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We present our results of lattice calculationsBoparameters, which parametrizB=2 transition ampli-
tudes together with the leptonic decay constant. Calculations are made in the quenched approxingation at
=5.7, 5.9, 6.0 and 6.1, using NRQCD action for heavy quarks an®f{lag-improved Wilson action for light
quarks. The operators are perturbatively renormalized including the correct@tugf (aM)™) (m=0). We
examine the scaling behavior &f parameters, and discuss the systematic uncertainties based on the results
with several different truncations of higher order terms iM1and «ag expansions. We fincBBd(mb)
=0.843)(5), Bg_/Bg,=1.020(21) (1) (%) andBs (m,)=0.851)(5)(’5) in the quenched approximation.
The errors represent statistical and systematic errors as well as the uncertainty in the determination of strange

quark mass.
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[. INTRODUCTION B is the numerical simulation of QCD on the lattice, whose

current status is reviewed i@ —6]. For the decay constant

The determination of the Cabibbo-Kobayashi-Maskawafg. several groups investigated the systematic errors in the
(CKM) matrix elementV,4| plays a crucial role in testing lattice calculation, performing the simulations on several dif-
the unitarity relation of the CKM matrix, since the position ferent lattices. It is found that the error associated with the
of the vertex of the unitarity triangle would be essentially largeb quark mass is controlled reasonably well if one uses
identified together with the anglg, of the unitarity triangle. &0 effective theory for heavy qqarks such.as nonrelativistic
Now that the anglep; has already been measured experi-QCDlt(NRQgD) [7'.?.] ortth?hFelrr?t[lab formeélhsr[\léa], and the
mentally by the asymmetriB factories[1,2] and its preci- reslg S tﬁreBlnsen& |\{e rBO N e:hlce tsr1pacr[l1 ga 4. t latii
sion is expected to be improved substantially in the near or theb parametéibg, on the other hand, most fatlice
future, the accuracy diV,4| really determines the accuracy calctj_layogs reI;r/]lng on_the effecyve t_heor_y forhh(?]av%/ qu}a\rks

’ o re limited to the static approximation, in which then}

of the standard model predictions. Then, other measuremen L
of the CKM matrix eleﬁ)ﬂents such as the determination o %rrectlon 1S neglecte[jl_S—lﬂ, and th(_e study O.f the system-
IV, through a measuremenlt bf-ulw, may be used for a atic uncertainty depending on the lattice spacing has not been

ub . ’ - made. Recently some of us used the NRQCD action, for the
tce;t \?iz)ltgtei)oﬁlanthrges(,:tg?\ggg (rgotggl quark flavor mixing anOIfirst time, to calculatdBg [18], and the Irh, correction was

The CKM matrix elementVg| ma.y be determined using studied at a fixed lattice spacifd9]. They ajso calculate'd
the mass differencAMg in thetdneutraIB meson mixing, as anotherB parameterBs [19,20 to parametrize the matrix

it emerges through a loop diagram mediated by top quarlement of the operatads =b(1-ys)s b(1~ys)s, which
and W boson, which is proportional t0/,qVZ|2. The preci- ~appears in the heavy quark expansion of the width difference
sion in the current world average AMy=0.489 Of Bs[21-23. _
+0.008 ps * [3]) is already as good as 1.6%. The constraint !N this paper we extend the previous studies, 20,19 to
on |V,4| is, however, limited by the theoretical uncertainty investigate the systematic errors in the calculation ofthe
in the calculation of the hadronic matrix element MesonB parameters. Using the same NRQCD action as in
(B°|(’)Ld|B°> of the AB=2 four-quark operator0 [18-2Q we calculate theéB parameters at four lattice spac-
_ _ ings to estimate the size of systematic errors depending on
=by,(1-vys)dby,(1—ys)d. It is usually parametrized as the lattice spacing. In order to minimize other sources of
8£2BgM3 using theB meson leptonic decay constaitand systematic errors, we use ti@ya)-improved Wilson quark
the B parameteBg. In the vacuum saturation approxima- action[24] for light quarks with the improvement coefficient
tion, which is valid when bottb and (anti-)d quarks are cg calculated at the one-loop levied5—27 and nonpertur-
nonrelativistic,Bg is normalized to unity. batively [28].
The best available theoretical method to calcufgtend Since NRQCD is an effective theory valid for heavy
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quarks and the action is constructed by an expansion in in- Il. PHENOMENOLOGICAL FORMULAS
verse heavy quark mass, there is a potential source of sys-

tematic error due to the truncation ofrT_lg expansion. Fur- mulas which involve theB mesonB parameters. We also
thermore, in order to match the effective theory to the full

theory one has to use perturbation theory, and errors frorRresent some notations which will be used throughout the

higher order corrections should also be taken into account 2Per:

We introduce a method to estimate these systematic errors by _

treating the neglected higher order terms in different ways. It A. Mass difference

turned out that the error estimated in this way is quite con- |n the standard model the mass difference in the neutral
sistent with a naive order counting assuming typical sizes fog0 g0 hasons @ denotedd or s) is given by

the expansion parameters. 47

In this section we summarize the phenomenological for-

Because of the systematic errors discussed above, it is not G2m2
straightforwar.d tq obtain an accuracy bettgr than 10-15 % AMq:|Vfthq|2 F2 w So(X¢) 72p[ sl pp) ]~ 7020
for fgyBg Which is relevant for the determination p¥,g|. 16m°Msg,

Alternatively, one could use the ratidbM¢/AMy, once the

mass difference in thB,— B¢ mixing is measured.The cur-
rent experimental bound iAM¢ >13.1 ps?® at 95% C.L.
[29].) It is proportional to£?|V s/ V4|2, whereé is a ratio to 0 o o _
describe S(B) flavor breaking of the hadronic matrix ele- So(X)(X¢=m;/my) is the Inami-Lim function(41] and 77,5

ments given by is the short distance QCD correctipf2], whose full expres-

sion is found in[43].
The four-quark operato(r)Lq(,ub) is defined as

a
X[l-l— s(p) Je

4ar

(BiloL(mp)[BY. (1)

f Bs BBS

~ feBs

3 (1.1

O (p)=by,(1=¥5)qby, (1= y5)d, (2.2

Since the bulk of the systematic errors in the calculations oﬁr?ézhindfhp:r;gitﬁ&;;e r;?]r:)?:]nazliil'zﬁité%nsiﬁzjﬁ]g; ;,icdhe;s the
fg andBg cancels in this ratio, one may achieve much bette naive dimensional regularizatiofNDR) with the modified

accuracy, as stressed [iB80]. The largest remaining uncer- <" ;
tainty comes from the chiral extrapolation of lattice data,MinNimal subtraction AS) scheme. The scale dependence

which is also discussed in this paper. cancels  with  the  prefactor [as(Mb)]_.y"/z’Bo[l .
The B mesonB parameters have also been calculated us- (@s(xp)/4m)Js] such that the physical mass difference is

ing the conventional relativistic actions for heavy quarksscale independent. In the NDRS scheme the anomalous

[31,37. Since the lattice spacing in the present simulations iglimensions are written as

not small enough compared to the Compton wave length of

the b quark, one has to extrapolate the results obtained _YB1 M

around the charm quark mass to the bottom quark mass, ng— 232 B 2_’30' 23

which is a significant source of systematic uncertainty. In 0

fact, the extrapolation with the linear form inM/does not

seem to agree with explicit calculations in the static limit

[33-35. Therefore one may use the static result to constrain

) Do gy 2 38
the heavy quark extrapolation in the infinite mass lif8#]. Bo=11-=n¢, B;=102— —n;,
We present a comparison of our result with these previous 3 3
calculations. (2.9

This paper is organized as follows. In the next section, we
summarize some phenomenological formulas for the mass

and width difference in th&°-B® mixing. The lattice action
and operators we employ in this work are defined in Sec. Ill,;The renormalization scaley, is usually taken at the quark
where the method to extract the continulBnparameters massmy.

from lattice matrix elements is also described. Simulation TheB parametelBBq is defined through

details and results are given in Secs. IV and V, respectively.

In Sec. VI we present our results for tlBeparameters and — o 8 b o

their systematic uncertainties are discussed. Using these re- <Bq|OLq(ﬂb)|Bq>: 3Bs,(10)fg Ma . (2.9
sults we also predict the mass and width differenceBgf
meson system. Calculation of the &Y breaking ratioé is
briefly discussed in Sec. VII, and our conclusions are give

y0:41 y1:_7+§nf

rgnd the scale-independe&gq is given by

in Sec. VIII.
Preliminary reports of this work have already been pre- 5 —yo280| 1 4 XsLHD)
sented in37—44. Bg, [as(mp)] 1 yp Js BBq(,U«b)- (2.6)
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The number of flavorsy is 5. To evaluate this expression we =1-8z+82°—7'—12z2Inz, wherez=m?2/mj, and the short
use the strong coupling constamf(u,,) defined in theMS  distance QCD correctidn
scheme with A%z 225 MeV, which corresponds to

~ 2a4(m 31 3

a®)(4.8 GeV)=0.216. nQCD=1—M{(w2— _)(1_ﬁ)2+ _}

The bulk of the theoretical uncertainties cancels in the 37 4 2
ratio (211

are known factors, and the functiof®(z) and Gg(z) de-
2Mg_ ) scribe the next-to-leading order QCD correctid2?] ap-
W ' (2.7) pearing in the calculation of the operator product expansion.
d The correction termsy,,, denotes the next-to-leading order
contribution in the Ih, expansion, which is estimated in
[21] using the factorization approximation.

AM; | Vis
AMy |V

where ¢ describes the S@3) flavor breaking of the matrix

9|eme”t<§8|OLq(Mb)|Bg> as defined in Eq(1.1). If one as- The B parameteBs_is defined through
sumes the unitarity relation among the CKM matrix elements
|Vis|=|Vepl, EQ. (2.7 may be used to determin¥ . — . 5, Bs.(b) ,
<BS|OSS(IU’b)|BS>: - §fBSR( )2 M Bs' (212
B. Width difference Mo
Using the heavy quark expansion, the width difference invhere
the neutraB%-BY mixing is calculated af21,2 — —
=85 mixing w2 My 115) + ()
R(mp)= M (2.13
BS

I
AFBS=—2M(Bq|Im|f d*X THer(X) He(0)|Bg),
s 2.8 is the ratio of matrix elements of heavy-light axial vector

current and pseudoscalar density al_n(cﬁb) represents S

where Hq is the AB=1 weak transition Hamiltonian. The duark mass. _ _
In the following analysis, the scale,, is set to the pole

main contr_|but_|0n comes from the Fransnmrf—mc fol- mass ofb quark, m,=4.8 GeV, for whichG(z)=0.03 and
lowed bycc—bs, and other contributions mediated by pen- G4(2)=0.937. With input parameters=0.085, |V J=1

guin operators are also considered. —\?/2=0.976, Mg =5.37 GeV, B(B—Xer)=0.107,
The operator product expansig®PE may be used to we obtain s

approximate the transition operatofd*x THeu(X) Her(0),

which gives an Ih, expansion. At the leading order inny AT fg 2
the AB=2 four-quark operato@, defined in Eq(2.2) and ——| =|zz=>—]| [0.00Bg (M)
s r 230 MeV, s
another operator B
+0.20Bg (my) —0.077. (2.19

Os =b(1-y5)s b(1-ys)s, (2.9
For the central value of the decay constant, we choose a
appear. Then, the following formula recent world average of unquenched lattice calculati‘cygs
=230(30) MeV [4,6]. The uncertainties associated with
these input parameters are discussed in Sec. VI.

2
(AF) _ 16m?B(By—Xev) 5 M Bs|v 2
r/g 9(2)70co ms Iil. NRQCD ACTION AND OPERATORS
8 5 Bs (my) In this section we describe the lattice NRQCD action and
X| G(2)3Be (M) +Cs(2) 3 R(m)? operators used in our calculations. The perturbative matching
b

of the lattice operators to the continuum ones is summarized.

+ /1_4251/m) (2.10 A. NRQCD action
To treat the heavy quark on a lattice with moderate lattice

spacing a, the idea of the heavy quark effective theory
is obtained at the next-to-leading ord@e], wheremy is the  (HQET) [45—47 is useful, as it allows us to describe the
pole mass ob quark. The width difference is normalized by heavy quarks of magd without introducing large systematic
the total decay width oBg mesonFBS, which is written in
terms of the semileptonic decay branching raBgB,
— Xev) on the right-hand side in order to remove an uncer- ‘Following the treatment ifi22], the approximate form df44] is
tainty in the value of|V,,|. The phase space factg(z)  used forygcp.
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errors scaling as &positive power ofaM. In HQET the n

aHg aoH

S . L K (xv)=|l1-22 el PNED
Lagrangian is organized as an expansion in inverse powers AXY) [( >n 5 a
of M, and the terms beyond some fixed order are truncated.
Since the physical expansion parameterAigcp/M with adoH aHgy\"
A ocp=300-500 MeV, one may typically achieve the accu- XUy 1= S 1\t on (x.y), (3.4
racy of the order of a few percent f& mesons at the next-
to-leading order, i.e., including terms of ordeML/ wheren denotes a stabilization parameter introduced in order

~ Though NRQCD was originally introduced in the con- to remove the instability arising from unphysical momentum
tinuum [48,49 and on the lattice[7,8] to describe the modes in the evolution equatidii,8]. The operatory™) is

quarkonium systems such as charmonium and bottomoniungefined assi o (x,y) =8, +1y,0xy, andHy and 8H are lat-
for which the expansion parameter is a velocity of heavytice Hamiltonians definéa b; ’
quarks rather tham\ ocp/M, the formulation can also be
used for the lattice study of heavy-light mesons as first dem- A@
onstrated in50]. At the next-to-leading order it gcp/M, Ho=— 2aMo’ (3.5
the Lagrangian in the continuum Euclidean space-time is 0
written as
D2 o B 5HE—CBTMOU~B, (3.6)

cont _ At
LNRQCD_Q

Dot 537 t9 _} Q
2M 2M
whereA®@=332 A is the Laplacian defined on the lattice
with A@=AMDAC) A and A7) being forward and
backward covariant derivatives in thénh direction. In Eq.
(3.6) the chromomagnetic field operat® is the usual
clover-leaf type lattice field strengfl8]. In these definitions,
for heavy quark field) and heavy antiquark fielg. Both are  the lattice operatord(®) andB are dimensionless, i.e., ap-
represented by a two-component nonrelativistic spinor. Th@ropriate powers o are understood. The space-time indices
derivativesD, andD are temporal and spatial covariant de- x andy are implicit in these expressions. The bare heavy
rivatives respectively. The leading order teg represents a quark massMy, is distinguished from the renormalized one
heavy quark as a static color source. The leading correctiom.
terms of orderA ocp/M are the nonrelativistic kinetic term At the tree level, the lattice actidi8.2) describes the con-
D?/2M and the spirchromgmagnetic interaction term tinuum NRQCD(3.1) in the limit of vanishing lattice spac-
o-B/2M, where B denotes the chromomagnetic field ing a. (We may identifyM, with M and take the tree level
strength. In the usual HQET approach, only the leadingraluecg=1.) The leading discretization error for the spatial
terms are kept in the effective Lagrangian and corrections oflerivative is of order §A ocp) 2AQCD/M. Since the temporal
order Aqcp/M are treated as operator insertions. Alterna-derivative is discretized asymmetrically, the leading error ap-
tively, in our lattice calculation we include the correction pears at orderaD3, whose typical size is estimated as
terms in the Lagrangiaf3.1) and evaluate the matrix ele- aA%chz using the equation of motion. The gauge poten-
ments with the heavy quark propagator including the effectial part is automatically improved, as it is exponentiated into

D? o-B
Do— = —

T _
X oM 92Mm

X (3.1

of order Aqcp/M. o _ the temporal link variabléJ .
~ Onthe lattice we use a discretized version of the Lagrang- |n the presence of radiative corrections, the heavy quark
ian (3.1), whose explicit form is written as massM, and the chromomagnetic couplirg, have to be

tuned in such a way that the continuum values are repro-

duced at each value of the strong coupling conséigntFur-
— t _ thermore, the radiative corrections generate many other

SNRQCD xzy Q) (8y~ Kolx¥)RY) terms which do not exist in the continuum Lagrangiari),
because NRQCD is not a renormalizable fieI(;%r;Esory. In gen-

+ t _ . _ _ eral these terms appear with some factor of f aMg)™

XZy X0y =KX Y)X(Y) (3.2 with positive integer& andm (k=1 andm=2).2 Therefore,
NRQCD should be considered as an effective theory valid

for small 1/@M) up to higher order terms in dM).

The kernel to describe the time evolution @nti)heavy Perturbation theory can be used to calculate the renormal-
quarks is given by ization of the parameters. For example, the one-loop calcu-
lations of energy shift and mass renormalization were carried

out for lattice NRQCD by Davies and Thackgil] and by

K _|[1 aHQ n aoH 5(7)
N 2There are also the lowest dimension opera®@f® andx 'y, but
xull1- ﬁ _ a_HO (x,y), (3.3 they only give the energy shift and do not contribute to the dynam-
4 2 2n o ics of heavy quark.
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Morningstar[52], and by ourselvegl8,13,19 for the above
particular form of the NRQCD actiohTo improve the per-
turbative expansion we utilize the tadpole improven&si,
namely, all the gauge links in the acti¢®.2) are divided by
its mean field valuely determined from the plaquette expec-
tation valueuy=((TrUp)/3)Y4 where some counterterms

are introduced in perturbative calculations. The one-loop tun-

ing of the coupling constantcg for the spin-
(chromgmagnetic interaction ternt3.6) has not yet been
performed, so we take the tree level vakye=1 after mak-
ing the tadpole improvement.

The relativistic four-component Dirac spinor fidids re-
lated to the two-component non-relativistic fie@ and x
appearing in the NRQCD actiorf3.2) via the Foldy-
Wouthuysen-Tan{FWT) transformation

y-AF)
b=(1— Zal, h, (3.7
where
hz( QT) (3.8
X

The symbolA(*) denotes a symmetric covariant differentia-
tion operatorA(“)=A{"A()

B. Bilinear operators

The heavy-light axial-vector curreni,=bvy,ysq and
pseudoscalar densify=bysq appear in the definition of the
B parameters through the vacuum saturation approximatio
We use the calligraphic symbold, and P to denote the

currents defined in the continuum full theory. Since the pseu-
doscalar density diverges in the continuum, it is renormal-

PHYSICAL REVIEW D 67, 014506 (2003

ize the light quark field with a facton/1l—3«k/4k.. The
heavy quark fieldb is defined in Eq(3.7).

The one-loop matching between the continuum and lattice
operators is written as

as

i¥ry

P23,
(3.12

s 9y 0), %s
Jr=|1+ Ep(r) IR+ Ep(rl)J(rl)ﬂL

with one-loop coefficientp!!) . The coefficientp(” is writ-
ten as

p=2In(@®M?)+ £y, (3.13
(0) B 21\ 2 3 2\ 2
Pp =§In(,u /M )+§In(a M%)+ p, (3.19

for I'= y,v5 and ys, respectively. In the static limit the nu-
merical constants arel{,=-—16.55 [54-56 and {p
=—11.21[54]. For the NRQCD actior(3.2) with a finite
heavy quark mashl, the numerical values faf, and{p are
available in Table IIl off19].%

In the static limit, while the second term of E(B.12
vanishes, the third term remains finite and describes the
O(asaAqcp) improvement, and its coefficienp(rz) is
p$22aMy=p{?)I2aMy=13.01 [54]. Away from the static
limit, these terms give contributions of tk& asaA ocp) and
O(asAqcp/M), and the one-loop coefficients are calculated
only for the axial vector currenf = y,7ys for our choice of
{the NRQCD actior{13].5

C. AB=2 operators
We assume that the continuum four-quark operators

ize_d with theMS scheme at a scale. On the other _hand, the OL(1) andO«( ) are renormalized in th&1S scheme with
axial-vector current does not need renormalization, becaus[%ta”y anticommutingys. In the renormalization oOg( )

it is partially conserved in the continuum full theory.
The corresponding lattice operators are

J9=brIq, (3.9
-1

(1) CA(E)
-1 _

(2) = A

= 5amc PP A, (3.11

whereJr is A, for I'=y,ys5 or P for I'= ys. The light quark
field q is described by th®©(a)-improved Wilson quark ac-
tion [24]. We apply the tadpole improvemef&3] for the
light quark field using the critical hopping parameter to
define the mean link variable,= 1/8«., so that we normal-

3We note that the evolution kerne{8.3) and (3.4) are slightly
different from the definition used, for example, [i52], where the
(1—aHy/2n)" terms appear inside of the (1asH/2) terms.

the subtraction of evanescent operators is made with the defi-
nition given by Egs(13)—(15) of [22].

For matching of these four-quark operators, the following
lattice operators are involved at the lowest dimension:

O, =bv,(1~ y5)qby,(1-¥s)q, (3.19
Or=Db7,(1+¥5)aby,(1+ys)q, (3.16
Os=b(1—-¥5)qb(1- ys)q, (3.17
On=2by, (1~ ¥5)qby,(1+ y5)q
+4b(1-y5)qb(1+ ys)a, (3.19

“The same quantity was previously calculatedl5@,58, but for a
slightly different NRQCD action.

SNote that a different notation is used|[ib3]. Similar calculation
was previously made by Morningstar and Shigem[ts@].
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Ow=2by,(1- y5)qby,(1+ ¥s5)q

—4b(1—y5)qb(1+ s)q, (3.19
Op=2by,(1— ¥5)qby,(1+ ¥s5)q

+120(1— y5)qb(1+ vs)q, (3.20
Or=5b7,(1— y5)qby,(1+ y5)q

—34b(1- y5)q b(1+ ys)q. (3.21)

PHYSICAL REVIEW D 67, 014506 (2003

2
pLL——2|n(G)+4|n(a M)+, (3.28
16 (w?) 4 .
psys=§|n W +§|n(a M )+§S,Sl (329)
1 [ u?\ 2
pSVL=§|n(W> - §In(a2M2)+§SVL . (330}

As in the bilinear operator case, one has to introduce higher
dimensional operators to remo@a) errors at the one-loop The numerical results for the one-loop coefficiedts (X
level. For the four-quark operators, however, the necessaryL, S R N, andM) and{sx (X=S, L, R P, andT) are

one-loop calculations to remove t& asaAgcp) error are

made only in the static limit54,20. The higher dimensional

operators appearing in that limit are

OLp=b7,(1— 5)qby,(1— ys)(ay-AF)q, (3.22
Onp=2b7,(1- y5)qby,(1+ ys)(ay-A))q
+4b(1- y5)qb(1+ ys)(ay-A*))g,  (3.23
Osp=b(1- y5)qb(1— ys)(ay-A*))q, (3.24
Opp=2by,(1—¥5)qby,(1+ ys)(ay-AF)q
+120(1- y5)gb(1+ y5)(ay-A™)q.  (3.29
The one-loop matching is written as follows:
g dg g
OL(n)=0_+ EPL,LOL"‘ EQ,SOS"' EgL,ROR

§|_ NON+ §L MOM+4 {LoOwp

(3.26

+ ﬁgL,NDONDl

as ag 223
Og(u)=0g+ EPS,SOS"_ EPS,LOL+ Efs,ROR

Qg Qg 223
+ Efspolﬁ' Egs,TOT_" Egs,SDOSD

§s LDOLD+ fs poOpp (3.27

where the coefficients, | , ps s, andps, contain the physi-
cal scalew andm, as follows:

given in Tables VI and VIII o 19]. In the static limit,{;
and (st vanish, and others agree with the previous calcula-
tions[17,54,56,60,6]1°

The last lines in Eqs(3.26 and (3.27) are added to re-
move the error ofO(asaAqcp), but their coefficients are
known only in the static limit. Their values ar§  p=
—17.20, {, np=—9.20, {ssp=—6.88, {5 p=2.58, and
gS,PD: 115[54,2q

D. Truncation of expansions

As in the matching of the NRQCD action discussed in
Sec. llI A, we have to truncate theM/and the perturbative
expansions in the matching of the bilinear and four-quark
operators. The M expansion is truncated @x(1/M), which
is consistent with our choice of the NRQCD acti@l), and
the perturbative corrections of ordeﬁ and higher are ne-
glected.

In addition, there are mixed corrections of
O(asAgcp/M). In the matching of the bilinear operators the
matching coefficients for the mixed corrections are available
and such corrections were actually included i8] by com-
bining with higher dimensional operators as shown in Eq.
(3.12. For the four-quark operators, however, the mixing
with higher dimensional operators at the one-loop level has
not been calculated yétThus, in this paper, the mixed cor-
rections are not considered in both of the bilinear and four-
quark operators. This means that, for the bilinear operators,
only the first term of Eq(3.12 is taken, thus the matching
becomes multiplicative in this approximation.

At this level of accuracy, it is arbitrary to apply the FWT
transformation to a heavy quark field, if the heavy quark field
forms an operator appearing in the one-loop corrections.
Namely, in Egs.(3.26) and (3.27), we may replace all the
four-quark operator®y except for that in the first term by
Oy, where

O/ =hv,(1- y5)qhy,(1- ¥s5)q, (3.30)

A numerical error in56] was later corrected if17,54,61.
"Except for the static limit, where the mixing terms describe the
correction of orderga rather thanag/M.
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and so on, and the heavy quark figlds not rotated by the <§| Os(up)|B)

FWT transformation(3.7). ThereforeOy, differ from Oy at Bs(up) = , (3.33
O(Agcp/M). In the naive order counting analysis both _<§|p(Mb)|0><0|p(Mb)|B>

choices are equivalent up to unknown corrections of 3

O(aSAQCD/M) .

In the calculation oB parameters through the ratios
the perturbative and W expansions may be truncated in

(B|O (up)|B) several different ways. A natural choice to match the ratios
Be(up -8 _ , (3.32 (3.32 and(3.33 is to write the numerator and denominator
3(BlAL[0)(0]A,[B) as they stand:

1+ BEL+ Bk
. pLL} BL SERNM4,”_§LX

BY (up) = 5 , (3.39
14+ 25 0
471_.DA
1 a Bla _,’_ Blat 2 g Blat
0 47 Pss|PssT 4 PSL e 1 A OSX
Bs'(up) = 2 : (3.39
_S (0)
1 }

A roman numeral(]) in this case, as a superscriptBf or  Formally they are different from the method | by ordef,
Bg distinguishes the method to truncate the expané.i@?‘@< which is not known. We expect, however, that perturbative
and B'at are B parameters defined with the lattice operatorsexpansion behaves better for the method Il, because the con-

as tributions from factorized diagrams to the four—quark opera-
tors are the same as those of the corresponding bilinear op-
(B|Ox|B) erators, so that the radiative corrections partly cancel in the
Bt = (3.39 ot (0) 0)
B.X — ' : combinationp, | —2p,”’ or pss—2pp .
§(B|AE‘°)|O><O|AE‘°)|B> For each method | or II, we also consider the variation of

replacingOy andJ{” by O} andJ’{%), respectively, as dis-
cussed above, and define the methods’aand 1I', where

B2t = (B|Ox(B) , 3.37 J'{ are defined similarly to Eq3.31). The difference of the
§<§| P(°)|O><0|P(°)|B> method [ (") from I (1) is of orderasA gcp/M. .
3 Since the level of accuracy of these four methods is

equivalent in the naive order counting argument, they can be
which are directly measured in the numerical simulationysed to estimate possible systematic errors due to the trun-
from a ratio of correlation functions as we describe in thecation of expansions.
next section.
. Alternatively, one may linearize the perturbative expan- IV LATTICE SIMULATIONS
sion as
A. Simulation sets

B'BatL We have performed numerical simulations at f@guwal-
' ues. For three of them3=6.1, 5.9, and 5)7 which we call
the simulation sef, the O(a)-improvement coefficientsy

a
BY (up)=|1+ ﬁ(pL L—2p%)

+ > gL xBEY, (3.39 in the light quark action is determined using the one-loop
x=SRNMm 47 expressioncgy= (1/P¥4[1+0.19%,(1/a)]. The one-loop
coefficient is calculated if25-27), and we apply the tadpole
0 _ O© |plat . %s lat improvement[53] with the plaquette expectation value to
Bs (mo)=)1 (Pss 2pp") [BSs+ 4nPstBsL define the mean link variable. For the last simulatigh (
=6.0), which we denote as the simulation Bethe nonper-
+ Z §sx|3|at (3.39 t_urbative value is used fargy [28]. There_fore, as f_ar as the_
x=Rp,T 41 light quark sector is concerned, the discretization error is
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TABLE |. Simulation parameters. For the simulation getthe O(a)-improvement coefficientgyy, is
determined at the tadpole-improved one-loop level. For thés#te nonperturbatively tuned val(i28] is

used.
Set A B
B 6.1 5.9 5.7 6.0
Size 28X 64 16x 48 1% 32 26x 48
No. conf 518 419 420 655
Csw 1.525 1.580 1.674 1.769
1/a(GeV) 2.29 1.64 1.08 1.82
K 0.13586 0.13630 0.13690 0.13260
0.13642 0.13711 0.13760 0.13331
0.13684 0.13769 0.13840 0.13384
0.13716 0.13816 0.13920 0.13432
Ke1 0.13635 0.13702 0.13800 0.13355
Ksp 0.13609 0.13657 0.13707 0.13318
Ke 0.13767 0.13901 0.14157 0.13531
(aMg,n) (7.0,2 (10.0,2 (12.0,2 (10.0,2
(3.5,2 (5.0,2 (6.5,2 (5.0,2
(2.1,2 (3.0,2 (4.5,2 (3.0,2
(1.5,3 (2.13 (3.8,2 (2.1,3
(0.9,9 (1.3,3 (3.0,2 (1.3,3
[t1mintimas] [8,26] [6,17] [4,13 [7,18] for aMy=10.0
[9,18] for aMy=5.0
[10,18 for aMy=3.0, 2.1, 1.3
Ug 0.8816 0.8734 0.86087 0.87603
ay(mla) 0.149 0.164 0.188 0.159
ay(2/a) 0.172 0.193 0.229 0.186
ay(1/a) 0.229 0.270 0.355 0.256

minimized in the setB, for which the leading error is of The heavy quark mass in our simulation ranges from
O(a?), while the effect ofo(aga) is remaining in the seA. 2rr_1b/3 to 4mb The smallest hgavy quark mass in _the lattice
For the quantities involving heavy quarks, however, both setginit aMy is limited around unity due to the possibly large
of simulations give the same order of accuracy, since th&ystematic error in the matching calculation as discussed in
heavy quark action and operators are not improved at th€€c. lll. The limit in the heaviest side is set by the exponen-
same level. tially growing statistical errof50].

Simulation parameters are summarized in Table I. The . The lattice spacin@ is determined through the string ten-
parameters for the simulation s&@re almost the same as in SION (for the setA) or the rho meson maséor the setB).

our previous work for the leptonic decay constfig], ex-  of the 5|_mulat|c<j)n seh it |5égg/f|rme_dtj[hatdboth ggtermlna-
cept that the number of statistical ensembles is increased pns are in good agreemef 6 variation depending gB)

this work to obtain stable signals for three-point functions. 0. Therefore, in effect the lattice spacing is set using the

The setB is our new simulation set, which is intended for rho meson mass for both data sets.

comparson wih o recent urquenced smufges, W Use e siulalon <& o o our cenva vae
and itsB value, 3=6.0, is chosen so that the inverse lattice 9 y P 9

spacing becomes about 2 GeV. In this paper, we present ongﬁtitg‘s le?rtrt(l)crei Ssprﬁﬁ:?n%izzzebprl:F]Zr)r/](l;?]ase?tr:j:’f) ;Ti%ta( t:)e i?rlfcre“_
the quenched results leaving the unquenched calculations f # y the P :
provement for the sdé®. The setB is also advantageous since

future publications. A :
For both simulation setsA and B. we take the standard W€ have larger statistics and hence the numerical results are
! ' Jgore stable.

plaquette gauge action, and the configuration generation a
gauge fixing are made as [13]. Four values of the light
qguark hopping parameter are chosen for egcas given in
Table I. They correspond to the light quark magscovering The method to calculate two- and three-point functions
the rangemy/2<m,<2mg, wheremg denotes the physical mostly follows that of[18]. We put a local source at the
strange quark mass. The hopping parameter corresponding @digin of the lattice and solve for the light quark propagator.
the strange quark mass is determined usindtloe » meson  The heavy quark and antiquark propagators are obtained
masses as input, and will be denotedkas and ks, respec-  from the same local source by solving the evolution kernels
tively. (3.3 and(3.4), respectively.

B. Correlation functions

014506-8



B%-B® MIXING IN QUENCHED LATTICE QCD PHYSICAL REVIEW D 67, 014506 (2003

Three point functions are constructed as measured from the two-point functions and bare quark mass

X 1,42

aMp=Z,aMg+ Egj,— om, (4.9
:le XEZ <0|T[A§T(tl*il)OX(O'é)AET(tZ')22)]|0>' where perturbative correctior,, and ém are given as
4.2 Zn=1+agB, (4.10
whereOy is one of the four-quark operators deﬁ_ned in Egs. om= aA, (4.11

(3.15—(3.21). We taket;>0 andt,<0 so that aB meson
propagates in the positive direction in time andB aneson
propagates in the opposite direction. We also measure twg?’]'
point functions

andA andB for each bare quark mass are given in Table | of

V. SIMULATION RESULTS

C@(t)= E <0|T[A§T(t,>2)Ag°)(O,6)]|O>, 4.2 A. Ratio of correlation functions
X

We first extract theB parameters defined on the lattice
BEY andBZY, which are obtained from the asymptotic be-

CcP(t)=2 (0| T[A3'(t,x)P®(0,0)]|0), (4.3 havior of the ratiosRg x(t;,t,) and Rgx(t;,t;) as Egs.
x (4.5—-(4.6). In Figs. 1-4(top and middle panels in each

for positive and negative values bf figure) we plot these ratios as a function taffor some fixed
A smeared currenﬁi’, defined as values oft,. For illustration we showlgt]e operators giving

leading contributions, i.e.B'Ei‘,_ and Bgs, for the heavy
s, = — e o - quark mass closest to the physidalquark mass and the
AZtX) =2 $(Y)btX+TY)vaysd(tx), (4.4 lightest quark maséargestx value). We obtain similar plots
y for other mass parameters, but the statistical signal becomes
is used to enhance the overlap with the ground dBamee- ~ much noisier for larger heavy quark mass.

son. We measure the smearing functipfx) for each set of The range ofi(t; andt,) to be included in the fit of the
heavy and light quark masses with a limited number offatios has to be chosen such that the effect of excited states is
gauge configurations before starting the main simulation. Nedligible. We identify the plateau seen in the plots of

We extract the lattic® parameter8", (3.36 and B2% R x(t1,t2) andRsx(ts,t2) as the region where the ground
(3.37) from the following ratios ' ’ state contribution dominates. To be more conservative, we

also check that the plateau is reached for the effective mass

Pty plot of two-point functionsC{?)(t) andC{-S(t), which are
Re x(t1,t2)= 8 ~2) 2) — BXx» (4.5 calculated for the same smearing function as used in the
§C£\ (1) CR(t2) calculation of three-point functions. The plots are shown in
. 1 the bottom_ panel of Fi_gs. 1-4. _
Re(ty ty)= C@(ty,t,) " Bl | In the fit of the ratios we take a range bfas wide as

possible in order to avoid possible contamination from the
4.6 statistical fluctuatio64]. The fit is done for a fixed value of
' to=t1min and changing; in the range[timin,timax- The

3CBtCRty)

for large enought;| (i=1,2). value of[ tymin,timax is listed in Table I. In order to quantify
the possible effect from excited state contamination, we also
C. Meson masses carried out a fit with larger values of,,;, (=t,). Since the

) statistical error grows rapidly a5, is taken larger, the
_In order to calculate the heavy-light meson masses prégayimum change fot, ., is chosen to keep the statistical
cisely, we also calculate ‘two-point functions with the error smaller than 8—10 %. The effect B, is found to be
smeared source and local sink, 1% or less except foB= 6.1 where it is at most 3%. Fd
it brings a 1.5-3 /% effect except fg8=5.7 where it is
C@MS(t)=2 (0| T[APT(t,x)A3(0,0)]|0), (4.7  negligible. The variations among different choices of the fit
X range are taken into account in the final results.

C&Z)LS(I)ZE <0|T[A£1°)T(t,>2) pS(O,(_j)]|O>, B. Chiral extrapolation
X 4.9 The results oB2Y% and BE are insensitive to the light
quark mass. An example is shown in Fig. 5, where the data at
for which the statistical signal is much better than those with3=6.0 are plotted as a function afan%(llx— 1/k¢). The
the local source and smeared sink. The heavy-light mesoB parameters for all relevant operators are plotkee:L, R,
mass is, then, obtained by adding the binding endtgy S N, andM for BZ%, andX=S, L, R, P, T for B&.
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r FIG. 2. Same as Fig. 1, but fg8=5.9, aMy=2.1, and«

FIG. 1. Rg, (t1,t,) (top) and Rg(ty,t,) (middle) at g=5.7, ~ =0.13816. Horizontal line represents a fit with a rage[6,20]
aM,=3.8, andx=0.13920. Horizontal line represents a fit with a for a fixedt,=6.
ranget,=[4,13] for a fixedt,=4. The bottom plot shows an ef-
fective mass for two point function€{?(t) (open symbolsand  from the lightest measured data by about 1% or less. There-
C@*S(t) (filled symbols. Circles and squares represent data pointsfore, the chiral extrapolation is extremely stable and the as-
for positive and negativerespectively. sociated systematic error is negligible. To confirm this obser-
vation we also tried a quadratic extrapolation for some
Each B parameter is normalized by its vacuum saturationparameter sets, for which we find that the results are consis-
approximation. We averaged the matrix elements with tent with the linear extrapolation within the statistical error.
=L andR, as they should be equal in the infinite number of In chiral perturbation theory for heavy-light mesons, the
statistics by parity symmetry. In later sections, the averagetbgarithmic dependence such g Inmy, is predicted forBg
matrix elements are denoted Ky=LR. [65,66]. In the quenched approximation the chiral limit is
We extrapolate thesB parameters to the chiral limit of a even divergent as Im,. The more divergent term Im, has a
light quark assuming a linear function am, . In most cases factor 1— 3g? as its coefficient, and thB* B7r couplingg is
the chiral extrapolation changes the valueBoparameters evaluated in the range 0.2-0.7 usibg — D= decay[67],
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FIG. 3. Same as Fig. 1, but fg8=6.1, aMy=1.5, and«
=0.13716. Horizontal line represents a fit with a range[8,28] FIG. 4. Same as Fig. 1, but fg8=6.0, aMy=2.1, and«
for a fixedt,=8. =0.13432. Horizontal line represents a fit with a range

=[10,1§ for a fixedt,=10.

D* decay width[68], quark model§69], and quenched lat-
tice calculation§70-72. It means that this divergent loga-
rithm is relatively unimportant because of its small coeffi-
cient 1- 392:0.'2(7)' It is, however, difficult to resolye results atxg;, for which theK meson mass is used as input,
such Iogarlthr_nlc dependences from _the data taken in thSnd atk,, for which ¢ meson mass is used.
range of our light quark masses. In this work, therefore, we
do not further consider them, leaving the study of the chiral
logarithm including the effect of unquenching for future pub-
lications. The 1Mp dependence of the latticd parameters
Results of the linear extrapolation are summarized B2 (B}) is plotted in Fig. 6(Fig. 7). The light quark is
Tables 111X, where we list the values &2 andBE&} at  extrapolated to the chiral limit. Although the data at different
eachB andaM;. The value ofk corresponding to the physi- B values are overlaid, they do not necessarily agree because

calu or d quark mass, which we denokgy, is very close to
the critical valuex.. The value ofkg corresponding to the
strange quark mass depends on the input quantity. We list the

C. YMp dependence
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vacuum saturation approximatigvsA). It is BYSV=1, B{'SY

=-5/8, BYYV=1,

VSA the correction of order M is neglected.

BYSN=—6 for BE,
=1, BYSN=-8/5, BYSY=—64/5, BYSY=288/5 forBEY . In

VSA
and BYSY
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the operators are not renormalized. Comparison with an ad-
equate definitionthe B parameter in the continuum renor-
malization schemewill be discussed in detail in Sec. VF.
We find that the mass dependence is small B@fLR,
while it is significant for others. This behavior can be mostly
understood using the vacuum saturation approximation
(VSA) [18]. In VSA the matrix element in the numerator of
the B parameter is generally decomposed ift0|A ,|P)|?
and [(0|P|P)|2. For Bgig, however, it is written by
[{0|A,|P)|? only and no|[(0|P|P)|? term appears by defini-
tion, so thaBy'57) =1 is independent of M. For others,
the term|(0| P|P)|? gives a strong mass dependence propor-
tional to Mp/M)?=(1+A/M)?, where A represents the
binding energy produced by the light degrees of freedom.
Comparison of the lattice data with VSA is made in Ref.
[18].

D. Renormalized B parameters

The B parameters for the continuum operators are ob-
tained from the latticd8 parameters using E¢3.34) for Bg
and Eq.(3.35 for Bg. We consider the truncation method |
in this subsection. The results of other truncations are dis-
cussed in the next subsection.

In order to see the effect of W/ corrections we consider
the quantity

(5.9

s M 2/Bg
sl P)) Be(up)

Qg (up)= (—as(M 2

as a function of W p. The factor(ag(Mp)/ag(Mg))??0 is
introduced to cancel the logarithmic dependencévboom-

ing from the continuum one-loop integral, so that the heavy
quark expansion in M is explicit. Up to two-loop correc-
tions (IJBB(,ub) is equivalent toBg(up,) obtained with a re-

placement oM in p_ | (3.28 and inp!Y (3.13 by the physi-
cal b quark massn,, which can be confirmed by expanding

TABLE Il. Numerical values for latticdB parametersB';g( at 3=5.7.

aM, 12.0 6.5 45 3.8 3.0
By LR

Kud 0.91621) 0.90617) 0.89415) 0.88914) 0.88714)
Ke1 0.931(13) 0.92311) 0.91509) 0.91109) 0.90509)
Ke2 0.93412) 0.92709) 0.92008) 0.91608) 0.91108)
By's

Kud —0.656(11) —0.708(10) —0.765(10) —0.802(11) —0.870(12)
Ke1 —0.659(07) —0.713(06) —0.770(07) —0.806(07) —0.872(08)
ks —0.659(06) —0.714(06) —0.772(06) —0.808(06) —0.872(08)
Bg .\

Kud 1.22036) 1.45931) 1.70732) 1.86434) 2.14440)
Ke1 1.21223) 1.44420) 1.68321) 1.83123) 2.09527)
Kep 1.21020) 1.44Q17) 1.67619) 1.82220) 2.081(24)
Baw

Kud —6.44(11) —6.87(10) —7.30(09) —7.58(10) —8.08(10)
Kel —6.44(07) —6.87(06) —7.31(06) —7.58(07) —8.06(07)
Kep —6.44(07) —6.87(06) —7.31(06) —7.58(06) —8.06(07)

014506-12



B%-B® MIXING IN QUENCHED LATTICE QCD

TABLE Ill. Numerical values for latticeB parameterﬁ's"’}; at 3=5.7.
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aM, 12.0 6.5 45 3.8 3.0
Bl

Kud 0.93115) 0.90911) 0.89410) 0.88710) 0.87909)
Kel 0.94110) 0.92707) 0.91607) 0.91006) 0.90406)
Kep 0.94409) 0.93107) 0.92206) 0.91706) 0.91005)
BSir

Kud —1.301(31) —1.163(23) —1.044(19) —0.982(18) —0.891(17)
Ket —1.330(19) —1.200(14) —1.088(12) —1.028(12) —0.938(11)
Ker —1.338(17) —1.209(13) —1.099(11) —1.040(10) —0.951(10)
Bl

Kud —12.59(18) —12.56(15) —12.52(14) —12.51(13) ~12.51(12)
Ke1 —12.66(12) —12.68(10) —12.69(09) —12.69(09) —12.70(08)
Kez —12.68(10) —12.71(09) —12.73(08) —12.74(08) —12.76(08)
=

Kud 55.4387) 54.0967) 52.9158) 52.31(55) 51.4550)
Ke1 55.7957) 54.7245) 53.7739) 53.2737) 52.5035)
Kep 55.8951) 54.9040) 54.0136) 53.5334) 52.7§32)

the factor(as(Mp)/as(Mg))?Po in ag(Mp) explicitly. With  tegral dominates. Since it is not known, we use three typical
the replacement the static limit (MI/s—0) of NRQCD sim-  valuesw/a, 2/a, and 14 and consider their variation as an
ply becomes the conventional static approximation. Thereindication of systematic uncertainty from higher order per-
fore, in the calculation ofPg_(up) we explicitly set the turbative corrections. We find that the variation among dif-
physicalb quark massny, in the matching coefficientés.28) ferent coupling constants becomes substantial as one goes to
and (3.13. It should be also noted that at the physi&l the static limit, while it is relatively unimportant in the physi-
meson mass, namelp=Mg, our definition of®g_(xp) cal mass region Mp~0.2 GeV 1. This is because the one-
exactly agrees with the definitiafs.1). Ioop cqefficients in the matchin¢3.34 grows toward the
Figure 8(top panel shows®g_(up,) at 8=6.0. The light ~ static limit. For the ¥ dependence ofg,(u,) We ob-
quark mass is extrapolated to the chiral limit, and the renorserve a slight positive slope and curvature, but the large sys-
malization scaleu,, is set tom,. In the one-loop matching teématic uncertainty implies that the mass dependence is in-
(3.34 we use the renormalized coupling,(q*) defined  Significant.
through the heavy quark potenti@3]. The scaleq* repre- We obtain a similar plot fobg (up) in Fig. 8 (bottom
sents the momentum region where the relevant one-loop irpane), which is an analog O@BB(,%) but for Bg(up). The

TABLE IV. Numerical values for latticdB parametersB'E;?; at 3=5.9.

aM, 10.0 5.0 3.0 2.1 1.3
B5Lr

Kud 0.97761) 0.93635) 0.90425) 0.88422) 0.84822)
Ke1 0.95634) 0.931(19) 0.91%13) 0.89712) 0.87112)
Ke2 0.95230) 0.93016) 0.91311) 0.89910) 0.87711)
Bg's

Kud —0.669(32) —0.718(19) —0.800(16) —0.904(17) —1.148(25)
Ke1 ~0.650(17) —0.715(10) —0.805(09) —0.911(10) ~1.150(17)
sz —0.646(15) —0.714(09) —0.806(08) —0.912(09) —1.150(15)
Bg .\

Kud 1.346122 1.59574) 1.97960) 2.45367) 3.541102)
Ke1 1.288070) 1.56041) 1.93535) 2.38141) 3.395066)
Kez 1.275060) 1.55235) 1.92431) 2.36437) 3.361059
B

Kud —6.715(297) —7.156(182) —~7.903(162)  —8.828(177) —10.904(241)
Ke1 —6.521(176) —7.087(104) —7.862(093)  —8.742(102) —10.684(145)
Kes —6.476(157) —7.071(091) —7.852(082)  —8.723(090) —10.634(128)

014506-13



S. AOKI et al.

TABLE V. Numerical values for latticd3 parameterB'S'f; at 8=5.9.

PHYSICAL REVIEW D 67, 014506 (2003

aM, 10.0 5.0 3.0 2.1 1.3
Bl

Kud 0.94244) 0.90723 0.88715) 0.86813) 0.84§11)
Ke1 0.92324) 0.91212) 0.89908) 0.88807) 0.87306)
Kez 0.91821) 0.91311) 0.90207) 0.89306) 0.87806)
BSir

Kud —1.376(85) —1.184(45) —0.999(30) —0.850(25) ~0.627(22)
Ke1 —1.357(48) —1.188(24) —1.018(16) —0.875(15) —0.662(14)
Ke2 —1.353(42) —1.188(21) —1.022(14) —0.880(13) —0.670(12)
Bl

Kud —13.24(55) —13.08(31) —13.10(24) —13.20(22) —13.33(22)
Ke1 —12.90(31) ~13.02(17) —13.10(13) —13.17(12) ~13.27(12)
Ke2 ~12.82(27) —13.01(15) ~13.10(12) ~13.17(11) —13.25(10)
=

Kud 57.69233 55.84126) 54.5396) 53.7189) 52.3389)
Ke1 56.36138) 55.71072) 54.7555) 53.8650) 52.3649)
Kes 56.05122) 55.68063) 54.8048) 53.90493) 52.3642)

definition of ®p_(up) with the renormalization group im- the following four methods. In the methods | and the
provement as in Eq(5.1) is more complicated, since the perturbative matching is truncated in the numerator and de-
logarithmic dependence appears in more than one coeffArominator separately as in Eq8.34 and (3.35, while in
cients, so that we have to consider a mixing of operators. Ithe methods Il and lIthe denominator is linearized as Egs.
this work, however, we avoid this problem by replacing the(3.38 and (3.39. In the primed methods the heavy quark
heavy quark mass ipss and ps by the physical value as field without the FWT rotation(3.7) is used for one-loop
correction terms.

we did for dg_(up).
For Bg(up,) the one-loop coefficients are relatively small

In Fig. 9 we plot®g_(up) (top panel and®g (up,) (bot-

and their dependence on the heavy quark mass is mildom panel for four different truncation methods. As can be
Hence, we obtain a smaller variation due to different Scal%een from the figure, the methods | arid(or Il and II')

settings in the coupling constant.

E. Effect of truncation of expansions

TABLE VI. Numerical values for latticeB parametersB'é""X at 3=6.1.

agree in the static limit, since their difference is only in the
FWT rotation. On the other hand, the difference between the
methods | and I or I’ and II') is smaller for lighter heavy

As we discussed in Sec. 1l D there are several method touarks because the one-loop correction in the denominator
truncate the perturbative andM./expansions. We consider p(AO) becomes small.

aM, 7.0 35 2.1 15 0.9
B5Lr

Kud 0.83366) 0.84632) 0.84523) 0.83422) 0.81924)
Ke1 0.89237) 0.89218) 0.88212) 0.87112) 0.85713)
Ke2 0.90433) 0.90116) 0.88911) 0.87§10) 0.86512)
Bg's

Kud —0.653(30) ~0.701(17) —0.808(14) —0.929(16) —1.255(28)
Kol —0.658(18) —0.725(10) —0.836(09) —0.958(11) —1.282(20)
ks —0.659(16) —0.730(09) —0.842(08) —0.964(10) —1.287(19)
Bg .\

Kud 1.227112) 1.67461) 2.17955) 2.71566) 4.130115)
Kel 1.294064) 1.68937) 2.181(35) 2.70044) 4.047079)
Ker 1.307057) 1.69234) 2.18133) 2.69741) 4.031073
B

Kud —7.125(338) —7.690(180) —-8.545(143)  —9.490(155) —12.046(230)
Kol —6.857(220) —7.575(112) —8.452(089)  —9.389(099) —11.877(156)
Ker —6.804(204) —7.552(102) —-8.433(082)  —9.369(092) —11.843(146)
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TABLE VII. Numerical values for latticeB parameterB'Sf; at 3=6.1.

aM, 7.0 3.5 2.1 15 0.9
Bl

Kud 0.89240) 0.84320) 0.83413 0.831(12) 0.82711)
Ke1 0.90724) 0.87911) 0.8697) 0.8637) 0.8557)
Ker 0.91021) 0.88610) 0.8767) 0.8706) 0.8616)
BSir

Kud —1.138(92) —1.016(41) —0.870(26) ~0.741(22) —0.536(19)
Ke1 —1.229(52) —1.080(23) —0.916(15) —0.784(13) —0.571(12)
Ke2 —1.247(46) —1.094(21) —0.925(14) ~0.792(12) ~0.578(12)
Bl

Kud —13.09(54) —13.27(26) —13.31(19) —13.32(18) —13.35(17)
Ke1 —13.01(35) —13.28(17) —13.31(12) —13.31(11) —13.31(11)
Ker —12.99(33) —13.28(15) —13.31(11) —13.31(10) —13.31(10)
Bl

Kud 58.65260) 56.91124) 55.2385) 53.9076) 51.7068)
Kol 57.32171) 56.66079) 55.1453) 53.7847) 51.6542)
Ker 57.06158) 56.61072) 55.0848) 53.7643) 51.6338)

We consider the variation among different truncations ascaling as H" (n is a positive integeris under control.
an indication of systematic uncertainties from higher orderAlthough the order counting argument as discussed in
of perturbative and M expansions. The error estimation is [18,19 provides a rough estimate of errors, it is essential to

given in the next section. confirm it using actual simulation data.
In Fig. 10 we plot®g_(up) (top panel and P (1b)
F. Results at different lattice spacings (bottom panelobtained with the truncation method I for four

Since NRQCD is formulated by an expansion iM1and different !attige spacings. The larggsimallest inverse lat-
not a renormalizable field theory, it does not allow a con-tice spacing is 2.3 GeV g=6.1(1.1 GeV atp=5.7). We
tinuum limit; instead it has to be considered as an effectivdind that around the physicaB meson mass (Mg
theory valid in the region where H(M,) is small enough. ~0.2 GeV'!) the results agree within order 10% for
The dependence of systematic errors on the lattice spacing®sg(#n) Or even better forbg (up). The agreement be-
is not just a simple power series @ but contains its inverse comes marginal toward the static limit especially for the non-
powers. Therefore, the question is how one can find a regioperturbatively improved latticed=6.0), but it is not statis-
of a where the discretization error is small while the errorstically significant.

TABLE VIII. Numerical values for latticeB p.’:lrameterﬁ'g"fX at 3=6.0.

aM, 10.0 5.0 3.0 2.1 1.3
B5r

Kud 0.82053) 0.83251) 0.86839) 0.85730) 0.85§25)
Ke1 0.86437) 0.86929) 0.88822) 0.87717) 0.87215)
ks 0.87434) 0.87725) 0.89219) 0.881(14) 0.87513
Bgs

Kud —0.574(28) —0.649(27) —0.738(23) —0.820(20) ~1.01122)
Kol ~0.601(21) ~0.673(17) —0.757(14) —0.840(12) —1.029(14)
ks —0.607(19) —0.678(15) —0.761(12) —0.845(11) —1.033(13)
Bg .\

Kud 1.128107) 1.37897) 1.78784) 2.20775) 3.09581)
Kel 1.148073 1.39357) 1.78548) 2.18445) 3.02353)
Ker 1.152066) 1.39749) 1.78441) 2.17839) 3.00748)
B

Kud ~6.67(36) —7.33(28) —7.76(24) —8.44(20) —10.04(20)
Ke1 —6.68(24) ~7.15(17) —7.69(14) —8.35(12) —9.88(13)
Ker —6.68(23) —7.11(15) ~7.67(12) —8.33(11) —9.84(12)
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TABLE IX. Numerical values for latticeB parameterﬁ'sf’& at 3=6.0.

aM, 10.0 5.0 3.0 2.1 1.3
Bl

Kud 0.82940) 0.84735) 0.85426) 0.84019) 0.83014)
Ke1 0.86830) 0.88122) 0.881(15) 0.86911) 0.85708)
Kep 0.877128) 0.88820) 0.887113) 0.87510) 0.86307)
BSir

Kud —1.184(77) —1.085(68) —1.005(48) —0.879(33) —0.705(23)
Ke1 —1.249(53) —1.138(39) —1.034(27) —0.907(19) —0.726(14)
Ke2 —1.264(50) —1.149(34) —1.040(23) —0.913(16) —0.730(13)
B2,

Kud —12.87(58) —13.17(47) —13.13(37) —13.17(28) —13.32(22)
Ke1 —12.95(41) —13.02(27) -13.11(22) —13.14(17) —13.26(14)
Kez —12.97(38) —12.99(24) —13.11(19) —13.14(15) —13.24(12)
=

Kud 57.82276) 58.04211) 55.59161) 54.30118) 52.9389)
Ke1 57.99194) 56.99126) 55.44094) 54.21072) 52.7857)
Kep 58.02180) 56.76111) 55.41082) 54.19063 52.7451)

Results of physicaBg(m,) (top panel andBg(m,) (bot-  truncation error containing a form liked. In addition, the
tom pane) are plotted in Fig. 11 as a function of the lattice truncation of perturbative expansion gives a functional de-
spacing, where the variation due to the different choice of fipendence like 1/la. It is, therefore, difficult to determine the
range is added to the error bar at egghThea dependence shape of thea dependence, but the data imply that none of
is a mixture of the discretization error scalinga®$and the these errors is diverging in the region we measured.
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ooF 12 18 1fp E 041 o B=61 §
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FIG. 6. 1M dependence of the lattid® parameter8g x (X = LR, § N, andM). A quadratic fit is plotted for the data @t=6.0.
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FIG. 7. 1Mp dependence of the lattid® parameter8sx (X=S, LR, P, andT). A quadratic fit is plotted for the data @=6.0.

VI. PHYSICS RESULTS ~300 MeV. For the strong coupling constant we use a typi-
A. Analysis of systematic errors cal valueay(2/a) as listed in Table I.

. . . . The contribution of ordep?/M? is not investigated in this
As discussed in the previous section, we have performed PV 9

the calculation of thd3 parameters with four different trun- paperi as v:/e lestil ne)?lect thel\_AL? tezrojws mttr:]e action an((jj_
cations of 1M and a4 expansions. Furthermore, the calcula- operators. In 1able A we assign =% as ne corresponding

tions are made at four different lattice spacings. All of theseuncertainty rather than a naive order counting 0.4%, taking

calculations have different amount of various systematic ert€ estimate from explicit lattice study [48].
rors, and thus they allow us to estimate the uncertainty in our Since we have removed errors af/(aM)™(m=0) by
final results. In this subsection we first list possible source®erturbative matching, the leading contribution which pre-
of systematic errors and estimate their size using a naiv¥ents us from the continuum extrapolation with the NRQCD
order counting. Then, their results are compared with théction has the forna2/(aM). Although its size in the naive
actual lattice data. order counting is smaller than the pure two-loop correction
One of the possible systematic errors arises from the diSezﬁ, we include it in our error analysighus in Table X, as
cretization of derivatives, which scales as a power of thet gives the leading contribution growing toward the con-
lattice spacing. Because our actions and operators@(a) tinuum limit.
improved at the tree level, the leading error is of ordér As mentioned in Sec. Il D, the results from the different
and of orderaga. Since we are using an effective theory for truncation method¢l, Il, I’, and II') are expected to differ
heavy quark, the truncation of theM/expansion leads to a from each other byD(«?2) or O(asp/My). We compare their
systematic error. For our choice of actions and operators theesults in Fig. 12 foBg and in Fig. 13 foiBg. The results of
leading contribution is of order Mﬁ. Again, since the the four truncation methods whemg(2/a) is used in the
matching of the I terms is done at the tree level only, we one-loop matching are plotted. In these figures we also show
also expect an error of orde#;/M,. The perturbative the size of the systematic errors of ord@(ai) and
matching of operators are truncated at the one-loop level, sO(a p/M,) estimated with the naive order countirfirst
that there is an uncertainty of ordeﬁ. In Table X we list  two lines of Table X added in quadratiwrélthough the sta-
their typical size at eacjg value using a naive order count- tistical error of the data points makes the comparison some-
ing. Where the scale is needed we assume the typical spatiahat ambiguous, we conclude that the naive order counting
momentum inside a heavy-light meson to lpe-Aqcp  reasonably explains the scatter of the lattice data. The same
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FIG. 9. CIJBB(,ub) (top panel and d)BS(,ub) (bottom panel for

up=m, . Data show the result @=6.0 in the chiral limit of the M“p=Mm, . Data show the result @=6.0 in the chiral limit for the

light quark. The truncation method | is chosen as a demonstratior“.ght quark and renormalizgd with the COL!P”E'@(Z’a)- Diﬁergnt
Different symbols correspond to different scales of the couplingsymbOIS correspond to different truncations of perturbative and
3t)eavy quark expansions. The data at the static limMEE0) is

obtained by an extrapolation inM/j with a quadratic function.

FIG. 8. CI)BB(,ub) (top panel and (I)BS(,ub) (bottom panel for

constant in the perturbative matching, and data points are slightl
shifted in thex direction for clarity. The data at the static limit
(1M p=0) is obtained by an extrapolation inM} with a qua-
dratic function. for Bg and 3% forBg. These variations are taken into ac-

count in the final results.
conclusion is reached when we use different valueg*oin

the perturbative matching.

An alternative way to estimate t@(«?2) error is to see ) ) )
the variation of results witlg* = 7/a, 2/a, and 14. From As we discussed above, the systematic errors estimated

Fig. 8, where the data g&=6.0 are plotted, we find that the With the naive order counting actually describe the differ-

variation with the choice of scale in the coupling constant is€Nces among different calculations. We, therefore, use the
consistent with our order counting—(3%) for the data Order counting argument to quote our estimate of systematic

points around thd meson mass. In the static limit, on the Uncertainties.
other hand, the one-loop coefficient is uncomfortably large, Ve take the central values from the datg8at 6.0 (setB)
and the variation among the results with differgiitis much ~ With g*=2/a, and obtain the following results in the
larger than our naive estimate. quenched approximation:

Other sources of systematic errors to be tested are _

O(a%p?), O(apas), andO(a?/(aMy)). Although it is dif- Ba(Mp) =0.843)(5), ©.1
ficult to disentangle various dependent systematic errors

solely from the data, our results are stable against the change Bg (my)=0.862)(5)(0), (6.2
of lattice spacing suggesting that the systematic error is well °

estimated by the naive order counting.

Finally we also investigated the systematic error from the Bs(m,)=0.822)(5), (6.3
contamination of excited states by changing the fit range for
the ratioRg x(t;,t) andRg x(ty,t;). We find that the effect
is at most 3%. In particular, @8=6.0 it is found to be 1%

B. B parameter results

Bs,(M,)=0.851)(5)(1p), (6.4
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FIG. 10. ®g,(up) (top panel and g (up) (bottom panel for FIG. 11. Dependence @gz(m,) (top panel andBg(m,) (bot-

Kp=m; . Results at different lattice spacings are compared. Datagom panel on the lattice spacing. Data show the results in the
show the results in the chiral limit for the light quark and renormal- chiral limit for the light quark and renormalized with the coupling
ized with the couplingx,(2/a). The truncation method | is chosen g, (2/a). The truncation method I is chosen as a demonstration. The

as a demonstration. The data at the static limitMa#0) is ob-  variation due to the different choice of fit range is added to the error
tained by an extrapolation in ¥/, with a quadratic function. bar at eactp.

where the first and second errors represent statistical and C. Applications

systematic ones respectively. In the systematic error the con- ] ) ]
tamination from excited states is added in quadrature with [N this subsection we present a few examples of physics
other sources estimated by the order counting. The third errgPplications of our results. It should be noted, however, that
is from the uncertainty ofng arising from the different input our calculation is still in the quenched approximation and

physical quantities, i.emy or m. there is no rigorous estimate for the associated uncertainty.
The corresponding renormalization scale independent FOr the following applications we assume that the quenching
parameter is obtained from E(R.6) effect isnegligiblefor the B parameters as suggested by our

preliminary calculation$38—44.

Bg=1.295)(8), (6.9 TABLE X. Estimate of systematic uncertainties by a naive di-
mensional counting at eagh value.

which may be compared with the previous calculations usin%

the relativistic actions for heavy quarks, 1.38(1j§X [31] >7 59 6.1 6.0

and 1.405)(*%) [32]. These two results are slightly higher O(a?) 5% 4% 3% 3%
than our result, althougf31] is still consistent within the O(agp/My,) 1% 1% 1% 1%
large error. A possible reason for the high values in the rela©(a?p?) 8% 3% 2% 3%
tivistic approach is in the extrapolation in the heavy quarko(apas) 6% 4% 2% 3%
mass from the charm quark mass region to the bottom. I(a?/(aM,)) 1% 1% 1% 1%
fact, the combined analysis of the HQET and relativistico(pz/Mg) 20

heavy quark, in which the interpolation inN/can be made, Total (added in quadratuye 11% 7% 5% 6%
gives 1.346) (%) [36], i.e., closer to our result.
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1.06 -

IR CTn L T SURVU I PO
T T

By(m,)
=3
o
O

1 1 099 1 1 1 1 1 1 1 1 [ 1 1 1 1 1 1 1 1

075 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X
Iogrmw 1 uormw I ormw Iorir rormw 1nonrmw 1 aorimw [ IrIr
FIG. 12. Results foBg at eachB with four different truncation FIG. 14. Same as Fig. 12, but f&p_/Bg.
methodg(see text. Comparison is made with the estimate using the
naive order countinga band given by the dotted lines where the first through third errors are fromm,

=4.8(3) GeV, fg =230(30) MeV, andR (or my(mp)

For theB meson decay constant, on the other hand, the oy ;
; ’ ' T =4.25(25) GeV andng(my)=0.10(3) GeV), respectively.
large effect of quenching has been fouptl-6. Further- The last error comes from the uncertainty in the estimation

more, a large uncertainty due to the presence qf chiral lOgaéf the 1M correction, for which we assign 30%. The error
rithm is suggested fof [.6’73]’ Wh'l.e the effect is not tqo from the B parameters is much smaller than the others listed
large forfBS. In the following analysis we therefore consider above

the quantities for which onlf_is needed, and use the re-  The uncertainty in the calculation o\{'/T)g_is stil

cent world average of unquenched lattice calculations Of/ery large (-50% if added in quadratureln order to im-
fs,=230(30) MeV[4,6] when needed. prove it one has to calculate theritorrections reliably, as it
Assuming the three generation unitarjty,{| =|V.s|, we largely cancels the leading contribution frdBy as seen in
obtain the mass difference BY— B mixing using Eq(2.1)  Eq. (2.14. Currently, only an upper bound is obtained for
as this quantity experimentally. Our prediction is consistent
with the bound AI'/I")g <0.31 at a 95% C.L[29].
AM=19.455) ps?, (6.6)

VII. SU(3) BREAKING RATIO ¢
where the statistical and systematic errors in theoretical and _. . S
experimental quantities are added in quadrature, but the fing SINce We expect that the bulk of systematic uncertainty in
error is dominated by the uncertainty 6§ . The value is t e calculation off g andBg cancels in their S8) breaking
consistent with the current lower bound\/lz> 13.1 ps? at ratio fB,S/fB andBBS/_BB ' they could be useful to rgduce the
a 95% C.L.[29]. Tevatron run Il is expected to measure the €70rs in the determination ¢¥,4| through the relatior2.7).
mass difference very precisely in a few years. _In t_he lattice ca_llculatlon, the deviation of their ratio from
The width difference in th&, meson system could also unity is the quantity to be cal-culated and the errors scale as
be measured at Tevatron run I, if it is large enough. UsingPe,/Bs—1 rather tharBg /Bg itself. In the present case, the
Egs.(2.14 and (6.4), we obtain naive estimate of S(3) breaking is O(mg/A%)~25%,
where A, is a scale of the chiral symmetry breaking
AT ~1 GeV, and the order counting of uncertainties for the
<_) =0.106+0.020+0.028+ 0.037-0.024, (6.7)  'atio are starting from this order.

Iy As done in Sec. VI Awe compare our order counting with
data in Fig. 14. As we expected, the variation with different
truncations is much smaller than the expected systematic er-
rors (dotted ling. The dependence of is sizable, but not
significant compared to the relatively large statistical error.

Our result is

S

p=5.7 p=5.9 B=6.1 B=6.0

09}

L] B,
asst b T 4] E’J 43 43 T 1 + + ] B, =1.02q21)(* (7). (7.
0.8+ T T 4> ---------------- ++ 1 where the central value is taken frgés= 6.0 (setB), and the

I errors are statistical, systematic and the uncertaintpoiin

0.75 L1 [ R | Lo [ the order given.
rmwrmw nmrimw LI LI e For the calculation of (1.1) we have to combin8g_/Bg

FIG. 13. Same as Fig. 12, but f&g. with fBS/fB, which is called the indirect method. On the

Bym,)
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0.10 T VIIl. CONCLUSIONS
i 1 In this work, we calculate th® mesonB parameters on
o 0.091 ] the lattice in the quenched approximation. The calculation is
E i | an extension of our previous work$8,20, in whichBg and
= 008 7 Bs were calculated for the first time with the lattice NRQCD
g r ] action.

Q007 N In the present work we include a detailed study of sys-
m\; - - linear fit T tematic uncertainties. Using the lattice simulations at four
0.06 - — linear + quadratic fit different 8 values with theO(a)-improved actions, we find

L ¢ indirect method | that theB parameters are essentially insensitive to the dis-
oosLb— 1 40 cretization error. We also investigate the systematic errors
0.00 0.05 0.10 associated with the truncation of heavy quark and perturba-
am, tive expansions, which are necessary in the effective theory

, , o approach such as NRQCD. By comparing four different trun-
_ FIG. 15. Comparison of direct and indirect methods. The dashedaiiong of these expansions, we are able to confirm that the
:!ne IS a (Ijlneardflt t?n? the szlld Curv%.'s Obtg'nf?hw'thh_a If'ﬁ_w_':h naive order counting argument of the systematic errors could
|ne§r and quadratic grms. n open diamona al e chniral Imi 'Sactually give a reasonable estimate.
obtained through the indirect method. . .
In our final results for theB parameters the systematic

error is ~6%, which is already smaller than that in the
other hand, it is also possible to directly obtgifrom aratio  equivalent calculations ofg (10-20 %, owing to the fact
of (O ) and(O. ) (direct methodl It has been discussed that it is defined as a ratio to the vacuum saturation approxi-

that one may obtain rather large value ff one uses the Mmation. Further reduction of systematic errors, if it is neces-
direct method30,32. Therefore, in the following we check Sary. requires higher order calculation of perturbation theory

2 . . -
if we could obtain consistent results from both methods us@nd theO(a®) improvement. Approaching to the continuum
ing our data. limit will not help to reduce the errors in the NRQCD ap-

. . . _ proach.
quif;%uri(ra] %r?esz(i)rv(\elitﬂrfefr?cﬁl 'erﬁzaggltztl(;rr}fﬂgtéiariégat For a precise extraction of the important CKM element
=6.0 (setB) for a heavy quark mass closest to theuark |Vl througzh the SB) breaking ratio of theB-B mixing
mass. The dashed line is obtained by a linear fit to the dat3n€ Needs™. It is preferable to take the chiral limit sepa-
(open circleg while the solid curve represents a fit with a rately for fg andBg, as they have' m|Iderl light quark mass
linear plus quadratic term iam,. Although the data look dependencs Tge $B)fbreak|ng rattlo .OBB '%Obta'nEdtW't.h
consistent with the linear fit, the chiral limit with the qua- accuracy of order a few percent, since Hearameter 1

P o extremely insensitive to the light quark mass and the large
dra:ﬁ fit 'th(;?hrir r?é/ a:)t?]m Or?i? ﬂﬁ:gari ctiﬁwag]or:.h nd i cancellation of systematic errors is expected.
open diamond at the chira ;ontheothernhand, IS e largest remaining uncertainty in our calculation is in

obtained through the indirect method, i.e., the decay constanf, quenching approximation, though it is not explicitly dis-

a_mc_:l B parameter are separately extrapolated to the chirgl sqeq in the paper. We are currently performing an un-
limit with a linear fit. Although we have not presented a g,enched simulation with the same lattice action at similar
calculation of the decay constant in this paper, they are donggtice spacing, which will allow us to study the quenching

on the same set of gauge configurations3at6.0 and the  effect directly.

lattice axial current is renormalized as described in Sec.
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