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Finite density QCD via an imaginary chemical potential
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We study QCD at nonzero temperature and baryon density in the framework of the analytic continuation
from an imaginary chemical potential. We carry out simulations of QCD with four flavors of staggered
fermions, and reconstruct the phase diagram in the temperature-imaginaane. We consideAnsaze for
the analytic continuation of the critical line and other observables motivated both by theoretical considerations
and mean field calculations in four fermion models and random matrix theory. We determine the critical line,
and the analytic continuation of the chiral condensate, upge-500 MeV. The results are in qualitative
agreement with the predictions of model field theories, and consistent with a first order chiral transition. The
correlation between the chiral transition and the deconfinement transition obsegvedabersists at nonzero
density.

DOI: 10.1103/PhysRevD.67.014505 PACS nuni§er12.38.Gc, 11.15.Ha, 12.38.Mh

I. INTRODUCTION Some of the results presented here have been preliminarly
reported in[17].

QCD at finite temperature and density is of fundamental In the next section we review the formalism and the
importance, both on purely theoretical and phenomenologimethod. In Sec. Ill we reconstruct the phase diagram in the
cal grounds. At high temperature asymptotic freedom willtemperature-imaginary chemical potential plane. This is an
produce deconfinement and chiral symmetry restoration, dfteresting physical question by itself; it is a mandatory step
high density a richer phase structure and new phenomeﬁﬁward the reconstruction of the phase diagram for real

have been predicted]. In principle, the lattice formulation chemical potential, and provides some guidance for the ana-

provides a rigorous framework for the study of such phe_lytic cc_)ntinua.tion. ]n Sec. IV we discuss a few aspects of the
nalytic continuation and offer two examples from model

nomena. In practice, however, the lattice regularization is. Id_ theories: i h hat b ideripg
usually combined with importance sampling, which cannot'©'d theories: we will note there that by consideri
ather thanw, an analogy can be made between QCD at

bsa?ka I(\jlgtlgr:]?np;:r?tdb::;or;?gszirgmb?g}on density, where th(%inite baryon density and ordinary statistical systems in ex-
q PIes. ternal fields. The remaining part of the paper is devoted to

. It has been_recently realiz¢8] that this problem can be numerical results at nonzero baryon density. The critical line
c[rcumvented in the higf, low u part of the QCD phase is presented in Sec. V, including a first assessment of the
diagram where one can take advantage of physical fluctugsependence on the number of flavors obtained combining the
tions[4]. Interesting physical information can be obtained by g its by de Forcrand and Philipsgts] with ours, and a
computing the derivatives with respectoat zero chemical  ¢ross-check with the four flavor results by Fodor and Katz
potential and high temperatuf&—7]. Fodor and Katz pro- [9]. The results for the chiral condensate are presented in
posed an improved reweighting and applied it to the study oKec. VI. In Sec. VII we discuss the nature of the chiral tran-
the four [8] and two plus one flavor modgB]. In Refs.  sition. Finally in Sec. VIl we summarize our results and
[10-12 the imaginary chemical potential approach was ad-give our conclusions.
vocated and exploited in connection with the canonical for-
malism. In Ref[13] it was proposed that the analytic con- Il. FORMALISM AND METHOD
tmuayon f“”T‘ an imaginary chemlcall potential COUId. be In the following we will briefly review the formulation of
practical at high temperature, and the idea was tested in tngttice QCD with a nonzero chemical potential and the
infinite coupling limit. In Refs[14,15 the method was ap- ossible uses of working with a purely imaginamy The
plied successfully to the dimensionally reduced model. | ero  density QCD partiion function, Z(V,T)
Ref.[16] it was proposed that the critical line itself can be —Tr(e~Hooo/T), with Hocp the QCD Hamiltoni:an, can be
analyt|cally_ continued and results for two flavors of Stag'discretized on a Euclidean lattice with a finite temporal ex-
gered fermions were presented. tent 7= 1/T

In this work we study QCD with four flavors of staggered '

fermions within the imaginary chemical potential approach. o B
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whereU are the gauge link variableg; and i are the fer- Z(V,T,n)=Tr(e "eco/T§(N—n))
mionic variablesS; is the pure gauge action a8} is the 1 o
fermionic action which can_be expressed in terms of the fer- =—Tr( e—HQCD/TJ doel a(Nn)>
mionic matrixM[U], Sp=¢M[U]4. 2m 0
To describe QCD at finite density the grand canonical 1 (2n
partition function, Z(V, T, u)=Tr(e” Heco=#N)/T) = where — doe 'MZ(V,T,i6T). (5)

N= [d3x¢" is the quark number operator, can be used. The 2mJo

correct way to introduce a finite chemical potengiabn the _
lattice [2] is to modify the temporal links appearing in the As n grows, the factoe™'*" oscillates more and more rap-
integrand in Eq(1) as follows: idly and the error in the numerical integration grows expo-
nentially with n: this makes the application of the method
a . difficult, especially at low temperatures, whezéV,T,iu,)
Ui—e*U, (forward temporal link, depends very weakly on, . The method has been applied in
QCD [11] and in the 2D Hubbard moddll0,12, where
Z(V,T,n) has been reconstructed uprie-6 [12].
The study of the phase structure of QCD in the u,
plane is also interesting on its own, as we will discuss in the

wherea is the lattice spacingSg is left invariant by this "€t section, and will help us understand the ranges of ap-
transformation but de¥i[U] gets a complex phase which Plicability of analytic continuation. _
makes importance sampling, and therefore standard lattice R€Sults reported in the present paper refer to QCD with
Monte Carlo simulations, unfeasible. four degenerate staggered flavors of bare nmags 0.05 on
The situation is different when the chemical potential is® ,1,64X4 lattice, where the phase transition is expected at a
purely imaginary: U,—e'®U,, Ul e @«Ul. This is critical coupllngﬂc':S.O4 [22]. The standard hybrid Monte
like adding a constarit) (1) background field to the original Carlo (HMC) algorithm has been used.
theory; deM[U] is again real and positive and simulations
are as easy as at=0. The question then arises how simu- Ill. THE PHASE DIAGRAM IN THE IMAGINARY
lations at imaginary chemical potential may be of any help to H-TEMPERATURE SPACE
get physical insight in finite density QCD. ) _ ) _ §ON L — Hooers T
One possibility is analytic continuation, which should be _ L&t us write Z(#)=Z(V,T,i6T)="Tr(e'™e "eco’).
practical at relatively high temperatuf@3]. Z(V,T,u) is  SINceN is a number operatoz(6) is clearly periodic ind
expected to be an analytical even functionofaway from with period 2m; moreover, a period 2/3 is expected in the

phase transitions. For small enoughone can write confined phase, where only physical states witiNamul-
tiple of 3 are present. However, it has been shown by Rob-

erge and Weis§21] that Z(6) is always periodic /3, for
logZ(u) =ag+a,u®+asu*+0(ub), (3) any physical temperature, and that the only difference be-
tween the lowT and the highT phase should be a smooth,
analytic periodic behavior at low, as predicted from a
l0g Z( i) =a9—asuf+asu;+0(u;). (4)  strong coupling calculation, and a nonanalytic periodic be-
havior at high T with discontinuities in the first derivatives of
. . . L the free energy ab=(27/3)(k+1/2), as predicted from a
Simulations at smalk, will thus allow a determination of \yeay coupling calculation. This suggests a very interesting
the expansion coefflcu_ants for thg free energy and, analoz.anario for the phase diagram of QCD in ¢, plane
gously, for_ other phyS'C?" quantltles,.wh]ch can be CrOSSyyhich needs confirmation by lattice calculations.
checked with those obtalned by rewelghpng.techmc{see In order to get more insight into the phase structure of the
[18-2Q for further material on the reweighting approach heory it is very useful to consider the phase of the trace of
This method is expected to be useful in the high temperaturen - . -
regime, where the first coefficients should be sensibly differtn® Ifolyakov loop P(x). Let us parametrize P(x)
ent from zero: moreover, the region of interest for presenE|P(X)|€'?, and let(¢) be the average value of the phase.
experimentg BNL Relativistic Heavy lon CollidefRHIC)  In the pure gauge theory the average Polyakov loop is non-
CERN Large Hadron Collide(LHC)] is that of high tem-  Zero only in the deconfined phase, where the center symme-
peratures and small chemical potential, withT~0.1. This ~ try is spontaneously broken ad)=2k=/3, k=-1,0,1,
method has been already investigated in the strong couplinge-, the Polyakov loop effective potential is flat in the con-
regime[13], in the dimensionally reduced 3D QCD theory fined phase and develops three degenerate minima above the
[14], and in full QCD with two flavors[16]. The Taylor critical temperature. In the presence of dynamical fermions
expansion coefficients can also be measured as derivativ@:ii) enters explicitly the fermionic determinant aZg is
with respect tou at u=0 [5-7]. broken: the effect of the determinant is therefore like that of
Z(V,T,iw,) can also be used to reconstruct the canonicaiin external magnetic field which aligns the Polyakov loop
partition functionZ(V,T,n) at fixed quark numben [21], along(¢)=0. In the high temperature phase thg degen-
i.e., at fixed density: eracy is lifted and ¢)=0 is the true vacuum.

Ul—e Ul (backward temporal link 2)
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FIG. 1. Average value of the Polyakov loop phase as a function _ )
of the imaginary Chemical potential for different Valuesmehe FIG. 2. AVerage Value Of the Ch|ral Condensate as a funCtlon Of
vertical dashed line correspondsde u, /T= /3. the imaginary chemical potential for different values @f The

vertical dashed lines correspond &=, /T=(2k+1)7/3. The
continuous line in the lower picture is the result of a quadratic fit at
When u,#0, what enters the fermionic determinant is small values ofy, obtained a{3=5.10.

P(x)e'?, 6=pu, /T, instead ofP(x). Therefore the determi-

nant now tends to aligf¢)+ 6 along zero, like a magnetic . - )

field pointing in the— @ direction. Hence one expectsh) there_ is a critical valuaw,=0.17 for Whlc_h the theory has a

= — ¢ at low temperatures. At high temperatures the fermi-transition to a spor_ltaneously broken c_hlral symmetry phase:
onic determinant still lifts theZ; degeneracy, but it i that ~We are clearly going through the chiral critical line. The
fixes which is the vacuum. In particular fork{1/2)  Same happens fg8=5.085 atau,=0.22: in this case we
<(3/2m)6<(k+1/2) one expects(¢)~2km/3 and 6 have proceeded further, observing also the transition back to

—(27/3)(k+1/2) should correspond to phase transitions? chirally restored phase afu;~=0.30, which is, correctly,
from oneZ; sector to the other. the symmetric point with respect #= 7/3. At 3=5.10 we

In Fig. 1 we report our results fdip) versus the imagi- N€Ver cross, when moving in, , the chiral critical line, but
nary chemical potential for different values 8f SinceT only RW critical lines[error bars for the determinations at
—1/(N,a) andN,=4 in our case, we havé=4au,. For B=5.10 and on the critical linesd& w/3 and =) are
B=4.94 and 5.01, which are below the critical at ,  Probably underestimatéd _ ,

—0, Bo(m=0)=p.=5.04, one hag ¢)=—0=—4dau, Besides the sets of runs at fix¢gdand variableu,, we
i.e.,(¢) is driven continuously by the fermionic determinant, Nave also performed runs at fixed and variableg to look

For 8=5.10, which is well aboves,, we see that ¢)=0, for other locations of the chiral line in th€-u, plane. In
almost independently o, as long asd< /3, while for ~ €Very case the location of the phase transition has not been
0> /3 there is a sudden change ¢d>):—77}3: we are determined by looking at susceptibilities, since our statistics
clearly crossing the Roberge-Wei¢BW) phase transition for each single run were rgthe.r poor to this dioh the order
from one Z; sector to the other. At intermediate valugs, _Of 1000 molecular dynamics _t|me ur’)lxsk_)ut rather .b_y look-
~5.065 and 5.085(¢)=0 until a critical value ofay, , ing at 'sharp changes of various physical quantities, among
where it starts moving almost linearly wifla, crossing con- which is the chiral conc_;lensate or the Polyakov loop. In ea(_:h
tinuously theZ, boundary: in this case there is no RW phase®3s€ shar_p drops or Jumps have been_ _observ_ed, allowing
transition, but there is anyway a critical value af after quite precise determinations of the transition point and sug-
which <¢; is no more constrained to be0 and changes gesting the first order nature of the phase transition also at

again linearly with#: as we will soon clarify, this critical #1#0. The drop of the condensate is always coincident with

value of u, corresponds to the crossing of the chiral critical f[he sharp Jump of.the Polyakoy loop, alsoat~0, suggest-
line, i.e., the continuation in thd-x, plane of the chiral ing that the coincidence of chiral symmetry restoration and

phase transition deconfinement holds true also at#0. A summary of all

We display our results for the chiral condensate in Fig. 2hcl)_alii)lgelterm|nat|ons of the chiral critical line is reported in
We expect a periodicity with period 23 in terms of 6. S . . . . .
— . o It is interesting to illustrate in more details the determina-
Moreover(¢¢), like the partition function, is an even func- o

X ; : . S n of the end point of the RW critical lineSg
tion of u, : this, combined with the periodicity, leads to sym- =5.0972). We have performed a simulation at exacily
metry around all point®¥=ns/3, with n an integer number

b = /3, starting thermalization from a zero field configura-
for (44) as well as for the partition function itself. F@  tion: we thus drive the system to one side of the RW critical
< B¢ (B=4.94 in the figurg () has a continuous depen- line (assuming that the line is there.e., on the border of
dence orau, with the expected periodicity and symmetries. one Z; sector, since on the $&4 lattice it is already prac-
For B> . the correct periodicity and symmetries are still tically unfeasible to flip through the RW line in a reasonable
observed but the dependence is less trivial. #5.065 simulation time. Let us now consider the baryon density,
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TABLE |. Locations of the chiral critical line. 0.9 0.20
M Be ° oo o] s =
0.8 gog, =2 3
0.00 5.040030) 5@, 0.15
0.10 5.047QL5) a
-3
0.15 5.054015) g 0.7 £
0.1733) 5.0650 'g 0 1°§
0.20 5.076820) E os -l
0.2223) 5.0850 5
0.2617994 5.097@0) £gd, 0.05
05 s ®eete?® 5 O
3
o
(by=(T/V)(d/du)InZ: it is an odd function ofu, sinceZ is ‘ 0.00
an even function. Therefore, for an imaginary chemical po- 507 508 509 5.1 5.1 512 513
tential, (b) is also purely imaginary and an odd function of
wi - This, combined with the periodicity ip , leads to the FIG. 4. Chiral condensat@vhite circles and absolute value of

expectation thath) (6= 7/37) = —(b)(6= m3"%). Lastrela-  he polyakov loop(black circles as a function ofg for 6= /3.

tion clearly implies thatb)=0 at = /3, unless(b) is not  The sharp changes of the two quantities coincide with the location
continuous on that point. Thus a nonzero valugof at 6 of the end point of the RW critical line.

=7/3" implies the presence of the Roberge-Weiss critical

line. On the right-hand side of Fig. 3 the imaginary part of at the transition points suggest that the chiral critical line is

(b) at6=m/3" is plotted as a function g8: one can clearly also first order aju,#0, so that we expect all regions to be
see a transition from a zero to a nonzero expectation Va|UQ,epareted by first order critical lines.

which permits the determination ¢#c. We have verified
that atBg also the chiral condensate and the Polyakov loop
have a sharp change, as we show in Fig. 4, and this implie
that at this point, fo= /3, we also meet the chiral critical
line, so that the RW critical line ends on the chiral critical  We will concern ourselves with the properties of the criti-
line. On the left-hand side of Fig. 3 we present instead theal line, as well as with the. dependence of a number of
imaginary part ofb) as a function ofu, for different values  physical observables. To this end one needs to analytically
of B<Bg: in this caseb) is always zero and continuous at continue the results from purely imaginary to real chemical
0= /3, but it is interesting to note how it starts developing potential: generically speaking, one deals with a function of
the discontinuity ag3— Be . a purely imaginary variable, continues it to the entire com-
We present in Fig5 a sketch of the phase diagram in the plex plane, and finally takes the limét—0 of f(x+ie), X,
B-u plane, as emerges from our data and by exploiting theand e being real variables. General arguments guarantee that
above-mentioned symmetries. We can distinguish a regiothe analytical continuation is unique in the analyticity do-
where chiral symmetry is spontaneously brokiewlicated as  main of the function. In practicé(x) is unknown and has to
IV in the figurg and three regiongl, Il, and Ill), which  be approximated by some series expansion or suitable
correspond to differenZ; sectors and repeat periodically,
where chiral symmetry is restored. The chiral critical line  5.20
separates region IV from other regions, while the RW critical
lines separate regions |, I, and Il among themselves. As we 5.16
have noticed above, the sharp drops of the chiral condensat

V. FROM IMAGINARY TO REAL u AND THE CRITICAL
LINE IN THE T,u? PLANE

5.12
. . . . - - Be
0.08 o epast P B 508
0.07 00 B=5.01 ]
0.05 j}T v — v B=5.085 | /T ]
b 1 | o4
gg; . / : { ] * 5.00 | 1\ i
002}/ g ] ]
0.01 / i 4.96
- éﬂﬂ 3 -0.5 0.0 0.5 1.0 15
0009 % g O~ -0 o = sEe*EN ap
-0.01

00 02 04 06 08 507 508 509 510 511 512 ] ]
ap, B FIG. 5. A sketch of the phase diagram in the-B plane. The

filled circles represent direct determinations of the chiral critical

FIG. 3. Imaginary part of the barion density as a functionupf line location from our simulations. The rest of the chiral line has

for different values ofg (left-hand sidg and as a function oB at been obtained by interpolation and by exploiting the symmetries of
0=, /T=x/3" (right-hand sidg the partition function.
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ansatz. In either case, one has to pay attention to the fact thditroken at strong coupling, produce Goldstone particles and

by modifying the original expression by a nonleading term,dynamical mass generation. As such, the Gross-Neveu model

the difference in physical quantities is still nonleading. This(as well as some other four fermion modetsan provide

can be complicated, and often mathematical arguments neestme guidance to the understanding of the QCD critical be-

to be supplemented by some physical insig28], even in  havior (see, e.g., Ref§29-31).

relatively simple casef24]. The critical line for the three-dimensional Gross-Neveu
The critical line itself can be analytically continued from model was calculated in Rdi32] and reads

an imaginary to real chemical potential: a nice argument to-

gether with an application to the two flavor model has been 1-pl3o=2T/3gIn(1+e #T), (6

given in[16]. The analytical continuation of the critical line

is easily discussed by considering tii.), an even func- WhereX is the order parameter in the normal phase. Setting

tion of u, is real valuedfor either real and purely imaginary ~#=0 in the above equation gives the critical temperature at

w: for real u, the imaginary part of the determinant cancelszero chemical potentiall(u=0)=2/2In2=0.72Z,,.

out in the statistical ensemble, and it is even possible to Expanding now In(e™)=In 2—3x+2x? and eliminat-

cancel it exactly on a finite number of configurations bying % in favor of T., we get

considering the appropriate symmetry transformation

[25,26]; for an imaginary chemical potential, the determinant (T—1/2T )%+ u?/(8 In2)=T4. (7
itself is real, yielding automatically a real partition function.
For a complexu, Z(u) is, in general, complex. It is easy to check that this expression approximates very

We can map the complep plane onto the complex®  well the exact result6), so that a second order expression in
plane, and consideZ(x?) (on a finite lattice this is an exact 4 is a good approximation to the critical line in this model.
polynomia). Then,Z is real valued on the real? axis, com-
plex elsewhere: the situation is analogous to, e.g., the parti-
tion function as a function of a magnetic field, which be-
comes complex as soon as the external field becomes As itis well known(see, e.g.[33)), there is a remarkable
complex, and the physical domaireal partition functiopis  relation between the symmetry breaking classes of QCD and
associated with real values of the couplings. The critical bethe classification of chiral random matrix ensembles.
havior of the system is then dictated by the zeroes of the For QCD with fermions in the complex representation
partition function (Lee-Yang zeroesin the complexu?  (i.€., N;>2, fundamental fermionswith a pattern of SSB
plane. The locus of the Lee-Yang zeroes is thought to b&U(N)g<X SU(N¢) —SU(Ns), the corresponding RMT is
associated with a general surface of phase separfign  chiral unitary with the Dyson inde3=2. On the lattice,
and phase transition points, for each value of the temperestaggered fermions have unusual patterng8B: all real
ture, are associated with the Lee-Yang edge building up iand pseudoreal representations are swapped. However, for
the infinite volume limit, thus defining a curve in tlepu®  complex representations, the corresponding RMT ensemble
plane. remains chiral unitary33]. The critical line in theT, u plane

This simple reasoning shows that it is sensible to think offor this ensemble derived in R€f34],
the critical line as asmoothfunction T(x?), making the 9. 13, 2 2
analytic continuation from positive to negative’ values (uo+ T+ p"=T°=0, ®
very natural. Indeed, experience with statistical models ] . ) )
shows that not only the critical line, but also the critical IS thus valid both on the lattice and in the continuum. Ex-
exponents, are smooth functions of the couplif2f (aside, ~Panding it toO(x?) we obtain
of course, from end points, bifurcation points, gtélence,
they can be safely expanded, either via Taylor expansion or a T?=T2-3u? 9
suitable ansatz. In particulamﬁ=0 has no special character:
it is just the point where the Lee-Yang edge hits the real axignd by comparison with the exact resi}, we note that this
whereT=T.. expression describes well the critical line basically till its end

Clearly the analytic continuation from imaginary chemi- point.
cal potential is practical when the critical line is smooth, and
a few coefficients suffice to describe it. It is then of some
interest to discuss examples whose critical lines are exactly
computable: we will indeed find that a second order expres-
sion in T and u well approximates the critical linever a In Sec. lll we have presented our measurements of the
large w interval critical points in the temperature-imaginary chemical poten-
tial plane, see again Table I. Here we use those data to re-
construct the critical line for the real chemical potential. We
used both leask? and least squares fits to a second order

The Gross-Neveu model in three dimensions is interactpolynomial, and we studied the effect of a fourth order term.
ing, renormalizable and can be chosen with the same global A significant sample of the results of the legdtand least
symmetries as those of QCD which, when spontaneouslgquares fits to a second order polynomials

B. Random matrix theories

V. THE CRITICAL LINE FOR THE FOUR
FLAVOR MODEL

A. The Gross-Neveu model
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TABLE Il. Results of leasty? quadratic fits to the critical line. 5.15 1 T T T
Discardedu a b x>/ dof 5.1 ""A""”Im J
),
0.00 5.0352) 1.01474) 2.67 By, Iy
0.10 5.0343) 1.02490) 2.98 505 - "y, " 1
0.15 5.0381) 0.95430) 0.49 A gy, "
0.175 5.0363) 0.98477) 3.49 5r lll|||| o
0.20 5.0363) 0.97777) 3.33 ""“""IIIIH<>
I
0.22 50313  0.926117) 3.09 495 m"‘iiiiii‘i;
[
4.9 1 1 1
5 -0.05 0 0.05 01
Be(pn)=a+bu (10 2
are collected in Table Il and Table III. FIG. 6. The critical line of four flavor QCqu:OOS, in the

The weight of each data point for the least square fits ig”, £ plane. The dotted lines show the range of the results of the
zero or one, i.e., we either include or discard it, and thefuadratic fits described in the text. The triangles are our results for
quality of our fits—for differentu ranges as indicated in the thg critical coupling from Table I..The results by Fodor and Katz
tables—is measured by the squared sum of residuals, to @iamonds are plotted for comparison.
compared with= (A 8)2. Some of the fit§whose results are
omitted included a linear term, and we confirm that it is same four flavor model and with the same quark nrags
compatible with zero, as it should be on symmetry grounds=0.05. Obviously our results, being uncorrelated, look less
The leasty? fits have been performed by discarding oneregular.

point at a time. The line obtained via improved reweighting changes con-
From the least square polynomial fits we obtain cavity aroundu=0.4. This is not easy to understand from a
physical point of view, but, from a purely numerical perspec-

BC:5_035{2)+0_94(7)M§ (11 tive, this behavior could be reproduced by a negative fourth

order coefficient in the expansion of the critical line. It would
then be desirable to place at least bounds on the coefficient
of the fourth order term, but, on the other hand, as the qua-
dratic fits are satisfactory, this is not an easy task. To get a
feeling of the effect of a fourth order term we constrained the
constant and the second order term to leave the fourth order

efficient as a variable. The results are given in Fig. 7.

The solid line corresponds to the result of a second order
it up to ©«=0.2. The dotted line is the correction to that
esult induced by a fourth order correction, which is very
small. More sizable corrections are induced by constraining

and from the minimurmy? polynomial fits:
Bc=5.0362)(2)+0.983)(6) u?. (12

The central values are the average of the results. The fir
error is the mearfabsolute deviation, the second one is the
maximum error measured in individual fits. We combine all

of these estimates to quote as our final result for the critica]fl
line in lattice units:

B=5.0373)+0.96 10) 2+ O(u?). (13)

5.3 T T T T T T ﬂ_ﬁ 69 5 |
52 =P 00uE 105Ut - ]

The continuation to the real chemical potential is shown
in Fig. 6. The dotted lines are drawn in correspondence of .1 Fodor - Katz +=&—t
the central values of the fit parametéis) plus and minus
the quoted errors. The dispersion remains reasonable in a fai
interval of chemical potentialg{= 0.2 corresponds, roughly,
to a baryochemical potential of about 370 MeV giaet 0.3
to about 516 MeV. Moreover, in the same interval, we note
a nice agreement between our results and those obtained b 4, L
Fodor and Katz via their improved reweightif§g] in the

4-6 1 1 1 1 1 1 1 | 1

0 005 01 015 02 025 03 035 04 045 0.5

TABLE Ill. Results of the least squares quadratic fits to the @
critical line.
FIG. 7. O(u*) effects on the critical line of four flavor QCD.
u range a b SSR SAB2 The solid line shows the results of a second order fit, and the thin
dotted line the results of a fourth order fit with the first and second
pl [0:0.17 5.0392) 0.7912) 1.4e-05 8<10°° order coefficients constrained to their central values. The upper

p2 [0:0.20 5.03§2) 0.9010) 2.8e-05 1.x10° (lower) thick dotted line shows the results of a fourth order fit with

p3 [0:0.22 5.0382) 0.947) 3.1e-05 1.x10° the second coefficent constrained to its best value (@hisus its
error. See text for details.
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FIG. 8. The critical line of four flavor QCD, witm,=0.05. The FIG. 9. Scale invariant plot for the QCD critical line at high
result and the error band are frofi=5.037(3 1 0.96(10)x? con- temperature from the imaginary chemical potential. Results for two
verted to physical units. The resultentral ling is well approxi-  flavors of staggered fermior{solid line) are from de Forcrand and
mated byT=T, \/[l—(0.021/2)(u2/T§). Philipsen. The four flavor critical linédotted lies consistently be-

low the two flavor one, the effect growing larger at larger density.

the second order coefficient to its extreme valag inferred B .
from the error bansand then fitting the fourth order term as ~_ The results by de Forcrand and Philipgé] combined
a free parameter. with ours a!lovv_ an asses_sm_ent of the f_Iavor_ dependence of

From Figs. 6 and 7 we conclude that the imaginarythe crltlc_al I|n.e in QCD: this is done in Fig. 9 in the form of
chemical potential approach provides a safe estimate for th@ Scale invariant plot. We omit the error bars for the sake of
critical line up tou=0.3 (corresponding to a baryochemical clarity, and just remind the reader that the errors—both for
potential of about 500 Melbefore losing accuracy, and that the two and the four flavor model—are reasonably small up
within this interval the imaginary chemical potential and re-0 #g=500 MeV. We see that the transition in four flavor
weighting give consistent resullts for the critical line. The lossQCD lies consistently below that of the two flavor theory,
of accuracy for the imaginary chemical potential results isanq that this eﬁgct increases Wllth increasing density. It looks
mostly due to the influence of the fourth order term: weas if the production of real fermions further favors the phase
emphasize anyway that the results obtained with a fourtfifansition, which is indeed the expected behavawe, e.g.,
order term are much less accurate; however, they are consis36)-
tent with the ones coming from a second order polynomial.
To reduce the error band we would need better data for the VI. CHIRAL CONDENSATE
critical line at the imaginary chemical potential.

To convert to physical units we need the lattice spacing as
a function of the coupling. We used as an input the lattic
spacing measured g@8=5.10 [35] to fix the scale in the
two-loop B function. We have verified that the ratig,¢,5Of
the scales taken at the two extrema of the interval of interest ~
[5.04:5.1Q measured in35] agrees within a few percent
with the ratior ., coming from the two-loops function. Z:E e (15)
Clearly the uncertainty induced by the interpolation and/or
by the choice of theB used as an input is less than the
numerical errors on the lattice results.

Taylor expansion and Fourier decomposition are natural
arametrizations for our observables. In particular, the analy-
sis of the phase diagram in the temperature-imaginary
chemical potential plane suggests we use Fourier analysis for

T.. Moreover, the fugacity expansion

hints that this would be easier in the cold phase, at stronger

In Fig. 8 the external band shows the results of the con0UPIiNg, where a few coefficients might suffice. At high

version to physical units by use of the two-logpfunction, temperature, in the we_zak coupling regi_me, on the othe_r hand,
: . . rperturbatmn theory might serve as guidance, suggesting that

the first few terms of the Taylor expansion might be adequate
in a wider range of chemical potentials.
As the chiral condensate is an even function of the chemi-

In the same plot we draw the ellipse arc

T= \/(Tﬁ—k,uz), (14 cal potential, its Fourier decomposition reads
which turns out to be a nice approximation to the data in <Z¢>=z aﬁ cognNNu)), (16)
n

physical units, withk=0.021[this is just the result of the fit

in the interval(0:400 MeV) to the central values of our criti-

cal line]. Other functional forms would work as well, and, in Which is easily continued to the real chemical potential
particular, the parabolaﬂ':Tc(l—O.SkMz/Tﬁ) obviously

provides a gozod approximation to the data, given the small- (lﬁlﬂ):E aE cosHnNN:Nr)- (17)
ness of k/T.)~. n
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TABLE IV. Fourier coefficients for the chiral condensate. The  TABLE V. Coefficients of a polynomial fit for the chiral con-
constant and the first coefficient are satisfactorily determined fodensatef (x) =a§ — 72a5x%+ 864a;x*.

T<Tg.
B ah ab ah x?/dof
B ag af a5 x?/dof
5.03 0.90%2) —0.0272400 —0.026170) 1.17
5.03 0.9311) —0.025122) 0 131 5.01 0.9681) —-0.01%3) —0.0094) 1.03
5.03 0.9302) —0.023@26) —0.003426) 1.15 5.10 0.3721) -0.019 (1) 0 1.03
5.01 0.9741) —0.01089) 0 0.87
5.01 0.9741) —0.0107100 —0.0003(12) 0.98 tential for 3=5.01 andB=5.03, using Eq(17) for both one
and two cosine fits. We show the error band induced by the
5.10 0.3961) —0.0241) 0 1.22294  fits with a cos(24) term in the large chemical potential
5.10 0.4044) -0.396) 0.0073) 0.96 range. The symbolériangles and squargare instead plot-

ted only in the broken phase, i.e., fo< u.(B) (see next the
section for more on this point

In our Fourier analysis of the chiral condensate results we We have checked that the analytic continuation to the real
limit ourselves ton=0,1,2 and we assess the validity of the chemical potential of the results of the polynomial fits:
fits via both the value of thg? and the stability off, anda’]
given by one and two cosine fits. We summarize the resul_ts (Z¢>=a§+72azp,u2+864ai,u4 (19)
of the Fourier analysis of the chiral condensate results in

Table IV. . ) )
The Fourier analysis turns out to be satisfactorygat 'S affected by comparable, if not smaller, systematic errors as

—5.01 and8=5.03 where—as discussed in Sec. Il andthe ones observed with the Fourier pqrametrization.
shown in Fig. 2—the chiral condensate is a continuous func- AS & final comment on the polynomial fit results, we con-
tion of 8. One cosine fit is actually enough to describe ourSider the temperature dependencedf The Maxwell rela-
data at=5.01 and8=5.03, with the current statistical ac- 10N

curacy: adding a term co{\.w)=cos(24.) in the expan-

sion does not modify the value of the coefficieafsanda , ddg i)
and does not particularly improve th@. The term cos(24) om
is needed anyway in order to assess the errors on the analytic

continuation to reaug, as we will discuss below. P. ) . )
At 8=5.10(in the fits we discarded, of course, the points shows thagy, is proportional to the derivative with respect to

corresponding to the RW discontinuitwe know (see again the quark mass of the quark number susceptibility taking
Sec. IIl and Fig. 2that the periodicity is no longer smooth. the p derivative of either sides of the relation abovéhe
Indeed, the values of the first two Fourier coefficients dependieSults of the polynomail fits suggest that such derivatives—in
on the type of the fittwo or three parameters lattice units—do not change much with temperature, in con-

Next, we have considered polynomial fits. In these fits wdrast with the quark number susceptibility itself: in fact, the
exploited the symmetries and the periodicity of the model to

" (20)

improve the statistical accuracy: all of the results were trans- 1 T ' T ' ' F=501 o
lated, or symmetrized, to the first half period. For a quick 0.98 B=503 o]
comparison with the Fourier analysis we use a polynomial fit 0.9 U Mg - . - - -]
of the form 0.94 - ot
0.92 SN EFDDGD -
— 7 & T ]

(yp) =2 — 7285 u+ 86485 ", (18 <YL ReRrigie N

0.88
0.86

When one cosine fit is adequate, the Taylor expansion would 084

give aj=af+a], andab=a}. At =5.01 andg=5.03

L. o . 0.82 E
this is indeed the case, within our largish errors. Bor 08 , . . . . , . , ,
=5.10 a second order Taylor expansion is adequatg at 0 002 004 006 008 01 012 014 016 018
< 0.2, while a fourth order term does not substantially im- #

prove the behavior. As discussed above, the quality of the £ 10, The analytic continuation to a real chemical potential
polynomial fits should improve at higher temperature, closepy the chiral condensate: the large bands are the error bands asso-
to the perturbative regime, where a second order polynomigliated with the second Fourier coefficient. The symbols—triangles
should become exact. Results for the polynomial fits are coland squares—are printed only in the broken phase, fo(smaller
lected in Table V. error9 and two(larger error Fourier coefficient results. The criti-

We can now continue the results of the Fourier analysis t@al chemical potential—where the symbols stop—has been inferred
a real chemical potential. Figure 10 shows the behavior ofrom Fig. 8 and related discussions. The results are consistent with
the chiral condensate as a function of the real chemical paa first order chiral transition.
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results for the number densifye postpone a discussion of B.=5.03713)—0.96/10) u?+ O(u*), (24)
thermodynamics to another publication and we just quote the
central valuesare which, in physical units, is well described by
Jo=0.055u+1.30u?, 21
0=0.055:+1.30 @) To(w) = V(T2(0) ~ 0.0237) (25)
Jo=0.073u+ 1.44u3, 22 .
0 3 u 22 or, equivalently, by
Jo=0.45%+1.39° (23
0.021 ,
at 3=5.01,5.03,5.10 from top to bottom. The coefficient of Te(m)=Tc(0)| 1~ 272(0) M (26)
C

the first term is the quark number susceptibility in lattice

units, which increases rapidly in the plasma phase as it ) _ ) )
should. over a large interval of chemical potentials. It is of some

interest to notice that this feature is also observed in simple
models, where we have found that the critical line is well
approximated by a second order polynomial ugute T .

We have discussed in Sec. Il the interrelation between the We have found a good agreement with the results by
chiral condensate and the Polyakov loop at least uptto Fodor and Kat£8] up to x=400 MeV. Our results are still
=0.2. Obviously, the observed correlation holds true at thecompatible with theirs, within largish errors, up ta
real chemical potential as well: we can consider the differ-=500 MeV. Beyond that value gi our results do not have
ence between the critical coupling for the chiral condensatenuch statistical significance and a comparison is no longer
and the Polyakov loop8X(u)— BF(w). Our results suggest meaningful. We emphasize that the main source of uncer-
that ,BQ((M)—,BE(M)ZO at imaginaryu in a nonzero inter- tainty on our results is statistical, and it is associated with a
val. It should then remain zero also at the real chemicaPo0r knowledge of the fourth order coefficient, which ap-
potential. We can then conclude that, within the present acP€ars to be very small.
curacy, the near coincidence of the chiral and deconfining We have studied the flavor dependence of the results by

transitions persists at nonzero baryon density in a four flavofomparing our findings for the critical line of four flavor
model. QCD with those obtained by de Forcrand and Philipisks]

As for the order of the phase transition, let us considefn the two flavor model, and found it to be what is expected
again Fig. 10 where, together with the error band in a largeP" pPhysical grounds. . N
o intervaL we have p|0tted, as triang|es and squares, the We have studied the character of the chiral transition. We
results from one and two cosine fits, far< w.(5), inferred have found indications that it remains correlated with the
from the results of Sec. Il above. The behavior shown infransition associated with the Polyakov loop. The depen-
Fig. 10 is then consistent with a first order transition. dence of the chiral condensate on the chemical potential is
consistent with a first order transition.

VII. NATURE OF THE CHIRAL PHASE TRANSITION

VIlIl. SUMMARY
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