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We present our results of lattice calculations ofB parameters, which parametrizeDB52 transition ampli-
tudes together with the leptonic decay constant. Calculations are made in the quenched approximation atb
55.7, 5.9, 6.0 and 6.1, using NRQCD action for heavy quarks and theO(a)-improved Wilson action for light
quarks. The operators are perturbatively renormalized including the correction ofO„as /(aM)m

… (m>0). We
examine the scaling behavior ofB parameters, and discuss the systematic uncertainties based on the results
with several different truncations of higher order terms in 1/M and as expansions. We findBBd

(mb)
50.84(3)(5), BBs

/BBd
51.020(21)(216

115)(20
15) andBSs

(mb)50.85(1)(5)(20
11) in the quenched approximation.

The errors represent statistical and systematic errors as well as the uncertainty in the determination of strange
quark mass.

DOI: 10.1103/PhysRevD.67.014506 PACS number~s!: 12.38.Gc, 12.39.Hg, 13.20.He, 14.40.Nd
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I. INTRODUCTION

The determination of the Cabibbo-Kobayashi-Maska
~CKM! matrix elementuVtdu plays a crucial role in testing
the unitarity relation of the CKM matrix, since the positio
of the vertex of the unitarity triangle would be essentia
identified together with the anglef1 of the unitarity triangle.
Now that the anglef1 has already been measured expe
mentally by the asymmetricB factories@1,2# and its preci-
sion is expected to be improved substantially in the n
future, the accuracy ofuVtdu really determines the accurac
of the standard model predictions. Then, other measurem
of the CKM matrix elements, such as the determination
uVubu through a measurement ofb→uln, may be used for a
test of the CKM mechanism of the quark flavor mixing a
CP violation in the standard model.

The CKM matrix elementuVtdu may be determined usin
the mass differenceDMd in the neutralB meson mixing, as
it emerges through a loop diagram mediated by top qu
andW boson, which is proportional touVtdVtb* u2. The preci-
sion in the current world average (DMd50.489
60.008 ps21 @3#! is already as good as 1.6%. The constra
on uVtdu is, however, limited by the theoretical uncertain
in the calculation of the hadronic matrix eleme

^B̄0uOLd
uB0& of the DB52 four-quark operatorOLd

5b̄gm(12g5)db̄gm(12g5)d. It is usually parametrized a
8
3 f B

2BBMB
2 using theB meson leptonic decay constantf B and

the B parameterBB . In the vacuum saturation approxima
tion, which is valid when bothb and ~anti-!d quarks are
nonrelativistic,BB is normalized to unity.

The best available theoretical method to calculatef B and
0556-2821/2003/67~1!/014506~22!/$20.00 67 0145
a

-

r

nts
f

rk

t

BB is the numerical simulation of QCD on the lattice, who
current status is reviewed in@4–6#. For the decay constan
f B , several groups investigated the systematic errors in
lattice calculation, performing the simulations on several d
ferent lattices. It is found that the error associated with
largeb quark mass is controlled reasonably well if one us
an effective theory for heavy quarks such as nonrelativi
QCD ~NRQCD! @7,8# or the Fermilab formalism@9#, and the
results are insensitive to the lattice spacing@10–14#.

For theB parameterBB , on the other hand, most lattic
calculations relying on the effective theory for heavy qua
are limited to the static approximation, in which the 1/mb
correction is neglected@15–17#, and the study of the system
atic uncertainty depending on the lattice spacing has not b
made. Recently some of us used the NRQCD action, for
first time, to calculateBB @18#, and the 1/mb correction was
studied at a fixed lattice spacing@19#. They also calculated
anotherB parameterBS @19,20# to parametrize the matrix
element of the operatorOSs

5b̄(12g5)s b̄(12g5)s, which
appears in the heavy quark expansion of the width differe
of Bs @21–23#.

In this paper we extend the previous studies@18,20,19# to
investigate the systematic errors in the calculation of theB
mesonB parameters. Using the same NRQCD action as
@18–20# we calculate theB parameters at four lattice spac
ings to estimate the size of systematic errors depending
the lattice spacing. In order to minimize other sources
systematic errors, we use theO(a)-improved Wilson quark
action@24# for light quarks with the improvement coefficien
cSW calculated at the one-loop level@25–27# and nonpertur-
batively @28#.

Since NRQCD is an effective theory valid for heav
©2003 The American Physical Society06-1
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quarks and the action is constructed by an expansion in
verse heavy quark mass, there is a potential source of
tematic error due to the truncation of 1/mb expansion. Fur-
thermore, in order to match the effective theory to the f
theory one has to use perturbation theory, and errors f
higher order corrections should also be taken into acco
We introduce a method to estimate these systematic error
treating the neglected higher order terms in different ways
turned out that the error estimated in this way is quite c
sistent with a naive order counting assuming typical sizes
the expansion parameters.

Because of the systematic errors discussed above, it is
straightforward to obtain an accuracy better than 10–15
for f BABB which is relevant for the determination ofuVtdu.
Alternatively, one could use the ratioDMs /DMd , once the
mass difference in theBs2B̄s mixing is measured.~The cur-
rent experimental bound isDMs.13.1 ps21 at 95% C.L.
@29#.! It is proportional toj2uVts /Vtdu2, wherej is a ratio to
describe SU~3! flavor breaking of the hadronic matrix ele
ments given by

j5
f Bs

ABBs

f BABB

. ~1.1!

Since the bulk of the systematic errors in the calculations
f B andBB cancels in this ratio, one may achieve much be
accuracy, as stressed in@30#. The largest remaining unce
tainty comes from the chiral extrapolation of lattice da
which is also discussed in this paper.

The B mesonB parameters have also been calculated
ing the conventional relativistic actions for heavy quar
@31,32#. Since the lattice spacing in the present simulation
not small enough compared to the Compton wave length
the b quark, one has to extrapolate the results obtai
around the charm quark mass to the bottom quark m
which is a significant source of systematic uncertainty.
fact, the extrapolation with the linear form in 1/M does not
seem to agree with explicit calculations in the static lim
@33–35#. Therefore one may use the static result to constr
the heavy quark extrapolation in the infinite mass limit@36#.
We present a comparison of our result with these previ
calculations.

This paper is organized as follows. In the next section,
summarize some phenomenological formulas for the m
and width difference in theB0-B̄0 mixing. The lattice action
and operators we employ in this work are defined in Sec.
where the method to extract the continuumB parameters
from lattice matrix elements is also described. Simulat
details and results are given in Secs. IV and V, respectiv
In Sec. VI we present our results for theB parameters and
their systematic uncertainties are discussed. Using thes
sults we also predict the mass and width difference ofBs
meson system. Calculation of the SU~3! breaking ratioj is
briefly discussed in Sec. VII, and our conclusions are giv
in Sec. VIII.

Preliminary reports of this work have already been p
sented in@37–40#.
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II. PHENOMENOLOGICAL FORMULAS

In this section we summarize the phenomenological f
mulas which involve theB mesonB parameters. We also
present some notations which will be used throughout
paper.

A. Mass difference

In the standard model the mass difference in the neu
Bq

0-B̄q
0 mesons (q denotesd or s) is given by

DMq5uVtb* Vtqu2
GF

2mW
2

16p2MBq

S0~xt!h2B@as~mb!#2g0/2b0

3F11
as~mb!

4p
J5G^B̄q

0uOLq
~mb!uBq

0&. ~2.1!

S0(xt)(xt5mt
2/mW

2 ) is the Inami-Lim function@41# andh2B

is the short distance QCD correction@42#, whose full expres-
sion is found in@43#.

The four-quark operatorOLq
(mb) is defined as

OLq
~mb!5b̄gm~12g5!qb̄gm~12g5!q, ~2.2!

which depends on the renormalization scalemb if it is de-
fined in the continuum renormalization schemes, such as
naive dimensional regularization~NDR! with the modified
minimal subtraction (MS) scheme. The scale dependen
cancels with the prefactor @as(mb)#2g0/2b0@1
1(as(mb)/4p)J5# such that the physical mass difference
scale independent. In the NDR-MS scheme the anomalou
dimensions are written as

Jnf
5

g0b1

2b0
2

2
g1

2b0
, ~2.3!

and

b05112
2

3
nf , b151022

38

3
nf ,

~2.4!

g054, g15271
4

9
nf .

The renormalization scalemb is usually taken at theb quark
massmb .

The B parameterBBq
is defined through

^B̄q
0uOLq

~mb!uBq
0&5

8

3
BBq

~mb! f Bq

2 MBq

2 , ~2.5!

and the scale-independentB̂Bq
is given by

B̂Bq
5@as~mb!#2g0/2b0F11

as~mb!

4p
J5GBBq

~mb!. ~2.6!
6-2
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The number of flavorsnf is 5. To evaluate this expression w
use the strong coupling constantas(mb) defined in theMS
scheme with LMS

(5)
5225 MeV, which corresponds to

as
(5)(4.8 GeV)50.216.
The bulk of the theoretical uncertainties cancels in

ratio

DMs

DMd
5UVts

Vtd
U2MBs

MBd

j2, ~2.7!

where j describes the SU~3! flavor breaking of the matrix
element̂ B̄q

0uOLq
(mb)uBq

0& as defined in Eq.~1.1!. If one as-
sumes the unitarity relation among the CKM matrix eleme
uVtsu.uVcbu, Eq. ~2.7! may be used to determineuVtdu.

B. Width difference

Using the heavy quark expansion, the width difference
the neutralBs

0-B̄s
0 mixing is calculated as@21,22#

DGBs
522

1

2MBs

^B̄quIm i E d4xTHeff~x!Heff~0!uBq&,

~2.8!

whereHeff is the DB51 weak transition Hamiltonian. The
main contribution comes from the transitionbs̄→cc̄ fol-
lowed bycc̄→b̄s, and other contributions mediated by pe
guin operators are also considered.

The operator product expansion~OPE! may be used to
approximate the transition operatori *d4xTHeff(x)Heff(0),
which gives an 1/mb expansion. At the leading order in 1/mb
the DB52 four-quark operatorOLs

defined in Eq.~2.2! and
another operator

OSs
5b̄~12g5!s b̄~12g5!s, ~2.9!

appear. Then, the following formula

S DG

G D
Bs

5
16p2B~Bs→Xen!

g~z!h̃QCD

f Bs

2 MBs

mb
3

uVcsu2

3S G~z!
8

3
BBs

~mb!1GS~z!
5

3

BSs
~mb!

R~mb!2

1A124zd1/mD ~2.10!

is obtained at the next-to-leading order@22#, wheremb is the
pole mass ofb quark. The width difference is normalized b
the total decay width ofBs mesonGBs

, which is written in

terms of the semileptonic decay branching ratioB(Bs
→Xen) on the right-hand side in order to remove an unc
tainty in the value ofuVcbu. The phase space factorg(z)
01450
e

s

n

-

5128z18z32z4212z2 ln z, wherez5mc
2/mb

2 , and the short
distance QCD correction1

h̃QCD512
2as~mb!

3p F S p22
31

4 D ~12Az!21
3

2G
~2.11!

are known factors, and the functionsG(z) and GS(z) de-
scribe the next-to-leading order QCD corrections@22# ap-
pearing in the calculation of the operator product expans
The correction termd1/m denotes the next-to-leading orde
contribution in the 1/mb expansion, which is estimated i
@21# using the factorization approximation.

The B parameterBSs
is defined through

^B̄s
0uOSs

~mb!uBs
0&52

5

3
f Bs

2
BSs

~mb!

R~mb!2
MBs

2 , ~2.12!

where

R~mb!5
m̄b~mb!1m̄s~mb!

MBs

~2.13!

is the ratio of matrix elements of heavy-light axial vect
current and pseudoscalar density andm̄(mb) represents aMS
quark mass.

In the following analysis, the scalemb is set to the pole
mass ofb quark,mb54.8 GeV, for whichG(z)50.03 and
GS(z)50.937. With input parametersz50.085, uVcsu51
2l2/250.976, MBs

55.37 GeV, B(Bs→Xen)50.107,
we obtain

S DG

G D
Bs

5S f Bs

230 MeV
D 2

@0.007BBs
~mb!

10.207BSs
~mb!20.077#. ~2.14!

For the central value of the decay constant, we choos
recent world average of unquenched lattice calculationsf Bs

5230(30) MeV @4,6#. The uncertainties associated wi
these input parameters are discussed in Sec. VI.

III. NRQCD ACTION AND OPERATORS

In this section we describe the lattice NRQCD action a
operators used in our calculations. The perturbative match
of the lattice operators to the continuum ones is summariz

A. NRQCD action

To treat the heavy quark on a lattice with moderate latt
spacing a, the idea of the heavy quark effective theo
~HQET! @45–47# is useful, as it allows us to describe th
heavy quarks of massM without introducing large systemati

1Following the treatment in@22#, the approximate form of@44# is

used forh̃QCD .
6-3
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errors scaling as a~positive! power of aM. In HQET the
Lagrangian is organized as an expansion in inverse pow
of M, and the terms beyond some fixed order are trunca
Since the physical expansion parameter isLQCD/M with
LQCD.300–500 MeV, one may typically achieve the acc
racy of the order of a few percent forB mesons at the next
to-leading order, i.e., including terms of order 1/M .

Though NRQCD was originally introduced in the co
tinuum @48,49# and on the lattice@7,8# to describe the
quarkonium systems such as charmonium and bottomon
for which the expansion parameter is a velocity of hea
quarks rather thanLQCD/M , the formulation can also be
used for the lattice study of heavy-light mesons as first de
onstrated in@50#. At the next-to-leading order inLQCD/M ,
the Lagrangian in the continuum Euclidean space-time
written as

LNRQCD
cont 5Q†FD01

D2

2M
1g

s•B

2M GQ
1x†FD02

D2

2M
2g

s•B

2M Gx, ~3.1!

for heavy quark fieldQ and heavy antiquark fieldx. Both are
represented by a two-component nonrelativistic spinor. T
derivativesD0 andD are temporal and spatial covariant d
rivatives respectively. The leading order termD0 represents a
heavy quark as a static color source. The leading correc
terms of orderLQCD/M are the nonrelativistic kinetic term
D2/2M and the spin-~chromo!magnetic interaction term
s•B/2M , where B denotes the chromomagnetic fie
strength. In the usual HQET approach, only the lead
terms are kept in the effective Lagrangian and correction
order LQCD/M are treated as operator insertions. Altern
tively, in our lattice calculation we include the correctio
terms in the Lagrangian~3.1! and evaluate the matrix ele
ments with the heavy quark propagator including the eff
of orderLQCD/M .

On the lattice we use a discretized version of the Lagra
ian ~3.1!, whose explicit form is written as

SNRQCD5(
x,y

Q†~x!„dx,y2KQ~x,y!…Q~y!

1(
x,y

x†~x!„dx,y2Kx~x•y!…x~y!. ~3.2!

The kernel to describe the time evolution of~anti-!heavy
quarks is given by

KQ~x,y![F S 12
aH0

2n D nS 12
adH

2 D d 4
(2)

3U4
†S 12

adH

2 D S 12
aH0

2n D nG~x,y!, ~3.3!
01450
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Kx~x,y![F S 12
aH0

2n D nS 12
adH

2 D d 4
(1)

3U4S 12
adH

2 D S 12
aH0

2n D nG~x,y!, ~3.4!

wheren denotes a stabilization parameter introduced in or
to remove the instability arising from unphysical momentu
modes in the evolution equation@7,8#. The operatord4

(6) is
defined asd4

(6)(x,y)[dx461,y4
dx,y , andH0 anddH are lat-

tice Hamiltonians defined by

H0[2
D(2)

2aM0
, ~3.5!

dH[2cB

g

2aM0
s•B, ~3.6!

whereD(2)[( i 51
3 D i

(2) is the Laplacian defined on the lattic
with D i

(2)[D i
(1)D i

(2) , D i
(1) , and D i

(2) being forward and
backward covariant derivatives in thei th direction. In Eq.
~3.6! the chromomagnetic field operatorB is the usual
clover-leaf type lattice field strength@8#. In these definitions,
the lattice operatorsD (2) and B are dimensionless, i.e., ap
propriate powers ofa are understood. The space-time indic
x and y are implicit in these expressions. The bare hea
quark massM0 is distinguished from the renormalized on
M.

At the tree level, the lattice action~3.2! describes the con
tinuum NRQCD~3.1! in the limit of vanishing lattice spac
ing a. ~We may identifyM0 with M and take the tree leve
valuecB51.! The leading discretization error for the spati
derivative is of order (aLQCD)2LQCD/M . Since the tempora
derivative is discretized asymmetrically, the leading error
pears at orderaD0

2, whose typical size is estimated a
aLQCD

3 /M2 using the equation of motion. The gauge pote
tial part is automatically improved, as it is exponentiated in
the temporal link variableU4.

In the presence of radiative corrections, the heavy qu
massM0 and the chromomagnetic couplingcB have to be
tuned in such a way that the continuum values are rep
duced at each value of the strong coupling constantas . Fur-
thermore, the radiative corrections generate many o
terms which do not exist in the continuum Lagrangian~3.1!,
because NRQCD is not a renormalizable field theory. In g
eral these terms appear with some factor of formas

k/(aM0)m

with positive integersk andm (k>1 andm>2).2 Therefore,
NRQCD should be considered as an effective theory va
for small 1/(aM) up to higher order terms in 1/(aM).

Perturbation theory can be used to calculate the renorm
ization of the parameters. For example, the one-loop ca
lations of energy shift and mass renormalization were car
out for lattice NRQCD by Davies and Thacker@51# and by

2There are also the lowest dimension operatorsQ†Q andx†x, but
they only give the energy shift and do not contribute to the dyna
ics of heavy quark.
6-4
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Morningstar@52#, and by ourselves@18,13,19# for the above
particular form of the NRQCD action.3 To improve the per-
turbative expansion we utilize the tadpole improvement@53#,
namely, all the gauge links in the action~3.2! are divided by
its mean field valueu0 determined from the plaquette expe
tation valueu0[(^Tr UP&/3)1/4, where some counterterm
are introduced in perturbative calculations. The one-loop t
ing of the coupling constant cB for the spin-
~chromo!magnetic interaction term~3.6! has not yet been
performed, so we take the tree level valuecB51 after mak-
ing the tadpole improvement.

The relativistic four-component Dirac spinor fieldb is re-
lated to the two-component non-relativistic fieldQ and x
appearing in the NRQCD action~3.2! via the Foldy-
Wouthuysen-Tani~FWT! transformation

b5S 12
g•D(6)

2aM0
Dh, ~3.7!

where

h[S Q

x†D . ~3.8!

The symbolD(6) denotes a symmetric covariant differenti
tion operatorD i

(6)[D i
(1)D i

(2) .

B. Bilinear operators

The heavy-light axial-vector currentAm5b̄gmg5q and
pseudoscalar densityP5b̄g5q appear in the definition of the
B parameters through the vacuum saturation approximat
We use the calligraphic symbolsAm and P to denote the
currents defined in the continuum full theory. Since the ps
doscalar density diverges in the continuum, it is renorm
ized with theMS scheme at a scalem. On the other hand, the
axial-vector current does not need renormalization, beca
it is partially conserved in the continuum full theory.

The corresponding lattice operators are

JG
(0)5b̄Gq, ~3.9!

JG
(1)5

21

2aM0
b̄~g•Dª (6)!Gq, ~3.10!

JG
(2)5

21

2aM0
b̄G~g•D(6)!q, ~3.11!

whereJG is A4 for G5g4g5 or P for G5g5. The light quark
field q is described by theO(a)-improved Wilson quark ac-
tion @24#. We apply the tadpole improvement@53# for the
light quark field using the critical hopping parameterkc to
define the mean link variableu051/8kc , so that we normal-

3We note that the evolution kernels~3.3! and ~3.4! are slightly
different from the definition used, for example, in@52#, where the
(12aH0/2n)n terms appear inside of the (12adH/2) terms.
01450
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ize the light quark field with a factorA123k/4kc. The
heavy quark fieldb is defined in Eq.~3.7!.

The one-loop matching between the continuum and lat
operators is written as

JG5F11
as

4p
rG

(0)GJG
(0)1

as

4p
rG

(1)JG
(1)1

as

4p
rG

(2)JG
(2) ,

~3.12!

with one-loop coefficientsrG
( i ) . The coefficientrG

(0) is writ-
ten as

rA
(0)52 ln~a2M2!1zA , ~3.13!

rP
(0)5

9

2
ln~m2/M2!1

3

2
ln~a2M2!1zP , ~3.14!

for G5g4g5 andg5, respectively. In the static limit the nu
merical constants arezA5216.55 @54–56# and zP
5211.21 @54#. For the NRQCD action~3.2! with a finite
heavy quark massM0 the numerical values forzA andzP are
available in Table III of@19#.4

In the static limit, while the second term of Eq.~3.12!
vanishes, the third term remains finite and describes
O(asaLQCD) improvement, and its coefficientrG

(2) is
rA

(2)/2aM05rP
(2)/2aM0513.01 @54#. Away from the static

limit, these terms give contributions of theO(asaLQCD) and
O(asLQCD/M ), and the one-loop coefficients are calculat
only for the axial vector currentG5g4g5 for our choice of
the NRQCD action@13#.5

C. DBÄ2 operators

We assume that the continuum four-quark operat
OL(m) andOS(m) are renormalized in theMS scheme with
totally anticommutingg5. In the renormalization ofOS(m),
the subtraction of evanescent operators is made with the
nition given by Eqs.~13!–~15! of @22#.

For matching of these four-quark operators, the followi
lattice operators are involved at the lowest dimension:

OL5b̄gm~12g5!qb̄gm~12g5!q, ~3.15!

OR5b̄gm~11g5!qb̄gm~11g5!q, ~3.16!

OS5b̄~12g5!qb̄~12g5!q, ~3.17!

ON52b̄gm~12g5!qb̄gm~11g5!q

14b̄~12g5!qb̄~11g5!q, ~3.18!

4The same quantity was previously calculated in@57,58#, but for a
slightly different NRQCD action.

5Note that a different notation is used in@13#. Similar calculation
was previously made by Morningstar and Shigemitsu@59#.
6-5
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OM52b̄gm~12g5!qb̄gm~11g5!q

24b̄~12g5!qb̄~11g5!q, ~3.19!

OP52b̄gm~12g5!qb̄gm~11g5!q

112b̄~12g5!qb̄~11g5!q, ~3.20!

OT55b̄gm~12g5!qb̄gm~11g5!q

234b̄~12g5!q b̄~11g5!q. ~3.21!

As in the bilinear operator case, one has to introduce hig
dimensional operators to removeO(a) errors at the one-loop
level. For the four-quark operators, however, the neces
one-loop calculations to remove theO(asaLQCD) error are
made only in the static limit@54,20#. The higher dimensiona
operators appearing in that limit are

OLD5b̄gm~12g5!qb̄gm~12g5!~ag•D(6)!q, ~3.22!

OND52b̄gm~12g5!qb̄gm~11g5!~ag•D(6)!q

14b̄~12g5!qb̄~11g5!~ag•D(6)!q, ~3.23!

OSD5b̄~12g5!qb̄~12g5!~ag•D(6)!q, ~3.24!

OPD52b̄gm~12g5!qb̄gm~11g5!~ag•D(6)!q

112b̄~12g5!qb̄~11g5!~ag•D(6)!q. ~3.25!

The one-loop matching is written as follows:

OL~m!5OL1
as

4p
rL,LOL1

as

4p
zL,SOS1

as

4p
zL,ROR

1
as

4p
zL,NON1

as

4p
zL,MOM1

as

4p
zL,LDOLD

1
as

4p
zL,NDOND , ~3.26!

OS~m!5OS1
as

4p
rS,SOS1

as

4p
rS,LOL1

as

4p
zS,ROR

1
as

4p
zS,POP1

as

4p
zS,TOT1

as

4p
zS,SDOSD

1
as

4p
zS,LDOLD1

as

4p
zS,PDOPD , ~3.27!

where the coefficientsrL,L , rS,S , andrS,L contain the physi-
cal scalem andmb as follows:
01450
er

ry

rL,L522 lnS m2

M2D 14 ln~a2M2!1zL,L , ~3.28!

rS,S5
16

3
lnS m2

M2D 1
4

3
ln~a2M2!1zS,S , ~3.29!

rS,L5
1

3
lnS m2

M2D 2
2

3
ln~a2M2!1zS,L . ~3.30!

The numerical results for the one-loop coefficientszL,X (X
5L, S, R, N, andM ) and zS,X (X5S, L, R, P, andT) are
given in Tables VI and VIII of@19#. In the static limit,zL,M
andzS,T vanish, and others agree with the previous calcu
tions @17,54,56,60,61#.6

The last lines in Eqs.~3.26! and ~3.27! are added to re-
move the error ofO(asaLQCD), but their coefficients are
known only in the static limit. Their values arezL,LD5
217.20, zL,ND529.20, zS,SD526.88, zS,LD52.58, and
zS,PD51.15 @54,20#.

D. Truncation of expansions

As in the matching of the NRQCD action discussed
Sec. III A, we have to truncate the 1/M and the perturbative
expansions in the matching of the bilinear and four-qu
operators. The 1/M expansion is truncated atO(1/M ), which
is consistent with our choice of the NRQCD action~3.1!, and
the perturbative corrections of orderas

2 and higher are ne-
glected.

In addition, there are mixed corrections o
O(asLQCD/M ). In the matching of the bilinear operators th
matching coefficients for the mixed corrections are availa
and such corrections were actually included in@13# by com-
bining with higher dimensional operators as shown in E
~3.12!. For the four-quark operators, however, the mixi
with higher dimensional operators at the one-loop level
not been calculated yet.7 Thus, in this paper, the mixed cor
rections are not considered in both of the bilinear and fo
quark operators. This means that, for the bilinear operat
only the first term of Eq.~3.12! is taken, thus the matching
becomes multiplicative in this approximation.

At this level of accuracy, it is arbitrary to apply the FW
transformation to a heavy quark field, if the heavy quark fie
forms an operator appearing in the one-loop correctio
Namely, in Eqs.~3.26! and ~3.27!, we may replace all the
four-quark operatorsOX except for that in the first term by
OX8 , where

OL85h̄gm~12g5!qh̄gm~12g5!q, ~3.31!

6A numerical error in@56# was later corrected in@17,54,61#.
7Except for the static limit, where the mixing terms describe t

correction of orderasa rather thanas /M .
6-6



th
o

in
ios
or

B0-B̄0 MIXING IN QUENCHED LATTICE QCD PHYSICAL REVIEW D 67, 014506 ~2003!
and so on, and the heavy quark fieldh is not rotated by the
FWT transformation~3.7!. ThereforeOX8 differ from OX at
O(LQCD/M ). In the naive order counting analysis bo
choices are equivalent up to unknown corrections
O(asLQCD/M ).

In the calculation ofB parameters through the ratios

BB~mb!5
^B̄uOL~mb!uB&

8

3
^B̄uAmu0&^0uAmuB&

, ~3.32!
r

ion
he

n

01450
f

BS~mb!5
^B̄uOS~mb!uB&

5

3
^B̄uP~mb!u0&^0uP~mb!uB&

, ~3.33!

the perturbative and 1/M expansions may be truncated
several different ways. A natural choice to match the rat
~3.32! and ~3.33! is to write the numerator and denominat
as they stand:
BB
(I)~mb!5

F11
as

4p
rL,LGBB,L

lat 1 (
X5S,R,N,M

as

4p
zL,XBB,X

lat

F11
as

4p
rA

(0)G2 , ~3.34!

BS
(I)~mb!5

F11
as

4p
rS,SGBS,S

lat 1
as

4p
rS,LBS,L

lat 1 (
X5R,P,T

as

4p
zS,XBS,X

lat

F11
as

4p
rP

(0)G2 . ~3.35!
ive
con-
ra-
op-
the

of

is
be

run-

op

to
(

e
is
A roman numeral,~I! in this case, as a superscript ofBB or
BS distinguishes the method to truncate the expansion.BB,X

lat

andBS,X
lat areB parameters defined with the lattice operato

as

BB,X
lat 5

^B̄uOXuB&
8

3
^B̄uA4

(0)u0&^0uA4
(0)uB&

, ~3.36!

BS,X
lat 5

^B̄uOXuB&
5

3
^B̄uP(0)u0&^0uP(0)uB&

, ~3.37!

which are directly measured in the numerical simulat
from a ratio of correlation functions as we describe in t
next section.

Alternatively, one may linearize the perturbative expa
sion as

BB
(II) ~mb!5F11

as

4p
~rL,L22rA

(0)!GBB,L
lat

1 (
X5S,R,N,M

as

4p
zL,XBB,X

lat , ~3.38!

BS
(II) ~mb!5F11

as

4p
~rS,S22rP

(0)!GBS,S
lat 1

as

4p
rS,LBS,L

lat

1 (
X5R,P,T

as

4p
zS,XBS,X

lat . ~3.39!
s

-

Formally they are different from the method I by orderas
2 ,

which is not known. We expect, however, that perturbat
expansion behaves better for the method II, because the
tributions from factorized diagrams to the four-quark ope
tors are the same as those of the corresponding bilinear
erators, so that the radiative corrections partly cancel in
combinationrL,L22rA

(0) or rS,S22rP
(0) .

For each method I or II, we also consider the variation
replacingOX andJG

(0) by OX8 andJ8G
(0) , respectively, as dis-

cussed above, and define the methods as I8 and II8, where
J8G

(0) are defined similarly to Eq.~3.31!. The difference of the
method I8 (II 8) from I ~II ! is of orderasLQCD/M .

Since the level of accuracy of these four methods
equivalent in the naive order counting argument, they can
used to estimate possible systematic errors due to the t
cation of expansions.

IV. LATTICE SIMULATIONS

A. Simulation sets

We have performed numerical simulations at fourb val-
ues. For three of them (b56.1, 5.9, and 5.7!, which we call
the simulation setA, theO(a)-improvement coefficientcSW
in the light quark action is determined using the one-lo
expressioncSW5(1/P3/4)@110.199aV(1/a)#. The one-loop
coefficient is calculated in@25–27#, and we apply the tadpole
improvement@53# with the plaquette expectation value
define the mean link variable. For the last simulationb
56.0), which we denote as the simulation setB, the nonper-
turbative value is used forcSW @28#. Therefore, as far as th
light quark sector is concerned, the discretization error
6-7



S. AOKI et al. PHYSICAL REVIEW D 67, 014506 ~2003!
TABLE I. Simulation parameters. For the simulation setA, the O(a)-improvement coefficientcSW is
determined at the tadpole-improved one-loop level. For the setB, the nonperturbatively tuned value@28# is
used.

Set A B

b 6.1 5.9 5.7 6.0
Size 243364 163348 123332 203348
No. conf 518 419 420 655
cSW 1.525 1.580 1.674 1.769
1/a(GeV) 2.29 1.64 1.08 1.82
k 0.13586 0.13630 0.13690 0.13260

0.13642 0.13711 0.13760 0.13331
0.13684 0.13769 0.13840 0.13384
0.13716 0.13816 0.13920 0.13432

ks1 0.13635 0.13702 0.13800 0.13355
ks2 0.13609 0.13657 0.13707 0.13318
kc 0.13767 0.13901 0.14157 0.13531
(aM0 ,n) ~7.0,2! ~10.0,2! ~12.0,2! ~10.0,2!

~3.5,2! ~5.0,2! ~6.5,2! ~5.0,2!
~2.1,2! ~3.0,2! ~4.5,2! ~3.0,2!
~1.5,3! ~2.1,3! ~3.8,2! ~2.1,3!
~0.9,4! ~1.3,3! ~3.0,2! ~1.3,3!

@ t1min ,t1max# @8,26# @6,17# @4,13# @7,18# for aM0510.0
@9,18# for aM055.0

@10,18# for aM053.0, 2.1, 1.3
u0 0.8816 0.8734 0.86087 0.87603
aV(p/a) 0.149 0.164 0.188 0.159
aV(2/a) 0.172 0.193 0.229 0.186
aV(1/a) 0.229 0.270 0.355 0.256
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minimized in the setB, for which the leading error is o
O(a2), while the effect ofO(as

2a) is remaining in the setA.
For the quantities involving heavy quarks, however, both s
of simulations give the same order of accuracy, since
heavy quark action and operators are not improved at
same level.

Simulation parameters are summarized in Table I. T
parameters for the simulation setA are almost the same as
our previous work for the leptonic decay constant@13#, ex-
cept that the number of statistical ensembles is increase
this work to obtain stable signals for three-point function
The setB is our new simulation set, which is intended f
comparison with our recent unquenched simulations@62,63#,
and itsb value,b56.0, is chosen so that the inverse latti
spacing becomes about 2 GeV. In this paper, we present
the quenched results leaving the unquenched calculation
future publications.

For both simulation sets,A and B, we take the standard
plaquette gauge action, and the configuration generation
gauge fixing are made as in@13#. Four values of the light
quark hopping parameter are chosen for eachb as given in
Table I. They correspond to the light quark massmq covering
the rangems/2,mq,2ms , wherems denotes the physica
strange quark mass. The hopping parameter correspondi
the strange quark mass is determined using theK or f meson
masses as input, and will be denoted asks1 andks2 respec-
tively.
01450
ts
e
e

e

in
.

ly
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to

The heavy quark mass in our simulation ranges fr
2mb/3 to 4mb . The smallest heavy quark mass in the latti
unit aM0 is limited around unity due to the possibly larg
systematic error in the matching calculation as discusse
Sec. III. The limit in the heaviest side is set by the expon
tially growing statistical error@50#.

The lattice spacinga is determined through the string ten
sion ~for the setA) or the rho meson mass~for the setB).
For the simulation setA it is confirmed that both determina
tions are in good agreement~3.5% variation depending onb)
@10#. Therefore, in effect the lattice spacing is set using
rho meson mass for both data sets.

We use the simulation setB to obtain our central value
and the other to investigate the systematic errors depen
on the lattice spacing. The primary reason is that the discr
zation error is minimized by the nonperturbativeO(a) im-
provement for the setB. The setB is also advantageous sinc
we have larger statistics and hence the numerical results
more stable.

B. Correlation functions

The method to calculate two- and three-point functio
mostly follows that of@18#. We put a local source at th
origin of the lattice and solve for the light quark propagat
The heavy quark and antiquark propagators are obta
from the same local source by solving the evolution kern
~3.3! and ~3.4!, respectively.
6-8



s

tw

o
.

pr
e

it
s

ass

of

e
e-

h

g

mes

es is
of
d
we
ass

the
in

the
f

lso

al

fit

t
a at

B0-B̄0 MIXING IN QUENCHED LATTICE QCD PHYSICAL REVIEW D 67, 014506 ~2003!
Three point functions are constructed as

CX
(3)~ t1 ,t2!

5(
xW1

(
xW2

^0uT @A4
S†~ t1 ,xW1!OX~0,0W !A4

S†~ t2 ,xW2!#u0&,

~4.1!

whereOX is one of the four-quark operators defined in Eq
~3.15!–~3.21!. We taket1.0 and t2,0 so that aB̄ meson
propagates in the positive direction in time and aB meson
propagates in the opposite direction. We also measure
point functions

CA
(2)~ t !5(

xW
^0uT @A4

S†~ t,xW !A4
(0)~0,0W !#u0&, ~4.2!

CP
(2)~ t !5(

xW
^0uT @A4

S†~ t,xW !P(0)~0,0W !#u0&, ~4.3!

for positive and negative values oft.
A smeared currentA4

S , defined as

A4
S~ t,xW !5(

yW
f~yW !b̄~ t,xW1yW !g4g5q~ t,xW !, ~4.4!

is used to enhance the overlap with the ground stateB me-
son. We measure the smearing functionf(xW ) for each set of
heavy and light quark masses with a limited number
gauge configurations before starting the main simulation

We extract the latticeB parametersBB,X
lat ~3.36! andBS,X

lat

~3.37! from the following ratios

RB,X~ t1 ,t2![
CX

(3)~ t1 ,t2!
8
3

CA
(2)~ t1!CA

(2)~ t2!
→

ut i u@1

BB,X
lat , ~4.5!

RS,X~ t1 ,t2![
CX

(3)~ t1 ,t2!
5
3

CP
(2)~ t1!CP

(2)~ t2!
→

ut i u@1

BS,X
lat ,

~4.6!

for large enoughut i u ( i 51,2).

C. Meson masses

In order to calculate the heavy-light meson masses
cisely, we also calculate two-point functions with th
smeared source and local sink,

CA
(2)LS~ t !5(

xW
^0uT @A4

(0)†~ t,xW !A4
S~0,0W !#u0&, ~4.7!

CP
(2)LS~ t !5(

xW
^0uT @A4

(0)†~ t,xW !PS~0,0W !#u0&,

~4.8!

for which the statistical signal is much better than those w
the local source and smeared sink. The heavy-light me
mass is, then, obtained by adding the binding energyEbin
01450
.

o

f

e-

h
on

measured from the two-point functions and bare quark m
aM0. Including one-loop corrections we use

aMP5ZmaM01Ebin2dm, ~4.9!

where perturbative correctionsZm anddm are given as

Zm511asB, ~4.10!

dm5asA, ~4.11!

andA andB for each bare quark mass are given in Table I
@13#.

V. SIMULATION RESULTS

A. Ratio of correlation functions

We first extract theB parameters defined on the lattic
BB,X

lat andBS,X
lat , which are obtained from the asymptotic b

havior of the ratiosRB,X(t1 ,t2) and RS,X(t1 ,t2) as Eqs.
~4.5!–~4.6!. In Figs. 1–4~top and middle panels in eac
figure! we plot these ratios as a function oft1 for some fixed
values oft2. For illustration we show the operators givin
leading contributions, i.e.,BB,L

lat and BS,S
lat , for the heavy

quark mass closest to the physicalb quark mass and the
lightest quark mass~largestk value!. We obtain similar plots
for other mass parameters, but the statistical signal beco
much noisier for larger heavy quark mass.

The range oft(t1 and t2) to be included in the fit of the
ratios has to be chosen such that the effect of excited stat
negligible. We identify the plateau seen in the plots
RB,X(t1 ,t2) andRS,X(t1 ,t2) as the region where the groun
state contribution dominates. To be more conservative,
also check that the plateau is reached for the effective m
plot of two-point functionsCA

(2)(t) andCA
(2)LS(t), which are

calculated for the same smearing function as used in
calculation of three-point functions. The plots are shown
the bottom panel of Figs. 1–4.

In the fit of the ratios we take a range oft as wide as
possible in order to avoid possible contamination from
statistical fluctuation@64#. The fit is done for a fixed value o
t25t1min and changingt1 in the range@ t1min ,t1max#. The
value of@ t1min ,t1max# is listed in Table I. In order to quantify
the possible effect from excited state contamination, we a
carried out a fit with larger values oft1min (5t2). Since the
statistical error grows rapidly ast1min is taken larger, the
maximum change fort1min is chosen to keep the statistic
error smaller than 8–10 %. The effect forBB is found to be
1% or less except forb56.1 where it is at most 3%. ForBS
it brings a 1.5–3 /% effect except forb55.7 where it is
negligible. The variations among different choices of the
range are taken into account in the final results.

B. Chiral extrapolation

The results ofBB,X
lat and BS,X

lat are insensitive to the ligh
quark mass. An example is shown in Fig. 5, where the dat
b56.0 are plotted as a function ofamq[ 1

2 (1/k21/kc). The
B parameters for all relevant operators are plotted:X5L, R,
S, N, andM for BB,X

lat , andX5S, L, R, P, T for BS,X
lat .
6-9
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Each B parameter is normalized by its vacuum saturat
approximation. We averaged the matrix elements withX
5L andR, as they should be equal in the infinite number
statistics by parity symmetry. In later sections, the avera
matrix elements are denoted byX5LR.

We extrapolate theseB parameters to the chiral limit of a
light quark assuming a linear function inamq . In most cases
the chiral extrapolation changes the value ofB parameters

FIG. 1. RB,L(t1 ,t2) ~top! and RS,S(t1 ,t2) ~middle! at b55.7,
aM053.8, andk50.13920. Horizontal line represents a fit with
ranget15@4,13# for a fixed t254. The bottom plot shows an ef
fective mass for two point functionsCA

(2)(t) ~open symbols! and
CA

(2)LS(t) ~filled symbols!. Circles and squares represent data poi
for positive and negativet respectively.
01450
n

f
d

from the lightest measured data by about 1% or less. Th
fore, the chiral extrapolation is extremely stable and the
sociated systematic error is negligible. To confirm this obs
vation we also tried a quadratic extrapolation for som
parameter sets, for which we find that the results are con
tent with the linear extrapolation within the statistical erro

In chiral perturbation theory for heavy-light mesons, t
logarithmic dependence such asmq ln mq is predicted forBB
@65,66#. In the quenched approximation the chiral limit
even divergent as lnmq . The more divergent term lnmq has a
factor 123g2 as its coefficient, and theB* Bp couplingg is
evaluated in the range 0.2–0.7 usingD* →Dp decay@67#,

s

FIG. 2. Same as Fig. 1, but forb55.9, aM052.1, andk
50.13816. Horizontal line represents a fit with a ranget15@6,20#
for a fixed t256.
6-10
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D* decay width@68#, quark models@69#, and quenched lat
tice calculations@70–72#. It means that this divergent loga
rithm is relatively unimportant because of its small coe
cient 123g250.2(7). It is, however, difficult to resolve
such logarithmic dependences from the data taken in
range of our light quark masses. In this work, therefore,
do not further consider them, leaving the study of the ch
logarithm including the effect of unquenching for future pu
lications.

Results of the linear extrapolation are summarized
Tables II–IX, where we list the values ofBB,X

lat and BS,X
lat at

eachb andaM0. The value ofk corresponding to the physi

FIG. 3. Same as Fig. 1, but forb56.1, aM051.5, andk
50.13716. Horizontal line represents a fit with a ranget15@8,28#
for a fixed t258.
01450
e
e
l

n

cal u or d quark mass, which we denotekud , is very close to
the critical valuekc . The value ofks corresponding to the
strange quark mass depends on the input quantity. We lis
results atks1, for which theK meson mass is used as inpu
and atks2, for which f meson mass is used.

C. 1ÕM P dependence

The 1/M P dependence of the latticeB parameters
BB,X

lat (BS,X
lat ) is plotted in Fig. 6~Fig. 7!. The light quark is

extrapolated to the chiral limit. Although the data at differe
b values are overlaid, they do not necessarily agree bec

FIG. 4. Same as Fig. 1, but forb56.0, aM052.1, andk
50.13432. Horizontal line represents a fit with a ranget1

5@10,18# for a fixed t2510.
6-11
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FIG. 5. Chiral extrapolation ofBB,X
lat ~top panel! andBS,X

lat ~bot-
tom panel! at b56.0 andaM052.1. Data are normalized by the
vacuum saturation approximation~VSA!. It is BB,L

(VSA)51, BB,S
(VSA)

525/8, BB,N
(VSA)51, BB,M

(VSA)526 for BB,X
lat , and BS,S

(VSA)

51, BS,L
(VSA)528/5, BS,P

(VSA)5264/5, BS,T
(VSA)5288/5 forBS,X

lat . In
VSA the correction of order 1/M is neglected.
g

01450
the operators are not renormalized. Comparison with an
equate definition~the B parameter in the continuum reno
malization scheme! will be discussed in detail in Sec. V F.

We find that the mass dependence is small forBB,LR
lat ,

while it is significant for others. This behavior can be mos
understood using the vacuum saturation approxima
~VSA! @18#. In VSA the matrix element in the numerator o
the B parameter is generally decomposed intou^0uAmuP&u2

and u^0uPuP&u2. For BB,LR
lat , however, it is written by

u^0uAmuP&u2 only and nou^0uPuP&u2 term appears by defini
tion, so thatBB,LR

(VSA)51 is independent of 1/M P . For others,
the termu^0uPuP&u2 gives a strong mass dependence prop
tional to (M P /M )25(11L̄/M )2, where L̄ represents the
binding energy produced by the light degrees of freedo
Comparison of the lattice data with VSA is made in Re
@18#.

D. RenormalizedB parameters

The B parameters for the continuum operators are
tained from the latticeB parameters using Eq.~3.34! for BB
and Eq.~3.35! for BS . We consider the truncation method
in this subsection. The results of other truncations are
cussed in the next subsection.

In order to see the effect of 1/M corrections we conside
the quantity

FBB
~mb![S as~M P!

as~MB! D
2/b0

BB~mb! ~5.1!

as a function of 1/M P . The factor„as(M P)/as(MB)…2/b0 is
introduced to cancel the logarithmic dependence onM com-
ing from the continuum one-loop integral, so that the hea
quark expansion in 1/M P is explicit. Up to two-loop correc-
tions FBB

(mb) is equivalent toBB(mb) obtained with a re-

placement ofM in rL,L ~3.28! and inrA
(0) ~3.13! by the physi-

cal b quark massmb , which can be confirmed by expandin
TABLE II. Numerical values for latticeB parametersBB,X
lat at b55.7.

aM0 12.0 6.5 4.5 3.8 3.0

BB,LR
lat

kud 0.916~21! 0.906~17! 0.894~15! 0.889~14! 0.882~14!

ks1 0.931~13! 0.923~11! 0.915~09! 0.911~09! 0.905~09!

ks2 0.934~12! 0.927~09! 0.920~08! 0.916~08! 0.911~08!

BB,S
lat

kud 20.656(11) 20.708(10) 20.765(10) 20.802(11) 20.870(12)
ks1 20.659(07) 20.713(06) 20.770(07) 20.806(07) 20.872(08)
ks2 20.659(06) 20.714(06) 20.772(06) 20.808(06) 20.872(08)
BB,N

lat

kud 1.220~36! 1.459~31! 1.707~32! 1.864~34! 2.144~40!

ks1 1.212~23! 1.444~20! 1.683~21! 1.831~23! 2.095~27!

ks2 1.210~20! 1.440~17! 1.676~19! 1.822~20! 2.081~24!

BB,M
lat

kud 26.44(11) 26.87(10) 27.30(09) 27.58(10) 28.08(10)
ks1 26.44(07) 26.87(06) 27.31(06) 27.58(07) 28.06(07)
ks2 26.44(07) 26.87(06) 27.31(06) 27.58(06) 28.06(07)
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TABLE III. Numerical values for latticeB parametersBS,X
lat at b55.7.

aM0 12.0 6.5 4.5 3.8 3.0

BS,S
lat

kud 0.931~15! 0.909~11! 0.894~10! 0.887~10! 0.879~09!

ks1 0.941~10! 0.927~07! 0.916~07! 0.910~06! 0.904~06!

ks2 0.944~09! 0.931~07! 0.922~06! 0.917~06! 0.910~05!

BS,LR
lat

kud 21.301(31) 21.163(23) 21.044(19) 20.982(18) 20.891(17)
ks1 21.330(19) 21.200(14) 21.088(12) 21.028(12) 20.938(11)
ks2 21.338(17) 21.209(13) 21.099(11) 21.040(10) 20.951(10)
BS,P

lat

kud 212.59(18) 212.56(15) 212.52(14) 212.51(13) 212.51(12)
ks1 212.66(12) 212.68(10) 212.69(09) 212.69(09) 212.70(08)
ks2 212.68(10) 212.71(09) 212.73(08) 212.74(08) 212.76(08)
BS,T

lat

kud 55.43~87! 54.09~67! 52.91~58! 52.31~55! 51.45~50!

ks1 55.79~57! 54.72~45! 53.77~39! 53.27~37! 52.50~35!

ks2 55.89~51! 54.90~40! 54.01~36! 53.53~34! 52.78~32!
re

o

i

ical
n
er-
if-
es to
i-
-

sys-
in-
the factor„as(M P)/as(MB)…2/b0 in as(M P) explicitly. With
the replacement the static limit (1/M P→0) of NRQCD sim-
ply becomes the conventional static approximation. The
fore, in the calculation ofFBB

(mb) we explicitly set the

physicalb quark massmb in the matching coefficients~3.28!
and ~3.13!. It should be also noted that at the physicalB
meson mass, namelyM P5MB , our definition ofFBB

(mb)
exactly agrees with the definition~5.1!.

Figure 8~top panel! showsFBB
(mb) at b56.0. The light

quark mass is extrapolated to the chiral limit, and the ren
malization scalemb is set tomb . In the one-loop matching
~3.34! we use the renormalized couplingaV(q* ) defined
through the heavy quark potential@53#. The scaleq* repre-
sents the momentum region where the relevant one-loop
01450
-

r-

n-

tegral dominates. Since it is not known, we use three typ
valuesp/a, 2/a, and 1/a and consider their variation as a
indication of systematic uncertainty from higher order p
turbative corrections. We find that the variation among d
ferent coupling constants becomes substantial as one go
the static limit, while it is relatively unimportant in the phys
cal mass region 1/M P;0.2 GeV21. This is because the one
loop coefficients in the matching~3.34! grows toward the
static limit. For the 1/M P dependence ofFBB

(mb) we ob-

serve a slight positive slope and curvature, but the large
tematic uncertainty implies that the mass dependence is
significant.

We obtain a similar plot forFBS
(mb) in Fig. 8 ~bottom

panel!, which is an analog ofFBB
(mb) but for BS(mb). The
TABLE IV. Numerical values for latticeB parametersBB,X
lat at b55.9.

aM0 10.0 5.0 3.0 2.1 1.3

BB,LR
lat

kud 0.977~61! 0.936~35! 0.904~25! 0.884~22! 0.848~22!

ks1 0.956~34! 0.931~19! 0.911~13! 0.897~12! 0.871~12!

ks2 0.952~30! 0.930~16! 0.913~11! 0.899~10! 0.877~11!

BB,S
lat

kud 20.669(32) 20.718(19) 20.800(16) 20.904(17) 21.148(25)
ks1 20.650(17) 20.715(10) 20.805(09) 20.911(10) 21.150(17)
ks2 20.646(15) 20.714(09) 20.806(08) 20.912(09) 21.150(15)
BB,N

lat

kud 1.346~122! 1.595~74! 1.979~60! 2.453~67! 3.541~102!
ks1 1.288~070! 1.560~41! 1.935~35! 2.381~41! 3.395~066!
ks2 1.275~060! 1.552~35! 1.924~31! 2.364~37! 3.361~059!
BB,M

lat

kud 26.715(297) 27.156(182) 27.903(162) 28.828(177) 210.904(241)
ks1 26.521(176) 27.087(104) 27.862(093) 28.742(102) 210.684(145)
ks2 26.476(157) 27.071(091) 27.852(082) 28.723(090) 210.634(128)
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TABLE V. Numerical values for latticeB parametersBS,X
lat at b55.9.

aM0 10.0 5.0 3.0 2.1 1.3

BS,S
lat

kud 0.942~44! 0.907~23! 0.882~15! 0.868~13! 0.848~11!

ks1 0.923~24! 0.912~12! 0.899~08! 0.888~07! 0.873~06!

ks2 0.918~21! 0.913~11! 0.902~07! 0.893~06! 0.878~06!

BS,LR
lat

kud 21.376(85) 21.184(45) 20.999(30) 20.850(25) 20.627(22)
ks1 21.357(48) 21.188(24) 21.018(16) 20.875(15) 20.662(14)
ks2 21.353(42) 21.188(21) 21.022(14) 20.880(13) 20.670(12)
BS,P

lat

kud 213.24(55) 213.08(31) 213.10(24) 213.20(22) 213.33(22)
ks1 212.90(31) 213.02(17) 213.10(13) 213.17(12) 213.27(12)
ks2 212.82(27) 213.01(15) 213.10(12) 213.17(11) 213.25(10)
BS,T

lat

kud 57.69~233! 55.84~126! 54.53~96! 53.71~89! 52.33~88!

ks1 56.36~138! 55.71~072! 54.75~55! 53.86~50! 52.36~49!

ks2 56.05~122! 55.68~063! 54.80~48! 53.90~43! 52.36~42!
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definition of FBS
(mb) with the renormalization group im

provement as in Eq.~5.1! is more complicated, since th
logarithmic dependence appears in more than one co
cients, so that we have to consider a mixing of operators
this work, however, we avoid this problem by replacing t
heavy quark mass inrS,S andrS,L by the physical value as
we did for FBB

(mb).

For BS(mb) the one-loop coefficients are relatively sma
and their dependence on the heavy quark mass is m
Hence, we obtain a smaller variation due to different sc
settings in the coupling constant.

E. Effect of truncation of expansions

As we discussed in Sec. III D there are several metho
truncate the perturbative and 1/M expansions. We conside
01450
fi-
In

ld.
le

to

the following four methods. In the methods I and I8 the
perturbative matching is truncated in the numerator and
nominator separately as in Eqs.~3.34! and ~3.35!, while in
the methods II and II8 the denominator is linearized as Eq
~3.38! and ~3.39!. In the primed methods the heavy qua
field without the FWT rotation~3.7! is used for one-loop
correction terms.

In Fig. 9 we plotFBB
(mb) ~top panel! andFBS

(mb) ~bot-

tom panel! for four different truncation methods. As can b
seen from the figure, the methods I and I8 ~or II and II8)
agree in the static limit, since their difference is only in t
FWT rotation. On the other hand, the difference between
methods I and II~or I8 and II8) is smaller for lighter heavy
quarks because the one-loop correction in the denomin
rA

(0) becomes small.
TABLE VI. Numerical values for latticeB parametersBB,X
lat at b56.1.

aM0 7.0 3.5 2.1 1.5 0.9

BB,LR
lat

kud 0.833~66! 0.846~32! 0.845~23! 0.834~22! 0.819~24!

ks1 0.892~37! 0.892~18! 0.882~12! 0.871~12! 0.857~13!

ks2 0.904~33! 0.901~16! 0.889~11! 0.878~10! 0.865~12!

BB,S
lat

kud 20.653(30) 20.701(17) 20.808(14) 20.929(16) 21.255(28)
ks1 20.658(18) 20.725(10) 20.836(09) 20.958(11) 21.282(20)
ks2 20.659(16) 20.730(09) 20.842(08) 20.964(10) 21.287(19)
BB,N

lat

kud 1.227~112! 1.674~61! 2.179~55! 2.715~66! 4.130~115!
ks1 1.294~064! 1.689~37! 2.181~35! 2.700~44! 4.047~078!
ks2 1.307~057! 1.692~34! 2.181~33! 2.697~41! 4.031~073!
BB,M

lat

kud 27.125(338) 27.690(180) 28.545(143) 29.490(155) 212.046(230)
ks1 26.857(220) 27.575(112) 28.452(089) 29.389(099) 211.877(156)
ks2 26.804(204) 27.552(102) 28.433(082) 29.369(092) 211.843(146)
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TABLE VII. Numerical values for latticeB parametersBS,X
lat at b56.1.

aM0 7.0 3.5 2.1 1.5 0.9

BS,S
lat

kud 0.892~40! 0.843~20! 0.834~13! 0.831~12! 0.827~11!

ks1 0.907~24! 0.879~11! 0.869~7! 0.863~7! 0.855~7!

ks2 0.910~21! 0.886~10! 0.876~7! 0.870~6! 0.861~6!

BS,LR
lat

kud 21.138(92) 21.016(41) 20.870(26) 20.741(22) 20.536(19)
ks1 21.229(52) 21.080(23) 20.916(15) 20.784(13) 20.571(12)
ks2 21.247(46) 21.094(21) 20.925(14) 20.792(12) 20.578(12)
BS,P

lat

kud 213.09(54) 213.27(26) 213.31(19) 213.32(18) 213.35(17)
ks1 213.01(35) 213.28(17) 213.31(12) 213.31(11) 213.31(11)
ks2 212.99(33) 213.28(15) 213.31(11) 213.31(10) 213.31(10)
BS,T

lat

kud 58.65~260! 56.91~124! 55.23~85! 53.90~76! 51.70~68!

ks1 57.32~171! 56.66~078! 55.11~53! 53.78~47! 51.65~42!

ks2 57.06~158! 56.61~072! 55.08~48! 53.76~43! 51.63~38!
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We consider the variation among different truncations
an indication of systematic uncertainties from higher ord
of perturbative and 1/M expansions. The error estimation
given in the next section.

F. Results at different lattice spacings

Since NRQCD is formulated by an expansion in 1/M and
not a renormalizable field theory, it does not allow a co
tinuum limit; instead it has to be considered as an effec
theory valid in the region where 1/(aM0) is small enough.
The dependence of systematic errors on the lattice spacia
is not just a simple power series ina, but contains its inverse
powers. Therefore, the question is how one can find a reg
of a where the discretization error is small while the erro
01450
s
s

-
e

n

scaling as 1/an (n is a positive integer! is under control.
Although the order counting argument as discussed
@18,19# provides a rough estimate of errors, it is essentia
confirm it using actual simulation data.

In Fig. 10 we plotFBB
(mb) ~top panel! and FBS

(mb)
~bottom panel! obtained with the truncation method I for fou
different lattice spacings. The largest~smallest! inverse lat-
tice spacing is 2.3 GeV atb56.1 ~1.1 GeV atb55.7). We
find that around the physicalB meson mass (1/MB
;0.2 GeV21) the results agree within order 10% fo
FBB

(mb) or even better forFBS
(mb). The agreement be

comes marginal toward the static limit especially for the no
perturbatively improved lattice (b56.0), but it is not statis-
tically significant.
TABLE VIII. Numerical values for latticeB parametersBB,X
lat at b56.0.

aM0 10.0 5.0 3.0 2.1 1.3

BB,LR
lat

kud 0.820~53! 0.832~51! 0.868~39! 0.857~30! 0.858~25!

ks1 0.864~37! 0.869~29! 0.888~22! 0.877~17! 0.872~15!

ks2 0.874~34! 0.877~25! 0.892~18! 0.881~14! 0.875~13!

BB,S
lat

kud 20.574(28) 20.649(27) 20.738(23) 20.820(20) 21.011~22!

ks1 20.601(21) 20.673(17) 20.757(14) 20.840(12) 21.029(14)
ks2 20.607(19) 20.678(15) 20.761(12) 20.845(11) 21.033(13)
BB,N

lat

kud 1.128~107! 1.376~97! 1.787~84! 2.207~75! 3.095~81!

ks1 1.148~073! 1.393~57! 1.785~48! 2.184~45! 3.023~53!

ks2 1.152~066! 1.397~49! 1.784~41! 2.178~39! 3.007~48!

BB,M
lat

kud 26.67(36) 27.33(28) 27.76(24) 28.44(20) 210.04(20)
ks1 26.68(24) 27.15(17) 27.69(14) 28.35(12) 29.88(13)
ks2 26.68(23) 27.11(15) 27.67(12) 28.33(11) 29.84(12)
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TABLE IX. Numerical values for latticeB parametersBS,X
lat at b56.0.

aM0 10.0 5.0 3.0 2.1 1.3

BS,S
lat

kud 0.829~40! 0.847~35! 0.854~26! 0.840~19! 0.830~14!

ks1 0.868~30! 0.881~22! 0.881~15! 0.869~11! 0.857~08!

ks2 0.877~28! 0.888~20! 0.887~13! 0.875~10! 0.863~07!

BS,LR
lat

kud 21.184(77) 21.085(68) 21.005(48) 20.879(33) 20.705(23)
ks1 21.249(53) 21.138(39) 21.034(27) 20.907(19) 20.726(14)
ks2 21.264(50) 21.149(34) 21.040(23) 20.913(16) 20.730(13)
BS,P

lat

kud 212.87(58) 213.17(47) 213.13(37) 213.17(28) 213.32(22)
ks1 212.95(41) 213.02(27) 213.11(22) 213.14(17) 213.26(14)
ks2 212.97(38) 212.99(24) 213.11(19) 213.14(15) 213.24(12)
BS,T

lat

kud 57.82~276! 58.01~211! 55.59~161! 54.30~118! 52.93~88!

ks1 57.99~194! 56.99~126! 55.44~094! 54.21~072! 52.78~57!

ks2 58.02~180! 56.76~111! 55.41~082! 54.19~063! 52.74~51!
e
f fi

de-

of
Results of physicalBB(mb) ~top panel! andBS(mb) ~bot-
tom panel! are plotted in Fig. 11 as a function of the lattic
spacing, where the variation due to the different choice o
range is added to the error bar at eachb. Thea dependence
is a mixture of the discretization error scaling asam and the
01450
t

truncation error containing a form like 1/an. In addition, the
truncation of perturbative expansion gives a functional
pendence like 1/lna. It is, therefore, difficult to determine the
shape of thea dependence, but the data imply that none
these errors is diverging in the region we measured.
FIG. 6. 1/M P dependence of the latticeB parametersBB,X (X 5 LR, S, N, andM ). A quadratic fit is plotted for the data atb56.0.
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FIG. 7. 1/M P dependence of the latticeB parametersBS,X (X5S, LR, P, andT). A quadratic fit is plotted for the data atb56.0.
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VI. PHYSICS RESULTS

A. Analysis of systematic errors

As discussed in the previous section, we have perform
the calculation of theB parameters with four different trun
cations of 1/M andas expansions. Furthermore, the calcu
tions are made at four different lattice spacings. All of the
calculations have different amount of various systematic
rors, and thus they allow us to estimate the uncertainty in
final results. In this subsection we first list possible sour
of systematic errors and estimate their size using a n
order counting. Then, their results are compared with
actual lattice data.

One of the possible systematic errors arises from the
cretization of derivatives, which scales as a power of
lattice spacinga. Because our actions and operators areO(a)
improved at the tree level, the leading error is of ordera2

and of orderasa. Since we are using an effective theory f
heavy quark, the truncation of the 1/M expansion leads to a
systematic error. For our choice of actions and operators
leading contribution is of order 1/Mb

2 . Again, since the
matching of the 1/M terms is done at the tree level only, w
also expect an error of orderas /Mb . The perturbative
matching of operators are truncated at the one-loop leve
that there is an uncertainty of orderas

2 . In Table X we list
their typical size at eachb value using a naive order coun
ing. Where the scale is needed we assume the typical sp
momentum inside a heavy-light meson to bep;LQCD
01450
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e
r-
ur
s
e
e
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e

he
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tial

;300 MeV. For the strong coupling constant we use a ty
cal valueaV(2/a) as listed in Table I.

The contribution of orderp2/Mb
2 is not investigated in this

paper, as we just neglect the 1/M2 terms in the action and
operators. In Table X we assign 2% as the correspond
uncertainty rather than a naive order counting 0.4%, tak
the estimate from explicit lattice study in@18#.

Since we have removed errors ofas /(aM)m(m>0) by
perturbative matching, the leading contribution which p
vents us from the continuum extrapolation with the NRQC
action has the formas

2/(aM). Although its size in the naive
order counting is smaller than the pure two-loop correct
as

2 , we include it in our error analysis~thus in Table X!, as
it gives the leading contribution growing toward the co
tinuum limit.

As mentioned in Sec. III D, the results from the differe
truncation methods~I, II, I 8, and II8) are expected to differ
from each other byO(as

2) or O(asp/Mb). We compare their
results in Fig. 12 forBB and in Fig. 13 forBS . The results of
the four truncation methods whenas(2/a) is used in the
one-loop matching are plotted. In these figures we also sh
the size of the systematic errors of orderO(as

2) and
O(asp/Mb) estimated with the naive order counting~first
two lines of Table X added in quadrature!. Although the sta-
tistical error of the data points makes the comparison so
what ambiguous, we conclude that the naive order coun
reasonably explains the scatter of the lattice data. The s
6-17
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conclusion is reached when we use different values ofq* in
the perturbative matching.

An alternative way to estimate theO(as
2) error is to see

the variation of results withq* 5p/a, 2/a, and 1/a. From
Fig. 8, where the data atb56.0 are plotted, we find that th
variation with the choice of scale in the coupling constan
consistent with our order counting (;3%) for the data
points around theB meson mass. In the static limit, on th
other hand, the one-loop coefficient is uncomfortably lar
and the variation among the results with differentq* is much
larger than our naive estimate.

Other sources of systematic errors to be tested
O(a2p2), O(apas), andO„as

2/(aMb)…. Although it is dif-
ficult to disentangle variousa dependent systematic erro
solely from the data, our results are stable against the cha
of lattice spacing suggesting that the systematic error is w
estimated by the naive order counting.

Finally we also investigated the systematic error from
contamination of excited states by changing the fit range
the ratioRB,X(t1 ,t2) andRS,X(t1 ,t2). We find that the effect
is at most 3%. In particular, atb56.0 it is found to be 1%

FIG. 8. FBB
(mb) ~top panel! and FBS

(mb) ~bottom panel! for
mb5mb . Data show the result atb56.0 in the chiral limit of the
light quark. The truncation method I is chosen as a demonstra
Different symbols correspond to different scales of the coupl
constant in the perturbative matching, and data points are slig
shifted in thex direction for clarity. The data at the static lim
(1/M P50) is obtained by an extrapolation in 1/M P with a qua-
dratic function.
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for BB and 3% forBS . These variations are taken into a
count in the final results.

B. B parameter results

As we discussed above, the systematic errors estim
with the naive order counting actually describe the diffe
ences among different calculations. We, therefore, use
order counting argument to quote our estimate of system
uncertainties.

We take the central values from the data atb56.0 ~setB)
with q* 52/a, and obtain the following results in th
quenched approximation:

BB~mb!50.84~3!~5!, ~6.1!

BBs
~mb!50.86~2!~5!~0!, ~6.2!

BS~mb!50.82~2!~5!, ~6.3!

BSs
~mb!50.85~1!~5!~20

11!, ~6.4!

n.
g
ly

FIG. 9. FBB
(mb) ~top panel! and FBS

(mb) ~bottom panel! for
mb5mb . Data show the result atb56.0 in the chiral limit for the
light quark and renormalized with the couplingaV(2/a). Different
symbols correspond to different truncations of perturbative a
heavy quark expansions. The data at the static limit (1/M P50) is
obtained by an extrapolation in 1/M P with a quadratic function.
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where the first and second errors represent statistical
systematic ones respectively. In the systematic error the
tamination from excited states is added in quadrature w
other sources estimated by the order counting. The third e
is from the uncertainty ofms arising from the different input
physical quantities, i.e.,mK or mf .

The corresponding renormalization scale independenB
parameter is obtained from Eq.~2.6!

B̂B51.29~5!~8!, ~6.5!

which may be compared with the previous calculations us
the relativistic actions for heavy quarks, 1.38(11)(29

10) @31#
and 1.40(5)(21

16) @32#. These two results are slightly highe
than our result, although@31# is still consistent within the
large error. A possible reason for the high values in the re
tivistic approach is in the extrapolation in the heavy qua
mass from the charm quark mass region to the bottom
fact, the combined analysis of the HQET and relativis
heavy quark, in which the interpolation in 1/M can be made,
gives 1.34(6)(26

18) @36#, i.e., closer to our result.

FIG. 10. FBB
(mb) ~top panel! andFBS

(mb) ~bottom panel! for
mb5mb . Results at different lattice spacings are compared. D
show the results in the chiral limit for the light quark and renorm
ized with the couplingaV(2/a). The truncation method I is chose
as a demonstration. The data at the static limit (1/M P50) is ob-
tained by an extrapolation in 1/M P with a quadratic function.
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C. Applications

In this subsection we present a few examples of phys
applications of our results. It should be noted, however, t
our calculation is still in the quenched approximation a
there is no rigorous estimate for the associated uncerta
For the following applications we assume that the quench
effect isnegligible for the B parameters as suggested by o
preliminary calculations@38–40#.

ta
-

FIG. 11. Dependence ofBB(mb) ~top panel! andBS(mb) ~bot-
tom panel! on the lattice spacinga. Data show the results in the
chiral limit for the light quark and renormalized with the couplin
aV(2/a). The truncation method I is chosen as a demonstration.
variation due to the different choice of fit range is added to the e
bar at eachb.

TABLE X. Estimate of systematic uncertainties by a naive
mensional counting at eachb value.

b 5.7 5.9 6.1 6.0

O(as
2) 5% 4% 3% 3%

O(asp/Mb) 1% 1% 1% 1%
O(a2p2) 8% 3% 2% 3%
O(apas) 6% 4% 2% 3%
O„as

2/(aMb)… 1% 1% 1% 1%
O(p2/Mb

2) 2 %
Total ~added in quadrature! 11% 7% 5% 6%
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For theB meson decay constant, on the other hand,
large effect of quenching has been found@4–6#. Further-
more, a large uncertainty due to the presence of chiral lo
rithm is suggested forf B @6,73#, while the effect is not too
large for f Bs

. In the following analysis we therefore consid

the quantities for which onlyf Bs
is needed, and use the re

cent world average of unquenched lattice calculations
f Bs

5230(30) MeV@4,6# when needed.

Assuming the three generation unitarityuVtsu.uVcbu, we
obtain the mass difference inBs

02B̄s
0 mixing using Eq.~2.1!

as

DMs519.4~5.5! ps21, ~6.6!

where the statistical and systematic errors in theoretical
experimental quantities are added in quadrature, but the
error is dominated by the uncertainty off Bs

. The value is

consistent with the current lower boundDMs.13.1 ps21 at
a 95% C.L.@29#. Tevatron run II is expected to measure t
mass difference very precisely in a few years.

The width difference in theBs meson system could als
be measured at Tevatron run II, if it is large enough. Us
Eqs.~2.14! and ~6.4!, we obtain

S DG

G D
Bs

50.10660.02060.02860.03760.024, ~6.7!

FIG. 12. Results forBB at eachb with four different truncation
methods~see text!. Comparison is made with the estimate using t
naive order counting~a band given by the dotted lines!.

FIG. 13. Same as Fig. 12, but forBS .
01450
e
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where the first through third errors are frommb

54.8(3) GeV, f Bs
5230(30) MeV, and R ~or m̄b(mb)

54.25(25) GeV andm̄s(mb)50.10(3) GeV), respectively
The last error comes from the uncertainty in the estimat
of the 1/m correction, for which we assign 30%. The err
from theB parameters is much smaller than the others lis
above.

The uncertainty in the calculation of (DG/G)Bs
is still

very large (;50% if added in quadrature!. In order to im-
prove it one has to calculate the 1/m corrections reliably, as it
largely cancels the leading contribution fromBS as seen in
Eq. ~2.14!. Currently, only an upper bound is obtained f
this quantity experimentally. Our prediction is consiste
with the bound (DG/G)Bs

,0.31 at a 95% C.L.@29#.

VII. SU „3… BREAKING RATIO j

Since we expect that the bulk of systematic uncertainty
the calculation off B andBB cancels in their SU~3! breaking
ratio f Bs

/ f B andBBs
/BB , they could be useful to reduce th

errors in the determination ofuVtdu through the relation~2.7!.
In the lattice calculation, the deviation of their ratio fro

unity is the quantity to be calculated and the errors scale
BBs

/BB21 rather thanBBs
/BB itself. In the present case, th

naive estimate of SU~3! breaking is O(mK
2 /Lx

2);25%,
where Lx is a scale of the chiral symmetry breakin
;1 GeV, and the order counting of uncertainties for t
ratio are starting from this order.

As done in Sec. VI A we compare our order counting w
data in Fig. 14. As we expected, the variation with differe
truncations is much smaller than the expected systematic
rors ~dotted line!. The dependence onb is sizable, but not
significant compared to the relatively large statistical erro

Our result is

BBs

BB
51.020~21!~216

115!~20
15!, ~7.1!

where the central value is taken fromb56.0 ~setB), and the
errors are statistical, systematic and the uncertainty ofms in
the order given.

For the calculation ofj ~1.1! we have to combineBBs
/BB

with f Bs
/ f B , which is called the indirect method. On th

FIG. 14. Same as Fig. 12, but forBBs
/BB .
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other hand, it is also possible to directly obtainj from a ratio
of ^OLs

& and ^OLd
& ~direct method!. It has been discusse

that one may obtain rather large value ofj if one uses the
direct method@30,32#. Therefore, in the following we chec
if we could obtain consistent results from both methods
ing our data.

Figure 15 shows the chiral extrapolation of^OL&, as re-
quired in the direct method. The data are obtained ab
56.0 ~setB) for a heavy quark mass closest to theb quark
mass. The dashed line is obtained by a linear fit to the d
~open circles!, while the solid curve represents a fit with
linear plus quadratic term inamq . Although the data look
consistent with the linear fit, the chiral limit with the qua
dratic fit is higher by about one standard deviation.

An open diamond at the chiral limit, on the other hand
obtained through the indirect method, i.e., the decay cons
and B parameter are separately extrapolated to the ch
limit with a linear fit. Although we have not presented
calculation of the decay constant in this paper, they are d
on the same set of gauge configurations atb56.0 and the
lattice axial current is renormalized as described in S
III B. The result is completely consistent with the quadra
fit in the direct method. It implies that in the direct metho
the chiral extrapolation is more difficult and needs enou
statistics to control, sincêOL& is effectively the decay con
stant squared so that the finiteamq correction is amplified.8

8The similar discussion may be found in@32#.

FIG. 15. Comparison of direct and indirect methods. The das
line is a linear fit and the solid curve is obtained with a fit wi
linear and quadratic terms. An open diamond at the chiral limi
obtained through the indirect method.
r,
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VIII. CONCLUSIONS

In this work, we calculate theB mesonB parameters on
the lattice in the quenched approximation. The calculation
an extension of our previous works@18,20#, in whichBB and
BS were calculated for the first time with the lattice NRQC
action.

In the present work we include a detailed study of s
tematic uncertainties. Using the lattice simulations at fo
different b values with theO(a)-improved actions, we find
that theB parameters are essentially insensitive to the d
cretization error. We also investigate the systematic err
associated with the truncation of heavy quark and pertur
tive expansions, which are necessary in the effective the
approach such as NRQCD. By comparing four different tru
cations of these expansions, we are able to confirm that
naive order counting argument of the systematic errors co
actually give a reasonable estimate.

In our final results for theB parameters the systemat
error is ;6%, which is already smaller than that in th
equivalent calculations off B ~10–20 %!, owing to the fact
that it is defined as a ratio to the vacuum saturation appr
mation. Further reduction of systematic errors, if it is nec
sary, requires higher order calculation of perturbation the
and theO(a2) improvement. Approaching to the continuu
limit will not help to reduce the errors in the NRQCD ap
proach.

For a precise extraction of the important CKM eleme
uVtdu through the SU~3! breaking ratio of theB-B̄ mixing
one needsj2. It is preferable to take the chiral limit sepa
rately for f B andBB , as they have milder light quark mas
dependence. The SU~3! breaking ratio ofBB is obtained with
accuracy of order a few percent, since theB parameter is
extremely insensitive to the light quark mass and the la
cancellation of systematic errors is expected.

The largest remaining uncertainty in our calculation is
the quenching approximation, though it is not explicitly di
cussed in the paper. We are currently performing an
quenched simulation with the same lattice action at sim
lattice spacing, which will allow us to study the quenchin
effect directly.
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