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Baryon charge radii and quadrupole moments in the IN. expansion: The 3-flavor case
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We develop a straightforward method to compute charge radii and quadrupole moments for baryons both
with and without strangeness, when the number of QCD color chardés. i¥he minimal assumption of the
single-photon exchange ansatz implies that only two operators are required to describe these baryon observ-
ables. Our results are presented so that3ptlavor and isospin symmetry breaking can be introduced accord-
ing to any desired specification, although we also present results obtained from two patterns suggested by the
quark model with gluon exchange interactions. The method also permits to extract a number of model-
independent relations; a sampler@rﬁ=3/(Nc+ 3), independent of S(3) symmetry breaking.
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[. INTRODUCTION calculation is, as seen below, very similar in the two cases.
As mentioned in the previous works, a treatment of the
Between the static properties of hadrons, e.g., massesirange sector was not undertaken at the time of their writing
electromagnetic moments, matter and charge radii, and lowsecause the group theory in the 3-flavor sector is more in-
energy dynamical properties such as scattering lengths anglved and warrants a separate treatment. The operator
decay rates, a wide variety of accurately measured data ligdethod calculation specific to the cd$g= 3, which appears
outside the perturbative range of QCD. While techniques,ery similar to the genera| QCD parametrizat[@j was car-
such as lattice gauge theory, QCD sum rules, and a widged out for baryon quadrupole moments[B; in that case
variety gf modgls have been_ developed to study this exthe calculation can readily be carried out for states with or
tremely interesting energy regime, the only known perturbayithout strangeness since it is relatively simple to perform
tive approach for strongly interacting Yang-Mills theories .50 jations using the full baryon spin-flavor wave functions
that holds at all energies is theNl/ expansiorf1], whereN, with only 3 quarks.

is t_lr_lre]engg:bgrr] C;I;g%?ri;hzrrﬂiiiaﬂ amenable to this expan Here we demonstrate that the solution of the full 3-flavor
. bary p y . P N.-quark problem can nonetheless be handled entirely using
sion, since baryons wittN; colors containN. valence

quarks. Then, each additional quark participating in an inter-S U(2) Clebsch-GordalCG) coefficients, ultimately because

action (specified by an operator with known transformationthe strange state; are related to nonstrange states through the
properties under spin and flayobrings in a factor of the SU(2) U-and V-spin Subgrogps of S@) [6]. In'the case of
QCD coupling constanix1/N, due to the requirement of the ground_-sta_lte baryons, i.e., those belonging to the large-
one or more gluons to connect this quark to the interactionNc generalization of the Si8) 56-plet, the total symmetry of
An operator in whichn quarks interact is called anbody  the wave function under simultaneous exchange of spin and
operator; its suppression in powers oNltends to increase flavor indices simplifies this procedure considerably.
as n increases. This “operator method” has recently been In this paper we focus only on those aspects of the prob-
used to study a wide variety of baryon observalfge Ref. lem unique to the strange sector; the reader is directed to
[2] for a recent list of referencesThe strength of the W,  Refs.[2] and[3] for a more thorough discussion of details of
expansion is that additional gluons do not spoil this countingthe 1N, operator method, as well as outlook for the experi-
and the only other powers dfi; that need be taken into mental measurement of baryon quadrupole moments. The
account arise from the combinatorics of the quarks. It shouldemainder of this paper is organized as follows: In Sec. Il we
also be noted that the glue and sea quark pairs in the baryobriefly discuss the experimental situation regarding measure-
not just the valence quarks, are subsumed by the operatatient of baryon charge radii. Section Il presents the details
method[3]. of the 3-flavor calculation; the most important feature of the
This work extends the results of two of our recent papersanalysis of 2] and[3] survives, namely, that only one opera-
on baryon observables in theNl expansion, regarding tor appears at the 2-body level and one at the 3-body level,
charge radii[3] and quadrupole momen{®], to baryons leading to a large number of constraints between the observ-
with nonzero strangeness. These two types of observablesbles. Section IV presents a sample of the plethora of results
are studied here in a single paper because the method obtained from this calculation, e.g., by including frequently
used patterns of S3) flavor symmetry breaking. Section V
summarizes. The tables and Appendixes contain the exten-
*Electronic address: alfons.buchmann@uni-tuebingen.de sive results of the calculation in forms designed to be most
"Electronic address: Richard.Lebed@asu.edu useful to interested researchers.
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[l. CHARGE RADII: PROSPECTS FOR MEASUREMENT ground events. But nonetheless one can anticipate such dif-
ficulties being overcome in the future.

For the spin-3/2 resonances aBd, however, the short
lifetimes mean that charge radii can only be observed in
off-shell processes. For example, the'* charge radius
could be extracted in principle through the processp
—a*tpe e’, but in this case one would need to use model

The mean-square charge rad'n@ of a baryonB is de-
fined through the elastic Sachs charge form faéttg?), a
function of the photon 4-momentum transfet often de-
noted byGg(q?), by the relation

2
P2—_ idF(q ) (2.1) depenc_zlence in separ_ating resonant from con'_[inumﬁp
B Q dof? . ' scattering, as well as isolate the source of the virtual photon
q"=0 v* —e*e” as coming solely from thA. Processes with real
while the total charg&=F(0) is omitted ifQ=0. photons, which for example can be used to measure mag-

The operator giving rise to charge radii is a scalar thaf?€tic_moments, cannot be utilized to probe the Coulomb
does not change electric charge or strangeness. Thus, it cofi@nsitions from which charge radii are extracted. The situa-
nects only states with the same tafall 5, andY. However, ~ tion is very similar to that described in Ref2] for the. .
the operator can connect states of different isosgince the ~Paryon quadrupole moments. Therefore, our results divide
electromagnetic interaction does not conserve this quantuffito tWo categories: Predictions for observables that may be

number. Each baryon state thus has a charge radius, and ffasured in the near-to-medium future, for which the quality
addition there exists ag% transition charge radius. of our results can be checked, and those that can only be

At the time of this writing, only thep, n, andX~ charge predicted but not measured any time soon.
radii have been measured. A charge radius is the first non-
trivial moment of a Coulomb monopoléCQ) transition am-
plitude, and thus charge radii of hadrons are typically mea-
sured through their coupling to Coulomb photons in elastic A. Constructing the states

electron scattering. . -
In the case of the proton, a dedicated measurement of th Naively, one would expect that $8) CG coefficients are

clastic electron-proton cross section at very low momenturﬁ%qmred to construct a state with strangeness. This potential
P y -~ complication can be avoided by noting that the strange states
transfer| 7] led to the proton root mean-square charge radius

o > are related to the nonstrange states Wiand V-spin SU2)
Mp= \/r—g_—o.862(12) fm[rp=0.743(21) fi], a value that subgroups of S(B). In an arbitrary S(B) representation,
is considerably larger than the famous dipole result of  one method of calculating matrix elements is to start with the
=0.80 fm obtained by Hofstadtezt al. [8]. A dispersion-

! - ! " nonstrange states and apply the lowering operdtorsand
theoretical analysis of electron scattering data availablg, imposing along the way orthogonality in isospin among

. 2_
through 19959] gives the result,=0.717(15) frf. HOw-  qtherwise degenerate states sucEdmnd A, which is pre-
ever, measurements using the hydrogen Lamb shift as afjsely the same approach as used to obtain flavor eigenstates.

alternative source of information on the proton size tend to  However, this method does not exploit the full symmetry
produce larger values. For example, REIQ] extracts a gyailable to thelP=1/2t and 3/2 ground-state baryon

value ofr,=0.890(14) fm[r;=0.792(25) fnf], while Ref. g3 multiplets (We do not call them “octet” and “de-
[11] extracts a value of>=0.780(25) fnf from the experi-  cuplet,” since the corresponding multiplets for arbitrasy
ment of Ref.[12]. A reanalysig13] that includes Coulomb are much largef16].) These flavor multiplets belong to the
and recoil corrections foh>1 targets produces a result that largeN, analogue of the S(8) 56-plet, which is completely

Ill. DETAILS OF THE CALCULATION

accommodates both types of data: symmetric under simultaneous exchange of spin and flavor
) ) indices. That is to say, the, U-, andV-spin symmetries are
r,=0.77925) fm*, (2.2 correlated with the S(2) spin symmetry in a particularly

convenient way, as we now explore.
which we use in our analysis. The other available experimen- | et N, denote the number of valence quarks of type
tal values are the baryon; thenN.=N,+Ngy+Ng and 13=(N,—Ng)/2.

) 5 Since the spin-flavor wave function is completely symmetric,
ry=-0.1133)(4) fm* [14], (2.3 the spin wave function of quarks of typewithin the baryon
must be completely symmetric, which means that khe
spin-1/2 quarks of typer carry the maximum possible spin
value, S,=N,/2. This information alone allows to analyze
the nonstrange states. In the strange baryon case, note that
each physical baryon state is still specified by its isodpin
The measurement cué, in particular suggests the possibil- which uniquely determines the symmetry of the flavor wave
ity of measuring the charge radii of other long-lived strangefunction carried by justi andd quarks. Owing to the com-
baryons, thes*, A, 27, E° andQ ™. In such cases the plete symmetry under spir flavor, the spin wave function
impediments are experimental in nature, particularly thecarried by theu andd quarks together must possess exactly
problem of producing a beam of baryons of sufficient qualitythe same symmetry properties as the corresponding flavor
that electron scattering events can be separated from backave function, and hence, the s@py=S,+ Sy and isospin

and the very recently published result

r;-=0.6112)(9) fm? [15] (2.4)
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| have the same eigenvalug, =1. operators, so that typically the corresponding primed and
But now one need only combine the stataiofcombined  unprimed coefficients are equal. Values usedQ@prare dis-
spinS,y=I and isospin quantum numbdrg; with the sym-  cussed in Sec. IV below. Note that 3-body operators with 3
metrized strange quarks carrying sgBnto obtain the com- Pauli matrices are abseft] due to time-reversal symmetry.
plete state with spin eigenvaludsl;, whereJ=S,4+S;. To ~ The use of primed and unprimed coefficients with the same

be precise, labels echoes the similar form of the operators in the two
cases; indeed, in a number of models the primed and
13335 5 (SySeSs)) unprimed coefficients are relat¢ig].
| s S One can obtain the most general charge radius and quad-
_ E 5| S E Su S rupole moment expressions by computing the 12 fundamen-
S Ca SeS, §. s S, SilShq tal matrix elements
X |SuS5)] SeSD)SsSD), (3.0 (aB)O=(S, Sp),
where the parentheses denote CG coefficients. Now, in order (a,8>(2)z(3S§Sg—Sa- Sp)» (3.9

to compute the matrix elements of any particular operator,
one need only sandwich it between a bra and ket of the fornivhere (@,8) are the 6 distinct pairsu(u), (u,d), (u,s),

of Eq. (3.1) and use the Wigner-Eckart theorem. (d,d), (d,s), and (,s) (note the symmetry undet< ).
Then, charge radii or quadrupole moments for baryons in the
B. The operator basis presence of arbitrary S8) or isospin symmetry breaking

. . can be computed simply by taking an appropriate linear com-
In the analysis of both charge radii and quadrupole MOYination of these primitive matrix elements.

tmhg?iiewshgts:ntgreo s;rr:gIﬁ}—gggtggr;gghoilgeivnggg‘ggfg’e;'?\é’ In particular, while the indices,j,k indicate each of the
only one quark line within the baryon. Although physically ¢ quarks within the baryon, let the indices 8, y indicate

rather mild, this assumption drastically reduces the numbe?ollectlvely the quarks of a particular flavard, or s. The

of distinct operators that need to be consider@tbwever, coefﬂmentsﬂfor the most general operators that appear for the
. . charge radii or quadrupole moments can be represented by
note that the full basis of operators can certainly be used,

shown for the charge radiB8] or for the magnetic and quad- ai—veltz_tlca)rz such a?_ (fa“ 'aﬁ 13s). TEHS’ matrlig eletments of
rupole moment$17].) Using indices,j,k to indicate quarks € ~-body operator for charge radii generalize to

within the baryon, the most general operator expansion for Ne

the charge radius operator out to the 3-body level—all that is 2 a = E N a (3.5
necessary since 4-,5-, etc. body operators acting upon physi- i ba e

cal baryons are linearly dependent on those at lower order—

reads while those of the 2-body operator may be expanded as
dF 2 Nc Nc
—6 (q ) =A 2 ai+—2 biCj (T,(TJ E biCj 0'|0'J :42 baCB<a,8>(0)
do? 42=0 i N¢ /7 %] @B
C _
+ — E die]'fk g O'J y (32) 3% Nabaca, (36)
NC i#)#k

where the coefficients,b,c,d,e,f depend only on quark and those of the 3-body operator become

flavor; to obtain the results of Reff3], seta;=b;=f;=Q;,
whereQ; is the charge of théth quark, andc;=d;=¢;=1. <
The corresponding expansion for the quadrupole moment op-
erator reads

i£]#k

2 diejfk O'i'0'1'>:+42ﬁ daeﬁ <a’B>(O)E Nyf,y
a, Y

~42, deeg(fot1p)(aB)®
B/ a,B
o= ;J bi ¢ (30,01~ 071" )
Cc
a B

C!
+_22 di,ej,f{( (30’iZO'J'Z_0'i'0'j), (33)
Ne 1212k +6 Nod.e.fo, 3.7
where the coefficientb’,c’,d’,e’,f’ again depend only on
quark flavor, and the results of R¢2] may be obtained by whereN,, is the number of quarks of type (values given in
settingb/ =f/ =Q;, ¢/ =d/ =€/ =1. Note that most models Table ), which satisfies the constraints,+Ny+ Ng=N,
use a universal form of SI3) symmetry breaking for all andN,—Ny=2I5.
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TABLE I. Values of N, 4 s [whence(S2)=(aa)®=(N,/2)(N,/2+1)] and matrix elements of the rank-0 tensdes8)(® with «
# . Since spin is unchanged by these operators, the matrix elements vanish for all off-diagonal transitions ®xcéptthat case, the

only nonvanishing entries af@is)®=—(ds)(®=— % /[(N.— 1) (N.+3).

State N, Ng N (udy® (us)© (ds)©®
AT 3(Ng+3) 3(Ng—3) 0 —15(Ne—3)(N+7) 0 0

At (N +1) 2(Ng—1) 0 — = (N2+4N,— 29) 0 0

A© (N~ 1) 2(Ng+1) 0 — 35 (N2+4N,—29) 0 0

A” 3(Ne—3) 7(Ne+3) 0 —75(Nc—3)(Ng+7) 0 0
D 3(Ne+1) 3(Nc—3) 1 —15(N;—3)(N+5) +15(Ng+5) —15(N;—3)
30 5(No—1) 3(No—1) 1 —16(NZ2+2N,—19) +3 +3
- 3(Nc—3) 3(Ne+1) 1 —16(Ng—3)(N+5) —15(N;—3) +15(Ng+5)
g*° 3(Ne—1) 3(Nc—3) 2 —16(Ng—3)(Nc+3) +15(Ng+3) —13(N;—3)
B* 3(N.—3) 3(Ne—1) 2 —16(Ng—3)(Nc+3) —15(N;—3) +15(Ng+3)
Q- 3(N.—3) 3(Nc—3) 3 —16(Ng—3)(N+1) 0 0

p 3(Ne+1) 3(N.—1) 0 —16(N;—1)(N+5) 0 0

n 3(Ne—1) 3(Ne+1) 0 —16(N—1)(N+5) 0 0

3* 3(Ne+1) 3(N.—3) 1 —16(N;—3)(N+5) —3(N+5) +5(N;—3)
30 3(Ne—1) 3(N.—1) 1 —16(N2+2N,—19) -3 -3

A 3(N.—1) 3(N.—1) 1 —16(Nc—1)(N+3) 0 0

3 3(N.—3) 3(Ne+1) 1 —16(Nc—3)(N+5) +3(N;—3) —5(N+5)
=k 3(N.—1) 3(N.—3) 2 —16(Nc—3)(N+3) —8(N+3) +5(N;—3)
B~ 3(N.—3) 3(N.—1) 2 —16(Nc—3)(N+3) +(N;—3) —5(N+3)

Matrix elements of the 2-and 3-body operators for thethrough this exchange is just-(1)%"S~!. Of course, the
guadrupole moments expand as values ofS,, which simply count one-half the number of
quarks of flavora in these baryons, remain unchanged from
b'c/ (30— o)) =4S b’ ¢ @), |n|t|al'to flnal state. The same is true fbngu—Sq, but the
<; 1€ (301,01, 0 0‘)> g{; « Cp (@B) total isospin may change to a vallle One thus finds for an
(3.8 operatorQ that

and ("l O d)[ITg)=(=1)" (1" =150l = 13).
(3.10

<i¢j¢k di &j f (301,05, o7 "'J')> There are almost enough constraints to allow extraction of
all the matrix elementéa8)(®) in terms of simple combina-
tions of eigenvalues of the compatible operators of the sys-
— [N (2) ’
+4B2y dge(By) ; Nafq tem. To be precise, these ar&—J(J+1), J,, Si
—(N4/2)(Ny/2+1) for a=u,d,s, and 1?=S2,;=1(1+1).
—a> d'el(f +f ) 39 Note that the eigenvalué;=S,—Sy is not independent.
az,g «epfatTp)ah) @9 Clearly, (aa)®=(N,/2)(N,/2+1). The other two con-

straints are
The two examples of S@3) symmetry breaking in the quad-

rupole operators considered in the=3 work of Ref.[5]
correspond to settingd,=Q,(m/m,)", c.=e,=m/m,,
d,=(m/m,", andf/,=Q,, wherem,=myg=m and m/mg

J<J+1>:<J2>=<<su+sd+ss>2>=a2ﬂ (aB)®,

=r represent S(B) symmetry breaking arising from differ- I(1+1)=(S)={((S,+)?)
ent quark masses. The quadrdticbic) case in[5] isn=1 ) ) )
). =(uwy®+2{(ud)™ +(dd)™. (3.11

From these constraints it is clear that only one of the two

matrix elementgus)(© or (ds)(®) need be computed directly
Even with this decomposition, it is not necessary to com<rom Eq. (3.1), while the other can be obtained either from

pute the entire set of 12 matrix elements separately: They aibe inversion rule Eq(3.10 or from the constraints Egs.

related by a number of simple constraints. First, note that Eq.3.11).

(3.1) is sensitive to the exchange afand d quarks only As for the matrix element$a,8>(2), the most obvious

through the second CG coefficient, and the factor obtainedonstraint reads

C. Reduction of the basis
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(32— 0% =(3(St+Sh+SH)?— (S + 4+ SH)?) (uuy@+(ud)@+(us)@, (3.16
) In summary, then, the charge radii matrix elements can be
:2/3 (a,3>( ). (3.12 computed in complete generality using only eigenvalues and

the calculation ofus)(®), while the most general quadrupole
The left-hand side(l.h.s) of this expression is of course moment matrix elements can be obtained from further ex-

simple to compute; in the stretched stagg<J) in which  Plicitly calculating(S;), (S5, (uw)®, and(s_s>(2).
quadrupole moments are computed, it equgBl—1) for  Another advantage of using the constraif8s1)—(3.19
diagonal matrix elements and vanishes for transitions. is that, by judicious choice of which matrix elements to com-

Another constraint may be obtained by considering the?Ute explicitly, one may obtain results containing nothing
more complicated than g &ymbol. These appear due to the

combination | -
coupling of the quantum numbers of expansions for both the
(3(Sh9) 2= S =(3(3,— SH%-1?) bra and kefEq. (3.1)] through the operator. For example, in
) the matrix elements dfuu)(® defined by Eq(3.4), one uses
=31;-6J,(SH) +(s9? the Wigner-Eckart th to obtai
z AR e Wigner-Eckart theorem to obtain
(S~ (1%), (313 (3,8)3()*-I8}s; )
whose I.h.s. is just =ds's,9s 752 VSu(S,+1)(2S,—1)(25,+3)
<UU>(2)+ 2<Ud>(2)+<dd>(2). (3.19 2 Ss,
X , 3.1

Note that this constraint requires one to compute also the (0 S Sﬁ) @19

matrix elementSZ), but this calculation turns out in purely
algebraic terms to be simpler than that of the rank-2 tensor

H Z
One still requires one more constraint to compute separa ,ozse in the bra a_nd ket_ of E@.1) by s_u_ms overs, anq
values for(us>(2) and(ds>(2); once one of these matrix el- <u - Four appropriately linked CG coefficients produceja 6

ements is in hand, the other is obtained by using (Bd.0. symbol, and six produce g $ymbol. In our case, the matrix

The required constraint, again Usi§2,)=(1%), may be elements(us)® and(ds)?) directly computed would pro-
obtained from duce § symbols. In fact, so d¢us)(® and(ds)®, but they

produce a 9§ symbol with one zero argument, which can be
1 written as the product of two j6symbols, as seen below.
z z (0) 2 p Josy
(3803~ Sy- ) =3(S)J,—(us)™ = (I +S-S0), Analytic forms for 6 symbols with one argumen&2 ap-
(3.19 pear in Edmond$19], which is precisely what is needed to
compute the matrix elements of tensors up to rank 2.
where the l.h.s. clearly equals The analytic forms of the matrix elements of interest are

gemd the CG coefficient in this expression is linked to the

(u8)©= 55 5855 555,055,055, (— 1)1 "SRG, (S,+ 1)(25,+ 1)S(S+ 1) (28 + 1) (21 +1)(21 +1)

S S, I(s s |
X[l X squ k ss] (318

(Sh)=0g15,05/5, 051,05 5.(— 1) 55 FSH ST TINS5 (S, + 1) (28, + 1) (21 +1)(21 +1)(28 + 1)(25+1)

S S, I'][S I S|f1 & S
Tl e il s S e
| S, S|{1 S S

<S§>:5s;sz5|'|55{;5”55(;5(155;55(—1)1+SZ+SS+I\/Ss(Ss+1)(255+1)(23'+1)(23+1)|1 g SJ(O s, _SZ)-

(3.20
(uuy@= 9s15,0111 055, 95/s5,055.( — 1)S S FSASH IS8y

S¢ Sy I][S I S|/2 § S
(25, DS(SF D253+ D@ )2S+(2S+ )|, |, Su] IV (0 ‘ —Sz)’
(3.21
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| S S
<55>(2):55;825I'I5st’jsu55c’isd5séss(_1)SZ+SS+I\/(233_1)Ss(ss+1)(253+1)(255"‘3)(23""1)(23"‘1)[2 S ss}
2 g S) -
X . .
0 s - (322

Note that, in the interest of exhibiting maximal symmetry, satz, since we have computed and tabulated all the relevant
the remaining CG coefficients have been written as@n-  primitive matrix elements. However, the 8)-symmetric,
bols[19]. quadratic, and cubic models provide a useful picture in

Charge radius and quadrupole transitions are diagonal iwhich to investigate the consequences of the arbitidyy
both charge and strangeness, and thus connect only statescaficulation, without adding any new parameters. Another in-
the same values df; and Ng, but do not necessarily con- teresting scheme for S8) symmetry breaking, but not in-
serve isospin. Furthermore, charge radius operators are scgestigated here, is that provided by chiral perturbation
lars and thus connect only states of the same totalk@nt  theory. In this case, loop graphs that include the octet of light
quadrupole operators are rank 2 and therefore can connegtesons as Goldstone bosons produce terms with different
spin 3/2 to 3/2 or 1/2, but not 1/2 to 1/2. These selectiordependences, e.g., logarithmic.
rules are reflected by the transition matrix elements repre- We have also used expressid26)] for the quark charges
sented in the tables. Values at arbitraMy for the matrix  that simultaneously guarantee chiral anomaly cancellation of
elements aB)© (a# B) for all relevant states are collected the N.-extended standard model and fix the total charges of
in Table I, for S% in Table II, for (aa)® in Table Ill, and  theN¢-quark baryons to equal thelé;=3 values. These are
(aB)@ (a#p) in Table IV. One may obtain results for
charge radii and quadrupole moments, including arbitrary Quc¢t=(N¢+1)/2N;, Qgsp=(—Nc+1)/2N.. (4.2
SU(3) symmetry breaking, by combining the results of these
tables using the expressio(&5—(3.9) derived in the previ-  Given the primitive matrix elements of Tables |-V, one may
ous subsection. alternately compute expressions using the stigt 3 val-

ues for the quark charges, with the caveats that the anomaly
IV. RESULTS cancellation conditions are no longer satisfied and the baryon
charges becomi, dependent.

We exhibit in the Appendixes expressions for the baryon One may choose any of a number of schemes for obtain-
charge radii(A) and quadrupole moment®) under three ing interesting predictions from our results. Rather than se-
sets of assumptions familiar to researchers in the quarlecting just one and producing exhaustive results, we discuss
model. The first is simply to assume no @Uflavor sym-  several possibilities and exhibit illustrative examples.
metry breaking except for that inherent from the quark First, one must differentiate predictions that hold in the
charges. The second and third, which we call “quadratic”physical caseN.=3 from those that hold in the NL—0
(n=2) and “cubic” (n=3) SU3) symmetry breaking, re- |imit. The former have the advantage of not depending on the
spectively, correspond to modifying the spin-spin terms inquality of the 1N, expansion atN.=3, but may depend

the following way: upon delicate cancellations between terms at different pow-
A ers in 1N.. Thus, such predictions may hold well only for
o oj— ojoym’/mim;, (4D N,=3 but not for 5,7, ... Conversely, the latter have the

advantage of holding to a desired level of accuracy for small
where m; denotes the constituent mass of quarkndm  values of 1N, but these corrections may turn out to be
=my=my is the light quark constituent mass, thus fixing all numerically significant foiN.=3. As we exhibit below, a
parametersi-f andb’-f’ defined in Eqs(3.2) and(3.3). Let  number of relations are found to hold independenigfand
us henceforth abbreviate with/ms=r the degree of SI8)  thus satisfy both criteria. Moreover, there are even relations
flavor symmetry breaking. The quadratic mass dependenagat hold both foN,=3 and 1N.—0, but differ in between;
arises in a constituent quark model with the dominant interywe discuss one such example with the quadrupole moments
action mechanism being one-gluon exchange, while the extrigelow.
mass factor for cubic mass dependence arises from a quark
propagator between photon absorption and gluon emission.

One can also mix these pictures so that, for example, the
operator labeled byB(B’) uses cubic S(B) symmetry Baryon mean-square charge radii, denoted hen@byslre
breaking, while that labeled b@(C’) uses quadratic break- defined by the I.h.s. of Eq3.2), divided by the total charge
ing. Note that no S(B) symmetry breaking has been intro- if it is nonzero. In all suggested substitutions for the coeffi-
duced in the one-bod§A) operator. cientsa,, ...,f,, isospin violation is introduced via the

We hasten to add that it is not necessary to adgopt  single-photon exchange ansatz through a single power of the
model dependence beyond the single-photon exchange aguark charge operatdp,, which transforms as a combina-

A. Charge radii
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TABLE Il. Matrix elements of the operatoi¥’, S5, andSZ in the state of maximas, .

State (S (S (S9)
AT +26(Ne+7) ~20(Ne=3) 0
At +35(Ng+17) —55(N—13) 0
A° — 26(N.—13) +25(Ne+17) 0
A —55(Ng—3) +55(Ng+7) 0
3 +3(Nc+5) —5(N.—3) +3
3*0 +3 +3 +3
S*- —%(NC—S) +%(NC+5) +3
g*0 +15(Ng+3) —35(Ng—3) +1
B* —15(Ne—3) +35(Ng+3) +1
Q- 0 0 +3
p +13(Ng+5) —13(Ne—1) 0
n -5 (N—1) +35(N+5) 0
3 +12(Nc+5) —12(Nc—3) -5
30 +5 +5 -4
A 0 0 +3
3" —13(Nc—3) +13(Nc+5) -5
= —35(N+3) +35(Nc—3) +£
8" +35(Nc—3) ~35(Nc+3) +5
1 1
A'p +——J(Nc—1)(N.+5) — ——J(N.—1)(N.+5) 0
6\/5(0)(0) Gﬁ(c)(c)
A®n ;1 J(Ne—1)(N_+5) ! J(N.—1)(N.+5) 0
6\/§ [ c 6\/5 c c
1 1 V2
S*TRT +——=(Ng+5 — ——=(N;—3 -
12\/5( ) 12J§( c—3) 3
2*020 +i +i _\/_E
3\2 32 3
S*OA L1 JIN—1)(N_+3) ! JIN—1)(N_+3) 0
6\/§ c c 6\/5 c c
e 1 1 2
DYDY ———(N.—3 + ——(N¢+5 -—
12\/5( ¢ 3) 12\/5( ) 3
=% 0=0 1 1 \/E
E*°F +——=(N,+3 — ——=(Nc-3 -
9\/5( ct+3) 9\/5( c—3) 3
e 1 1 2
E*"E ———(N,—3 +—=(Ng+3 -
9\/5( c—3) 9\/5( ct3) 3
30N ! J(Ne—1)(N.+3) b2 JIN.=1)(N_+3) 0
4\/6 Cc Cc 4\/6 Cc c
tion of =0 andl=1. Consequently, any combination of O=r§*+—2r§*o—r§*,, (4.5
charge radii only sensitive tb=2 or | =3 operators must
vanish. These are =3
1=2:
0=2ri++—ri+—rio—ri,. (4.6)
O=2ri++—3ri++3rio+ri_, 4.3 . . o .
Equationg4.3) and(4.6) were first derived in Ref.3], while
) ) ) Egs.(4.4) and (4.5 are3 equal-spacing rules, adjusted for
O=ry+—2ryo—rs-, (44 the negative charge &®)~. In addition, using Appendix A
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State (uuy® (ddy® (s9®@
ATt +35(Ne+7)(N+9) +35(Ne=5) (N~ 3) 0
AY ~26(Ne=7)(N+7) —36(Nc—3)(No+11) 0
A° ~ 5(Ne—3)(Nc+11) ~36(Ne=7)(N+7) 0
A +75(Ng—5)(N.—3) + 25 (Ng+7) (N +9) 0
Sr* + 35(Ng+5)(Ne+7) +35(Ng—5)(N.—3) 0
3*0 ~26(Nc—3)(Ne+5) ~26(Nc—3)(N+5) 0
3 + 25(Ng—5)(N.—3) +25(Ng+5) (N +7) 0
g*0 0 0 +1
B*- 0 0 +1
Q- 0 0 +3
A'p N +7)V(N.—1)(N.+5) PRI 3)V(N.—1)(N.+5) 0
20\/5( c c (N¢ 20\/5( c c (N¢
An Lt (Ng—3)V(N.—1)(N.+5) L (Ng+7)V(Ng—1)(Ng+5) 0
20\/5 Cc Cc Cc 20\/5 Cc [ Cc
1 1
S*FSY + ——(Ng+5)(N.+7 + ——=(N.—5)(N.—3 0
40\/5(0 J(Nc+7) 40\/§(c )(Nc—=3)
3*050 —L(N —3)(N.+5) —L(N —3)(N.+5) 0
202 ¢ ¢ 202 ¢ ¢
S*O0A 0 0 0
1
3*73T + ——=(N;—5)(N,—3 + ——=(N+5)(Ng+7 0
40\/5( ) ) 40\/5( ) )
E*OEO 0 0 — 2
E*E- 0 0 -2
one finds 3 linear combinations of charge radii with ) 3,
N¢-independent coefficients that vanish for arbitrary values FA= N.+3 M- (4.10
C

of N, andr, either in the quadratic or cubic case of @V

symmetry breaking:

0=—20(r3+r2)+5(r3. —ro+3r2.)

+5r3—4(4ri T —Arie+7ri)

The N,= 3 version of this relation, but applied to magnetic
moments rather than charge radii, is known from the early
days of SU3) flavor (see, e.g.[21]). Using the measured
value for the neutron charge radig®.3) and N.=3, one
predictsri = —0.057(3) fnf. The expressiof4.10 is espe-

+10(r§*+—r§*o+ 3r§*,), (4.7 cially interesting because it definitively predicts—
independent of S(B) symmetry breaking—that the sign of
O:4(r§—5rﬁ)—(5r§++3r§0—rg,) the charge radius of is the same as that of the neutron, i.e.,
negative. This is not the case, for example, in the calcula-
+35r3+4(2r5Hrii+rio—rio) tions of Ref.[22] (extrapolation from lattice result®r Ref.
5 ) 5 [23] (constituent quark modglFor other comparisons, Refs.
—2(5r5s++3rgs0=rss-), (4.8)  [23-29 also contain tabulated results of various authors’
baryon charge radii calculations.
0= —8(r§+rﬁ)+(r§+—9r§,)+2ri+ 16r25, Another interesting result is that
+2(r, —Ors, ) +32%, —16r;,-. (4.9

ri =r2+0(1-r),

(4.1

Since so many of these charge radii are currently unmea-
sured, these relations are presented merely for completeness. that the two charge radii are equal in the(3Uimit for

A number of charge radii can be related if one permitsall values of N, as is evident from EqgAl1l) and (A13).
N.-dependent coefficients. A particularly pretty example is One expects that this relationship holds to better accuracy
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TABLE IV. The matrix elementga8)®, with o+ g, for all relevant states.

State (udy® (ug)®@ (ds)@
Att ~35(Nc=3)(Ne+7) 0 0
AT + 75(N2+ 4N +19) 0 0
A° + 75(N2+ 4N +19) 0 0
A~ — & (Ng—=3)(N.+7) 0 0
3t ~56(Nc—3)(Ns+5) +5(Ng+5) ~5(N—3)
3*0 +25(N2+2N.+5) +3 +3
- ~56(Nc—3)(Ne+5) ~5(N—3) +5(Ne+5)
=*0 0 +%(Nc+3) *%(chs)
B*- 0 —£(N.—3) + E(N.+3)
0 0 0 0
1
A"p — ——(Ng+2)V(N.—1)(N.+5 0 0
20J§( ¢t 2)V(Ne—1)(Nc+5)
1
A% +——(Ng+2)(N—1)(N.+ 5 0 0
20J§( ¢t 2)V(Ne—1)(Nc+5)
1 1 1
PR ———=(N;—3)(N;+5 — —=(N¢+5 +—=(N.—3
40\/§(c )(Nc+5) Sﬁ(c ) 8\/E(c )
1 1 1
3*030 +——(N242N_+5 - -
S*OA 0 Lt J(N.—1)(N.+3) ! JN.=1)(N.+3)
4\/5 C [+ 4\/5 Cc C
3*TRT ! (Ne—3)(Ng+5) + ! (N.—3) ! (Ng+5)
40\/5 c c 8\/§ c 8\/5 c
1 1
E*0E° 0 +———(Ng+3 — ——(N,-3
6\5( ct3) 6\/5( ¢c—3)
=k 1 +L(Nc+3)
ExE 0 —5730%—3) 62
thanrzgozrﬁ, which requiresboth the SU3) limit and N, 2 =E(r2+r2 r?)
=3 to hold, so that both corrections @f(1—r) and O(1 ETo20vp xmn

—3/N.) occur.
There is a relation of the latter type between the 3 mea-
sured charge radii:

+0[(1-r)?]+0(1-3/N,), (4.14

in both the quadratic and cubic forms of &Y symmetry
breaking. The second of the order terms implies that the
rf,— r§,+ rﬁzo(l_ r)+0(1—-3/IN,). (4.12 rgsult holds exactly only foN.= 3, but this can.b.e pushed to
higher order if one allow\.-dependent coefficients on the
l.h.s., just as in Eq4.13. The virtue of this expression as it
Or, if one allowsN.-dependent coefficients, stands is that it predictsZ_ up to second order in SB)
symmetry breaking entirely in terms of the known charge
%(NC—1)(r§—ré,)+rﬁ=0[(1—r)(1—3/Nc)]. 4.13 radii, with simple coefficients. One finds
rZ_=0.648) fm?, (4.15
Numerically, the Ih.s. nearly vanishes: One finds
—0.06(15) fn?. However, the uncertainty is the figure of where the uncertainty is dominated by that of tfe mea-
merit here, since it may be used to gauge the typical size adurement, which is much larger than the piece of the uncer-
a first-order S3)-breaking effect. tainty one would estimate from the second-ordef&Bdym-
Yet one more interesting result is metry breaking.
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Lastly, our expressions for charge radii depend upon only B. Quadrupole moments

four parametersi,B,C, andr [and a choice of scheme for  1he gnerator(3.3) defining quadrupole moments shares
SU(3) breakind. Once one additional charge radius is mea-it, the charge radius operat®.2) the feature in the single-
sured, it will be possible to solve for all the parameters ancbhoton exchange ansatz that isospin violation enters only
predict all of the other charge radii. In this senlsgr was  through a single power of the quark charge oper&qr.
chosen in the previous paragraph because it could be preshus, as before, combinations sensitive onlyl t92 or |
dicted in terms of just the measured charge radii, with little=3 operators must vanish. These are

sensitivity to the SIB)-breaking scheme or the parameter

Conversely, if it becomes the fourth measured baryon charge I=3:
radius, it will not effectively constrain the parameter
On the other hand, it turns out that the valuer§f. (to 0=Qp++—3Qa++3Qx0—Q4-, (4.18

give one examplecannot be predicted in terms Dﬁy s

even in the SIB) limit. Turning this unfortunate observation E
around means Fhat a measurementfgf would proy|de an 0=Qu++—Qu+—Quot+Qu-, (4.19
extremely sensitive probe of $8) symmetry breaking, and
permit high-quality predictions of all other charge radii. 0=Qu+p— Qaon, (4.20
Using the three measured charge radii and the assumption
of either quadraticrf=1) or cubic fi=2) SU3) symmetry 0=Qsx+—2Qs»0+ Qs+, (4.22
breaking and an assumed valuerpbne can obtain at least
ranges for the values of the parametérsB, andC. Since 0=Qs#+3+—2Qsx050+ Qsx-5-. (4.22
these parameters have an expansion MJ'létarting with ) ) ] )
m=0, the values obtained fod.=3 hold for arbitraryN,.  1he first three of these expressions were obtained in[REf.
One finds while the last two ar& *) equal-spacing rules, obtained for
N.=3 in [26] and [5]. In addition, there is precisely one
e o2 2 2 _ . .n linear relation withN¢-independent coefficients that holds
(1=2r=2r)(rptry) +3ry-=+2(2=r-rHA, for all values ofN.. in all cases of S(B) symmetry breaking
studied here:
2 2 1 n,e2_ 2 n
fp=fa-t3(5mr=rn=-3(@-r-rHB, 0=Qz+-~Qn-~2Qzv-=-. (4.23

Unlike the charge radius case, only tRhe»A quadrupole
2 2 1(1—2r —2rMr2=— f(z—r—r“)c transition matrix element has been measungd photopro-
pPIT 3 n 9 ’ duction experiment$27]), and even here the extraction of
(4.1 Q.. is plagued by a large model dependence:

r

Note that these all become E@.12) in the SU3) limit. The Qn—a=—0.108£0.009 (stat+sysh
uzpcertalntles in these expressions arg dominated by that of +0.034 (mode) fm2. (4.24
rs-, even more than by that of Including only the former

and assuming the value=330 MeV/540 MeV suggested by Since there are 3 undetermined paramdiBrsC’, andr, as

the constituent quark model, one computes well as a choice of S(B)-breaking schemewe do not at-
tempt to predict any of the other quadrupole moments nu-
A=+0.56+0.29 fn?, merically. However, we can still make a number of interest-
ing observations based on the structure of the expressions in
B=—0.05+0.29 fnt, Appendix B.

First note that each quadrupole moment expression is
O(Ng) or smaller in the M, expansion. Indeed, only one
coefficient,B’, contributes to this leading ordén the case
of charge radii, bothA (for charged baryons onlyand B
With these central values one predic§s+<rf, for N.=3, contribute at leading ordgerA few moments’ study will con-
contrary to the physical picture that theis an excited state firm that the diagonal quadrupole moments are given by the
of the nucleon and hence is more extended in space. Howexpression
ever, it is well within the error bars 0|f§, for B to be
substantial and folC to nearly vanish. For example, with
rs-=0.73 in? as suggested by the upper value of the rangeroportionality tol ; also holds for the leading terms of the

of statistical uncertainty in Eq(2.4) andr as above one transition quadrupole moments when the initial and final
obtainsA=0.79 fnf, B=0.18 fnf, andC=0.02 fn?, a hi-  paryon states have the same valuel ¢E*3 and E* ).

egarchy of parameters leading to the reasonable conclusiorhis behavior, due to the dominance of the isovector portion
rA+>rS. of the quadrupole operator, is familiar from the Skyrme

C=-0.33+0.44 fnt. (4.1

Q(13,Y)=14[1-Y(4—Y)/15]B’+O(1/N,). (4.25
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model and a variety of other model calculatiof3,29. V. CONCLUSIONS
Taken at face value, it predicts an appreciable quadrupole
moment forA®, as well asQ,,-=0. However, the sublead-
ing corrections in M., which interpolate between the ex-
tremeN.—o andN;=3 cases, soften this behavior. In par-
ticular, the diagonal quadrupole moments in the sthgt
=3 case with no S(B) flavor symmetry breaking obey

We have presented techniques that permit the calculation
of matrix elements of operators acting upon 3-flavor baryon
states with arbitraryN.. The approach requires only &2)
Clebsch-Gordan coefficients and combinations of them in the
form of 6] symbols. We tabulated the values of a set of
primitive operators for all relevant states and demonstrated

Q=4q/3(B' +C'/3), (4.269  how they can be combined to give results for charge radii or
quadrupole moments, using any chosen pattern g85(dr
whereq is the baryon charge. isospin flavor symmetry breaking. In particular, we pre-

As discussed in Sec. lll, the charge radius and quadrupolsented in the Appendixes results using the single-photon ex-
operators are very similar in that both represent spinchange ansatz, augmented by either no(33lsymmetry
dependent electromagnetic couplings to baryons. It thubreaking, or one of two popular types of &Y symmetry
should not be surprising that their coefficients are related in dreaking suggested bput not limited t9 the quark model
typical model. In Ref[2] we saw that the one-gluon ex- with gluon exchange. We obtained a large number of inter-
change picture gives rise to the relation esting predictions and demonstrated how many others can be

made either working in some particular model, or once a
1, N IN.+5 small number of additional baryon charge radii or quadru-
Qa+p= Ern Ne+3 VN.—1’ (4.27) pole moments are experimentally measured.

for which the factor on the r.h.s. followingﬁ equals unity
both for N;=3 andN.—. In fact, this result can be ob- ACKNOWLEDGMENTS
tained in a much more general setting. The key constraints

heeded to _obtam Eq4.27) areB’=—2B, C'= _.2C’ and some support under title BU813/3-1. R.F.L. thanks the U.S.
as f”“gued in Re{18] for No=3, the same relation may bg Department of Energy for support under Grant No. DE-
derived using not only one-gluon exchange, but One_p'or}l\COS-84ER40150, and the High Energy Theory Group of

exchangg or scalar exchanges, or a mixure of'these. the University of California, San Diego for their hospitality.
A particularly useful measurement for determining the co-

efficients in the quadrupole sector would be thaQef-. As
we see in Appendix B, the value &f,- is very sensitive to
the precise nature of SB) symmetry breaking, even more
o) thanré,. We discussed in Ref2] ideas in the literature We use the subscripts @, andC to denote expressions
for the experimental determination &, -; while such ex- with zero, quadratic, and cubic $8 flavor symmetry
periments are challenging, they appear to be feasible. Thiereaking via constituent quark masg¢ese Eq.4.1)] in ad-
value of Qn- would teach us much about the shape ofdition to that provided by the quark charge operator. In the
baryon wave functions and the nature of (SUflavor sym-  SU(3) symmetry limit ( = 1) the expressions with subscripts
metry. Q andC reduce to those with subscript O:

A.J.B. thanks the Deutsche Forschungsgemeinschaft for

APPENDIX A: CHARGE RADIUS EXPRESSIONS

3(NZ2—2N.+5) c 3(3N2— 12N +5)

r6oc(A"")=A+B prv: 2N (A1)
2 (AT)—A+E Nﬁ—sglgﬂs_c (Nc—l)’(\l4ch—15), A2)
Boc(at=—( 8- 2| M NS), ")
2 (A)—A+B 3(N;-5) 3(2N§—5NC—5), Ad)

2N? [\

C

5N2—17N.+30 c 1INZ— 47N +30
4N2 2N3

r5(E**)=A+B
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2 gt _A+B it 14+3r 2(11+4r)| C 36+11r 2(11+4r)
2™ ) =At+ 441 N, N2 2N, N, N
2(s%+)= At ol as W-rtar? 2(1tert2r?)) C |, 720104107 4(1142rdar?)
re(E*T)=A+ | 4+r- N % ~aN, r+r2— N N2 ,
' (AS5)
2C\5(N.—3
DR ] K
Ne/ 2N2
2 5%0__(g 2C\ 1 340 11+ 4r
ro(2*%)= N, 2N, r N
2 520 B - 11+2r+2r2 . C S 11+ 2r +2r? A6
re( )= 2N, r Ng Ng r=+r N, , (AB)
) 5NZ+3N,—30 _ 1IN2—27N.—30
I’O(E*f):A-I—B 2 — 3 ,
4N? 2N3
2 5% _pp Bl 25T 2alvan) €| 3B+ 2(11+4n)
I’Q( )= 2 r N, Ng N, r N, Ng ,
2 5% _A+B t 2—r—4r2 2(11+2r+2r%| C — 3(16+r+r2)  4(11+2r+2r2)
el )= 4 - N - Ni _4Nc e N¢ - Ng '
' (A7)
2C\5(N.—3)?2
Ne/  6N2
2 =x0_ 4 2C\1 - 6(3+r+r2)+3(9+4r+2r2)
ro(2*°)= N6 r N N2 ,
2020, _ B 342 6(3+r2+r3)+3(9+2r+2r2+2r3)
re(E*5)= 5 r— N, N%
N o 3(6+r+r2+2rd 3(9+2r+2r2+2rd g
3N~ T Ne N2 : (A8)
) 5N2+12N,—45  14N2—33N.—45
ro(E*_)_A+B 2 —C 3
6N 3N3
2 =%y ot Bl 34 op s TN 3(9+4r+2r?)| C s 3020 3(9+4r +2r2)
ro(E* )= E_ r N N2 3N, (6+r) N N2 ,
2 _A+B - +6r2(1+r) 3(9+2r+2r2+2r3)
re(E*7)= 5 r N, Ng
1obrar? 3(9+r+r?)  3(9+2r+2r2+2rd A9
SNC rr NC Ng ’ ( )
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3(3N.—5 3(N2-2N.-5
2y =arp NS o SNm2NTH)
2Ng N2
2(07)=A+ 3B 1+2r2 3+2r?| 3C 2 3+2r?
ro(QQ7)= 2N, r N, N, N, NE )
2 yopy 3B (1 o3 3F20°% 3C[ 2 3+2r? .
T A 10
(Nc—3)(Ne—1) (Ne—1)(4N,—3)
BoclPI=A+8 N N3 ' (ALD)
¢ c
2C\(N.—1)(N.+3)
rS’Q’C(n):_(B_N_c)%’ (A12)
C
Ne—3)(N,—1 N.—1)(4N,—3
fS(E+)=A+B( c 2)]\(|2c )_C( c ),\(|3 c )’
¢ c
2(2+) A+B 5 7—3r+11—8r C 5 18—11r+11—8r
r = — —r— I e ,
Q 2 Nc N(Z: NC NC Ng
205+ —A+B 5 7+r—4r2+11—4r—4r2 C 10 , 36—1lr—11rz+2(11—4r—4r2)
re)=A+3 r N, N2 N, r—r N v '
(A13)
2C\N.+3
rg(zo):+ B_N—) 2CN2 ’
¢ C
20— _|g 2C\ 1 4 11-8r
ro(2%) N. 2N, r N )
250 B , 11-4r-4r®) C , 11-4r—ar?
TN B TN e N ) (A14)
Cc
2C\3(N.—1)
dact=—[o- e 15
C
2C\ V(Ng—1)(Ng+3)
rg(EOA):_(B_N_) c N c ,
c c
2C\ V(Ng—1)(Ng+3)
2 /50— _ _ <L c c
ro(2°A) r(B Nc) N ,
C(1+1)]V(Ng—1)(Nc+3)
2 0 __ _ c c
e r{B Ne 2N, ' (A16)
2 N2-6N.—3 _ 4N2-9N,-3
ro(E_)=A+B 2N2 —-C N3 ,
c c
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2 5 - _A+B ) 1+5r 11-8r| C 5 3(4-r) 11-8r
I’Q( )_ E r NC N2 W r NC N2 ,
Cc C c
2s - as B[ 1+r+4r? 11-4r—4r?| C 10 , 3(8—r—r?)  2(11-4r—4r?)
re(x)=A+3 r N N2 —g r—r N 2 ,
(A7)
2 J—
rS(E°)=—(B—§ NZ+ 12N, 9’
N¢ B6NZ
2C\1 6(3—2r+r?) 3(9—8r+2r?)
2 =0y = _ T\ 3—ar—
rQ(ﬂ—t ) +|B NC)G r NC + Ng ,
B 6(1+r)(3—3r+r?) 3(9—4r—4r2+2r3
(2(20)= + 2| 3—4r (1+1)( )Jr ( )
6 NC Ng
32— o2 6(3—r—r2+r3)+3(9—4r—4r2+2r3) LS
3N ' ' N¢ N§ ’ ( )
N.+3)2 8N2—15N.—9
rg E,):A_B ( C 2) _ C 3C ,
BN 3N3
2z ap B3 g 27D 3(9-8r+2r?)| C a3 3(9—4r) 3(9-8r+2r?)
ro(E7)= 6 r N N2 3N, (3—r) No N2 ,
> —A+B 34 6r2(2—r) 3(9—4r—4r2+2rd
re(27)= 6 r N, Ng
C - o 3(9-2r—2r%) 3(9-4r—4r?+2rd) ALQ
3N, | 267 N, N2 - (A19)

APPENDIX B: QUADRUPOLE MOMENT EXPRESSIONS

We use the subscripts @, and C to denote expressions with zero, quadratic, and cubi3Shreaking via constituent
quark massefsee Eq(4.1)] in addition to that provided by the quark charge operator. In th€8B&ymmetry limit ¢ =1) the
expressions with subscrip@ and C reduce to those with subscript 0:

Qo,Q,c(A**)=+B’6(Ng;$°+5)—C’lz(NE;s;C%), -
Qoac(AT) = 4B 2(N§+52,\EC+ 15) _C,4(N§—;§|;c+ 15) | 62
Qoo (A% - ( B 2Ncc' ) 2(NC—53L(§NC+ 5) , B3
Qoo clA )= —B 6(N§2$c—5)+C,12(N§;N3§c—5>, -
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N2—N.+6 2(Ng—6)(Ng—1)
E*Jr =+Br c _Cr C c ,
ot _+B"1+ L1738 4dsen] C'f 3+l 4(1+2r)
R - A L v
ot _+B"1+ JLrr-ant e o 64+ In? B(dtrr?)
Qe )=t 1+4r N, N2 2N | T N, N2
2C’\2(N,—3)
2*0 :_(B/__)—,
Qo(=*?) N e
520 (g 2C'\ 2 1+2r
Qo™= Ne NN )
s %0y 2B' [ , 1+r+r? L 2(1+r+r?)
Qc(2*7)= N, r TN, N_g r(l+r) N, |
N2+3N,—6 2(N2-3N,-6)
2** :_Br c +Cr c ,
O ) B"H L L5 4dran] o 3(1+r)  4(1+2r)
= —_— — r —_— [ — p— s
@ 2 I N N(Z: N N Ng
. B’-1+ +1+r+4r2 4(1+r+12) R P 3(24+r1+r2)  8(l+r+r?)
Qe == | 14r N, N2 2N | T N, NE
2C"\2(N.—3)?
E’*O =+ B/__)—,
Qo(E*9) N e
2c’\2r|  3(1+r) 3(2+r)
=% 0\ — r_ — _
_ 2r 3r(1+r) 3(1+r+r?)| C’ 3(1+r+2r?) 6(1+r+r?)
Qc(E*9=+—={B'|1— + - — - + ,
3 Ne NZ Ne Ne N2
O(E* )= — B 2(N2+6N,—9) C,4(N§—3Nc—9)
o= 3N2 aNng
L 2r [ [ 3(1+r) 3(2+1)| 2c 3 3(r+2)
Qq(E* )=~ 7| B|1+ - o e ,
3 I Nc Ng N N Ng
Ou(E*) 2r B,'1+3r(1+r) 3(1+r+r3)| ¢’ 1) 3(1+r) 6(1+r+r?)
E*)=—+ - - r— - ,
c 3 I N Ng c N Ng
00 )= 6(N.—1) 12C’
’ NS NS
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Qo(Q )= Grz_B’(l L),2¢]
Q Ne | Ne/ N2 |
Qc(Q )= Grs_B’(l ! +2C’_ (B10)
¢ Ne | Ne/ N2 |

. 2C")  [(Ng=1)(Ng+5)
N o
o 2C")  [(Ne=1)(N+5)
N 12

Qoo.c(Afp)=+

Qoo.c(A%n)=+

Q (2*+2+):+ B'_ZC’)H
0 Nc /2N_\2'
B’ 2+3r 8(1-r) c’ 6—11r 8(1—r)
S*ES ) =4 —| 2— - 2—r— +
Qq ) 5 r—z[ TN, N2 N2 TN, N2
1 2—r+4r2 4(1-r)(2+r)
S*ES ) =4 —{B'|2—r+ +
QeEm 20 2@[ TN ¥
(o ) 12—11r—11r2  8(1—r)(2+r)
_N_C 4—r—ro— NC + Ng ) (Bls)
2C'\ 2
* 05 0y _ r_ -
QO(E 2 )_+ B NC)NC’
2C'\ 2 2(1-r)
* 05 0y _ r_ _ -
QQ(E > )=+|B Nc)Nc[r_l— Ne }’

C/

N¢

2(1=r)(2+r)

r(l+r)+ N,

\/E{B'[r2+w (B14)

* 05 0y _ A
Qc(= 2)—+NC N,

Qu(Z*°A)=+|B'~

2C') (N¢g—1)(N;+3)
N¢ 2N§ ,

2(:') J(Ne—1)(Ng+3)
B'— —
Nc 2N

Qo(E*PA)=+r

* ’ C/(1+r) (Nc_l)(Nc+3)
Qc(Z*°A)=+r|B'— N \/ N2 : (B15)
sy __(B,_zc') N.—3
ol )= Ne /2N.\2
T T 2-5r 8(1-r)| 2c’ 3(2—r) 8(1-r)
R 1l S Vi IV o Vv

016002-16



BARYON CHARGE RADII AND QUADRUPOLE MOMENTS. ..

PHYSICAL REVIEW D 67, 016002 (2003

2—r—4r? 4(1-r)(2+r (o 3(4—r—r?) 8(2+r)(1—r
0u(3 3 )= | B/l 2-r+ A )2( )| € o ( ) 8( )2( ) |
2\2 N¢ N2 N N N2
(B16)
o200~ + [~ 2 V2(Ne+3)
o= = N 3N,
2C’\ \2r 3(1-2r) 6(1-r)
=% 0=0\ _ ’r_ = _
R o B N2
2r 3r(1—2r) 3(1-r)(1+2r c’ 3(1+r—4r?3) 6(1—r)(1+2r
QC(E*OEO)=+£ gl (=20 sa-na+2n| c'f 3 ), sa-na+an)|
3 N NZ N¢ Ne NZ
(B17)
Qu(E* B )=- B,_ZC’ V2(Ne—3)
o= = N, 3N,
2r 3(1-2r) 6(1-r)| 2C’ 3 6(1-r
Qq(E* -2 )=- g, 20220 SA7D} 2C7, 3 S0
3 N¢ N2 N¢ N¢ NZ
2r 3r(1-2r 3(1—-r)(1+2r Cc’ 3(1+r 6(1—r)(1+2r
TR Ll P Pt ( ) 3(1-r)( )| ¢ . (1+r)  6(1-r)( ) _
3 N¢ Ng Nc Nc N(Z:
(B18)
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