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One loop matching coefficients for a variant overlap action and some of its simpler relatives

Thomas DeGrand
Department of Physics, University of Colorado, Boulder, Colorado 80309

~Received 29 October 2002; published 30 January 2003!

I present one-loop perturbative calculations of matching coefficients between matrix elements in continuum
regulated QCD and lattice QCD with overlap fermions, with emphasis on a recently proposed variant discreti-
zation of the overlap. These fermions have extended~‘‘fat link’’ ! gauge connections. The scale for evaluation
of the running coupling constant~in the context of the Lepage-Mackenzie fixing scheme! is also given. A
variety of results~for additive mass renormalization, local currents, and some nonpenguin four-fermion opera-
tors! for naive, Wilson, clover, and overlap actions are shown.

DOI: 10.1103/PhysRevD.67.014507 PACS number~s!: 11.15.Ha, 12.38.Aw, 12.38.Gc
s
u
-

es
or

er

s—

lt
lu
e

n
-
a
r
a
b
s
f

ag
s
a

-to
th
el
r
or

n
fa

th
t

tio
ft

—
tter
t the

ur-
ular
ve
At
lar
At
m
inty,
tur-

nt

f
n

is
an
ally
ing
re,

s

-
in

re
P
ut
is
ing
Lee
ur-

for
ons
ain

-

I. INTRODUCTION

This paper presents one-loop perturbative calculation
matching coefficients between matrix elements computed
ing a spatial lattice regulator~and measured in lattice simu
lations! and their equivalent continuum-regulated valu
The principal lattice fermion action studied is a recent f
mulation of overlap fermions@1# built from a ‘‘kernel ac-
tion’’ with nearest and next-nearest neighbor fermionic int
actions and ‘‘fat link’’ gauge connections@2#, specifically
hypercubic- ~HYP-!blocked @3# links. Along the way, I
present some new results for a number of simpler action
naive, Wilson, and clover fermions with fat links~including a
few results for APE-blocked@4# links!, and overlap actions
with Wilson or clover action kernels. I also present resu
for the scale at which the running coupling constant is eva
ated ~the so-calledq* value!, using the scheme of Lepag
and Mackenzie@5#.

Fat link actions were originally developed@6# in order to
improve the chiral properties of lattice fermions. In the co
text of perturbation theory, ‘‘chiral improvement’’ for non
chiral actions means having small additive mass renorm
ization, vector and axial current renormalization facto
nearly equal, scalar and pseudoscalar factors also ne
equal, and suppressed mixing of four-fermion operators
tween different chiral sectors. Fat link actions do all the
things. I have found that using these actions as kernels
overlap actions seems to have computational advant
over using thin link actions. Overlap actions with fat link
have matching factors which are much closer to unity th
overlap actions built of thin link fermion action kernels.

Several authors have published calculations of lattice
continuum matching factors for a variety of processes for
overlap action with the thin link Wilson action as its kern
~for a partial list, see@7–11#!. Perturbative calculations fo
more complicated actions are in principle not much m
difficult to do, once the Feynman rules are constructed. O
just has to organize the calculation, and not carry it too
Intermediate results for matching coefficients~particularly
Table II! may be a more important part of the paper than
tables of results. These formulas are certainly not new, bu
most published papers they appear embedded in ac
specific discussions, and they are often hard to find until a
one has rederived them.
0556-2821/2003/67~1!/014507~11!/$20.00 67 0145
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Whether or not perturbation theory can—or should be
used to convert lattice numbers to continuum ones is a ma
of debate. One sometimes sees blanket statements abou
use of perturbation theory in lattice calculations, as if pert
bative calculations per se were unaffected by the partic
choice of lattice action. But clearly different actions ha
different properties when the cutoff is not taken away.
nonzero cutoff, it is a practical question for any particu
action, to ask how well perturbative calculations perform.
sufficiently small renormalized coupling the matching fro
one scheme to another can be done with small uncerta
the uncertainty being due to higher order terms in a per
bative expansion in the renormalized coupling.

To be specific, let us write a one loop matching coefficie
for an operator which does not undergo mixing asZ51
1as /(4p)A. In today’s simulations, typical values o
as /(4p).0.0120.015. With standard actions, one ofte
finds that theA’s are large. For standard thin-link actions A
order 10–40, so the matching factor differs from unity by
amount of 0.1 to 0.6. In the actions considered here, typic
theA’s are smaller than about 5 in magnitude, correspond
to a shift from unity of 0.05–0.07. One presumes, therefo
that the perturbative expansion ofZ is better behaved. One’
results are also less sensitive to the choice of scaleq for
as(q

2) if the coefficient is small.
A brief report of perturbation theory for Wilson and clo

ver actions with APE-blocked links has been presented
Ref. @12#. The qualitative features of the work done here a
all anticipated in that paper. Here I will focus mainly on HY
blocking simply because it gives more smoothing witho
delocalizing the action. Applications to the overlap in th
work are also new. Results for staggered fermions us
HYP links have recently been presented by Sharpe and
@13#, and Lee@14# has discussed general features of pert
bation theory for fat links.

In Sec. II, I describe the simple ingredients I used
lattice perturbation theory. Results of selected calculati
for currents are presented in Sec. III. Appendixes cont
Feynman rules for the actions studied.

II. INGREDIENTS

A. Matching and scale setting

A ‘‘typical’’ matching coefficient between a lattice regu
lated quantity and a dimensionally regulated quantity~modi-
©2003 The American Physical Society07-1
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fied minimal subtraction,MS, for example!, for an operator
which does not undergo mixing, isZ511@g2/(16p2)#Z
where

Z5I MS
F

2I latt . ~1!

I MS
F is the finite part of the continuum 2v5422e dimen-

sional integral andI latt is a lattice integral. For a proces
with Nf external fermion legs,I i5G i2S1Nf /2 whereG i is
the vertex renormalization andS1 is the fermion wave func-
tion renormalization. All these quantities will be evaluated
one loop. In this work the internal momentum integrati
variable will always label the momentum flowing throug
the gluon line. I will always work at zero momentum fo
external particles and fermion massm50, regulating any IR
~infared! divergence of the diagram with a gluon massl. Of
course, there is nothing complicated about these choi
they are made purely for expediency.I MS will take the ge-
neric form

I MS516p2E d2vk

~2p!2v ~m2!2v
1

k2~k21l2!
~A1Be!

5AH 1

e
2gE1 log~4p!J 1A log

m2

l2 1A1B. ~2!

The term in curly brackets is simply discarded to giveI MS
F .

In the lattice integral, we can scale all dimensionful variab
by appropriate powers of the lattice spacing and write

I latt516p2E
ak

I ~ak,ap,am,al! ~3!

where*ak5) j*2p
p d(akj )/(2p) will be the symbol for inte-

gration over the~rescaled! momentum hypercube.
If I MS has an A log(m2/l2) term, I latt will have an

A log@1/(l2a2)# IR divergence, too. It can be separated o
by writing the integrand as

I latt516p2E
k
S I ~k,ap,am,al!2A

u~p22k2!

k2~k21a2l2! D
116p2E d4k

~2p!4 A
u~p22k2!

k2~k21a2l2!

[J1A log
p2

a2l2 . ~4!

The first term of Eq.~4! is IR finite, and one can setl50 in
it. Thus

Z5A log~m2a2!1A~12 logp2!1B2J. ~5!

This would be the end of the story if we did not want
choose a scaleq* for the coupling constant in Eq.~1!. This is
~unfortunately! a problem whose solution involves at leas
two-loop calculation~see the discussion in the Appendix
Ref. @15#!. Absent such a calculation, one could either letq*
vary over some ‘‘reasonable’’ range (1,q* a,p at lattice
spacinga, for example!, or construct some physically mot
01450
t
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s
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vated ansatz for the scale. The best known example of su
construction is that of Lepage and Mackenzie@5#: Imagine
that one has some process parametrized by a one loop
gral, and assume that its higher order behavior is domina
by gluonic vacuum polarization, so

aE I ~q!d4q→a~q* !E I ~q!d4q'E a~q!I ~q!d4q.

~6!

Expanding the coupling

a~q!5a~q* !2b0a~q* !2log~q2/q* 2!1 . . . ,

self-consistency requires that the coefficient ofa(q* )2 van-
ish, or

log~q* 2!5

E d4q log~q2!I ~q!

E d4qI~q!

[
L1

Z [^^ log~q2!&&. ~7!

For the actions studied here, it often happens that theZ
coefficient of Eq.~1! is close to zero, and the calculation o
q* using Eq. ~7! produces absurd results. In that case
substitute the higher order expression of Hornbostel, Lep
and Morningstar@16#,

log~q* 2!5^^ log~q2!&&6@2s2#1/2 ~8!

with

s25^^ log2~q2!&&2^^ log~q2!&&2 ~9!

and

^^ log2~q2!&&5

E d4q log2~q2!I ~q!

E d4qI~q!

[
L2

Z ~10!

is the weighted average analogous to Eq.~7!.
This is all well-defined for finite pure lattice expression

but when the operator has an anomalous dimension, it is
obvious what to do. In that case, I evaluate Eq.~7! following
a prescription learned from Bernard@17#. His proposal is to
construct a combination of dimensionally regulated integr
whose sum gives the term in curly brackets, and to subt
them from the integral Eq.~2! to produce a finite integral in
422e dimensions. Thee→0 limit of the subtracted integra
can then be taken, leaving a UV-finite four-dimensional
tegral forGMS

F which can be combined with the integrand
Eq. ~4!. To do this, consider the two integrals

I 1516p2E d2vk

~2p!2v ~m2!2v
1

k2~k21m2!
~A1Be!

5AH 1

e
2gE1 log~4p!J 1A1B ~11!

and
7-2
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ONE LOOP MATCHING COEFFICIENTS FOR A . . . PHYSICAL REVIEW D67, 014507 ~2003!
I 2516p2E d2vk

~2p!2v ~m2!2v
1

~k21m2!2 ~A1Be!

5AH 1

e
2gE1 log~4p!J 1B. ~12!

If a1b51 anda(A1B)1bB50, aI11bI2 is equal to the
differenceGMS2GMS

F and we can combine the three expre
sions under one integral, then take thee→0 limit, to write

I MS
F

5AJ11BJ2 ~13!

where, pushing the IR divergence from theMS integral into
the lattice integral

J1516p2E d4k

~2p!4 F12u~p22k2!

k2~k21l2!
2

1

~k21m2!2G ~14!

and

J2516p2E d4k

~2p!4 F 1

k2~k21m2!
2

1

~k21m2!2G . ~15!

The integrands ofJ1 , J2, andJ are then used in Eqs.~7! or
~8! @with appropriate powers of log(q2), of course#. Naturally,
the particular choice of integralsJ1 andJ2 is not unique, but
because these integrals are typically small in magnitude
is not generally a practical problem. Notice that theq* scale
depends onm. I will present results only for the casema
51.

Presumably other prescriptions can be devised. Their
sults will probably only depend on the coefficients A and
in Eq. ~2!, so I will tabulate those parameters below for t
processes considered.

The definition ofq* for matching coefficients for opera
tors which mix, like the electroweak penguin operators, c
be made as follows. Equation~7! expands into a matrix equa
tion

log ~q* 2!Z5L1 ~16!

where nowZ andL1 are matrices. There is a basis in whic
logq*2 is diagonal, found by solving the eigenvalue equat
L1Z 2121 logq*250, and in the original operator basis, th
matrix of scales is logq*25W(logq*2)diagW

21, whereW is
the basis-transformation matrix. Each eigenvector’s scale
be translated into a coupling, and

Zi j 5d i j 1W@as~q* !/~4p!#diagW
21Z. ~17!

The higher order formula Eq.~8! does not have an obviou
matrix transformation. One possibility is to rotate the high
order matrixL2 into the basis which diagonalizesL1Z 21,
and use the diagonal entries in Eq.~8!.

This is unsatisfactory, but again, the small size ofZ and
the Li ’s for fat link actions means that the spread in theZ
factor remains small as the coupling is varied.
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B. Actions and Feynman rules

Feynman rules for ordinary~nonoverlap! discretizations
of the Dirac operator can be constructed using standard t
niques. I will parametrize the free massive Dirac operator

d~p,m!5 igmrm~p!1l~p!1m; ~18!

I implicitly assume the normalization that at smallp,
rm(p).pm andl(p)5O(p2). ~This factorization might not
be appropriate for an approximate fixed-point action, d
signed to follow out a renormalized trajectory as the mas
varied:rm andl would both be functions of the bare ma
@19#.! Of course, the propagator is the inverse ofd.

While I will not specify an explicit form for the gluon
propagator in any expression, I will only present results
the Wilson gauge action. Its propagator includes an IR re
lator massl and gauge parameterj

Gmn5
dmn1~j21!k̂mk̂n / k̂2

k̂21l2
~19!

with k̂m52/asin(kma/2) and k̂25(mk̂m
2 . Propagators for

other actions can be constructed by inverting the ga
field’s linearized equation of motion. It is convenient to b
able to vary the choice of gauge to test results.

The fermion and gluon propagators are of course diago
in color space.

The massless overlap operator is defined so that its ei
values lie on a circle of radiusx0, so

D~0!5x0S 11
z

Az†z
D ~20!

wherez5d(2x0)/x05(d2x0)/x0 and d(m)5d1m is the
massive Dirac operator for massm ~i.e. x0 is equivalent to a
negative mass term andd5 igmrm1l as above!. The overall
multiplicative factor ofx0 is a useful convention; when th
Dirac operatord is thought of as ‘‘small’’ and Eq.~20! is
expanded for smalld, D.d. Feynman rules for the Wilson
overlap action have been given by Ref.@7#, and can be
straightforwardly adapted for any kernel action.

For overlap actions, it is customary to define the mass
overlap operator in terms of the massless one as

D~mq!5S 12
mq

2x0
DD~0!1mq . ~21!

This results in an annoying entanglement of the mass w
the vertices, complicating a direct computation of the ru
ning mass. Fortunately, we can compute the multiplicat
renormalization factor for the fermion mass indirectly as t
inverse of the scalar current renormalization factor, and
can evaluate the latter expression at zero quark mass.

C. Unitary fat links

We will be concerned only with unitary fat links, gaug
connections which are themselves elements of the ga
group, even though they may be built of sums of products
7-3
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THOMAS DEGRAND PHYSICAL REVIEW D67, 014507 ~2003!
the original thin links of the simulation. For smooth fields t
fat links have an expansionVm(x)511 iaBm(x)1 . . . and
the original thin links have an expansionUm(x)51
1 iaAm(x)1 . . . . For computations of 2- and 4-quark o
erator renormalization/matching constants at one loop, o
the linear part of the relation between fat and thin links
needed, and it can be parametrized as

Bm~x!5(
y,n

hmn~y!An~x1y!. ~22!

Quadratic terms in Eq.~22!, which would only be relevan
for tadpole graphs, appear as commutators and therefor
not contribute, since tadpoles are symmetric in the two g
ons@18,12–14#. In momentum space, the convolution of E
~22! becomes a form factor

Bm~q!5(
n

h̃mn~q!An~q!. ~23!

The reader could think of fat-link action Feynman rules
being constructed in two levels: First find the vertices
actions with ordinary thin links, and then replace the th
link by a unitary fat link. Each quark-gluon vertex gets
form factorhmn(q), whereq is the gluon momentum. If al
gluon lines start and end on fermion lines, then, effective
the gluon propagator changes intoGmn→h̃mlGlsh̃sn .

~Notice that this is a perturbative realization of the sta
ment that fat link fermion connections can be converted i
thin link fermion connections by redefining the fat link var
able as an ordinary thin link variable, but with a more co
plicated pure gauge action.!

Form factors for APE and HYP-blocked links are given
Appendix B.

D. One-loop diagrams

The ‘‘standard method’’ for carrying out a lattice pertu
bation theory calculation is to construct the integra
I (k,p,m,l,a) analytically as a combination of terms mult
plying Dirac matrices, and then to project out the desi
Dirac structure, producing a single scalar express
Î (k,p,m,l,a). Possible divergent terms are subtracted o
and the integral is performed using a Monte Carlo rout
such asVEGAS @20#. The lattice actions I have studied a
rather complicated~as are most improved actions! and this
procedure appears at first sight to be somewhat daunting.
difficult part of the calculation is the Dirac reduction, pa
ticularly as the action~and its Feynman rules! becomes com-
plicated. One can, of course, do the Dirac algebra usin
symbolic manipulation code. However, there is a simp
path for the typical lattice practitioner: Take the parts of t
programs which one has already written to do full-scale
merical simulations of the lattice action, and extract the r
tines which multiply Dirac matrices times spinors. Write t
vertices and propagators as explicit 434 matrices, string the
expressions together, and let the computer do all the D
multiplication and projection as if it were doing a standa
lattice Monte Carlo calculation. All calculations factoriz
01450
ly
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into a set of routines for each action of interest, and a se
integrands~with appropriate projection algorithms! for each
coefficient.

This ‘‘method’’ is computationally inefficient, but it is
easy to study a wide variety of lattice actions.

I will parametrize the orientation of fermion and gluo
momenta through the vertices as shown in Fig. 1.

The fermion self-energy is parametrized for small fermi
momentump and small massm as

S~p,m!5S01 ig•pS11mS2 . ~24!

If nonzero,S0 is ~minus! the additive mass renormalization
S1 is the wave-function renormalization, needed for all e
ternal lines in vertex functions. The translation of the qua
mass from lattice toMS regularization (Zm) is proportional
to the differenceS12S2. While S0 is finite ~in lattice units;
it is proportional to 1/a and so diverges in the continuum
limit !, S1 andS2 are infared divergent.

S itself is a sum of two terms, as shown in Fig. 2. Th
‘‘sunset’’ graph, Fig. 2~a!, uses first order vertices:

FIG. 1. Three-point and four-point vertices, showing my co
vention for momentum flows.

FIG. 2. The three one-loop diagrams~a! ‘‘sunset’’ and~b! ‘‘tad-
pole’’ fermion self-energy and~c! vertex renormalization, showing
my convention for momentum flows.
7-4
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Sa5g2E
k
Vm

(1)~p,p1k,2k!S~p1k!

3Vn
(1)~p1k,p,k!Gmn~k!. ~25!

The ‘‘tadpole’’ graph, Fig. 2~b!, is

Sb52
g2

2 E
k
Vmn

(2)~p,p,k,2k!Gmn~k!. ~26!

Momenta are labeled as shown in the figure. Recall that
usually setp50.

To extractS1 andS2, I expand the propagators and ve
tices in a power series inp andm ~respectively! and keep the
leading term. If the free Dirac operator is of the form of E
~18! this is straightforward to do. I have performed this e
pansion analytically, since these two quantities are IR div
gent, and require subtraction. Below, the quantityS1 will be
used, with whereS15g2CF /(16p2)S1.

The renormalization of currents involves both the ver
graph andS1. I compute the vertex graph simply by takin
the amplitude

VG5E
k
Vm

(1)~p,p1k,2k!]S~p1k!

3G@S~p1k!Vn
(1)~p1k,p,k!#Gmn~k!, ~27!

evaluating it atp50, m50 ~with gluon massl) and tracing
it with the appropriate Dirac projector, before doing the
tegral. For the vector and axial currents, I average over tra
in the four cardinal dimensions.

An alternate parametrization of the vertex allows a co
nection to matching coefficients of the four fermion ope
tors of the effective field theory of electroweak interaction
Write

TABLE I. Ingredients for matching coefficients for some loc
operators.

I latt A B

ZV 4K212K11K02S1 0 0
ZA 4K222K11K02S1 0 0
ZP 16K224K11K02S1 3 21/2
ZS 16K214K11K02S1 3 21/2

TABLE II. Ingredients for the~nonpenguin parts! of matching
coefficients for some four-fermion operators.

I latt A B

Z1 8/3(K21K02S1) 22 25/3
Z2 80/3K228/3(K02S1) 4 10/3
Z77 4/3@5K212(K02S1)# 21 7/6
Z88 4/3@32K212(K02S1)# 8 21/3
Z78 12K2 3 27/2
Z87 0 0 23
01450
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VG5K0G1K1gmGgm1K2gmgnGgngm1 . . . . ~28!

Grouping propagator-vertex products,

VG5E
k
T1~p,k!GT2~p,k!Gmn~k!, ~29!

with T1(p,k)5Vm
(1)(p,p1k,2k)S(p1k) and T2(p,k)

5S(p1k)Vm
(1)(p,p1k,2k). One can find theK ’s by pro-

jecting the T’s onto elements of the Clifford algebra,T
5T01gmT11smnT21 . . . , with T051/4TrT, T1
51/4TrgmT, and

T251/8(
mÞn

Tr~gmgn2gngm!T. ~30!

Direct computation plus a consideration of lattice symm
tries then allows us to extract the separate terms of Eq.~28!
~here in Feynamn gauge! as

K05E
k
~T0

1T0
222T2

1T2
2!Gmm ~31!

and

FIG. 3. ~a! S0 parametrizing additive mass renormalization f
thin link Wilson ~cross!, and HYP-link clover~diamond! and planar
~octagons! fermions and~b! their momentum scaleq* with HYP
blocking, with the optimum parameters scaled by the shown ove
scale factor.

TABLE III. Table of Z factors andq* ’s for planar and HYP-
planar actions, defined soZi511zig

2Cf /(16p2). CSW51.03.

Action Process zi q*

Thin planar
S0 3.71 3.19
ZV 221.5 2.8
ZA 220.0 2.8
ZS 226.2 2.4
ZP 229.3 2.4

HYP planar
S0 0.26 2.37
ZV 22.27 1.55
ZA 22.19 1.54
ZS 20.92 1.50
ZP 21.11 1.51
7-5
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THOMAS DEGRAND PHYSICAL REVIEW D67, 014507 ~2003!
K25E
k

1

2
T2

1T2
2Gmm . ~32!

The Wilson and clover actions have only the listed ter
(K0 , K1 , K2). The overlap action only has nonzeroK0 and
K2 terms. The continuum calculation with massless fermio
only has nonzeroK2. Finally, actions which only approxi
mate an overlap action could in principle span the Cliffo
algebra, although the coefficients of the other terms would
small if the action were a good approximation. This happ
for the nonoverlap planar action with HYP links.

The K1 term makes its presence felt most malignantly
the one loop correction to four fermion operators, where i
responsible for ‘‘bad’’ operator mixing into opposite-chirali
operators. It poisons lattice calculations ofBK with Wilson-
type quarks.

To find the full Z factor, andq* , we also need the coef
ficients ofJ1 andJ2 @in the notation of Eq.~13!#. These are
recorded in Table I. These results are certainly not new, b
is useful to collect them.

If only K0 , K1, andK2 are nonzero, we can immediate
write down relations~which appear many times in the litera
ture! between the lattice parts of the matching coefficients
the scalar~S!, pseudoscalar~P!, vector~V!, axial vector~A!,
and tensor~T! currents: The only one we will need below

I S2I P52~ I V2I A!58K1 . ~33!

These relations can be used to relate the matching factor
four-fermion operators to those for bilinears. The earliest r
erence I can find for this decomposition is by Martinelli@21#

FIG. 4. ~a! zV andzA , the coefficients ofg2Cf /(16p2) for the
local vector~octagons! and axial current renormalization constan
~crosses! for clover fermions with HYP blocking.~b! Momentum
scaleq* for the local vector and axial currents.

TABLE IV. Table of Z factors andq* ’s for thin link and HYP
link naive fermion actions.

Action Process zi q*

Thin
ZV,A 214.8 3.27
ZP,S 239.2 2.79

HYP
ZV,A 20.945 2.36
ZP,S 20.592 2.05
01450
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and it has been written down most usefully by Gupta, Bh
tacharya, and Sharpe@15#. A complication which arises in
this case is the prescription used to defineg5 away from four
dimensions. The combination of 1/e factors from integrals
related to Eq.~2! and e factors from the Dirac algebra i
different in the bilinear and four-fermion cases, meaning t
a particular four-fermionZ factor into a particular continuum
convention is a linear combination of bilinearZi ’s plus extra
constant terms.

I found the most straightforward way to find these co
stants was to do the continuum Dirac algebra using the te
niques of Ref.@22# ~basically copying the examples of Re
@23#!. In order to extract the momentum scaleq* , we need to
separate theA and B coefficients of Eq.~2!. Most lattice
calculations do not include penguin graphs, and four ope
tors are needed for the most frequently performed fo
fermion matrix elements, combinations of

O5~ q̄a
(1)G1qb

(2)! ^ ~ q̄g
(3)G2q̂d

(4)!. ~34!

Special cases are~a! G15G25gm(12g5): if color labels
a5d, b5g, O5O1; if a5b, g5d, O5O2; and ~b! the
isospin 3/2 operators for electroweak penguins,

O7
3/25@ s̄agm~12g5!da#$@ ūbgm~11g5!ub#

2@ d̄bgm~11g5!db#%

1@ s̄agm~12g5!ua#@ ūbgm~11g5!db# ~35!

and

FIG. 5. ~a! zV andzA and theirq* ’s, for the HYP-planar action,
labeled as in Fig. 4.

FIG. 6. ~a! zS andzP , the coefficients ofg2CF /(16p2) for the
local scalar and pseudoscalar current renormalization cons
~evaluated atma51) for clover fermions, labeled by octagons an
crosses, respectively.~b! Momentum scaleq* .
7-6
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O8
3/25@ s̄agm~12g5!db#$@ ūbgm~11g5!ua#

2@ d̄bgm~11g5!da#%

1@ s̄agm~12g5!ub#@ ūbgm~11g5!da#. ~36!

Ingredients for the nonpenguin mixing factors are given
Table II.

III. SOME EXAMPLES

I have studied a large variety of lattice actions with th
and fat links. Numerical integrals are checked, when p
sible, by comparison against published results. For curren
vary the gauge choicej and check that integrals~and inte-
grands! remain gauge invariant. As a general rule usi
double precision insures that the integrands are gauge in
ant point by point to a few parts in 105.

My results for any standard thin link action~Wilson, clo-
ver, Wilson overlap, . . . ) are~with one exception! not new,
and there is no point in republishing old results already in
literature. Results for a standard action with HYP links a
mostly unpublished, so I will show them in the tables. I w
show results for the clover and planar actions, since the H
clover action might be an attractive action for simulations
will also tabulate results for the planar action, with thin a
HYP-blocked links, and the HYP-blocked planar overlap.

HYP blocking is characterized by three parameters w
‘‘preferred’’ valuesa150.75,a250.6, a350.3. While HYP
blocking is typically presented~and used! at this specific

FIG. 7. ~a! zS and zP and theirq* ’s, for HYP-planar action,
labeled as in Fig. 6.

FIG. 8. Coefficient ofg2CF /(16p2) ~a! and momentum scale
q* ~b! for the local vector~and axial vector! currents for overlap
fermions with the planar action kernel and HYP links, atx051.6.
Octagons label the planar action; also shown are the thin link W
son ~cross! and clover~diamond! actions.
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value of these coefficients, it is very useful to show how t
matching coefficients vary with the degree of fattening of t
link. I will do this simply by multiplying the standard HYP
coefficients by an overall scale factor, and tune the sc
factor from zero~corresponding to a thin link! to 1 to 1.5.
There are many other ways to tune HYP blocking, of cour

With HYP smearing, the first-order formula Eq.~7! is
small because of cancellations of negative and positive c
tributions in the integral, and the second order formula
often needed. The reader will note many ‘‘cusps’’ in theq*
plots for HYP actions as I switch from first to second ord
q* ’s. In contrast, as a general rule, under increased A
smearingq* usually falls slowly towards zero, and the firs
order formula forq* works well, unless the actual matri
element vanishes.

A. Additive mass renormalization

All of the features of fat link perturbation theory can b
seen in the additive mass renormalization for nonoverlap
tions. Figure 3 shows the additive mass renormalization
thin link Wilson and clover fermions, withcSW51, and for
the planar action with HYP-blocked links. The graphs sh
S0, with the definitiondm5as(q* )S0. We see that all these
thin link actions have large additive mass renormalizati
The addition of the clover term reducesS0 by about half, but
it is still big. Smearing the gauge fields has a dramatic eff
on S0, until the scale factor for HYP blocking exceeds uni
At this point the blocking enhances the large gluon mom
tum region in the integrand rather than suppressing it. T
effect shows little dependence on the choice of fermion
tion ~planar or clover!.

l-

FIG. 9. Coefficient ofg2CF /(16p2) ~a! and momentum scale
q* for the local scalar~and pseudoscalar! currents for overlap fer-
mions with the planar action kernel and HYP links, atx051.6.
Octagons label the planar action; also shown are the thin link W
son ~cross! and clover~diamond! actions.

TABLE V. Table ofZ factors andq* ’s for bilinears, HYP-planar
overlap action.

Process z q*

ZV,A 20.489 1.26
ZP,S 0.53 1.96
7-7
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B. Fermion bilinears

Next we turn to results for fermion bilinears, parametriz
as Zi511zig

2(q* )CF /(16p2). Table III showsZ factors
for currents for the thin link and HYP-blocked planar actio
The values quoted in all the tables have an uncerta
smaller than61 in their rightmost digit.

Table IV showsZ factors for the thin link and HYP-
blocked naive fermions. These results form a~tiny! subset of
an extensive calculation of matching factors for stagge
fermions by Sharpe and Lee@13#. Theq* values are new.

Matching factors andq* scales for the local vector an
axial vector currents for clover fermions and planar fermio
as a function of fattening strength are shown in Figs. 4 an
and results for the local scalar and pseudoscalar current
show in Figs. 6 and 7. The qualitative features of fatten
are the same for both actions: for thin link actions allz’s are
large in magnitude and the differences between ‘‘chiral p
ners’’ ~such aszV andzA) are also large. Either HYP actio
has tinyz’s ~order unity! with differences an order of mag
nitude smaller.

Results for overlap actions parallel those for nonch
actions: matching factors drop when the clover term is
cluded, and drop more when the links are fattened. To ill
trate this, I present results for the thin link Wilson and clov
overlap, both withx051.6, and for the HYP planar overlap
in Figs. 8 and 9. A table of results for the HYP-planar ov
lap is given in Table V.

FIG. 10. ~a! Coefficient ofg2/(16p2) at scalema51 and ~b!
momentum scaleq* for Z1 for matching lattice and NDR overlap
fermions with the planar action kernel, withx051.6. Octagons la-
bel the planar action; also shown are the thin link Wilson~cross!
and clover~diamond! actions.

TABLE VI. Table of Z factors into NDR andq* ’s for O1

5O11O2 for overlap actions with various kernels. In all casesx0

51.6, CSW51 for clover action and 1.03 for planar action.Z1

511as(q* )/(4p)@z114 log(am)#.

Action z1 q*

thin Wilson 33.4 2.86
thin Clover 14.3 4.07
0.45310 APE Clover 25.8 1.05
0.45310 APE planar 25.67 0.95
HYP planar 23.97 0.92
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C. Four-fermion operators

Some sample results for four-fermion operators are sho
in Table VI. My results for~ordinary nonoverlap! Wilson
fermions agree with the dimensional reduction~with an easy
subtraction scheme! @DRED~EZ!# results of Ref.@24# and the
naive dimensional reduction~NDR! results of Ref.@15#. My
Wilson overlap results satisfy the connection betweenZ1 ,
ZV,A , andZP,S of Ref. @15# and Table II. For the special cas
of radiusx051 they agree with a calculation of Weisz@25#.
They differ by an overall additive factor of 14/3~the precise
value comes from Weisz; I have only determined this fac
numerically! from the results of Ref.@9#. NDR four-fermion
matching coefficients for the Wilson overlap action for ma
radii can readily be constructed from any desired opera
using the tables of bilinears from Ref.@8# and the results of
Ref. @15# or Table II~though finding theq* scale will require
actually doing some integrals!.

In Fig. 10 I show results for the HYP planar action kern
as well as for the thin link Wilson and clover overlaps. In a
cases I setx051.6. There is a large reduction inz1 by con-
verting from a Wilson kernel to a clover kernel even witho
fat links ~recall that the planar action includes a clover term!.
Fattening the links further reducesz1 .

Finally, to return to nonchiral actions, we can ask ho
fattening alters the mixing into different chiral sectors. Th
quantity is parametrized by the coefficientZ* 528K1.
From Eq.~28!, Z* 5zV2zA52(zP2zS). As we have already
seen, fattening pushes all thez’s closer to zero, and so thei
differences also become small. Values ofZ* for the clover
action with APE blocking and HYP blocking are shown
Fig. 11. As expected, either smearing can cutZ* by over an
order of magnitude.

The Wilson thin link fermion action valueZ* 59.6 @24# is
much greater than even the thin-link clover result. Conve
ing to fat links without also turning on the clover term help
but will not be productive: for example, with scale fact
unity, the HYP-blocked Wilson action hasZ* 52.29, while
including acSW51 clover term cuts this number to 0.16.

Results for the operatorsO7 and O8 for the Wilson and
planar overlaps are shown in Table VII.

Let us use these results to consider a numerical exam
of the ambiguities which will afflict our calculation of mix
ing. In all cases we will match the lattice and NDR calcu

FIG. 11. Z* , the wrong-chirality mixing amplitude, for clove
fermions with ~a! APE blocking ~octagons fora50.25 and dia-
monds fora50.45), ~b! HYP blocking, with the optimum param
eters scaled by the shown overall scale factor.
7-8
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TABLE VII. Table of Z factors andq* ’s for O7 andO8 for overlap actions with various kernels. In a
casesx051.6, CSW51.03 for the planar action.Zi j 5d i j 1as(q* )/(4p)Zi j . L1 andL2 are the integrals of
Z, weighted by logq2 and log2q2, respectively.

Action Z77 Z78 Z87 Z88

Thin Wilson Z 36.29 23.51 23 34.85
Thin Wilson L1 70.57 1.56 20.003 75.26
Thin Wilson L2 17.6 24.64 9.84 19.32
HYP planarZ 20.65 21.98 23 2.41
HYP planarL1 1.52 2.72 20.003 9.69
HYP planarL2 4.94 21.65 9.84 27.50
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tions at a scaleqi and run the NDR result toqf52 GeV
using the two-loop evolution equation. We will suppose
are using the Wilson gauge action coupling atb55.9 and
assume that the inverse lattice spacing is 1/a51.58 GeV.
~These are typical numbers from simulations@28#.! A stan-
dard calculation in the manner of Ref.@5# beginning with the
logarithm of the average plaquette yieldsaMS(qa51)
50.199 andaMS(qa5p)50.137. We begin with the HYP
planar overlap action and imagine just matching at a sc
q151/a or p/a, and running up. Then the full matching an
running matrix is

Z~qf ,qi !Z~qi !5S 0.979 20.006

20.039 1.099D ~37!

and the result atqi5p/a is

Z~qf ,qi !Z~qi !5S 0.998 20.030

20.043 1.012D . ~38!

Next, we compute a ‘‘lowest order’’q* from Eq. ~16!. We
haveq1* a53.6, q2* a50.68, and

Z~qf ,qi !Z~qi !5S 0.966 20.020

20.009 1.112D . ~39!

Notice that in all cases the matrices are nearly diagonal.
In contrast, the first choice for the Wilson action~just set

q* a51) gives

Z~qf ,qi !Z~qi !5S 1.558 20.017

20.033 1.640D , ~40!

matching atq* a5p and running gives

Z~qf ,qi !Z~qi !5S 1.412 20.071

20.050 1.304D , ~41!

while using Eq.~16!, with q* a5(3.0,2.3), we have

Z~qf ,qi !Z~qi !5S 1.459 20.016

20.042 1.530D . ~42!

The off diagonal terms inZ are small and not too depende
on the running scheme, but the diagonal coupling of the
01450
le

-

erators suffers a giant renormalization. One probably sho
treat perturbation theory results for the Wilson overlap c
tiously for these factors.

IV. CONCLUSIONS

Fattening the gauge connections of a lattice fermion
tion is a simple way to reduce the size of perturbative mat
ing coefficients. HYP blocking is a particularly felicitou
choice: it combines large scale smoothing with locality. It
clear from the results presented that the qualitative featu
of fattening do not depend on the specific choice of para
eters. In situations where full chiral symmetry might not
necessary, the HYP-blocked clover action might be an att
tive choice for a light quark action.

In this work I have only considered lattice actions wi
scalar and vector couplings and nearest and next-nearest
plings. It would be easy to construct the Feynman rules
‘‘hypercubic’’ actions~such as those of Refs.@19# or @26#!.
Techniques similar to the ones used here could be app
~with only a little more effort! to the more complicated ap
proximate fixed point or overlap actions used by seve
other authors, whose kernels fill out the entire Clifford alg
bra @27#.

The result forZ1 will be used in a lattice calculation o
BK using the HYP-blocked planar overlap@28#.
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APPENDIX A: FEYNMAN RULES FOR PLANAR-ACTION
FERMIONS

The nonoverlap fermion action I am most interested
has scalar and vector couplings to fermions offset on near
neighbor and diagonal-offset sites, and minimal length ga
paths built of unitarized fat links connecting them. Th
nearest-neighbor vector and scalar couplings are lab
7-9
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r1 and l1; the diagonal (rW56m̂6 n̂, nÞm) couplings are
r2 andl2. There is also a local scalar couplingl0. For the
Wilson or clover action,r25l250; r15l1521/2. For the
‘‘planar’’ action of Ref. @2# l1520.170,rm

(1)520.177 and

diagonal neighbors (rW56m̂6 n̂, nÞm; l2520.061, rm
(2)
01450
5rn
(2)520.0538). The constraintl528l1224l2 enforces

masslessness on the free spectrum, and2152rm
(1)112rm

(2)

normalizes the action to2c̄ igm]mc in the naive continuum
limit.

The free fermion action is then
les. The
ecting the
er

for the
m.

-

d~p!5l012l1(
m

cospm14l2 (
m,n,m

cosqmcosqn1 i(
m

gmsinqmS 2r114r2 (
nÞm

cosqnD . ~A1!

Nearest-neighbor connections basically contribute rescaled versions of the usual Wilson-action Feynamn ru
diagonal-offset neighbor gauge connections are taken to be an average of the two length-two shortest paths conn
fermions~each of which is a product of unitarized HYP links!. Neglecting the form factor arising from fattening, the first ord
vertexVm

(1) is

Vm
(1,)52igmH S r11r2 (

nÞm
~cosp11cosp2!nD cosS ~p11p2!m

2 D J 1 (
nÞm

gnF2ir2sinS ~p11p2!m

2 D ~sinp1n1sinp2n!G
22S l11l2 (

nÞm
~cosp11cosp2!nD sinS ~p11p2!m

2 D . ~A2!

I also include a clover term inV(1):

Vm
(1,cl)52

1

2
CSWgm (

nÞm
gnsinkncos

km

2
. ~A3!

~My definition of CSWwould be unconventional for Wilson fermions ifl1Þ1/2, orrÞ1 in usual usage.! The planar action has
CSW51.03.

The expression for the four-point vertex is long, but in all the calculations done here, I only need an expression
vertex at zero fermion momenta and for its first derivative with respect to~equal! fermion momenta, also at zero momentu
In that limit,

Vmn
(2)5S dmn~22l1212l2!1~12dmn!4l2sin

km

2
sin

kn

2 D ~A4!

and its derivative at zero external fermion momenta is

]Vm
(2)

]pn
5pngnS dmn~22r1224r2!1~12dmn!4r2sin

km

2
sin

kn

2 D . ~A5!

APPENDIX B: EXPLICIT FORMULAS FOR FAT LINKS

APE blocking: The link aftern11 smearings is related to the link aftern smearings by

Vm
(n11)~x!5ProjSU(3)S ~12a!Vm

(n)~x!1a/6(
nÞm

@Vn
(n)~x!Vm

(n)~x1 n̂ !Vn
(n)~x1m̂ !†1Vn

(n)~x2 n̂ !†Vm
(n)~x2 n̂ !Vn

(n)~x2 n̂1m̂ !# D .

~B1!

Vm
(n11)(x) is projected back ontoSU(3) after each step, andVm

(0)(n)5Um(n) is the original link variable. The momentum
space smearing factor for one level of smearing is

h̃mn~q!5 f ~q!S dmn2
q̂mq̂n

q̂2 D 1
q̂mq̂n

q̂2
, ~B2!

with q̂m5(2/a)sin(aqm/2) and f (q)512(a/6)q̂2. After N smearings,h̃mn(q) becomesh̃mn
N (q), which is just h̃mn with f

replaced byf N.
HYP blocking: The momentum space version of HYP blocking is
7-10
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Bm~q!5(
n

hmn~q!An~q!1O~A2!, where

hmn~q!5dmnF12
a1

6 (
r

q̂r
2Vmr~q!G1

a1

6
q̂mq̂nVmn~q!,

Vmn~q!511a2~11a3!2
a2

4
~112a3!~ q̂22q̂m

2 2q̂n
2!1

a2a3

4 )
hÞm,n

q̂h
2

with a150.75, a250.6, anda350.3 the favored parametrization of Ref.@3#.
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