p2A1). We shall choose the gauge specified byA250, so thatA25A'

2

1A1A250, andE(x1 ,x2)52(]A1 /]x1)(x1 ,x2).
As in Ref. @3#, we extract thevm(s9) dependence inside the arguments ofAm andFmn , or of A1 andE, by introducing a

functional form of unity into Eq.~3!, replacingF[ *0
s8v1(s9),*0

s8v2(s9)] by

E d@u1#E d@u2#F@u1~s8!,u2~s8!#dFu1~s8!2E
0

s8
v1~s9!GdFu2~s8!2E

0

s8
v2~s9!G ~4!

where thed-functional notation means that when the region 0–s is broken up into many small intervals labeled by the discr
indicessi , i 51, . . . ,N ~with N→`, subsequently!, d@Q(s8)#→) i 51

N d„Q(si)….
Note that since we are treating eachv6(s8) as a continuous~although not necessarily differentiable! function of s8, the

u6(s8) introduced in Eq.~4! have, at least, a continuous first derivative.
Eachd function of Eq.~4!, and the overalld functional, may be written in terms of a standard Fourier representation

that, in the continuous limit, Eq.~4! may be replaced by

N82E d@u1#E d@u2#F@u1~s8!,u2~s8!#E d@V1#E d@V2#ei *0
sds8[u1(s8)V1(s8)1u2(s8)V2(s8)]

3e2 i *0
sds8[V1(s8)*0

s8v1(s9)1V2(s8)*0
s8v2(s9)] ~5!

whereN8 is an appropriate normalization factor~which disappears from the final result!. With the aid of Abel’s trick, the last
exponential factor of Eq.~5! may be written as

expH 2 i E
0

s

ds8vm~s8!Fn1
m E

s8

s

ds9V1~s9!1n2
m E

s8

s

ds9V2~s9!G J
so that the entirev-linkage operation is immediate:
3-2
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ei *0
sds @d2/dv2(s8)# ei *0

s ds8vm(s8)[ pm2gAm(s8)2n1
m *

s8
s

ds9V1(s9)2n2
m *

s8
s

ds9V2(s9)] uv→0

5expH 2 i E
0

s

ds8Fpm2gAm~s8!2n1
m E

s8

s

V12n2
m E

s8

s

V2G2J ~6!

where we have used the notationAm(s8)[Am(x12u1(s8),x22u2(s8)). As in Ref.@3#, the explicitly quadraticV1 andV2

terms of the exponential factor of Eq.~6! are removed becausen1
2 5n2

2 50 but there remains a nonzeroV1•V2 cross term,
so that Eq.~6! becomes

expH 2 isp21 igp2E
0

s

ds8A1~s8!12ip1E
0

s

ds8s8V1~s8!12ip2E
0

s

ds8s8V2~s8!22igE
0

s

ds8V1~s8!E
0

s8
ds9A1~s9!

24i E
0

s

ds1E
0

s

ds2V1~s1!h~s1 ,s2!V2~s2!J ~7!

whereh(s1 ,s2)5u(s12s2)s21u(s22s1)s15 1
2 (s11s22us12s2u) is that function of proper time which always appears wh

constructing representations ofGc@A# @6#. In writing Eq. ~7!, we have used the ‘‘inverse’’ form of Abel’s manipulation.
Performing the*d4p, one requires

E d4pe2 isp21 ip•[n2g*0
s A(s8)12n1*0

s s8V1(s8)12n2*0
s s8V2(s8)]

52 i S p2

s2 DexpH 4i E E
0

s

ds1ds2V1~s1!S s1s2

s DV2~s2!1
2i

s E0

s

s8V1~s8!gE
0

s

A1~s8!J ~8!

where we have again used the properties :n1
2 5n2

2 50, n1•n252. The newV1V2 term of Eq.~8! may be combined with
the previous, like term of Eq.~7!, forming the combination exp$24i**0

sV1JV2%, J(s1 ,s2)5h(s1 ,s2)2(s1s2) /s; and the
functional integral overV6 may be written as

e4i * @d/du1(s1)# J(s1 ,s2) @d/du2(s2)#N82E d@V1#E d@V2#ei *0
sds8u2(s8)V2(s8)ei *0

sds8V1(s8)[u1(s8)12g(s8/s)*0
sds9A1(s9)22g*0

s8ds9A1(s9)]

5e4i *(d/du1)J(d/du2)d@u2~s8!#dFu1~s8!12g
s8

s E0

s

ds9A1~s9!22gE
0

s8
ds9A1~s9!G . ~9!
n

n

,

Equation~9! is multiplied by theu6-dependent factor

tr(eg*0
sds8s•F„x12u1(s8),x22u2(s8)…)154coshS gE

0

s

ds8E~s8! D
~10!

where E(s8)[E„x12u1(s8),x22u2(s8)…. The
*d@u1#*d@u2# may be evaluated by transferring~by an in-
tegration by parts over eachu variable! the differential
d/du6 operators which act upon thed functionals of Eq.~9!
to equivalent operations upon theu6 dependence of Eq.~10!

4Udet
du

d f Ue4i *(d/du1)J(d/du2)

3coshS gE
0

s

ds8E~s8! D U
u2(s8)50,u1(s8)5u(s8)
01600
whereudet(du/d f )u is the determinant of the transformatio
from the variablesu1(s8) to the variablesf (s8), the latter
given by the argument of thed functional produced by the
*d@V1#. Here,u(s8) is the solution of the integral equatio

u~s8!52gF E
0

s8
ds9A1~s9!2

s8

s E0

s

ds9A1~s9!G ~11!

with u2(s8)50, corresponding to the otherd functional of
Eq. ~9!.

By exactly the same arguments as in@3#, the only possible
solution to Eq.~11! is u(s8)5u8(s8)50, which means that
as in @3#,
3-3
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Udet
du

d f U5 gsE~x1 ,x2!

sinh„gsE~x1 ,x2!…
~12!

with the difference that thisE can depend upon bothx1 andx2 .
The sign ofE entering into Eqs.~10! and~12! is irrelevant, and we shall suppose it is positive. Our expression forL@A# can

therefore be put into a form which closely resembles that of Schwinger, and of Ref.@3#

L@A#5
i

8p2E d4xE
0

`ds

s2
e2 ism2 gE

sinh~gsE!
e4ism2**dl1dl2 @d/dv1(l1)# J(l1 ,l2) @d/dv2(l2)#

3coshFgsE
0

1

dlE„x12m21v1~l!,x22m21v2~l!…G
v6→0

2~g→0!. ~13!
al

l

-
t,
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-
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In writing Eq. ~13!, we have observed that, in the interv
0–s, any continuous functionu6(s8) may be given by a
Fourier series representation as a function of (s8/s), and we
therefore replaceu6(s8) by m21v6(s8/s)[m21v6(l),
where l5s8/s, and the factorm21 is inserted for dimen-
sional reasons~and will cancel away when the functiona
derivativesd/dv6 are taken!. However, because

du6~s1!

du6~s2!
5d~s12s2!5

1

s
d~l12l2!,

dv6~s1!

dv6~s2!
5d~l12l2!

one must adopt the relationd/du6(s8)5(m/s)@d/
dv6(l8)#. After extracting an overall factor ofs, J(l1 ,l2)
is understood to be given by

J~l1 ,l2!5u~l12l2!l21u~l22l1!l12l1l2 .

Extracting the ReL@A# from an expression involving an op
erator such as that of Eq.~13! requires some further though
and we therefore imagine that the linkage operator of
~13! is expanded in powers ofJ, so that the rotation of con
tour s→2 i t is permitted; here, that expansion yields powe
of 4m2t**0

1@d/dv1(l1)#J(l1 ,l2)@d/dv2(l2)#, which
generate real results becauseE and all of its derivative are
real. Under this contour rotation, one again finds that
contributions to ReL@A# arise from zeroes of the denomin
tor sin(gtE), occurring fort→tn2 i«, tn5np/gE; and we
then sum up allJ-dependent terms, so that

2ReL@A#52
a

p2E d4xE2(
n51

`
1

n2 e2npm2/gEMn~x1 ,x2!

with Mn defined in Eq.~1!. This seems to be as far as th
exact analysis can be performed.

Without approximation, the linkage operation of Eq.~13!
may be converted to a pair of functional integrals,
01600
.

s

e

eiab*(d/dv1)J(d/dv2)F@v1 ,v2#uv6→0

5det@J#Ed@x1#Ed@x2#ei *x1Jx2FFaEJx1 ,bEJx2G
~14!

and mean field or stationary phase approximations deri
for the right-hand side of Eq.~14!. Perhaps the simplest ap
proximation of all occurs whenE(x1 ,x2)5E1(x1)
1E2(x2), a form suggested by recent estimates of pair p
duction in the overlap region of two, crossed, high intens
lasers@4#. If all the derivatives ofE of order higher than the
second are neglected,

E
0

1

dlE6„x62m21v6~l!…

.E6~x6!2m21E
0

1

dlv6~l!
]E6~x6!

]x6

1
m22

2 E
0

1

dlv6
2 ~l!

]2E6~x6!

]x6
2

1•••

which approximation assumes that the fractional variatio
of the electric field are very small over distances on the or
of the Compton wavelength.

Then, it is easy to see that the linkage operation yield

Mn5cosFa2

2
Q~a1

2 g21a2
2 g1!GexpF24a2a1a2R

2
1

2
Trln~11a2g1g2I !G ~15!

where a54pn/gE, a65np(]/]x6)ln(E/m2), g6

5(np/E)(]2/]x6
2 )E, E5E11E2 and

Q5E E
0

1

dl1dl2K l1UI S 1

11a2g1g2I D Ul2L
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R5E E
0

1

dl1dl2^l1uJ~11a2g1g2I !21ul2&

with

I ~l1 ,l2!5^l1uI ul2&5E
0

1

dlJ~l1 ,l!J~l,l2!.
l-

ti
e

y

ti

01600
Note that, formally, for largen, R;n24 while a2x1x2

;n4, so that the exponential terms of Eq.~15! cannot grow
rapidly with n. One therefore infers that the essential sing
larity structure of the original Schwinger result is preserve

For an electric fieldE3, which depends uponx' , one can
retain the conditionA25A'50, but requireA1 to depend
on x' , as well asx1 andx2 . One then introduces variable
u'(s8) andV'(s8), and following the above analysis find
L@A#5
i

32p2E
0

` ds

s3
e2 ism2E d4xE d@u1#E d@u2#E d@u'#tr(eg*0

ss•F)1

3e4i *(d/du1)J(d/du2)1 i *(d/du')J(d/du')d Fu1~s8!12g
s8

s E0

s

A1~s9!22gE
0

s8
A1~s9!Gd @u2~s8!#d@u'~s8!#. ~16!
i-
ted
t

t

o-

-

en-

for

on

d-
-

An integration by part on theu6 , u' dependence then a

lows the linkage operator to act upon the tr(eg*0
ss•F)1 term

only; and one sees that the Jacobian of the transforma
between theu6(s8) and f (s8) variables is exactly the sam
as in Eq.~12!, except that hereE5E3(x1 ,x2 ,x'). If we

restrict EW to lie in the 3 direction, then again, tr(eg*0
ss•F)1

→4cosh„*0
sds8gE(s8)… and the limitsu65u'50 are to be

taken after the linkage operator of Eq.~16! acts upon theu6 ,
u' dependence inside 4 cosh„*0

sds8gE(s8)…, with E
5E3„x12u1(s8), x2u2(s8), x'2u'(s8)….

For arbitraryEW andBW fields, one must include at the ver
beginningA' (x1 , x2 , x') 5” 0, although it is still conve-
nient to retain the gauge conditionA250. Now there will
appear in this final generalization of Eq.~16! the extra factor

F@u#5expF2 igE
0

s

ds9A'
2 ~s9!1 ig/sS E

0

s

ds9A1~s9! D 2G
where, following the notation of Eq.~6!, A'(s8)5A'„x1

2u1(s8),x22u2(s8),x'2u'(s8)…, and F@u# multiplies
the trace of the now more complicated ordered exponen
on

al

~OE! (eg*0
ss•F)1 . Following techniques developed for un

tary OEs@7#, the present OE can be approximately evalua
analytically whenEW and BW directions change in ways tha
can be characterized as slowly varying~‘‘adiabatic’’! or
rapidly fluctuating ~‘‘stochastic’’!; and the same linkage
operator as in Eq.~16! is then to act upon the produc

F@u#(eg*0
ss•F)1 . Note that there will appear another Jac

bian, involved in the variable change fromu'(s8) to f'(s8),
as in Eq.~12!, and both Jacobians will simultaneously in
volve EW and BW . Alternatively, if one wishes to avoid the
direct evaluation of these Jacobians, one can rewrite this g
eralization of Eq.~16! in terms of functional integrals, and
attempt to use mean field or stationary phase methods
their approximate evaluation. This extension of Eq.~16! pro-
vides a functional representation ofL@A# appropriate for the
most general choice ofEW and BW fields. When the latter are
constants, and in particular forBW 50, it reduces immediately
to Schwinger’s 1951 solution, while it generates a definiti
of L@A# at any stage inbetween.

Finally, a more symmetric formulation, explicitly depen
ing only on theFmn may be obtained by starting from for
mula
L@A#52
1

2E0

`ds

s
e2 ism2E d4xE d4p

~2p!4ei *0
s(d2/dv2)eip•*0

svN8E d@V#E d@u#ei *0
sumVme2 i *0

sVm*0
s8 vm

3e2 ig*0
sds8vm(s8)un(s8)*0

1ldlFmn„x2lu(s8)…tr(eg*0
ss•F„x2u(s8)…)12~g→0! ~17!

where every factor of*0
s8

ds9vm(s9) has been replaced byum(s8). Performing the linkage operation,*d4p and*d@V#, then
leads to the result
3-5
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L@A#5
i

32p2E
0

`ds

s3 e2 ism2E d4x )
m51

4 E d@u#D@um#ei *(d/dum)J(d/dum)tr(eg*0
ss•F)1eQ ~18!

D@um#5dFum~s8!22gE
0

s

ds9S u~s82s!2
s8

s D E
0

1

ldlFmn„x2lu~s9!…un~s9!G
Q52 ig2E

0

s

ds8E
0

1

ldlE
0

1

l8dl8E
0

s

ds9un~s8!us~s9!Fmn„x2lu~s8!…Fms~x2lu~s9!!Fd~s82s9!2
1

sG .
of

of

te
e

y

-
el
lu

c-
The only solutions for eachum(s8) allowed by the product of
the fourd functional of Eq.~18! areum(s8)[0, although the
Jacobians obtained from each variable changeum(s8)
→ f m(s8) will each be unity only for the Schwinger case
constant Fmn ; in this latter situation, the
exp@i*(d/dum)J(d/dum)# operation may be recast into that
soluble Gaussian functional integrals over theum(s8), lead-
ing back to Schwinger’s original result.
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APPENDIX

We present here an independent calculation of the de
minant of Eq.~12!, defined by the transformation from th
functional coordinatesu1(s8) to f (s8), where

f ~s8!5u1~s8!12gFs8

s E0

s

ds9A1~s9!2E
0

s8
ds9A1~s9!G

~A1!

andA1(s8)5A1„x12u1(s8),x22u2(s8)…. Because of the
delta functionals of Eq.~9!, everyu2(s8)50, while the only
possible solution off (s8)50 corresponds tou1(s8)50; this
latter point has been discussed in Ref.@3#, but for complete-
ness is reproduced below.

The inverse determinant, constructed from the quantit

d f ~s1!

du1~s2!
5d~s12s2!12gFs1

s
2u~s12s2!GE~x1 ,x2!

[^s1u~11M !us2& ~A2!

is therefore to be evaluated atu6(s8)50, as stated. Refer
ence@3# displays that determinant as the solution of a r
evant differential equation; here, one follows a direct eva
ation, by introducing the operators

S5kE
0

s

ds8E
0

s

ds9S s8

s D us8&^s9u,

Q5kE
0

s

ds8E
0

s

ds9u~s82s9!us8&^s9u
01600
r-

-
-

where the unit, operator in this space is given by

1I5E
0

s

ds8us8&^s8u, so that ^s1us2&5d~s12s2!.

With k52gE, one has ^s1uSus2&5k(s1 /s), and
^s1uQus2&5ku(s12s2), so thatM5S2Q.

The quantity det@d f /du1# can be written as exp@trln(1
1M)#, and a direct evaluation of the latter’s exponential fa
tor proceeds as follows. With trln(11M)5trln(11S2Q)
5trln(12Q)1trln„11S@1/(12Q)#…, it is easy to see that

K s1U 1

12Q Us2L 5d~s12s2!1ku~s12!

3@11ks121~ks12!
2/2!1•••#

5^s1u1us2&1eks1^s1uQus2&e
2ks2,

s125s12s2

so that

K s1US 1

12Q Us2L 5
ks1

s F11E
s2

s

ds8kek(s82s2)G
5kS s1

s Dek(s2s2).

Similarly,

K s1US S 1

12Q D 2Us2L 5QK s1US 1

12Q Us2L ,

Q5
1

ks
@eks212ks#

so that

K s1US S 1

12Q D nUs2L 5Qn21kS s1

s Dek(s2s2)

and hence

K s1U lnS 11S 1

12Q D Us2L 5kS s1

s Dek(s2s2)
1

Q
ln~11Q!

or
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trlnS 11S 1

12Q D5
1

Q
ln~11Q!E

0

s

ds1kS s1

s Dek(s2s1)

5 ln~11Q!.

Further,

^s1u ln~12Q!us2&52^s1u~Q1 1
2 Q21 1

3 Q31••• !us2&

52ku~s12!F11
k

2!
s121

k2

3!
~s12!

21•••G
so that the only contribution to this quantity’s trace, wi
s15s2, andu(0)51/2, comes from its leading term, trln(
2Q)52ks/2. With 11Q5(1/ks)@eks21#, one finds

exp@ trln~11M !#5
2

ks
sinhS ks

2 D ~A3!

and the inverse of this factor produces exactly the requ
determinant of Eq.~12!.

Finally, and for completeness and clarity, we present
argument that the only solution of the restrictionsf (s8)50
for all 0<s8<s corresponds tou1(s8)50. Since it is clear
from Eq.~9! that allu2(s8)50, and allA250, we suppress
the 1 subscripts, and consider the solutions of

u~s8!52gE
0

s8
ds9A~s9!22g

s8

s E0

s

ds9A~s9! ~A4!

where A(s8)5A„x12u(s8),x2…, E(s8)5E„x12u(s8),x2…

52]A/]x1 .

Since u(s8) was defined as*0
s8

ds9v(s9), where v(s9)
corresponds to a velocity at proper times9 ~see @6#!, we
assume on physical grounds~and even for virtual particles!
that v is a continuous function of its argument, although
restriction is placed on its derivatives. Henceu(s8) is a con-
tinuous function with~at least! a continuous first derivative

Evaluating u(s8) at s850 and at s85s, shows that
u(0)5u(s)50. Further,u8(s8) is given by

u8~s8!52gA~s8!22g
1

sE0

s

ds9A~s9! ~A5!
.

s.

01600
d

e

and therefore

u8~0!5u8~s!52gFA~x1 ,x2!2
1

sE0

s

ds9A„x12u~s9!,x2…G
~A6!

which may or may not be zero. Let us suppose that the rig
hand side~RHS! of Eq. ~A6! is positive, and it then follows
that u(s8) must vanish at~at least! one point, says1 , 0
<s1<s; and that ats1 , u8(s1) must be negative. But from
Eq. ~A5! one sees that, ifu(s1)50, then u8(s1)5u8(0)
5u8(s), and has the wrong sign. Therefore, there must b
least two other points, one in the interval between 0 ands1,
and the other betweens1 ands, whereu will vanish with a
negative slope. But, again, from Eq.~A5!, wheneveru van-
ishes its slope is the same, here assumed positive. The a
ment can be repeated indefinitely, and the only possible c
clusion is thatu8(s)50, for all points s8 in the interval
between 0 ands. Then, from Eq. ~A5!, it follows that
u8(s8)50. This is the reason why both det@du1 /d f # and
the functional-operation factor in the equation following E
~10! are evaluated atu6(s8)50; and for the latter factor, this
limit is taken after the functional derivatives are performe

One final remark, to insure clarity. The replacement, j
after Eq.~16!, of the trace of the ordered exponential~OE!,

tr(eg*0
sds8s•F)1 , by 4cosh(*0

sds8gE(s8)), when EW points in
one direction~e.g., the 3 direction! only, is easy to see using
the old-fashioned representation

gm5 ia3g4 , a35S 0 s3

s3 0 D , g45S 1 0

0 21D
where s3 is the Pauli matrix; in this way, s•F
→a3E3. Since a3 commutes with itself, the com
mutator @s•F(s1),s•F(s2)# vanishes for any pointss1
and s2, and the OE may be replaced by an ordinary e
ponential. Then, a simple expansion in powers ofg pro-
duces for the trace the result 4cosh(*0

sds8gE(s8)).
nd
l

@1# T.N. Tomaras, N.C. Tsamis, and R.P. Woodard, Phys. Rev
62, 125005~2000!.

@2# J. Schwinger, Phys. Rev.82, 664 ~1951!; see also L.S. Brown
and T.W.B. Kibble,ibid. 133, 705 ~1954!; and the many refer-
ences listed therein.

@3# H.M. Fried and R.P. Woodard, Phys. Lett. B524, 233 ~2002!.
@4# H.M. Fried, Y. Gabellini, B.H.J. McKellar, and J. Avan, Phy

Rev. D63, 125001~2001!.
@5# E.S. Fradkin, Nucl. Phys.76, 588 ~1966!; a detailed explana-
D tion and derivation of the Fradkin representation can be fou
in the book by H.M. Fried,Functional Methods and Eikona
Models~Editions Frontie`res, Gif-sur-Yvette, France, 1990!.

@6# H.M. Fried and Y. Gabellini, Phys. Rev. D51, 890~1995!; 51,
906 ~1995!.

@7# M.-E. Brachet and H.M. Fried, Phys. Lett.103A, 309 ~1984!;
J. Math. Phys.28, 15 ~1987!; H.M. Fried, ibid. 28, 1275
~1987!; 30, 1161~1989!.
3-7


