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Baryon charge radii and quadrupole moments in the 1ÕNc expansion: The 3-flavor case
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We develop a straightforward method to compute charge radii and quadrupole moments for baryons both
with and without strangeness, when the number of QCD color charges isNc . The minimal assumption of the
single-photon exchange ansatz implies that only two operators are required to describe these baryon observ-
ables. Our results are presented so that SU~3! flavor and isospin symmetry breaking can be introduced accord-
ing to any desired specification, although we also present results obtained from two patterns suggested by the
quark model with gluon exchange interactions. The method also permits to extract a number of model-
independent relations; a sample isr L

2 /r n
253/(Nc13), independent of SU~3! symmetry breaking.
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I. INTRODUCTION

Between the static properties of hadrons, e.g., mas
electromagnetic moments, matter and charge radii, and
energy dynamical properties such as scattering lengths
decay rates, a wide variety of accurately measured data
outside the perturbative range of QCD. While techniqu
such as lattice gauge theory, QCD sum rules, and a w
variety of models have been developed to study this
tremely interesting energy regime, the only known pertur
tive approach for strongly interacting Yang-Mills theori
that holds at all energies is the 1/Nc expansion@1#, whereNc
is the number of color charges.

The baryon sector is particularly amenable to this exp
sion, since baryons withNc colors containNc valence
quarks. Then, each additional quark participating in an in
action ~specified by an operator with known transformati
properties under spin and flavor! brings in a factor of the
QCD coupling constantas}1/Nc due to the requirement o
one or more gluons to connect this quark to the interact
An operator in whichn quarks interact is called ann-body
operator; its suppression in powers of 1/Nc tends to increase
as n increases. This ‘‘operator method’’ has recently be
used to study a wide variety of baryon observables~see Ref.
@2# for a recent list of references!. The strength of the 1/Nc
expansion is that additional gluons do not spoil this counti
and the only other powers ofNc that need be taken into
account arise from the combinatorics of the quarks. It sho
also be noted that the glue and sea quark pairs in the bar
not just the valence quarks, are subsumed by the ope
method@3#.

This work extends the results of two of our recent pap
on baryon observables in the 1/Nc expansion, regarding
charge radii@3# and quadrupole moments@2#, to baryons
with nonzero strangeness. These two types of observa
are studied here in a single paper because the metho
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calculation is, as seen below, very similar in the two cas
As mentioned in the previous works, a treatment of t
strange sector was not undertaken at the time of their wri
because the group theory in the 3-flavor sector is more
volved and warrants a separate treatment. The oper
method calculation specific to the caseNc53, which appears
very similar to the general QCD parametrization@4# was car-
ried out for baryon quadrupole moments in@5#; in that case
the calculation can readily be carried out for states with
without strangeness since it is relatively simple to perfo
calculations using the full baryon spin-flavor wave functio
with only 3 quarks.

Here we demonstrate that the solution of the full 3-flav
Nc-quark problem can nonetheless be handled entirely u
SU~2! Clebsch-Gordan~CG! coefficients, ultimately becaus
the strange states are related to nonstrange states throug
SU~2! U-andV-spin subgroups of SU~3! @6#. In the case of
the ground-state baryons, i.e., those belonging to the la
Nc generalization of the SU~6! 56-plet, the total symmetry of
the wave function under simultaneous exchange of spin
flavor indices simplifies this procedure considerably.

In this paper we focus only on those aspects of the pr
lem unique to the strange sector; the reader is directe
Refs.@2# and@3# for a more thorough discussion of details
the 1/Nc operator method, as well as outlook for the expe
mental measurement of baryon quadrupole moments.
remainder of this paper is organized as follows: In Sec. II
briefly discuss the experimental situation regarding meas
ment of baryon charge radii. Section III presents the det
of the 3-flavor calculation; the most important feature of t
analysis of@2# and@3# survives, namely, that only one oper
tor appears at the 2-body level and one at the 3-body le
leading to a large number of constraints between the obs
ables. Section IV presents a sample of the plethora of res
obtained from this calculation, e.g., by including frequen
used patterns of SU~3! flavor symmetry breaking. Section V
summarizes. The tables and Appendixes contain the ex
sive results of the calculation in forms designed to be m
useful to interested researchers.
©2003 The American Physical Society02-1
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II. CHARGE RADII: PROSPECTS FOR MEASUREMENT

The mean-square charge radiusr B
2 of a baryonB is de-

fined through the elastic Sachs charge form factorF(q2), a
function of the photon 4-momentum transferq2 often de-
noted byGE(q2), by the relation

r B
2[26

1

Q

dF~q2!

dq2 U
q250

, ~2.1!

while the total chargeQ5F(0) is omitted ifQ50.
The operator giving rise to charge radii is a scalar t

does not change electric charge or strangeness. Thus, it
nects only states with the same totalJ, I 3, andY. However,
the operator can connect states of different isospinI since the
electromagnetic interaction does not conserve this quan
number. Each baryon state thus has a charge radius, a
addition there exists ar S0L

2 transition charge radius.
At the time of this writing, only thep, n, andS2 charge

radii have been measured. A charge radius is the first n
trivial moment of a Coulomb monopole (C0) transition am-
plitude, and thus charge radii of hadrons are typically m
sured through their coupling to Coulomb photons in elas
electron scattering.

In the case of the proton, a dedicated measurement o
elastic electron-proton cross section at very low momen
transfer@7# led to the proton root mean-square charge rad
r p[Ar p

250.862(12) fm@r p
250.743(21) fm2#, a value that

is considerably larger than the famous dipole result ofr p
50.80 fm obtained by Hofstadteret al. @8#. A dispersion-
theoretical analysis of electron scattering data availa
through 1995@9# gives the resultr p

250.717(15) fm2. How-
ever, measurements using the hydrogen Lamb shift as
alternative source of information on the proton size tend
produce larger values. For example, Ref.@10# extracts a
value ofr p50.890(14) fm@r p

250.792(25) fm2#, while Ref.
@11# extracts a value ofr p

250.780(25) fm2 from the experi-
ment of Ref.@12#. A reanalysis@13# that includes Coulomb
and recoil corrections forA.1 targets produces a result th
accommodates both types of data:

r p
250.779~25! fm2, ~2.2!

which we use in our analysis. The other available experim
tal values are

r n
2520.113~3!~4! fm2 @14#, ~2.3!

and the very recently published result

r S2
2

50.61~12!~9! fm2 @15#. ~2.4!

The measurement ofr S2
2 in particular suggests the possib

ity of measuring the charge radii of other long-lived stran
baryons, theS1, L, J2, J0, and V2. In such cases the
impediments are experimental in nature, particularly
problem of producing a beam of baryons of sufficient qua
that electron scattering events can be separated from b
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ground events. But nonetheless one can anticipate such
ficulties being overcome in the future.

For the spin-3/2 resonances andS0, however, the short
lifetimes mean that charge radii can only be observed
off-shell processes. For example, theD11 charge radius
could be extracted in principle through the processp1p
→p1pe2e1, but in this case one would need to use mod
dependence in separating resonant from continuump1p
scattering, as well as isolate the source of the virtual pho
g* →e1e2 as coming solely from theD. Processes with rea
photons, which for example can be used to measure m
netic moments, cannot be utilized to probe the Coulo
transitions from which charge radii are extracted. The sit
tion is very similar to that described in Ref.@2# for the
baryon quadrupole moments. Therefore, our results div
into two categories: Predictions for observables that may
measured in the near-to-medium future, for which the qua
of our results can be checked, and those that can only
predicted but not measured any time soon.

III. DETAILS OF THE CALCULATION

A. Constructing the states

Naively, one would expect that SU~3! CG coefficients are
required to construct a state with strangeness. This pote
complication can be avoided by noting that the strange st
are related to the nonstrange states viaU-and V-spin SU~2!
subgroups of SU~3!. In an arbitrary SU~3! representation,
one method of calculating matrix elements is to start with
nonstrange states and apply the lowering operatorsU2 and
V2 , imposing along the way orthogonality in isospin amo
otherwise degenerate states such asS0 andL, which is pre-
cisely the same approach as used to obtain flavor eigenst

However, this method does not exploit the full symme
available to theJP51/21 and 3/21 ground-state baryon
SU~3! multiplets ~We do not call them ‘‘octet’’ and ‘‘de-
cuplet,’’ since the corresponding multiplets for arbitraryNc
are much larger@16#.! These flavor multiplets belong to th
large-Nc analogue of the SU~6! 56-plet, which is completely
symmetric under simultaneous exchange of spin and fla
indices. That is to say, theI-, U-, andV-spin symmetries are
correlated with the SU~2! spin symmetry in a particularly
convenient way, as we now explore.

Let Na denote the number of valence quarks of typea in
the baryon; thenNc5Nu1Nd1Ns and I 35(Nu2Nd)/2.
Since the spin-flavor wave function is completely symmetr
the spin wave function of quarks of typea within the baryon
must be completely symmetric, which means that theNa
spin-1/2 quarks of typea carry the maximum possible spi
value, Sa5Na/2. This information alone allows to analyz
the nonstrange states. In the strange baryon case, note
each physical baryon state is still specified by its isospinI,
which uniquely determines the symmetry of the flavor wa
function carried by justu andd quarks. Owing to the com-
plete symmetry under spin3 flavor, the spin wave function
carried by theu andd quarks together must possess exac
the same symmetry properties as the corresponding fla
wave function, and hence, the spinSud[Su1Sd and isospin
2-2
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I have the same eigenvalue,Sud5I .
But now one need only combine the state ofud combined

spinSud5I and isospin quantum numbersI ,I 3 with the sym-
metrized strange quarks carrying spinSs to obtain the com-
plete state with spin eigenvaluesJ,J3, whereJ5Sud1Ss . To
be precise,

uJJ3 ; II 3 ~SuSdSs!&

5 (
Sud

z , Ss
z
S I Ss

Sud
z Ss

zU S

Sz
D (

Su
z , Sd

z
S Su Sd

Su
z Sd

zU I

Sud
z D

3uSuSu
z&uSdSs

z&uSsSs
z&, ~3.1!

where the parentheses denote CG coefficients. Now, in o
to compute the matrix elements of any particular opera
one need only sandwich it between a bra and ket of the f
of Eq. ~3.1! and use the Wigner-Eckart theorem.

B. The operator basis

In the analysis of both charge radii and quadrupole m
ments we use the single-photon exchange assumption,
that the photon probing these baryon observables couple
only one quark line within the baryon. Although physical
rather mild, this assumption drastically reduces the num
of distinct operators that need to be considered.~However,
note that the full basis of operators can certainly be used
shown for the charge radii@3# or for the magnetic and quad
rupole moments@17#.! Using indicesi , j ,k to indicate quarks
within the baryon, the most general operator expansion
the charge radius operator out to the 3-body level—all tha
necessary since 4-,5-, etc. body operators acting upon ph
cal baryons are linearly dependent on those at lower orde
reads

26
dF~q2!

dq2 U
q250

5A (
i

Nc

ai1
B

Nc
(
iÞ j

Nc

bicj si•sj

1
C

Nc
2 (

iÞ j Þk
diej f k si•sj , ~3.2!

where the coefficientsa,b,c,d,e, f depend only on quark
flavor; to obtain the results of Ref.@3#, setai5bi5 f i5Qi ,
whereQi is the charge of thei th quark, andci5di5ei51.
The corresponding expansion for the quadrupole moment
erator reads

Q5
B8

Nc
(
iÞ j

bi8cj8~3s izs jz2si•sj !

1
C8

Nc
2 (

iÞ j Þk
di8ej8 f k8 ~3s izs jz2si•sj ! , ~3.3!

where the coefficientsb8,c8,d8,e8, f 8 again depend only on
quark flavor, and the results of Ref.@2# may be obtained by
settingbi85 f i85Qi , ci85di85ei851. Note that most models
use a universal form of SU~3! symmetry breaking for all
01600
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operators, so that typically the corresponding primed a
unprimed coefficients are equal. Values used forQi are dis-
cussed in Sec. IV below. Note that 3-body operators with
Pauli matrices are absent@2# due to time-reversal symmetry
The use of primed and unprimed coefficients with the sa
labels echoes the similar form of the operators in the t
cases; indeed, in a number of models the primed
unprimed coefficients are related@18#.

One can obtain the most general charge radius and q
rupole moment expressions by computing the 12 fundam
tal matrix elements

^ab& (0)[^Sa•Sb&,

^ab& (2)[^3Sa
z Sb

z 2Sa•Sb&, ~3.4!

where (a,b) are the 6 distinct pairs (u,u), (u,d), (u,s),
(d,d), (d,s), and (s,s) ~note the symmetry undera↔b).
Then, charge radii or quadrupole moments for baryons in
presence of arbitrary SU~3! or isospin symmetry breaking
can be computed simply by taking an appropriate linear co
bination of these primitive matrix elements.

In particular, while the indicesi , j ,k indicate each of the
Nc quarks within the baryon, let the indicesa,b,g indicate
collectively the quarks of a particular flavoru,d, or s. The
coefficients for the most general operators that appear for
charge radii or quadrupole moments can be represente
3-vectors such asa5(au ,ad ,as). Thus, matrix elements o
the 1-body operator for charge radii generalize to

(
i

Nc

ai5(
a

Naaa , ~3.5!

while those of the 2-body operator may be expanded as

K (
iÞ j

bicj si•sj L 54(
a,b

bacb^ab& (0)

23(
a

Nabaca , ~3.6!

and those of the 3-body operator become

K (
iÞ j Þk

diej f k si•sj L 514(
a,b

daeb ^ab& (0)(
g

Ng f g

24(
a,b

daeb~ f a1 f b!^ab& (0)

23(
a

Nadaea(
b

Nb f b

16(
a

Nadaea f a , ~3.7!

whereNa is the number of quarks of typea ~values given in
Table I!, which satisfies the constraintsNu1Nd1Ns5Nc
andNu2Nd52I 3.
2-3
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TABLE I. Values of Nu,d,s @whence^Sa
2&5^aa& (0)5(Na/2)(Na/211)] and matrix elements of the rank-0 tensors^ab& (0) with a

Þb. Since spin is unchanged by these operators, the matrix elements vanish for all off-diagonal transitions exceptS0L; in that case, the
only nonvanishing entries arêus& (0)52^ds& (0)52

1
8A(Nc21)(Nc13).

State Nu Nd Ns ^ud& (0) ^us& (0) ^ds& (0)

D11 1
2 (Nc13) 1

2 (Nc23) 0 2
1

16(Nc23)(Nc17) 0 0
D1 1

2 (Nc11) 1
2 (Nc21) 0 2

1
16(Nc

214Nc229) 0 0
D0 1

2 (Nc21) 1
2 (Nc11) 0 2

1
16(Nc

214Nc229) 0 0
D2 1

2 (Nc23) 1
2 (Nc13) 0 2

1
16(Nc23)(Nc17) 0 0

S* 1 1
2 (Nc11) 1

2 (Nc23) 1 2
1

16(Nc23)(Nc15) 1
1

16(Nc15) 2
1

16(Nc23)
S* 0 1

2 (Nc21) 1
2 (Nc21) 1 2

1
16(Nc

212Nc219) 1
1
4 1

1
4

S* 2 1
2 (Nc23) 1

2 (Nc11) 1 2
1

16(Nc23)(Nc15) 2
1

16(Nc23) 1
1

16(Nc15)
J* 0 1

2 (Nc21) 1
2 (Nc23) 2 2

1
16(Nc23)(Nc13) 1

1
12(Nc13) 2

1
12(Nc23)

J* 2 1
2 (Nc23) 1

2 (Nc21) 2 2
1

16(Nc23)(Nc13) 2
1

12(Nc23) 1
1

12(Nc13)
V2 1

2 (Nc23) 1
2 (Nc23) 3 2

1
16(Nc23)(Nc11) 0 0

p 1
2 (Nc11) 1

2 (Nc21) 0 2
1

16(Nc21)(Nc15) 0 0
n 1

2 (Nc21) 1
2 (Nc11) 0 2

1
16(Nc21)(Nc15) 0 0

S1 1
2 (Nc11) 1

2 (Nc23) 1 2
1

16(Nc23)(Nc15) 2
1
8 (Nc15) 1

1
8 (Nc23)

S0 1
2 (Nc21) 1

2 (Nc21) 1 2
1

16(Nc
212Nc219) 2

1
2 2

1
2

L 1
2 (Nc21) 1

2 (Nc21) 1 2
1

16(Nc21)(Nc13) 0 0
S2 1

2 (Nc23) 1
2 (Nc11) 1 2

1
16(Nc23)(Nc15) 1

1
8 (Nc23) 2

1
8 (Nc15)

J0 1
2 (Nc21) 1

2 (Nc23) 2 2
1

16(Nc23)(Nc13) 2
1
6 (Nc13) 1

1
6 (Nc23)

J2 1
2 (Nc23) 1

2 (Nc21) 2 2
1

16(Nc23)(Nc13) 1
1
6 (Nc23) 2

1
6 (Nc13)
he
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Matrix elements of the 2-and 3-body operators for t
quadrupole moments expand as

K (
iÞ j

bi8cj8~3s izs jz2si•sj !L 54(
a,b

ba8 cb8 ^ab& (2),

~3.8!

and

K (
iÞ j Þk

di8ej8 f k8~3s izs jz2si•sj !L
514(

b,g
db8eg8^bg& (2)(

a
Na f a8

24(
a,b

da8eb8 ~ f a81 f b8 !^ab& (2). ~3.9!

The two examples of SU~3! symmetry breaking in the quad
rupole operators considered in theNc53 work of Ref. @5#
correspond to settingba85Qa(m/ma)n, ca85ea85m/ma ,
da85(m/ma)n, and f a85Qa , wheremu5md[m and m/ms

[r represent SU~3! symmetry breaking arising from differ
ent quark masses. The quadratic~cubic! case in@5# is n51
~2!.

C. Reduction of the basis

Even with this decomposition, it is not necessary to co
pute the entire set of 12 matrix elements separately: They
related by a number of simple constraints. First, note that
~3.1! is sensitive to the exchange ofu and d quarks only
through the second CG coefficient, and the factor obtai
01600
-
re
q.

d

through this exchange is just (21)Su1Sd2I . Of course, the
values ofSa , which simply count one-half the number o
quarks of flavora in these baryons, remain unchanged fro
initial to final state. The same is true forI 35Su2Sd , but the
total isospin may change to a valueI 8. One thus finds for an
operatorO that

^I 8I 3uO~u↔d!uII 3&5~21! I 82I^I 82I 3uOuI 2I 3&.
~3.10!

There are almost enough constraints to allow extraction
all the matrix elementŝab& (0) in terms of simple combina-
tions of eigenvalues of the compatible operators of the s
tem. To be precise, these areJ2→J(J11), Jz , Sa

2

→(Na/2)(Na/211) for a5u,d,s, and I25Sud
2 5I (I 11).

Note that the eigenvalueI 35Su2Sd is not independent.
Clearly, ^aa& (0)5(Na/2)(Na/211). The other two con-
straints are

J~J11!5^J2&5^~Su1Sd1Ss!
2&5(

a,b
^ab& (0),

I ~ I 11!5^Sud
2 &5^~Su1Sd!2&

5^uu& (0)12^ud& (0)1^dd& (0). ~3.11!

From these constraints it is clear that only one of the t
matrix elementŝus& (0) or ^ds& (0) need be computed directl
from Eq. ~3.1!, while the other can be obtained either fro
the inversion rule Eq.~3.10! or from the constraints Eqs
~3.11!.

As for the matrix elementŝab& (2), the most obvious
constraint reads
2-4
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^3Jz
22J2&5^3~Su

z1Sd
z1Ss

z!22~Su1Sd1Ss!
2&

5(
a,b

^ab& (2). ~3.12!

The left-hand side~l.h.s.! of this expression is of cours
simple to compute; in the stretched state (Jz5J) in which
quadrupole moments are computed, it equalsJ(2J21) for
diagonal matrix elements and vanishes for transitions.

Another constraint may be obtained by considering
combination

^3~Sud
z !22Sud

2 &5^3~Jz2Ss
z!22I2&

53Jz
226Jz^Ss

z&1^ss& (2)

1^Ss
2&2^I2&, ~3.13!

whose l.h.s. is just

^uu& (2)12^ud& (2)1^dd& (2). ~3.14!

Note that this constraint requires one to compute also
matrix element̂ Ss

z&, but this calculation turns out in purel
algebraic terms to be simpler than that of the rank-2 tens
One still requires one more constraint to compute sepa
values for^us& (2) and ^ds& (2); once one of these matrix e
ements is in hand, the other is obtained by using Eq.~3.10!.
The required constraint, again using^Sud

2 &5^I2&, may be
obtained from

^3Su
zJz2Su•J&53^Su

z&Jz2^us& (0)2
1

2
^I21Su

22Sd
2&,

~3.15!

where the l.h.s. clearly equals
01600
e

e

s.
te

^uu& (2)1^ud& (2)1^us& (2). ~3.16!

In summary, then, the charge radii matrix elements can
computed in complete generality using only eigenvalues
the calculation of̂ us& (0), while the most general quadrupo
moment matrix elements can be obtained from further
plicitly calculating ^Su

z&, ^Ss
z&, ^uu& (2), and^ss& (2).

Another advantage of using the constraints~3.11!–~3.15!
is that, by judicious choice of which matrix elements to co
pute explicitly, one may obtain results containing nothi
more complicated than a 6j symbol. These appear due to th
coupling of the quantum numbers of expansions for both
bra and ket@Eq. ~3.1!# through the operator. For example,
the matrix elements of̂uu& (2) defined by Eq.~3.4!, one uses
the Wigner-Eckart theorem to obtain

^SuSu
zu3~Su

z!22Su
2uSu8Su8

z&

5dS
u8Su

dS
u8

zS
u
zASu~Su11!~2Su21!~2Su13!

3S 2 Su

0 Su
zUSu

Su
zD , ~3.17!

and the CG coefficient in this expression is linked to t
those in the bra and ket of Eq.~3.1! by sums overSu

z and
Su8

z . Four appropriately linked CG coefficients produce aj
symbol, and six produce a 9j symbol. In our case, the matri
elementŝ us& (2) and ^ds& (2) directly computed would pro-
duce 9j symbols. In fact, so dôus& (0) and^ds& (0), but they
produce a 9j symbol with one zero argument, which can b
written as the product of two 6j symbols, as seen below
Analytic forms for 6j symbols with one argument<2 ap-
pear in Edmonds@19#, which is precisely what is needed t
compute the matrix elements of tensors up to rank 2.

The analytic forms of the matrix elements of interest a
^us& (0)5dS8SdS
z8Sz

dS
u8Su

dS
d8Sd

dS
s8Ss

~21!11S1Ss2Su2SdASu~Su11!~2Su11!Ss~Ss11!~2Ss11!~2I 811!~2I 11!

3H Sd Su I

1 I 8 Su
J H S Ss I

1 I 8 Ss
J , ~3.18!

^Su
z&5dS

z8Sz
dS

u8Su
dS

d8Sd
dS

s8Ss
~21!S2S81Sz1Ss1I 82I 2Su2SdASu~Su11!~2Su11!~2I 811!~2I 11!~2S811!~2S11!

3H Sd Su I

1 I 8 Su
J H Ss I S

1 S8 I 8J S 1 S8 S

0 Sz 2Sz
D , ~3.19!

^Ss
z&5dS

z8Sz
d I 8IdS

u8Su
dS

d8Sd
dS

s8Ss
~21!11Sz1Ss1IASs~Ss11!~2Ss11!~2S811!~2S11!H I Ss S

1 S8 Ss
J S 1 S8 S

0 Sz 2Sz
D ,

~3.20!

^uu& (2)5dS
z8Sz

d I 8IdS
u8Su

dS
d8Sd

dS
s8Ss

~21!S2S81Sz1Ss1I 82I 2Su2Sd

3A~2Su21!Su~Su11!~2Su13!~2I 811!~2I 11!~2S811!~2S11!H Sd Su I

2 I 8 Su
J H Ss I S

2 S8 I 8J S 2 S8 S

0 Sz 2Sz
D ,

~3.21!
2-5
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^ss& (2)5dS
z8Sz

d I 8IdS
u8Su

dS
d8Sd

dS
s8Ss

~21!Sz1Ss1IA~2Ss21!Ss~Ss11!~2Ss11!~2Ss13!~2S811!~2S11!H I Ss S

2 S8 Ss
J

3S 2 S8 S

0 Sz 2Sz
D . ~3.22!
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Note that, in the interest of exhibiting maximal symmet
the remaining CG coefficients have been written as 3j sym-
bols @19#.

Charge radius and quadrupole transitions are diagona
both charge and strangeness, and thus connect only sta
the same values ofI 3 and Ns , but do not necessarily con
serve isospin. Furthermore, charge radius operators are
lars and thus connect only states of the same total spinJ, but
quadrupole operators are rank 2 and therefore can con
spin 3/2 to 3/2 or 1/2, but not 1/2 to 1/2. These select
rules are reflected by the transition matrix elements rep
sented in the tables. Values at arbitraryNc for the matrix
elementŝ ab& (0) (aÞb) for all relevant states are collecte
in Table I, for Sa

z in Table II, for ^aa& (2) in Table III, and
^ab& (2) (aÞb) in Table IV. One may obtain results fo
charge radii and quadrupole moments, including arbitr
SU~3! symmetry breaking, by combining the results of the
tables using the expressions~3.5!–~3.9! derived in the previ-
ous subsection.

IV. RESULTS

We exhibit in the Appendixes expressions for the bary
charge radii~A! and quadrupole moments~B! under three
sets of assumptions familiar to researchers in the qu
model. The first is simply to assume no SU~3! flavor sym-
metry breaking except for that inherent from the qua
charges. The second and third, which we call ‘‘quadrat
(n52) and ‘‘cubic’’ (n53) SU~3! symmetry breaking, re-
spectively, correspond to modifying the spin-spin terms
the following way:

sisj→sisjm
n/mi

n21mj , ~4.1!

where mi denotes the constituent mass of quarki, and m
5mu5md is the light quark constituent mass, thus fixing
parametersa-f andb8-f 8 defined in Eqs.~3.2! and~3.3!. Let
us henceforth abbreviate withm/ms[r the degree of SU~3!
flavor symmetry breaking. The quadratic mass depende
arises in a constituent quark model with the dominant in
action mechanism being one-gluon exchange, while the e
mass factor for cubic mass dependence arises from a q
propagator between photon absorption and gluon emissi

One can also mix these pictures so that, for example,
operator labeled byB(B8) uses cubic SU~3! symmetry
breaking, while that labeled byC(C8) uses quadratic break
ing. Note that no SU~3! symmetry breaking has been intro
duced in the one-body~A! operator.

We hasten to add that it is not necessary to adoptany
model dependence beyond the single-photon exchange
01600
,
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s of

ca-

ect
n
e-

y
e

n

rk
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satz, since we have computed and tabulated all the rele
primitive matrix elements. However, the SU~3!-symmetric,
quadratic, and cubic models provide a useful picture
which to investigate the consequences of the arbitraryNc
calculation, without adding any new parameters. Another
teresting scheme for SU~3! symmetry breaking, but not in
vestigated here, is that provided by chiral perturbat
theory. In this case, loop graphs that include the octet of li
mesons as Goldstone bosons produce terms with differer
dependences, e.g., logarithmic.

We have also used expressions@20# for the quark charges
that simultaneously guarantee chiral anomaly cancellatio
the Nc-extended standard model and fix the total charges
theNc-quark baryons to equal theirNc53 values. These are

Qu,c,t5~Nc11!/2Nc , Qd,s,b5~2Nc11!/2Nc . ~4.2!

Given the primitive matrix elements of Tables I–IV, one m
alternately compute expressions using the strictNc53 val-
ues for the quark charges, with the caveats that the anom
cancellation conditions are no longer satisfied and the bar
charges becomeNc dependent.

One may choose any of a number of schemes for obt
ing interesting predictions from our results. Rather than
lecting just one and producing exhaustive results, we disc
several possibilities and exhibit illustrative examples.

First, one must differentiate predictions that hold in t
physical caseNc53 from those that hold in the 1/Nc→0
limit. The former have the advantage of not depending on
quality of the 1/Nc expansion atNc53, but may depend
upon delicate cancellations between terms at different p
ers in 1/Nc . Thus, such predictions may hold well only fo
Nc53 but not for 5,7, . . . .Conversely, the latter have th
advantage of holding to a desired level of accuracy for sm
values of 1/Nc , but these corrections may turn out to b
numerically significant forNc53. As we exhibit below, a
number of relations are found to hold independent ofNc and
thus satisfy both criteria. Moreover, there are even relati
that hold both forNc53 and 1/Nc→0, but differ in between;
we discuss one such example with the quadrupole mom
below.

A. Charge radii

Baryon mean-square charge radii, denoted here byr B
2 , are

defined by the l.h.s. of Eq.~3.2!, divided by the total charge
if it is nonzero. In all suggested substitutions for the coe
cients aa , . . . ,f a , isospin violation is introduced via the
single-photon exchange ansatz through a single power o
quark charge operatorQa , which transforms as a combina
2-6
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TABLE II. Matrix elements of the operatorsSu
z , Sd

z , andSs
z in the state of maximalSz .

State ^Su
z& ^Sd

z& ^Ss
z&

D11 1
3

20(Nc17) 2
3

20(Nc23) 0
D1 1

1
20(Nc117) 2

1
20(Nc213) 0

D0 2
1

20(Nc213) 1
1

20(Nc117) 0
D2 2

3
20(Nc23) 1

3
20(Nc17) 0

S* 1 1
1
8 (Nc15) 2

1
8 (Nc23) 1

1
2

S* 0 1
1
2 1

1
2 1

1
2

S* 2 2
1
8 (Nc23) 1

1
8 (Nc15) 1

1
2

J* 0 1
1

12(Nc13) 2
1

12(Nc23) 11
J* 2 2

1
12(Nc23) 1

1
12(Nc13) 11

V2 0 0 1
3
2

p 1
1

12(Nc15) 2
1

12(Nc21) 0
n 2

1
12(Nc21) 1

1
12(Nc15) 0

S1 1
1

12(Nc15) 2
1

12(Nc23) 2
1
6

S0 1
1
3 1

1
3 2

1
6

L 0 0 1
1
2

S2 2
1

12(Nc23) 1
1

12(Nc15) 2
1
6

J0 2
1

36(Nc13) 1
1

36(Nc23) 1
2
3

J2 1
1

36(Nc23) 2
1

36(Nc13) 1
2
3

D1p 1
1

6A2
A~Nc21!~Nc15! 2

1

6A2
A~Nc21!~Nc15! 0

D0n 1
1

6A2
A~Nc21!~Nc15! 2

1

6A2
A~Nc21!~Nc15! 0

S* 1S1
1

1

12A2
~Nc15! 2

1

12A2
~Nc23! 2

A2

3

S* 0S0
1

1

3A2
1

1

3A2
2

A2

3

S* 0L 1
1

6A2
A~Nc21!~Nc13! 2

1

6A2
A~Nc21!~Nc13! 0

S* 2S2
2

1

12A2
~Nc23! 1

1

12A2
~Nc15! 2

A2

3

J* 0J0
1

1

9A2
~Nc13! 2

1

9A2
~Nc23! 2

A2

3

J* 2J2
2

1

9A2
~Nc23! 1

1

9A2
~Nc13! 2

A2

3

S0L 2
1

4A6
A~Nc21!~Nc13! 1

1

4A6
A~Nc21!~Nc13! 0
f
t

r

tion of I 50 and I 51. Consequently, any combination o
charge radii only sensitive toI 52 or I 53 operators mus
vanish. These are

I 52:

052r D11
2

23r D1
2

13r D0
2

1r D2
2 , ~4.3!

05r S1
2

22r S0
2

2r S2
2 , ~4.4!
01600
05r S* 1
2

22r S* 0
2

2r S* 2
2 , ~4.5!

I 53:

052r D11
2

2r D1
2

2r D0
2

2r D2
2 . ~4.6!

Equations~4.3! and~4.6! were first derived in Ref.@3#, while
Eqs. ~4.4! and ~4.5! are S equal-spacing rules, adjusted fo
the negative charge ofS (* )2. In addition, using Appendix A
2-7
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TABLE III. The matrix elementŝ aa& (2) for all relevant states.

State ^uu& (2) ^dd& (2) ^ss& (2)

D11 1
1

40(Nc17)(Nc19) 1
1

40(Nc25)(Nc23) 0
D1 2

1
40(Nc27)(Nc17) 2

1
40(Nc23)(Nc111) 0

D0 2
1

40(Nc23)(Nc111) 2
1

40(Nc27)(Nc17) 0
D2 1

1
40(Nc25)(Nc23) 1

1
40(Nc17)(Nc19) 0

S* 1 1
1

80(Nc15)(Nc17) 1
1

80(Nc25)(Nc23) 0
S* 0 2

1
40(Nc23)(Nc15) 2

1
40(Nc23)(Nc15) 0

S* 2 1
1

80(Nc25)(Nc23) 1
1

80(Nc15)(Nc17) 0
J* 0 0 0 11
J* 2 0 0 11
V2 0 0 13

D1p 1
1

20A2
~Nc17!A~Nc21!~Nc15! 1

1

20A2
~Nc23!A~Nc21!~Nc15! 0

D0n 2
1

20A2
~Nc23!A~Nc21!~Nc15! 2

1

20A2
~Nc17!A~Nc21!~Nc15! 0

S* 1S1 1
1

40A2
~Nc15!~Nc17! 1

1

40A2
~Nc25!~Nc23! 0

S* 0S0 2
1

20A2
~Nc23!~Nc15! 2

1

20A2
~Nc23!~Nc15! 0

S* 0L 0 0 0

S* 2S2 1
1

40A2
~Nc25!~Nc23! 1

1

40A2
~Nc15!~Nc17! 0

J* 0J0 0 0 2A2

J* 2J2 0 0 2A2
ith
e
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one finds 3 linear combinations of charge radii w
Nc-independent coefficients that vanish for arbitrary valu
of Nc and r, either in the quadratic or cubic case of SU~3!
symmetry breaking:

05220~r p
21r n

2!15~r S1
2

2r S0
2

13r S2
2

!

15r L
2 24~4r D11

2
2r D1

2
24r D0

2
17r D2

2
!

110~r S* 1
2

2r S* 0
2

13r S* 2
2

!, ~4.7!

054~r p
225r n

2!2~5r S1
2

13r S0
2

2r S2
2

!

135r L
2 14~2r D11

2
1r D1

2
1r D0

2
2r D2

2
!

22~5r S* 1
2

13r S* 0
2

2r S* 2
2

!, ~4.8!

0528~r p
21r n

2!1~r S1
2

29r S2
2

!12r L
2 116r J2

2

12~r S* 1
2

29r S* 2
2

!132r J* 2
2

216r V2
2 . ~4.9!

Since so many of these charge radii are currently unm
sured, these relations are presented merely for complete

A number of charge radii can be related if one perm
Nc-dependent coefficients. A particularly pretty example
01600
s

a-
ss.

s

r L
2 5

3

Nc13
r n

2 . ~4.10!

The Nc53 version of this relation, but applied to magnet
moments rather than charge radii, is known from the ea
days of SU~3! flavor ~see, e.g.,@21#!. Using the measured
value for the neutron charge radius~2.3! and Nc53, one
predictsr L

2 520.057(3) fm2. The expression~4.10! is espe-
cially interesting because it definitively predicts—
independent of SU~3! symmetry breaking—that the sign o
the charge radius ofL is the same as that of the neutron, i.
negative. This is not the case, for example, in the calcu
tions of Ref.@22# ~extrapolation from lattice results! or Ref.
@23# ~constituent quark model!. For other comparisons, Refs
@23–25# also contain tabulated results of various autho
baryon charge radii calculations.

Another interesting result is that

r S1
2

5r p
21O~12r !, ~4.11!

so that the two charge radii are equal in the SU~3! limit for
all values of Nc , as is evident from Eqs.~A11! and ~A13!.
One expects that this relationship holds to better accur
2-8
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TABLE IV. The matrix elementŝab& (2), with aÞb, for all relevant states.

State ^ud& (2) ^us& (2) ^ds& (2)

D11 2
1

40(Nc23)(Nc17) 0 0
D1 1

1
40(Nc

214Nc119) 0 0
D0 1

1
40(Nc

214Nc119) 0 0
D2 2

1
40(Nc23)(Nc17) 0 0

S* 1 2
1

80(Nc23)(Nc15) 1
1
8 (Nc15) 2

1
8 (Nc23)

S* 0 1
1

40(Nc
212Nc15) 1

1
2 1

1
2

S* 2 2
1

80(Nc23)(Nc15) 2
1
8 (Nc23) 1

1
8 (Nc15)

J* 0 0 1
1
6 (Nc13) 2

1
6 (Nc23)

J* 2 0 2
1
6 (Nc23) 1

1
6 (Nc13)

V2 0 0 0

D1p 2
1

20A2
~Nc12!A~Nc21!~Nc15! 0 0

D0n 1
1

20A2
~Nc12!A~Nc21!~Nc15! 0 0

S* 1S1
2

1

40A2
~Nc23!~Nc15! 2

1

8A2
~Nc15! 1

1

8A2
~Nc23!

S* 0S0
1

1

20A2
~Nc

212Nc15! 2
1

2A2
2

1

2A2

S* 0L 0 1
1

4A2
A~Nc21!~Nc13! 2

1

4A2
A~Nc21!~Nc13!

S* 2S2
2

1

40A2
~Nc23!~Nc15! 1

1

8A2
~Nc23! 2

1

8A2
~Nc15!

J* 0J0 0 1
1

6A2
~Nc13! 2

1

6A2
~Nc23!

J* 2J2 0 2
1

6A2
~Nc23!

1
1

6A2
~Nc13!
ea

ds
f

e

the
o
e
it

ge

cer-
than r J0
2

5r n
2 , which requiresboth the SU~3! limit and Nc

53 to hold, so that both corrections ofO(12r ) and O(1
23/Nc) occur.

There is a relation of the latter type between the 3 m
sured charge radii:

r p
22r S2

2
1r n

25O~12r !1O~123/Nc!. ~4.12!

Or, if one allowsNc-dependent coefficients,

1
2 ~Nc21!~r p

22r S2
2

!1r n
25O@~12r !~123/Nc!#. ~4.13!

Numerically, the l.h.s. nearly vanishes: One fin
20.06(15) fm2. However, the uncertainty is the figure o
merit here, since it may be used to gauge the typical siz
a first-order SU~3!-breaking effect.

Yet one more interesting result is
01600
-

of

r J2
2

5
1

2
~r p

21r S2
2

1r n
2!

1O@~12r !2#1O~123/Nc!, ~4.14!

in both the quadratic and cubic forms of SU~3! symmetry
breaking. The second of the order terms implies that
result holds exactly only forNc53, but this can be pushed t
higher order if one allowsNc-dependent coefficients on th
l.h.s., just as in Eq.~4.13!. The virtue of this expression as
stands is that it predictsr J2

2 up to second order in SU~3!
symmetry breaking entirely in terms of the known char
radii, with simple coefficients. One finds

r J2
2

50.64~8! fm2, ~4.15!

where the uncertainty is dominated by that of ther S2
2 mea-

surement, which is much larger than the piece of the un
tainty one would estimate from the second-order SU~3! sym-
metry breaking.
2-9
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Lastly, our expressions for charge radii depend upon o
four parameters,A,B,C, andr @and a choice of scheme fo
SU~3! breaking#. Once one additional charge radius is me
sured, it will be possible to solve for all the parameters a
predict all of the other charge radii. In this sense,r J2

2 was
chosen in the previous paragraph because it could be
dicted in terms of just the measured charge radii, with lit
sensitivity to the SU~3!-breaking scheme or the parameterr.
Conversely, if it becomes the fourth measured baryon cha
radius, it will not effectively constrain the parameterr.

On the other hand, it turns out that the value ofr V2
2 ~to

give one example! cannot be predicted in terms ofr p, n, S2
2 ,

even in the SU~3! limit. Turning this unfortunate observatio
around means that a measurement ofr V2

2 would provide an
extremely sensitive probe of SU~3! symmetry breaking, and
permit high-quality predictions of all other charge radii.

Using the three measured charge radii and the assump
of either quadratic (n51) or cubic (n52) SU~3! symmetry
breaking and an assumed value ofr, one can obtain at leas
ranges for the values of the parametersA, B, andC. Since
these parameters have an expansion in 1/Nc

m starting with
m50, the values obtained forNc53 hold for arbitraryNc .
One finds

~122r 22r n!~r p
21r n

2!13r S2
2

512~22r 2r n!A,

r p
22r S2

2
1

1

3
~52r 2r n!r n

252
2

3
~22r 2r n!B,

r p
22r S2

2
2

1

3
~122r 22r n!r n

252
4

9
~22r 2r n!C.

~4.16!

Note that these all become Eq.~4.12! in the SU~3! limit. The
uncertainties in these expressions are dominated by tha
r S2

2 , even more than by that ofn. Including only the former
and assuming the valuer 5330 MeV/540 MeV suggested b
the constituent quark model, one computes

A510.5660.29 fm2,

B520.0560.29 fm2,

C520.3360.44 fm2. ~4.17!

With these central values one predictsr D1
2

,r p
2 for Nc53,

contrary to the physical picture that theD is an excited state
of the nucleon and hence is more extended in space. H
ever, it is well within the error bars ofr S2

2 for B to be
substantial and forC to nearly vanish. For example, wit
r S2

2
50.73 fm2 as suggested by the upper value of the ran

of statistical uncertainty in Eq.~2.4! and r as above one
obtainsA50.79 fm2, B50.18 fm2, andC50.02 fm2, a hi-
erarchy of parameters leading to the reasonable conclu
r D1

2
.r p

2 .
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B. Quadrupole moments

The operator~3.3! defining quadrupole moments shar
with the charge radius operator~3.2! the feature in the single
photon exchange ansatz that isospin violation enters o
through a single power of the quark charge operatorQa .
Thus, as before, combinations sensitive only toI 52 or I
53 operators must vanish. These are

I 53:

05QD1123QD113QD02QD2, ~4.18!

I 52:

05QD112QD12QD01QD2, ~4.19!

05QD1p2QD0n , ~4.20!

05QS* 122QS* 01QS* 2, ~4.21!

05QS* 1S122QS* 0S01QS* 2S2. ~4.22!

The first three of these expressions were obtained in Ref.@2#,
while the last two areS (* ) equal-spacing rules, obtained fo
Nc53 in @26# and @5#. In addition, there is precisely on
linear relation withNc-independent coefficients that hold
for all values ofNc in all cases of SU~3! symmetry breaking
studied here:

05QJ* 22QV22A2QJ* 2J2. ~4.23!

Unlike the charge radius case, only theN→D quadrupole
transition matrix element has been measured~via photopro-
duction experiments@27#!, and even here the extraction o
QN→D is plagued by a large model dependence:

QN→D520.10860.009 ~stat1syst!

60.034 ~model! fm2. ~4.24!

Since there are 3 undetermined parameters@B8,C8, andr, as
well as a choice of SU~3!-breaking scheme#, we do not at-
tempt to predict any of the other quadrupole moments
merically. However, we can still make a number of intere
ing observations based on the structure of the expression
Appendix B.

First note that each quadrupole moment expression
O(Nc

0) or smaller in the 1/Nc expansion. Indeed, only on
coefficient,B8, contributes to this leading order@in the case
of charge radii, bothA ~for charged baryons only! and B
contribute at leading order#. A few moments’ study will con-
firm that the diagonal quadrupole moments are given by
expression

Q~ I 3 ,Y!5I 3@12Y~42Y!/15#B81O~1/Nc!. ~4.25!

Proportionality toI 3 also holds for the leading terms of th
transition quadrupole moments when the initial and fin
baryon states have the same value ofI (S* S and J* J).
This behavior, due to the dominance of the isovector port
of the quadrupole operator, is familiar from the Skyrm
2-10
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BARYON CHARGE RADII AND QUADRUPOLE MOMENTS . . . PHYSICAL REVIEW D 67, 016002 ~2003!
model and a variety of other model calculations@28,29#.
Taken at face value, it predicts an appreciable quadrup
moment forD0, as well asQV250. However, the sublead
ing corrections in 1/Nc , which interpolate between the ex
tremeNc→` andNc53 cases, soften this behavior. In pa
ticular, the diagonal quadrupole moments in the strictNc
53 case with no SU~3! flavor symmetry breaking obey

Q54q/3~B81C8/3!, ~4.26!

whereq is the baryon charge.
As discussed in Sec. III, the charge radius and quadru

operators are very similar in that both represent sp
dependent electromagnetic couplings to baryons. It t
should not be surprising that their coefficients are related
typical model. In Ref.@2# we saw that the one-gluon ex
change picture gives rise to the relation

QD1p5
1

A2
r n

2 Nc

Nc13
ANc15

Nc21
, ~4.27!

for which the factor on the r.h.s. followingr n
2 equals unity

both for Nc53 andNc→`. In fact, this result can be ob
tained in a much more general setting. The key constra
needed to obtain Eq.~4.27! areB8522B, C8522C, and
as argued in Ref.@18# for Nc53, the same relation may b
derived using not only one-gluon exchange, but one-p
exchange or scalar exchanges, or a mixture of these.

A particularly useful measurement for determining the c
efficients in the quadrupole sector would be that ofQV2. As
we see in Appendix B, the value ofQV2 is very sensitive to
the precise nature of SU~3! symmetry breaking, even mor
so thanr V2

2 . We discussed in Ref.@2# ideas in the literature
for the experimental determination ofQV2; while such ex-
periments are challenging, they appear to be feasible.
value of QV2 would teach us much about the shape
baryon wave functions and the nature of SU~3! flavor sym-
metry.
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V. CONCLUSIONS

We have presented techniques that permit the calcula
of matrix elements of operators acting upon 3-flavor bary
states with arbitraryNc . The approach requires only SU~2!
Clebsch-Gordan coefficients and combinations of them in
form of 6j symbols. We tabulated the values of a set
primitive operators for all relevant states and demonstra
how they can be combined to give results for charge radi
quadrupole moments, using any chosen pattern of SU~3! ~or
isospin! flavor symmetry breaking. In particular, we pre
sented in the Appendixes results using the single-photon
change ansatz, augmented by either no SU~3! symmetry
breaking, or one of two popular types of SU~3! symmetry
breaking suggested by~but not limited to! the quark model
with gluon exchange. We obtained a large number of in
esting predictions and demonstrated how many others ca
made either working in some particular model, or once
small number of additional baryon charge radii or quad
pole moments are experimentally measured.
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APPENDIX A: CHARGE RADIUS EXPRESSIONS

We use the subscripts 0,Q, andC to denote expression
with zero, quadratic, and cubic SU~3! flavor symmetry
breaking via constituent quark masses@see Eq.~4.1!# in ad-
dition to that provided by the quark charge operator. In
SU~3! symmetry limit (r 51) the expressions with subscrip
Q andC reduce to those with subscript 0:
r 0,Q,C
2 ~D11!5A1B

3~Nc
222Nc15!

4Nc
2

2C
3~3Nc

2212Nc15!

2Nc
3

, ~A1!

r 0,Q,C
2 ~D1!5A1B

Nc
224Nc115

2Nc
2

2C
~Nc21!~4Nc215!

Nc
3

, ~A2!

r 0,Q,C
2 ~D0!52S B2

2C

Nc
D ~Nc23!~Nc25!

2Nc
, ~A3!

r 0,Q,C
2 ~D2!5A1B

3~Nc
225!

2Nc
2

2C
3~2Nc

225Nc25!

Nc
3

, ~A4!

r 0
2~S* 1!5A1B

5Nc
2217Nc130

4Nc
2

2C
11Nc

2247Nc130

2Nc
3

,

2-11
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r Q
2 ~S* 1!5A1

B

4 F41r 2
1413r

Nc
1

2~1114r !

Nc
2 G2

C

2Nc
F101r 2

36111r

Nc
1

2~1114r !

Nc
2 G ,

r C
2 ~S* 1!5A1

B

4 F41r 2
142r 14r 2

Nc
1

2~1112r 12r 2!

Nc
2 G2

C

4Nc
F201r 1r 22

72111r 111r 2

Nc
1

4~1112r 12r 2!

Nc
2 G ,

~A5!

r 0
2~S* 0!52S B2

2C

Nc
D5~Nc23!

2Nc
2

,

r Q
2 ~S* 0!52S B2

2C

Nc
D 1

2Nc
S 312r 2

1114r

Nc
D ,

r C
2 ~S* 0!52

B

2Nc
S 312r 22

1112r 12r 2

Nc
D1

C

Nc
2 S 31r 1r 22

1112r 12r 2

Nc
D , ~A6!

r 0
2~S* 2!5A1B

5Nc
213Nc230

4Nc
2

2C
11Nc

2227Nc230

2Nc
3

,

r Q
2 ~S* 2!5A1

B

4 F41r 2
225r

Nc
2

2~1114r !

Nc
2 G2

C

2Nc
F101r 2

3~81r !

Nc
2

2~1114r !

Nc
2 G ,

r C
2 ~S* 2!5A1

B

4 F41r 2
22r 24r 2

Nc
2

2~1112r 12r 2!

Nc
2 G2

C

4Nc
F201r 1r 22

3~161r 1r 2!

Nc
2

4~1112r 12r 2!

Nc
2 G ,

~A7!

r 0
2~J* 0!51S B2

2C

Nc
D5~Nc23!2

6Nc
2

,

r Q
2 ~J* 0!51S B2

2C

Nc
D1

6 F312r 2
6~31r 1r 2!

Nc
1

3~914r 12r 2!

Nc
2 G ,

r C
2 ~J* 0!51

B

6 F312r 2
6~31r 21r 3!

Nc
1

3~912r 12r 212r 3!

Nc
2 G

1
C

3Nc
F31r 1r 22

3~61r 1r 212r 3!

Nc
1

3~912r 12r 212r 3!

Nc
2 G , ~A8!

r 0
2~J* 2!5A1B

5Nc
2112Nc245

6Nc
2

2C
14Nc

2233Nc245

3Nc
3

,

r Q
2 ~J* 2!5A1

B

6 F312r 1
6r ~11r !

Nc
2

3~914r 12r 2!

Nc
2 G2

C

3Nc
F2~61r !2

3~912r !

Nc
2

3~914r 12r 2!

Nc
2 G ,

r C
2 ~J* 2!5A1

B

6 F312r 1
6r 2~11r !

Nc
2

3~912r 12r 212r 3!

Nc
2 G

2
C

3Nc
F121r 1r 22

3~91r 1r 2!

Nc
2

3~912r 12r 212r 3!

Nc
2 G , ~A9!
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r 0
2~V2!5A1B

3~3Nc25!

2Nc
2

2C
3~Nc

222Nc25!

Nc
3

,

r Q
2 ~V2!5A1

3B

2Nc
S 112r 22

312r 2

Nc
D2

3C

Nc
S 12

2

Nc
2

312r 2

Nc
2 D ,

r C
2 ~V2!5A1

3B

2Nc
S 112r 32

312r 3

Nc
D2

3C

Nc
S 12

2

Nc
2

312r 3

Nc
2 D , ~A10!

r 0,Q,C
2 ~p!5A1B

~Nc23!~Nc21!

2Nc
2

2C
~Nc21!~4Nc23!

Nc
3

, ~A11!

r 0,Q,C
2 ~n!52S B2

2C

Nc
D ~Nc21!~Nc13!

2Nc
2

, ~A12!

r 0
2~S1!5A1B

~Nc23!~Nc21!

2Nc
2

2C
~Nc21!~4Nc23!

Nc
3

,

r Q
2 ~S1!5A1

B

2 S 22r 2
723r

Nc
1

1128r

Nc
2 D 2

C

Nc
S 52r 2

18211r

Nc
1

1128r

Nc
2 D ,

r C
2 ~S1!5A1

B

2 S 22r 2
71r 24r 2

Nc
1

1124r 24r 2

Nc
2 D 2

C

2Nc
F102r 2r 22

36211r 211r 2

Nc
1

2~1124r 24r 2!

Nc
2 G ,

~A13!

r 0
2~S0!51S B2

2C

Nc
DNc13

2Nc
2

,

r Q
2 ~S0!52S B2

2C

Nc
D 1

2Nc
S 324r 2

1128r

Nc
D ,

r C
2 ~S0!52

B

2Nc
S 324r 22

1124r 24r 2

Nc
D1

C

Nc
2 S 322r 22r 22

1124r 24r 2

Nc
D , ~A14!

r 0,Q,C
2 ~L!52S B2

2C

Nc
D3~Nc21!

2Nc
2

, ~A15!

r 0
2~S0L!52S B2

2C

Nc
DA~Nc21!~Nc13!

2Nc
,

r Q
2 ~S0L!52r S B2

2C

Nc
DA~Nc21!~Nc13!

2Nc
,

r C
2 ~S0L!52r FB2

C~11r !

Nc
GA~Nc21!~Nc13!

2Nc
, ~A16!

r 0
2~S2!5A1B

Nc
226Nc23

2Nc
2

2C
4Nc

229Nc23

Nc
3

,
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r Q
2 ~S2!5A1

B

2 S 22r 2
115r

Nc
2

1128r

Nc
2 D 2

C

Nc
2 F52r 2

3~42r !

Nc
2

1128r

Nc
2 G ,

r C
2 ~S2!5A1

B

2 S 22r 2
11r 14r 2

Nc
2

1124r 24r 2

Nc
2 D 2

C

2Nc
2 F102r 2r 22

3~82r 2r 2!

Nc
2

2~1124r 24r 2!

Nc
2 G ,

~A17!

r 0
2~J0!52S B2

2C

Nc
DNc

2112Nc29

6Nc
2

,

r Q
2 ~J0!51S B2

2C

Nc
D1

6 F324r 2
6~322r 1r 2!

Nc
1

3~928r 12r 2!

Nc
2 G ,

r C
2 ~J0!51

B

6 F324r 2
6~11r !~323r 1r 2!

Nc
1

3~924r 24r 212r 3!

Nc
2 G

2
C

3Nc
F322r 22r 22

6~32r 2r 21r 3!

Nc
1

3~924r 24r 212r 3!

Nc
2 G , ~A18!

r 0
2~J2!5A2B

~Nc13!2

6Nc
2

2C
8Nc

2215Nc29

3Nc
3

,

r Q
2 ~J2!5A1

B

6 F324r 2
6r ~22r !

Nc
2

3~928r 12r 2!

Nc
2 G2

C

3Nc
F4~32r !2

3~924r !

Nc
2

3~928r 12r 2!

Nc
2 G ,

r C
2 ~J2!5A1

B

6 F324r 2
6r 2~22r !

Nc
2

3~924r 24r 212r 3!

Nc
2 G

2
C

3Nc
F2~62r 2r 2!2

3~922r 22r 2!

Nc
2

3~924r 24r 212r 3!

Nc
2 G . ~A19!

APPENDIX B: QUADRUPOLE MOMENT EXPRESSIONS

We use the subscripts 0,Q, andC to denote expressions with zero, quadratic, and cubic SU~3! breaking via constituen
quark masses@see Eq.~4.1!# in addition to that provided by the quark charge operator. In the SU~3! symmetry limit (r 51) the
expressions with subscriptsQ andC reduce to those with subscript 0:

Q0,Q,C~D11!51B8
6~Nc

212Nc15!

5Nc
2

2C8
12~Nc

228Nc15!

5Nc
3

, ~B1!

Q0,Q,C~D1!51B8
2~Nc

212Nc115!

5Nc
2

2C8
4~Nc

2213Nc115!

5Nc
3

, ~B2!

Q0,Q,C~D0!52S B82
2C8

Nc
D2~Nc23!~Nc15!

5Nc
2

, ~B3!

Q0,Q,C~D2!52B8
6~Nc

212Nc25!

5Nc
2

1C8
12~Nc

223Nc25!

5Nc
3

, ~B4!
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Q0~S* 1!51B8
Nc

22Nc16

Nc
2

2C8
2~Nc26!~Nc21!

Nc
3

,

QQ~S* 1!51
B8

2 F11r 1
123r

Nc
1

4~112r !

Nc
2 G2

C8

Nc
F11r 2

3111r

Nc
1

4~112r !

Nc
2 G ,

QC~S* 1!51
B8

2 F11r 1
11r 24r 2

Nc
1

4~11r 1r 2!

Nc
2 G2

C8

2Nc
F21r 1r 22

6111r 111r 2

Nc
1

8~11r 1r 2!

Nc
2 G ,

~B5!

Q0~S* 0!52S B82
2C8

Nc
D2~Nc23!

Nc
2

,

QQ~S* 0!52S B82
2C8

Nc
D 2

Nc
S r 2

112r

Nc
D ,

QC~S* 0!52
2B8

Nc
S r 22

11r 1r 2

Nc
D1

2C8

Nc
2 F r ~11r !2

2~11r 1r 2!

Nc
G , ~B6!

Q0~S* 2!52B8
Nc

213Nc26

Nc
2

1C8
2~Nc

223Nc26!

Nc
3

,
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2 F11r 1
115r
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2
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2 G1

C8

Nc
F11r 2

3~11r !
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2

4~112r !
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2 G ,

QC~S* 2!52
B8

2 F11r 1
11r 14r 2

Nc
2

4~11r 1r 2!

Nc
2 G1

C8

2Nc
F21r 1r 22

3~21r 1r 2!

Nc
2
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Nc
2 G , ~B7!

Q0~J* 0!51S B82
2C8

Nc
D2~Nc23!2

3Nc
2

,
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2C8

Nc
D2r

3 F12
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1
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2 G ,
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3 H B8F12
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F11r 2
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1
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Nc
2 G J , ~B8!
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3Nc
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3Nc
3
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3 H B8F11
3~11r !
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2 G2

2C8
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F12
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