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One loop matching coefficients for a variant overlap action and some of its simpler relatives
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| present one-loop perturbative calculations of matching coefficients between matrix elements in continuum
regulated QCD and lattice QCD with overlap fermions, with emphasis on a recently proposed variant discreti-
zation of the overlap. These fermions have extendtd link” ) gauge connections. The scale for evaluation
of the running coupling constartin the context of the Lepage-Mackenzie fixing schensealso given. A
variety of resultdfor additive mass renormalization, local currents, and some nonpenguin four-fermion opera-
torg) for naive, Wilson, clover, and overlap actions are shown.
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I. INTRODUCTION Whether or not perturbation theory can—or should be—
used to convert lattice numbers to continuum ones is a matter
This paper presents one-k)op perturba‘[ive calculations (ﬁf debate. One sometimes sees blanket statements about the

matching coefficients between matrix elements computed ugise of perturbation theory in lattice calculations, as if pertur-
ing a spatial lattice regulatdand measured in lattice simu- Pative calculations per se were unaffected by the particular
lations and their equivalent continuum-regulated values cNoice of lattice action. But clearly different actions have

The principal lattice fermion action studied is a recent for—ggfrszrgp; (F:)L?gf(fartilf?sV;hgfact;gﬁa?lggfefsltisoSc:‘torta;r?; p?;\rlggﬁlgﬁ

mulation of overlap fermion$1] built from a “kernel ac- , ’ ; .

tion” with nearest a%d next-ngailrest neighbor fermionic inter-aCtlon’ to ask how well perturbative calculations perform. At

ti d “fat link” " ificall sufficiently small renormalized coupling the matching from
actions and *fat link” gauge connection2], specifically  5ne scheme to another can be done with small uncertainty,

hypercubic- (HYP-)blocked [3] links. Along the way, | ihe yncertainty being due to higher order terms in a pertur-
present some new results for a number of simpler actions—4tive expansion in the renormalized coupling.

naive, Wilson, and clover fermions with fat linkcluding a To be specific, let us write a one loop matching coefficient
few results for APE-blocke@4] links), and overlap actions fgr an operator which does not undergo mixing zs 1
with Wilson or clover action kernels. | also present results as/(4m)A. In today's simulations, typical values of
for the scale at which the running coupling constant is evalu—aS/(47T)20_01_ 0.015. With standard actions, one often
ated (the so-calledy* value, using the scheme of Lepage finds that theA's are large. For standard thin-link actions A is
and Mackenzi¢5]. o _ order 10—40, so the matching factor differs from unity by an
_ Fatlink actions were originally develop¢€i] in order to  amount of 0.1 to 0.6. In the actions considered here, typically
improve the chiral properties of lattice fermions. In the con-ihe A’s are smaller than about 5 in magnitude, corresponding
text of perturbation theory, “chiral improvement” for non- {4 g shift from unity of 0.05-0.07. One presumes, therefore,

chiral actions means having small additive mass renormalnat the perturbative expansion ofis better behaved. One's
ization, vector and axial current renormalization factorsyegyits are also less sensitive to the choice of sgaler

nearly equal, scalar and pseudoscalar factors also neargls(qz) if the coefficient is small.
equal, and suppressed mixing of four-fermion operators be- - A prief report of perturbation theory for Wilson and clo-
tween different chiral sectors. Fat link actions do all thesg,e; actions with APE-blocked links has been presented in
things. | have found that using these actions as kernels fogef [12]. The qualitative features of the work done here are
overlap actions seems to have computational advantage§ anticipated in that paper. Here | will focus mainly on HYP
over using thin link actions. Overlap actions with fat links pjocking simply because it gives more smoothing without
have matching factors which are much closer to unity thanye|ocalizing the action. Applications to the overlap in this
overlap actions built of thin link fermion action kernels. work are also new. Results for staggered fermions using
Several authors have published calculations of lattice-toyp |inks have recently been presented by Sharpe and Lee
continuum match|ng facto_rs fpr a variety of processes for thfls], and Lee[14] has discussed general features of pertur-
overlap action with the thin link Wilson action as its kernel py5tion theory for fat links.
(for a partial list, se¢7-11]). Perturbative calculations for In Sec. Il, | describe the simple ingredients | used for

more complicated actions are in principle not much morggagice perturbation theory. Results of selected calculations
difficult to do, once the Feynman rules are constructed. Ong,; cyrrents are presented in Sec. Ill. Appendixes contain
just has to organize the calculation, and not carry it too farpeynman rules for the actions studied.

Intermediate results for matching coefficierifgarticularly

Table Il) may be a more important part of the paper than the Il. INGREDIENTS

tables of results. These formulas are certainly not new, but in
most published papers they appear embedded in action-
specific discussions, and they are often hard to find until after A “typical” matching coefficient between a lattice regu-
one has rederived them. lated quantity and a dimensionally regulated quarttitypdi-

A. Matching and scale setting
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fied minimal subtractionM S, for example, for an operator
which does not undergo mixing, iE=1+[g%/(167?)]Z
where

Z=Ijs= Nau. (1)

IEA—S is the finite part of the continuume2=4—2¢ dimen-

sional integral and '@ is a lattice integral. For a process

with N; external fermion legsl;=T";—X,N¢/2 wherel; is

the vertex renormalization arX}; is the fermion wave func-

tion renormalization. All these quantities will be evaluated at
one loop. In this work the internal momentum integration
variable will always label the momentum flowing through
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vated ansatz for the scale. The best known example of such a
construction is that of Lepage and Mackenpi: Imagine

that one has some process parametrized by a one loop inte-
gral, and assume that its higher order behavior is dominated
by gluonic vacuum polarization, so

aJ I(q)d“q—w(q*)J I(q)d“q~J a(q)l(q)d*q.
(6)
Expanding the coupling

a(q)=a(q*)— Boa(g*)?log(g®/q*?) + .. .,

the gluon line. | will always work at zero momentum for self-consistency requires that the coefficientagf* )2 van-

external particles and fermion mass=0, regulating any IR
(infared divergence of the diagram with a gluon massOf

course, there is nothing complicated about these choices;

they are made purely for expediendy;s will take the ge-
neric form

d?°k 1
IvMs= 16772f W(Mz)zwm(A‘f’ Be)

MZ
+AIogF+A+B. (2

1
=A[Z —ye+log(4)

The term in curly brackets is simply discarded to gl\,@%.

In the lattice integral, we can scale all dimensionful variables

by appropriate powers of the lattice spacing and write

| latt— 16772J

a

kI(ak,ap,am,a)\) (3

where[ o =11;J7 _d(ak;)/(2) will be the symbol for inte-
gration over therescaled momentum hypercube.
If Iys has anAlog(u?\? term, |, will have an

Alog[1/(\2a?)] IR divergence, too. It can be separated out

by writing the integrand as

o(m>—Kk?)

I(k,ap,am,a)\)—Am

||att:1677'zf
k

+16772f d*k A o(m*—k?)
(2m)* " K2(k*+a’\?)

2
aa
=J+Alog 2 (4)

The first term of Eq(4) is IR finite, and one can sat=0 in
it. Thus

Z=Alog(u’a?)+A(1—logmw?)+B—J. (5)

This would be the end of the story if we did not want to

choose a scalg* for the coupling constant in EqL). This is

(unfortunately a problem whose solution involves at least a
two-loop calculation(see the discussion in the Appendix of

Ref.[15]). Absent such a calculation, one could eithergé&t
vary over some “reasonable” range {Ig*a<w at lattice

ish, or

f d*qlog(g?)1(q)
log(q*?)= =
f d*ql(q)

For the actions studied here, it often happens that Zhe
coefficient of Eq.(1) is close to zero, and the calculation of
g* using Eq.(7) produces absurd results. In that case, |
substitute the higher order expression of Hornbostel, Lepage
and Morningstaf16],

log(g*2)=((log(q?))) =[ — o*]*2 (8)

>

1

=((log(g?))). (7)

N

with
o®=((log?(g%))) —((log(q?)))? (9)
and

f d*qlog*(a®)!(a) .
((log?(a?)))= ==
fd“ql(q)

is the weighted average analogous to Efj.

This is all well-defined for finite pure lattice expressions,
but when the operator has an anomalous dimension, it is not
obvious what to do. In that case, | evaluate Ef).following
a prescription learned from Bernafii7]. His proposal is to
construct a combination of dimensionally regulated integrals
whose sum gives the term in curly brackets, and to subtract
them from the integral Eq2) to produce a finite integral in
4—2e€ dimensions. The— 0 limit of the subtracted integral
can then be taken, leaving a UV-finite four-dimensional in-
tegral forl“f,,—S which can be combined with the integrand of
Eq. (4). To do this, consider the two integrals

(10

d?k 1
— 2 2\2w
I1 16w f (277)20)(/1/ ) k2(k2+,u2) (A+ BE)

+A+B (12)

1
:A[Z — ye+log(4)

spacinga, for example, or construct some physically moti- and
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20y 1 B. Actions and Feynman rules
|2:16772f (ZW)Zw(Mz)zw(k2+M2)2(A+ Be)

Feynman rules for ordinarynonoverlap discretizations
of the Dirac operator can be constructed using standard tech-
4B 12 niques. | will parametrize the free massive Dirac operator as

=A(%—7E+|og(4w)
d(p.m)=ivy,p.(p)+N(p)+m; (18)

| implicitly assume the normalization that at sm3il
pu(P)=p, and\(p)=0(p?). (This factorization might not
be appropriate for an approximate fixed-point action, de-
signed to follow out a renormalized trajectory as the mass is

If a+b=1 anda(A+B)+bB=0, al,+bl, is equal to the
differencel'ys— Ff,l—s and we can combine the three expres-
sions under one integral, then take #e 0 limit, to write

|EA—S=A31+ BJ, (13 varied:p, and\ would both be functions of the bare mass
L [19].) Of course, the propagator is the inversedof
where, pushing the IR divergence from thiS integral into While I will not specify an explicit form for the gluon
the lattice integral propagator in any expression, | will only present results for

the Wilson gauge action. Its propagator includes an IR regu-

3 1672 dk [1— 0(m2—K?) 1 } " lator mass\ and gauge parametér
1= 4 212132 2 2\2 A n oA
(27) ke(k“+N\%) (k tu ) _5;w+(§_1)k,ukvlk2 19
and pre K242
L[ d% 1 with k,=2/asink,a/2) and k?==,k%. Propagators for
Jp=16m (2m) 4 KA(K2+ 12) - (K2t u2)2| (15 other actions can be constructed by inverting the gauge

field’s linearized equation of motion. It is convenient to be
able to vary the choice of gauge to test results.

The integrands ofy, J,, andJ are then used in Eq$7) or The fermion and gluon propagators are of course diagonal

(8) [with appropriate powers of logf), of coursd. Naturally, .
the particular choice of integrally andJ, is not unique, but in color space. : i L
because these integrals are typically small in magnitude this The r.nasslessloverlap op_erator is defined so that its eigen-
is not generally a practical problem. Notice that tfescale values lie on a circle of radiugy, so
depends onu. | will present results only for the casea 7
=1. D(0)=xXo| 1+ — (20
Presumably other prescriptions can be devised. Their re- ( \/E)
sults will probably only depend on the coefficients A and B
in Eq. (2), so | will tabulate those parameters below for thewhere z=d(—Xg)/Xo=(d—X)/Xo and d(m)=d+m is the
processes considered. massive Dirac operator for mass(i.e. X is equivalent to a
The definition ofg* for matching coefficients for opera- negative mass term amt=iy,p,+\ as abovg The overall
tors which mix, like the electroweak penguin operators, carimultiplicative factor ofx, is a useful convention; when the
be made as follows. Equati@ii) expands into a matrix equa- Dirac operatord is thought of as “small” and Eq(20) is
tion expanded for small, D=d. Feynman rules for the Wilson
overlap action have been given by Ré¢7], and can be
log(q*?)2=1L, (16) straightforwardly adapted for any kernel action.
For overlap actions, it is customary to define the massive

where nowZ and £, are matrices. There is a basis in which Overlap operator in terms of the massless one as
logg*2 is diagonal, found by solving the eigenvalue equation m

‘Clzfl_l Iogq*2_=0’ and in the original operator basis, the D(mg)= ( 1— _q) D(0)+m. (21)
matrix of scales is log**=W(log q*?)4aW ', whereW is 2Xo

the basis-transformation matrix. Each eigenvector’s scale ¢

be translated into a coupling, and a'Ph|s results in an annoying entanglement of the mass with

the vertices, complicating a direct computation of the run-
- i . Fortunately, we can compute the multiplicative

Zii= 8 + W[ ag(q*)/(47) |giagW 2. 1 ning mass. f ' : 1€ |
ij= 6ij T WLes(9™ )/ (47) Jgiag (17 renormalization factor for the fermion mass indirectly as the
inverse of the scalar current renormalization factor, and we

The higher order formula Eq8) does not have an obvious can evaluate the latter expression at zero quark mass.

matrix transformation. One possibility is to rotate the higher
order matrix£, into the basis which diagonalize%, Z 1,

and use the diagonal entries in H§). C. Unitary fat links

This is unsatisfactory, but again, the small sizezand We will be concerned only with unitary fat links, gauge
the £;’s for fat link actions means that the spread in the connections which are themselves elements of the gauge
factor remains small as the coupling is varied. group, even though they may be built of sums of products of
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the original thin links of the simulation. For smooth fields the LI

fat links have an expansiovi,(x)=1+iaB,(x)+ ... and

the original thin links have an expansiob ,(x)=1

+iaA,(x)+ ... . For computations of 2- and 4-quark op- )
lization/ hi I I vV ip .p 9

erator renormalization/matching constants at one loop, only u Pphy

the linear part of the relation between fat and thin links is P, P

needed, and it can be parametrized as

B()=2 Nu(YAHY). (22 e -

Quadratic terms in Eq.22), which would only be relevant (2)

for tadpole graphs, appear as commutators and therefore do Vv (pl’pz’kfk 3
not contribute, since tadpoles are symmetric in the two glu- Py Py

ons[18,12—-14. In momentum space, the convolution of Eq.

(22) becomes a form factor FIG. 1. Three-point and four-point vertices, showing my con-

vention for momentum flows.

BM(Q):EV hL()A,(Q). (23 into a set of routines for each action of interest, and a set of
integrands(with appropriate projection algorithm$or each

The reader could think of fat-link action Feynman rules ascoefficient. o _ o L
being constructed in two levels: First find the vertices for 1hiS ‘method” is computationally inefficient, but it is
actions with ordinary thin links, and then replace the thin€asy {0 study a wide variety of lattice actions.

link by a unitary fat link. Each quark-gluon vertex gets a | will parametrize the orientation of fermion and gluon

form factorh,,,(q), whereq is the gluon momentum. If all Momenta through the vertices as shown in Fig. 1. _
gluon lines start and end on fermion lines, then, effectively, 1 he fermion self-energy is parametrized for small fermion

: ~ ~ momen nd small m
the gluon propagator changes irtg,,—h,,, G, ;h,, . omentump and small mass as
(Notice tha’_[ this is a perturbati\_/e realization of the state- S(p,m)=3,+iy pS,+m2,. (24
ment that fat link fermion connections can be converted into
thin link fermion connections by redefining the fat link vari- S N o
able as an ordinary thin link variable, but with a more Com_lf nonzerO,Eo IS (mlan the additive mass renormalization.

plicated pure gauge actign. 3., is the wave-function renormalization, needed for all ex-
Form factors for APE and HYP-blocked links are given in ternal lines in vertex functions. The translation of the quark
Appendix B. mass from lattice toV S regularization Z,,) is proportional
to the difference; —%,. While X is finite (in lattice units;
D. One-loop diagrams it is proportional to 14 and so diverges in the continuum

_ . limit), 3, and3,, are infared divergent.
The “standard method” for carrying out a lattice pertur- s jtself is a sum of two terms, as shown in Fig. 2. The
bation theory calculation is to construct the integrand«gynset” graph, Fig. 2a), uses first order vertices:
I(k,p,m,\,a) analytically as a combination of terms multi-

plying Dirac matrices, and then to project out the desired

Dirac structure, producing a single scalar expression K
1(k,p,m,\,a). Possible divergent terms are subtracted out, k
and the integral is performed using a Monte Carlo routine
such asveGAs [20]. The lattice actions | have studied are
p p+k p P P

rather complicatedas are most improved actignand this
procedure appears at first sight to be somewhat daunting. The
difficult part of the calculation is the Dirac reduction, par- (@ (b)
ticularly as the actioriand its Feynman rul¢decomes com-
plicated. One can, of course, do the Dirac algebra using a
symbolic manipulation code. However, there is a simpler p+k p+k
path for the typical lattice practitioner: Take the parts of the

programs which one has already written to do full-scale nu-

merical simulations of the lattice action, and extract the rou- p K P
tines which multiply Dirac matrices times spinors. Write the ©

vertices and propagators as explicik4 matrices, string the
expressions together, and let the computer do all the Dirac FIG. 2. The three one-loop diagrar® “sunset” and(b) “tad-
multiplication and projection as if it were doing a standardpole” fermion self-energy andc) vertex renormalization, showing
lattice Monte Carlo calculation. All calculations factorize my convention for momentum flows.
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TABLE I. Ingredients for matching coefficients for some local
operators.

Ilatt A B
Zy 4K, + 2K, +Ko— S, 0 0
Za 4K, — 2K, +Ko— S, 0 0
Ze 16K, — 4K, +Ko—S; 3 —1/2
ZS 16K2+4K1+ KO_S]_ 3 _1/2
Ea=92kaE}’<p,p+k,—k>s<p+k>
XV (p+k,p,k)G,,(K). (25
The “tadpole” graph, Fig. ), is
g2
S L VAppk kLK. @0
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25—
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FIG. 3. () Sy parametrizing additive mass renormalization for
thin link Wilson (crosg, and HYP-link clover(diamond and planar
(octagong fermions and(b) their momentum scalg* with HYP
blocking, with the optimum parameters scaled by the shown overall
scale factor.

VF=KOF+K17MF7M+ Kovu Vol vovut oo -

Grouping propagator-vertex products,

Momenta are labeled as shown in the figure. Recall that we

usually setp=0.

To extract>; and2,, | expand the propagators and ver-

tices in a power series imandm (respectively and keep the

leading term. If the free Dirac operator is of the form of Eq.

gent, and require subtraction. Below, the quan8fywill be
used, with where® ; =g2Cg/(1672)S;.

VF:Jle(p,k)FTZ(p,k)GW(k),

(28)

(29

with  T*(p.k)=V(p,p+k,~k)S(p+k) and T2(pk)
=S(p+k)V{P(p,p+k,—k). One can find th&'s by pro-
(18) this is straightforward to do. | have performed this ex-I€cting the T's onto elements of the Clifford algebrd,

pansion analytically, since these two quantities are IR diver— Tot v, Tatou,Tot ..o,
=1/4Try,T, and

The renormalization of currents involves both the vertex

graph and ;. | compute the vertex graph simply by taking
the amplitude

with

To=1/4TrT,

To= 1/82;4 Ty, Y= YT
mFV

vF=fkv;”<p,p+k,—k>18<p+k>

XT[S(p+Kk VP (p+k,p,k)1G,,(k),

Ty

(30)

Direct computation plus a consideration of lattice symme-
tries then allows us to extract the separate terms of( ).
(here in Feynamn gaugeas

(27)

evaluating it ap=0, m=0 (with gluon mass\) and tracing

it with the appropriate Dirac projector, before doing the in-and
tegral. For the vector and axial currents, | average over traces
in the four cardinal dimensions.

An alternate parametrization of the vertex allows a co
nection to matching coefficients of the four fermion opera-

Ko= fk<TéTS—2T%T§>GW

(31)

TABLE lll. Table of Z factors andg*’s for planar and HYP-

pPlanar actions, defined s=1+2zg?C/(16m%). Csy=1.03.

tors of the effective field theory of electroweak interactions:ACt'On Process 4 a*
Write Thin planar
Sy 3.71 3.19
TAB_LE Il. Ingredients for the(nonpenguin parjsof matching Zy —215 28
coefficients for some four-fermion operators. Za —20.0 28
Zs —-26.2 2.4
ac A B Zs -29.3 2.4
Z, 8/3(K,+Ko—S;) -2 —5/3 HYP planar
zZ_ 80/ ,—8/3(Ko—Sy) 4 10/3 S 0.26 2.37
Zs 435K+ 2(Ko—S))] -1 716 Zy -2.27 1.55
Zss 413 32K, +2(Kg—Sy)] 8 -1/3 Za -2.19 1.54
Zs 12K, 3 72 Zs -0.92 1.50
Zg7 0 0 -3 Zp -1.11 1.51
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TABLE IV. Table of Z factors andg*’s for thin link and HYP T a 4r T
link naive fermion actions. (a) = L (b)
a _
3 — —
$
Action Process z; q* ok 8 Bk [ .
L -2 —
Thin 8 [ . .
Zyn -14.8 3.27 i 1 E
Zos -39.2 2.79 2o 7 )
HYP | | ol | |
ZV,A —0.945 2.36 0.0 0.5 scale 1.0 1.5 0.0 045scale 1.0 1.5
Zps —0.592 2.05
FIG. 5. (a) zy andz, and theirg*’s, for the HYP-planar action,
labeled as in Fig. 4.
1
K,= f ET%T%GW. (32 and it has been written down most usefully by Gupta, Bhat-
k

tacharya, and Shardd5]. A complication which arises in

The Wilson and clover actions have only the listed termsthls case is the prescription used to defyaeaway from four

(Ko, Ky, K,). The overlap action only has nonzeg and dimensions. The combination of elfactors from integrals
03 1 2)-

: . . . related to Eq.(2) and € factors from the Dirac algebra is
K, terms. The continuum calculation with massless fermions;; : - . ;

. : . . different in the bilinear and four-fermion cases, meaning that
only has nonzerd<,. Finally, actions which only approxi-

. ) o . a particular four-fermiorZ factor into a particular continuum
mate an overlap action could in principle span the Clifford L . L o
.y convention is a linear combination of biliney’s plus extra
algebra, although the coefficients of the other terms would b%onstant terms

small if the action were a goo_d approximation. This happens | found the most straightforward way to find these con-
for the nonoverlap planar action with HYP links. do th - : laeb ina th h
The K; term makes its presence felt most malignantly inSFants was to do the continuum Dirac algebra using the tech-
L nigues of Ref[22] (basically copying the examples of Ref.

the one loop correction to four fermion operators, where it iﬁ23]) In order to extract the momentum scafe, we need to
responsible for “bad” operator mixing into opposite-chirality sepérate thed and B coefficients of Eq.(2). i\/lost lattice

operators. It poisons lattice calculations&f with Wilson- calculations do not include penguin graphs, and four opera-

type quarks. )
To find the full Z factor, andg*, we also need the coef- ;g:fniggemnaet(reigeedlexénttge crgr%itinz(teigz:n;:‘y performed four

ficients ofJ; andJ, [in the notation of Eq(13)]. These are
recorded in Table |. These results are certainly not new, but it
is useful to collect them.

If only Ky, K4, andK, are nonzero, we can immediately Special cases ar@ I'-=T.=~ (1—~): if color labels
write down relationgwhich appear many times in the litera- E _ _ éﬁ). L2 y“_( 751' .

) . - S8, B=1vy, O=0y; if a=8, y=45, O=0,; and(b) the

ture) between the lattice parts of the matching coefficients o
the scalarS), pseudoscalaiP), vector(V), axial vector(A),
and tensolT) currents: The only one we will need below is

0=(q"T'1q) @ (qPr,q5). (34)

sospin 3/2 operators for electroweak penguins,

037=[5,7,(1~ 75)d H{[Up,(1+ ¥5)ug]

ls=1p=2(ly—1a)=8Kj. —[dpy.u(1+y5)dgl}

(33

These relations can be used to relate the matching factors for

. c : +[5, (1= y5)U l[Ugy,(1+ ys)d 35
four-fermion operators to those for bilinears. The earliest ref- [Savu(1=¥s)UallUpyu(1+ vs)dg] (35
erence | can find for this decomposition is by Martingl] ;.

T T —— 4 —— —r—

o T | : | | 10 4p R
(g) v, (b) : (a) (b}
3§ ] ol g 2 3L ]
3 I8 3 [ 1
x of 8 i 2 ] 5
-10f| © — o= 3 B -0 7 =2 5 MR
[ 3 Iox ] r °
: 3 ] i 8
1+ - -20% - 1~ -
[ 3 ] [
20 | ! ol ! | P S D T N S T T
0.0 0.5 1.0 1.5 0.0 0.5 1.0 15 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
scale scale scale scale

FIG. 4. (a) zy andz,, the coefficients ofj>C; /(16m2) for the

FIG. 6. (a) zs andzp, the coefficients ofj>Cr /(1672) for the

local vector(octagon$ and axial current renormalization constants local scalar and pseudoscalar current renormalization constants

(crosses for clover fermions with HYP blocking(b) Momentum

scaleq* for the local vector and axial currents.

crosses, respectivelgh) Momentum scaley*.
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0] AT T 15— AT T
. (a) ] . (b) : (a) ] . (b)
0 2 8 ] 3r 7] 10 3 E 3t o 7]
2 1 . 5F =
-10fF ? . w2 ° ° 4 s ° -2 4 o .
]
F o ] i 5 ° or . 3 F° o o :
-20 E 1 . sE o, ° ] 1 .
b 1 I r ] L 4
S S I B P S R A bt Py SN I B
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
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FIG. 7. (8) zs and zp and theirg™’s, for HYP-planar action, FIG. 9. Coefficient ofg?Cr/(167?) (a8 and momentum scale
labeled as in Fig. 6. g* for the local scalafand pseudoscalacurrents for overlap fer-
mions with the planar action kernel and HYP links,»xat=1.6.
32_ra . ion: in i il-
Og =[SaVu(1=¥s5)dgl{[Ugyu(1+ ys5)U,] Octagons label the planar action; also shown are the thin link Wil

son(crosg and clover(diamond actions.

~[dgy,(1+ ¥5)d,]}
— — value of these coefficients, it is very useful to show how the
F[Sa7u(1= vs)UpllUpyu(1F ¥5)da].  (36) matching coefficients vary with the degree of fattening of the
Ingredients for the nonpenguin mixing factors are given inlink. I will do this simply by multiplying the standard HYP
Table 1. coefficients by an overall scale factor, and tune the scale
factor from zero(corresponding to a thin linkto 1 to 1.5.
lIl. SOME EXAMPLES There are many other ways to tune HYP blocking, of course.
_ . . . _ ~ With HYP smearing, the first-order formula E§?) is
| have studied a large variety of lattice actions with thin sma| because of cancellations of negative and positive con-
a.nd fat links. Ngmencalimtegral's are checked, when posgiputions in the integral, and the second order formula is
sible, by comparison against published results. For currents, Jton needed. The reader will note many “cusps” in tije
vary the gauge choicé and check that integral@nd inte- 5 for HYP actions as | switch from first to second order

grand3 remain gauge invariant. As a general rule usmgq*,s_ In contrast, as a general rule, under increased APE-

double_ Precision insures that the _mtegrands are gauge mvaréhearingq* usually falls slowly towards zero, and the first-
ant point by point to a few parts in 10

/ .
My resuits for any standard thin link actigiVilson, clo- order formula forg* works well, unless the actual matrix

ver, Wilson overlap. . .) are(with one exceptionnot new, element vanishes.
and there is no point in republishing old results already in the
literature. Results for a standard action with HYP links are
mostly unpublished, so | will show them in the tables. | will
show results for the clover and planar actions, since the HYP All of the features of fat link perturbation theory can be
clover action might be an attractive action for simulations. Iseen in the additive mass renormalization for nonoverlap ac-
will also tabulate results for the planar action, with thin andtions. Figure 3 shows the additive mass renormalization for
HYP-blocked links, and the HYP-blocked planar overlap. thin link Wilson and clover fermions, witksy~1, and for
HYP blocking is characterized by three parameters withthe planar action with HYP-blocked links. The graphs show
“preferred” valuesa; =0.75, 2;=0.6, 3=0.3. While HYP 5 " with the definitionsm= a4(q*)S,. We see that all these
blocking is typically presentedand usedl at this specific  thin |ink actions have large additive mass renormalization.

The addition of the clover term reduc8g by about half, but

A. Additive mass renormalization

BT T T 'b' R it is still big. Smearing the gauge fields has a dramatic effect
ok (@ 3 N ®) 3 on Sy, until the scale factor for HYP blocking exceeds unity.
E ] ) ] At this point the blocking enhances the large gluon momen-

2 sl - -2 © o tum region in the integrand rather than suppressing it. This
of ] ° ] effect shows little dependence on the choice of fermion ac-

ot o o o ©° 1| o ° . tion (planar or clovey.

_%Ao‘ - '0‘|5' - 'l.lo' - '1‘5 %.0' - '0;' - 'LIO' - '1‘5 TABLE V. Table ofZ factors andy*’'s for bilinears, HYP-planar

scale scale overlap action.

FIG. 8. Coefficient ofg’Cr/(167°) (a) and momentum scale p,ocess 2 q*
g* (b) for the local vectoriand axial vector currents for overlap
fermions with the planar action kernel and HYP links xgt=1.6. Zya —0.489 1.26
Octagons label the planar action; also shown are the thin link Wil-z,, ¢ 0.53 1.96

son(crosg and clover(diamond actions.
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TABLE VI. Table of Z factors into NDR andg*’s for O, 4 e 7 g
=0, + 0, for overlap actions with various kernels. In all casgs L (a) ] I (b)
=1.6, Csy=1 for clover action and 1.03 for planar action.. 3¢ - I ]
=1+a4(q*)/(4m)[z, +4 loglam)]. : ] 2r o 7]
= 2 — — o : 1
Action z. q* ° ] | o
thin Wilson 33.4 2.86 e, g [ . ]
thin Clover 14.3 4.07 L T ] i | o ° ]
0 ....... 2O | apn | e o o PRI PR PR
0.45x 10 APE Clover —-5.8 1.05 0 1 2 3 4 5 0.0 05 1.0 1.5
0.45x10 APE planar —5.67 0.95 aN scale
HYP planar —-3.97 0.92

FIG. 11. Z*, the wrong-chirality mixing amplitude, for clover
fermions with (a) APE blocking (octagons fora=0.25 and dia-
monds fora=0.45), (b) HYP blocking, with the optimum param-
B. Fermion bilinears eters scaled by the shown overall scale factor.

Next we turn to results for fermion bilinears, parametrized C. Four-fermion operators

asZi=1+ Zigz(q*)CF_/GG”z)' Table 1ll showsZ factors Some sample results for four-fermion operators are shown
for currents for the th!n link and HYP-blocked planar acthn.in Table VI. My results for(ordinary nonoverlap Wilson
The values quoted in all the tables have an uncertaintfermions agree with the dimensional reductigrith an easy
smaller than*1 in their rightmost digit. subtraction scheméDRED(EZ)] results of Ref[24] and the
Table 1V showsZ factors for the thin link and HYP- npajve dimensional reductiofNDR) results of Ref[15]. My
blocked naive fermions. These results forrttiny) subset of  Wilson overlap results satisfy the connection betw&en
an extensive calculation of matching factors for staggere¢,, ,, andZp s of Ref.[15] and Table II. For the special case
fermions by Sharpe and L¢&3]. Theq* values are new.  of radiusx,=1 they agree with a calculation of Wei25].
Matching factors andj* scales for the local vector and They differ by an overall additive factor of 14(&he precise
axial vector currents for clover fermions and planar fermionsvalue comes from Weisz; | have only determined this factor
as a function of fattening strength are shown in Figs. 4 and Sjumerically from the results of Ref.9]. NDR four-fermion
and results for the local scalar and pseudoscalar currents afeatching coefficients for the Wilson overlap action for many
show in Figs. 6 and 7. The qualitative features of fatteningadii can readily be constructed from any desired operator
are the same for both actions: for thin link actionszslare  Using the tables of bilinears from R¢8] and the results of
large in magnitude and the differences between “chiral partRef.[15] or Table i (though finding they* scale will require
ners” (such asz, andz,) are also large. Either HYP action actually doing some integrals ,
has tinyz's (order unity with differences an order of mag- In Fig. 10 | show .res.ults fqr the HYP planar action kernel,
nitude smaller. as well as for the thin link Wilson and clover overlaps. In all
Results for overlap actions parallel those for nonchiralCaSes | SeX,=1.6. There is a large reduction m by con-
actions: matching factors drop when the clover term is in-verting from a Wilson kernel to a.cIO\_/er kernel even without
cluded, and drop more when the links are fattened. To illusfat links (recall that the planar action includes a clover term
trate this, | present results for the thin link Wilson and cloverFattening the links further reduces .
overlap, both withx,= 1.6, and for the HYP planar overlap, Finally, to return to nonchiral actions, we can ask how

in Figs. 8 and 9. A table of results for the HYP-planar over-fatténing alters the mixing into different chiral sectors. This
lap is given in Table V. quantity is parametrized by the coefficiedt* = —8Kj.

From Eq.(28), Z* =z,—z,=2(zp— Z5). As we have already
seen, fattening pushes all this closer to zero, and so their
[ ] differences also become small. Valueszsf for the clover
30 (@) 3 r (®) ] action with APE blocking and HYP blocking are shown in

] Fig. 11. As expected, either smearing can £titby over an
order of magnitude.

40""I""I"": AT T

20 .

1ok 3 ro° o ] The Wilson thin link fermion action valug* =9.6[24] is
na o o R much greater than even the thin-link clover result. Convert-
oF ° 0 o ©° [ ] ing to fat links without also turning on the clover term helps,
PP 2N I ot but will not be productive: for example, with scale factor
0.0 05 1.0 1.5 0.0 0.5 L0 1.5 unity, the HYP-blocked Wilson action has* =2.29, while
scale scale including acsy=1 clover term cuts this number to 0.16.
FIG. 10. (a) Coefficient ofg?/(167?) at scalexa=1 and (b) Results for the operato®; and Og for the Wilson and
momentum scalg* for Z. for matching lattice and NDR overlap Planar overlaps are shown in Table VII.
fermions with the planar action kernel, wig=1.6. Octagons la- Let us use these results to consider a numerical example
bel the planar action; also shown are the thin link Wilforosg  of the ambiguities which will afflict our calculation of mix-
and clover(diamond actions. ing. In all cases we will match the lattice and NDR calcula-
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TABLE VII. Table of Z factors andg*’s for O; and Og for overlap actions with various kernels. In all
casesXy=1.6, Csw= 1.03 for the planar actiorZ;; = 6;; + as(q*)/(4m) Z;; . L, and L, are the integrals of

Z, weighted by logf? and lodd?, respectively.

Action Z77 Zag Zg7 Zas

Thin Wilson 2 36.29 —3.51 -3 34.85
Thin Wilson £4 70.57 1.56 —0.003 75.26
Thin Wilson £, 17.6 —4.64 9.84 19.32
HYP planarZ —0.65 —-1.98 -3 241

HYP planar(, 1.52 2.72 —0.003 9.69
HYP planarl, 4.94 —1.65 9.84 27.50

tions at a scaley]; and run the NDR result tg;=2 GeV

erators suffers a giant renormalization. One probably should

using the two-loop evolution equation. We will suppose wetréat perturbation theory results for the Wilson overlap cau-

are using the Wilson gauge action coupling@t5.9 and
assume that the inverse lattice spacing ia=11.58 GeV.
(These are typical numbers from simulatidi28].) A stan-

dard calculation in the manner of Rg5] beginning with the

logarithm of the average plaquette yieldsys(ga=1)

=0.199 andags(qa= 7)=0.137. We begin with the HYP-

tiously for these factors.

IV. CONCLUSIONS

Fattening the gauge connections of a lattice fermion ac-
tion is a simple way to reduce the size of perturbative match-

planar overlap action and imagine just matching at a scaléng coefficients. HYP blocking is a particularly felicitous
g,=1/a or «r/a, and running up. Then the full matching and choice: it combines large scale smoothing with locality. It is

running matrix is

0.979 -0.00
Z(qs,9)Z(q;) = 0,039 1.099 (37
and the result afj;=7/a is
0.998 —0.03
Z(d¢,9;)Z(di) = _0.043 1012 (38

Next, we compute a “lowest order§* from Eg. (16). We
haveq;a=3.6, g3a=0.68, and

0.966 —0.02

1.112)°

—0.009 39

Z(qy vqi)Z(Qi):(

Notice that in all cases the matrices are nearly diagonal.

In contrast, the first choice for the Wilson actigost set
g*a=1) gives

1558 -0.01 0
Z(d¢,9;)Z(0;) = —0.033 1640 (40)
matching atg* a= 7 and running gives
1412 -0.071
Z(qs,9:)Z(q;) = —0050 1.304)° (41)
while using Eq.(16), with g*a=(3.0,2.3), we have
1459 -0.01 )
Z(9¢,9;)Z(0;) = —0.042 1530/ (42

clear from the results presented that the qualitative features
of fattening do not depend on the specific choice of param-
eters. In situations where full chiral symmetry might not be
necessary, the HYP-blocked clover action might be an attrac-
tive choice for a light quark action.

In this work | have only considered lattice actions with
scalar and vector couplings and nearest and next-nearest cou-
plings. It would be easy to construct the Feynman rules for
“hypercubic” actions(such as those of Reff19] or [26)).
Techniques similar to the ones used here could be applied
(with only a little more effort to the more complicated ap-
proximate fixed point or overlap actions used by several
other authors, whose kernels fill out the entire Clifford alge-
bra[27].

The result forZ, will be used in a lattice calculation of
Bk using the HYP-blocked planar overl&p8].
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APPENDIX A: FEYNMAN RULES FOR PLANAR-ACTION
FERMIONS

The nonoverlap fermion action | am most interested in
has scalar and vector couplings to fermions offset on nearest-
neighbor and diagonal-offset sites, and minimal length gauge

The off diagonal terms iZ are small and not too dependent paths built of unitarized fat links connecting them. The
on the running scheme, but the diagonal coupling of the oprearest-neighbor vector and scalar couplings are labeled
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p, and\,; the diagonal (== 4+, v#u) couplings are  =p{’=—0.0538). The constraint=—8\;— 24\, enforces
p, and\,. There is also a local scalar coupling. For the  masslessness on the free spectrum, arid= 2p§}’+ 12p§f>

Wilson or clover actionp,=A,=0; py=\,=—1/2. Forthe  normalizes the action te- #iy,,d,,i in the naive continuum
“planar” action of Ref.[2] A\;=—0.170,p{"=—-0.177 and  [imi.

diagonal neighborsr=+ u* v, v#u; A,=—0.061, p{? The free fermion action is then

d(p)=No+2\;>, cosp,+4\, DX, €0Sq,C0Sq,+i2, 7,SiNq,| 2p1+4p, 2 cosqv). (A1)
M P V<p M vFE W

Nearest-neighbor connections basically contribute rescaled versions of the usual Wilson-action Feynamn rules. The
diagonal-offset neighbor gauge connections are taken to be an average of the two length-two shortest paths connecting the
fermions(each of which is a product of unitarized HYP linkdleglecting the form factor arising from fattening, the first order
vertex V(! is

o

+ +
Vi=2i n[ p1tp2 > <cosp1+cosp2>y)cos(% +2 7, 2ip2sin(%)(sinpmsinpzy)}
vFE WL vEp©
+
-2 )\1+)\22 (cospﬁcospﬁ&sin(%). (A2)
vFE U
| also include a clover term iv(®):
(1cl) 1 - Ky
Vi, == ECSWY“V;M yysmkycos?. (A3)

(My definition of Cg\,would be unconventional for Wilson fermionshf # 1/2, orr # 1 in usual usageThe planar action has
Csw=1.03.

The expression for the four-point vertex is long, but in all the calculations done here, | only need an expression for the
vertex at zero fermion momenta and for its first derivative with respe@daa) fermion momenta, also at zero momentum.
In that limit,

()= L.
V= 5W(—2)\1—12)\2)+(1—5#,,)4)\23|n?smi (A4)

and its derivative at zero external fermion momenta is

(2)
v, k., K,
apv =PuYy 5,(1,1}(_2p1_2Ip2)+(1_5;/,v)4p25"|2S|“2 . (AS)

APPENDIX B: EXPLICIT FORMULAS FOR FAT LINKS

APE blocking: The link aften+1 smearings is related to the link afteismearings by

VI (x) = Projsya)| (1— )V () +al6 > [V )V (x+ )V (x+ ) T+ VI (x= ) 'V (x= ) VD (x— v+ )]
vFE L

(B1)
VM D(x) is projected back ont§U(3) after each step, and(n)=U ,(n) is the original link variable. The momentum-
space smearing factor for one level of smearing is

4.9,

E]Z

4.9,
5

q

+

(B2)

h,(@)=f(Q)| 8,,~

with q,,=(2/a)sin(aq,/2) andf(q)=1—(a/6)g?. After N smearingsh,,,(q) becomesh) (q), which is justh,, with f
replaced byfN.
HYP blocking: The momentum space version of HYP blocking is
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B.(a)=2 h,,(q)A,(q)+O(A?), where

o
h,u,V(Q)z 5/J,V 1- Fl E
p

_ _* "2 n2 ~2
Q. (@) =1+ ay(1+as)— = (1+2a3)(q°— 0, —q)) +

~5 (L2 NN
qu,u,p(Q) + ?q,uqvﬂ,uv(Q);

a3

4

I1

2
qy
nF u,v

with a1=0.75, a,=0.6, anda3= 0.3 the favored parametrization of RE3].
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