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Hadronic electric dipole moments, the Weinberg operator, and light gluinos
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We reexamine questions concerning the contribution of the three-gluon Weinberg operator to the electric
dipole moment of the neutron, and provide several QCD sum-rule-based arguments that the result is smaller
than—but nevertheless consistent with—estimates which invoke naive dimensional analysis. We also point out
a regime of the minimal supersymmetric standard model parameter space with light gluinos for which this
operator provides the dominant contribution to the neutron electric dipole moment due to enhancement via the
dimension five color electric dipole moment of the gluino.
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I. INTRODUCTION AND SUMMARY and the Weinberg operatfs],

New sources ofCP violation in supersymmetric exten- (6] aboa Rb c
sions of the standard model are highly constrained by the Leif =zW 7G,,G6G,, ()]
null experimental results for the electric dipole moments
(EDMs) of neutrons and heavy atorfis,2]. Typically, when  as the dominant mediators &P violation from the soft
the superpartners have an electroweak scale mags,the  preaking sector to the observables. Note that although the
add|t|92nal CP violating phases are constrained to be ofgyark (C)EDMs have dimension five, chiral symmetry re-
O(10 ). When confronted with the natural expectation thatyjres that the corresponding coefficients are proportional to

the size of these phases in the soft-breaking sector should eIight quark mass, and thuk, @, andw generically scale

g;;:gg{&g%;%? creates a problem for weak-scale supeﬁ] the same way with the overall SUSY breaking scale.

The interactions which generate EDMs are described by g EXtracting constraints on the underlyit@P-odd phases
CP-odd effective Lagrangian, induced at 1 GeV by integrat-thus requires quantitative knowledge of the dependence of
ing out heavy standard model particles and superpartnerspservable EDMs oml;, d;, andw normalized at the had-

which contains a series of operators of increasing dimensiontonic scale. Recently, the dependencedpmandd; has been

The leadingd term, determined more precisely using QCD sum rulé§ and
2 now we turn our attention to the Weinberg operator. Al-
/;[%J:&E(;a G2 | (1) though rather intractable within the standard framework, we
N7 will present several sum-rule-based estimates. The resulting

_ preferred range for the neutron EDM,

has dimension four, and an arbitrary value tbronstitutes
the usual stron@ P problem as its contribution to EDMs is d,(w)=e(10-30 MeVw(1l GeV), (4)
unsuppressed by any heavy scale. Moreover, the existence of
additional CP-odd phases in the soft-breaking sector of theis & factor of two smaller than conventional estimdté]
minimal supersymmetric standard mod@iSSM) aggra-  using “naive dimensional analysi¥NDA) [6]. This moder-
vates this problem by inducing a large additive renormaliza-ate suppression can be understood through the appearance of
tion of @ that survives in the decoupling limit. The conven- cOmbinatoric factors which are not accounted for within
tional “cure”—the Peccei-Quinn mechanism—eliminates NDA. However, while our result fNOd“(W) is smaller than
and leaves the dimension five quark EDMs and color EDMghe NDA estimate, and thus,(d;,d;) generally dominates
(CEDMSs), the contributions ta,, there is a regime in whicl,(w) is
important as it is generated rather differently from the quark
(C)EDMSs within the MSSM.

In order to explain this point recall, first of all, that there
: are several generic “strategies” for curing the SUEYP
o =y _ problem. The first is to require that the superpartners are

2 -0 divi(Go)ysii, @ heavy enough to suppress all operators of=ingenerated

i _
EE}]:_E_ > digi(Fo)ysi
i=e,u,d,s
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at the SUSY threshold. This decoupling is usually applied tadensity of all hadrons. Consequently the neutron EDM is
sfermions of the first two generations only, in order to avoidunsuppressed by any additional scale, and at a crude level
problems with fine tuning in the Higgs sector. However, thisq ~ed, ~1/A .

approach is only partially successful as relatively large ' This enhancement by the gluino CED(@) persists in the
EDMs may be generated through higher loppsor through  intermediate hierarchical regime,,q<m, <Ay where, on
four-fermion operators induced by Higgs exchai§f Sec-  ntegrating out the gluino, one generates a contribution to the
ondly, one could conceive of a universal conspiracy IeadingNeinberg operator alluded to above that scales as
to cancellations between different contributid®$, but this 1/(my Ay). At a critical scalem)\zmih”‘< Ay these contribu-

is difficult to reconcile with the null results for all threg tyPes tions will dominate Ove|di~Ahad|m)\/A\3N andd,, will start

of '.EDM meas“reme’_“”.e“”o”’ paramagnetic and diamag- increasing whilam, decreases. As we will determine below,
netic atomsy that a priori have different phase dependencethe scale

[10]. A third, perhaps more elegant, option is to invoke an

exactCP or parity at some high-energy scale and specify the mi)?tw(e_ 12) GeV ®)
mechanisms that break supersymmetry in such a way that all

the relevant soft breaking parameters are rendered real. Thigts an effective threshold for the maximal suppression of
could also be one way of obviating the need for axion relaxgppms possible with this superpartner hieraréhy.

ation[11]. However, some of these scenarios may face prob-  oyr results suggest that at this scale the neutron EDM is

lems when confronted with the largeP violation that is by stjl| considerably larger than the experimental bound,
now well documented in thB-meson systeml2].

Given these difficulties, one may pursue another option Adn(mixm)“(40— 80)de*, 9)
which is to suppress the SUSY contributions by creating
some (mild) hierarchies between the soft breaking param-unless the SUSYCP phases are fine tuned. Note that both
eters in order to suppress the EDMs generated at one I00|ahiAnt and dn(m‘{“) depend, in addition, on possible intergen-
Notably, in the limit where gauginos are much lighter thanerational hierarchies for the squark masses. When the first
the sfermions, all one-loop contributions tq the EPMS Ofgeneration of sfermions is taken to be heavier thap, mwt
light quarks and the electron take the following form: increases whila_fin(m{“) decreases.

Therefore, the Weinberg operator has an important role to
play in minimizing the suppression possible within the light
gluino regime. Note that fom,<<A,q, the CP-violating
phase can be rotated o, itself leading to a suppression of

: - : : . d, by my/A as one approaches the super-Yang-Mills
with a similar expression fai; induced by the relative phase Iirr;]it.)llb\sghenqe;cric olot of thgrl;ehavior ok (m,) Fsshowr? i
of u andm,. Herei=e, u, d, s, andmg stands for a Fig. 1 moA

generic sfermion mass. It is easy to see thaimgs-0 the
expression(5) for d; vanishes. Thus a mild hierarchy,
~ (10 3-10 ?)mg would appear to be sufficient to evade

the SUSYCP problem [13,14. In slightly different lan- yotai) the calculation justifying the argument outlined above

guage, it follows from Eq(5) that in this regime the quark | nich ses the Weinberg operator to limit the suppression of
EDMs are demoted to dimension seven operators and thl‘E’DMS for light gluinos.

are relatively harmless.

While the quark EDMs are suppressed by this hierarchy,
we emphasize that sendimg, down to hadronic scales ac- Il. NEUTRON EDM INDUCED BY THE
tually enhanceghe neutron EDM via the generation of the WEINBERG OPERATOR

Weinberg operator. The main point is that the gluino CEDM,  jpike the case ofl,, induced by thed term, or the EDMs

and CEDMs of quarks, where chiral lodi8] and QCD
sum-rule-based calculatiof§] are available, the matrix el-

m;
d;(one loop ~ (loop factobx—4lm(mAA), (5)
sf

In the next section we turn to the problem of estimating
the contribution tod,, induced by the Weinberg operator,
justifying the resul{4). Then, in Sec. lll we describe in more

1

_ abcy b - ~a c
£>\_4d>\f Ao Glysh, 6) ement that related,, with the Weinberg operator is unknown.
The standard estimate, first obtained by Weinj8lgmakes
can be induced by a top-stop l0fp5], leading to use of “naive <_j|men.S|onaI analysis['6,19| _wh|ch kgeps
track of dimensions, in terms of the generic hadronic scale
2 Ahagrn @nd Goldstone-mediated interactions through the ef-

~ m . . . . .
d, (one loop ~ (loop faCtODX—ZIm(At—,u* cotd) (7) fective dimensionless coupling,q/f .. One finds[3,4]
m

sf

1 . .. .

. . . . . ~ . As an aside, we note thgberhaps surprising)ya gluino mass of
na .baS|s.|n Wh_'Ch the gluino mass 1s real. Thijsis a orderm{"" is still not ruled out by direct constraints, and indeed has
genuine dimension five operatod,~1/Ayy, fOf_ A~ p recently been revived16] in relation to the enhanced hadronic
~mg~Ayy. It follows that formy ~Ap,q, the gluino takes  b-quark production observed at the Collider Detector at Fermilab

part in the strong interactions and contributes to the energyCDF) and DO[17].
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FIG. 1. Schematic behavior of the neutron EQM as a func-
tion of the gluino mass. Loweringn, from the SUSY threshold
there is an initial suppression df, due to the decrease df(m,) as
m, decreases from\y, to the intermediate valumi{“. A further
decrease ofn, in the interval fromm)™ to A p.q leads to the in-
crease ofd, due to the contribution of the Weinberg operator, in-
duced by the gluino CEDM. Whem, is smaller thanA.q,, d,
receives a linear suppression by .

Ahadr
4

d,~e w(u)~e 90 MeV w(u), (10

at a low-energy normalization point, taking Anag~47f
~1.2 GeV. The large value-4 for the coupling amounts

to demanding that loop corrections are qualitatively simila
to the tree-level terms at the matching scale. In the gluoni
e

sector, which is important here, this means that within th

UV quark and gluon description the relevant value of the hen form the basis of our estimates as they are correspond-
gauge coupling is necessarily very large and consequent%g y P

the inferred matching scale does not mesh easily with expe

tations from the chiral sectd6,19]. In the present context
Weinberg[3], and many papers sin¢é], have, for the pur-

pose of evaluating the gauge coupling, chosen a specifi

matching scale corresponding ¢Q=47/+/6, or ag=2 [cf.
ag(1l GeV)=0.4]. If we adopt this normalization scale in
Eqg. (10), and use(somewhat optimistically the one-loop
anomalous dimension fow [20], the relation w[ u(gs
=47/\6)]=0.4n(1 GeV) leads to the most commonly
used estimate fod,(w):

d~e40 MeVw(u=1 GeV). (11)

We will avoid quoting a result for the dependencedgfon

r.
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<qg(Go)q >

FIG. 2. Perturbative insertion of the Weinberg operator into a
quark line. The resulting correction to the propagator is proportional

to wys(qgs(Go)a).

consistent matching condition we might then chogse
=u(gs=4m), leading to a result

d?~e18 MeVw(u=1 GeV), (12)
which is half the size of Eq.11). Although both result$11)
and (12) are consistent within the expected precision of the
NDA, it is clear that independent quantitative calculations
are needed to determirg,(w) to better than an order of
magnitude.

As a quantitative test of the NDA estimates, we will now
revisit the calculation ofl,,(w) using QCD sum rules, lead-
ing to a result that is a factor of @nallerthan Eq.(11) and
consistent with Eq(12). To proceed, we note first that the
leading contribution to the EDM from the operator product
expansion(OPE of the nucleon current correlator in the
presence of the sourc@) exhibits a logarithmic infrared
divergence. This signal®2] the presence of additional op-
erators, required to resolve the divergence, whose contribu-
ions are generally rather difficult to calculate directly.

herefore, we will be content to regulate the logarithmic-
divergent contributions with an IR cutoff. These terms will

gly enhanced and thus provide the dominant contributions
o the EDM.

We begin by noting that the Weinberg operator allows for
a perturbative insertion into the quark propagator. The lead-
ihg CP-odd correction is described by the diagram shown in
Fig. 2, and standard manipulatiof3] lead to the following
result:
igw

, i _
IS(D)=F+8—D47’5<QQS(GU)Q>, (13

where the value of the quark-gluon condensate is given by

[24]

(a95(Go)ay=m3|(qa)|=0.8 GeV¥(qa),  (14)

w(Ay), as there are additional threshold contributions from o
d, andd, generated by top-quark—top-squark—gluino loopswith (qq)= — (230 MeV)’. It is the 1p* momentum depen-

which are in general model depend¢pi].
To get some intuition regarding the estimgté), we can

dence in the second term of E@L3) which leads to the
logarithmic infrared divergence alluded to above in the cor-

consider more carefully the loop factors which are effec-relator of two nucleon currents. This signals the breakdown

tively set to unity in Eq.(10). For illustration, consider re-
ducing the Weinberg operator to the EDM by “integrating

of the OPE, but also singles out this insertion as providing
the dominant effect which we will use in calculatidg(w).

out” the gluons. This leads to an effective loop factor of The ambiguity of the infrared logarithm does of course ren-

gg’/(47-r)4 which reproduces Eq.10) provided we takegs

der the result less reliable than the corresponding determina-

~44. One obtains a similar conclusion for the effective tion of d,(d; ,d;) [5], but nonetheless sufficient for our esti-

scale by considering the gauge kinetic term it$6lf As a

mates.
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The insertion present in the second term in Ekf) be- , _
haves as a “softis mass.” Indeed, while irrelevant for large J d*xePX(7(0) 7(x))
p?, at hadronic scale momenta it mimics the existence of an
effective CP-odd mass of order

S p?In(—Ajy/p?)(qa)
1672

o W
8Aﬁadr

e (q9s(Go)g)~(120 MeV—160 MeV)®w

W

main(—p?/ wis) [+ - - -. (18)

(19 X

39
1+i
75 3272
whereA .4, IS the effective hadronic scale, which we take to
lie in a range fromm, up to 4« f ., with previous result§5] It is the relative coefficient between the structutesndi ys
suggesting that the lower end of this range is most relevarihat determines the chiral rotation and consequently enters
for EDM observables. This determines the neutron EDM acinto the estimate of27]. From Eqs(17) and(18) we obtain

cording to the scaling relatiof®], 3g.m?
Imef do=rn—— WIN(M% ule)=e 22 MeV w(1 GeV),
dy~e——~e(15-7) MeV W(Apag),  (16) 32m

2
hadr

(19
where the large range in this estimate arises from the allowe@here we tookM/ug=2 andgs=2.1. It is important to
variation in A4 note that the estimatél9) arises atO((qq)®), which we
This result is 5-10 times smaller than the conventionalwould expect to be dominant, and is indeed considerably
NDA estimate(11). This is actually not too surprising once larger than the estimaté6). A more involved calculation of
we recall thata priori d,(w) should be ofo(<aq>0) in the the nucleon current correlator in an external electromagnetic
chiral limit, while the contribution in Eq(16) is O((qa)) ~ field [25] reveals additional contributions t(w), but the
and thus may indeed be subleading. To test this one Cainerall result remains quite close to E349). Additional in-
consider an explicit sum-rules-based estinfa@8] utilizing duced corrections, from Peccei-Quinn relaxation, would also
the insertion(13). One finds that for the natural chirally in- be subleadin§27] as they cannot contribute &%((qq)?).
variant Lorentz structurdp, (Fo) ys} [5], the tractable con- The only other QCD sum-rules estimatech{w) that we
tributions are 0f0((qq)?) and render a result fat, within &€ aware of was made by Khatsimovsa9] who consid-
the range(16). Previous experiencgs] would suggest that e.red a h'gh order term in the OPE propomonal to the
the terms 0f0((qq)?) are sub-dominant, but unfortunately dimension-eight ogeratd?(GGg). An estlrgate of the non-
the (a priori) leading contributions 0D(({qq)°) for d,(w) local correlator,/d X<O|T.{(GGG)(O)’(GGG)(X)}|O> pro-
are intractable in this direct approach due to the presence §juced a result fod,(w) similar to Eq.(10). However, com-
unknown condensates. binatoric factors were ignored in this calculation which

This analysis suggests that the rarigi) might represent clearly reduce the result to a value consistent with—or some-
an underestimate of,(w). A natural path to follow is to What smaller than—Eqg16),(19). In practice a precise cal-

consider the sum rules in chirally variant channels such aSulation along these lines does not appear feasible, as mul-

(Fo) or p(Fa)p from which one can still extractl,(w) tiple perturbative insertions of the gluon field strength into a
n . . . .

along the lines considered previously fiy( 6) [26]. A con- quark line generally leads to power-like infrared divergences

venient means of estimatirdy,(w) in this vein is to calculate [22% si_gnifyir:lg the brelakdown ﬁf the %PE : he |
the s rotation of the nucleon wave function induced by the utting these results together, and ignoring the lower
Weinberg operator and determide in terms of the corre- range of Eq.(16) for the reasons discusssed above, we find

sponding rotation of the neutron anomalous magnetic moJEhe preferred range fat,(w),

mentup, dn(w)~e(10-30 MeVw(1 GeV), (20)
w -
(N| §(GGG)|N> which is a factor of two smaller than the conventional NDA
dn~ un — . (170  estimate(11), and consistent with Eq12). This result will
m,NiysN be discussed in more detail elsewhg2E], but we turn now

to a regime of the SUSY parameter space for which this

This approach was considered previously by Bigi and Uralt-contribution tod, is nonetheless very significant.
sev [27] who estimated (N|(GGG)|N) in terms of
(N|GG|N) and the corresponding vacuum condensates.

We can follow this route and perform a more explicit
calculation by evaluating theys” term in the standard mass As described and schematically illustrated in Sec. I, the
sum-rule correlator of the two nucleon currents. For the conneutron EDM is particularly enhanced in the domaip,q,
ventional choice of the loffe interpolating current for the <m, <A, where the gluino develops a color EDM via a
neutron [28], we obtain at leading order, top-quark—top-squark loofd 5],

IIl. ENHANCEMENT VIA GLUINO COLOR EDM
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3
~ gs(AW) mt . .
dy(Ay)=— —————=sin(267)sin 5,
A(Aw 3972 Mi n(26; t
2
f m th m (21)
>< 5 - T 5 - L
oz
1 2 2
with  8,=Arg[A;— p*cotB] and fy(y)=[1-y+In(y)l/(1 0 05 1 15 2 25 3
—y)2. Note that this expression is independentnaf and S
scales as ¥\,. The corresponding contribution to the Wein-
berg operatof3,4,30,31, FIG. 3. Thed, dependence of the gluino contributiondg for

5 . m, =1 GeV (solid ling), my=m, (dashed ling and m, =20 GeV
3gs(my) dy(m,) (dot-dashed ling

Aw(m,)=—
(M) 3272 M,

(22)

Of particular interest is the maximal suppression that one
scales as i, Ay . It is worth noting that in addition to the can achieve for the EDM in this hierarchical regime with
obvious enhancement by a factor &f,/m, relative to the light gluinos. We denote byn)" the critical scale at which
standard scenarif30], the gluino CEDM-induced shift of the one-loop contribution induced by quark EDMand
the Weinberg operator is also enhanced relative to that inCEDMS) is approximately equal to the contribution associ-
duced byc or b quarks which is of order Jy\2N [31,21]. ated with the Weinberg operator discussed here. Choosing

The normalization ofAw at the hadronic scale involves the soft-breaking parameters in the first generation of squarks
running the gluino CEDM from\y, down to the gluino mass t0 be O(200 GeV), and assuming no accidental cancella-
threshold, and subsequent runningvofiown to A p,g,. For  tions, we find
completeness, we give the one-logpfunction coefficient, mi}?tw(e_lz) GeV (24)
Bo=11-2n,—2ny/3, wheren, stands for the number of
light x particles at the scale under concern. Besides this, thaccounting for the range in E¢4), for which the(minimal)
anomalous dimensions af, andw are given, respectively, correction to the EDM is approximately,

by y*=—18+ 3, and y=—36+3,. The latter has been Ad,(m™)~ (40-80d%® (25)
computed ir[20], and the computation of the former is simi- me "
lar to that of the quark color EDM§32]. which still exceeds the experimental bound by at least an

We now illustrate numerically the impact of light gluinos order of magnitude unless ti@P-odd phases are small.
on the neutron EDM using the range fdg(w) in Eq. (4). Itis interesting to compare our estimates drwith those
Using Egs.(21) and(22), we can write one obtains when the gluino is heawmy, ~ Ay. In this case,

. (4-12 GeV the Weinberg operator is first generated at the weak scale at
Ad,~100 S|n5tm—dﬁ)<p, (23)  two-loop ordef30]. On including the contributions arising at

A the b-quark andc-quark thresholds, one finds thdt, ob-

where we have takeM; =200 GeV, M; =700 GeV, 6; tained via Eq(10) only exceedsl,"” by at most one order of
=/4, and the current experimental bound on the neutroﬁnagm_mde[zl]' Consequentl_y, the light _glumo scenario ac-

T 06 ' _tually induces a larger contribution th, via the color EDM
sE;’\tAe(ljsignFi 6;18vher2Cvr\?e[t]é\;rehir:)?elnr?ﬁglt;i?jr-?/allari of the gluino. Thus, while it is possible to suppress the one-
—20 MeVw gm qu (4). The solid curve stands fom'u loop contributions to the EDMs of leptons and hadrons by
- . . )\

. taking light gauginog14], the induced contribution to the
_ exp_ — . .
=1 GeV (with _d“/d“ 8380 atd;=m/2), the dashed curve Weinberg operator means that the constraints on the SUSY
for my=m, (with d,,/dy*~170 at ;= n/2), and the dot-

: CP-odd phases are not correspondingly relaxed.
dashed curve fom,=20 GeV (with d,/d3*~30 at &,

=/2). Thus, for light gluinos, wheren,~(1—4) GeV,

one finds thad,(w) exceeds the experimental bound by at
least two orders of magnitude throughout the entire preferred We thank Louis Clavelli, Glennys Farrar and Oleg Leb-
range in Eq(4) unless the SUSY phases are tuned such thatdev for useful discussions. The work of D.D. was supported
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