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Finite density QCD via an imaginary chemical potential

Massimo D’Elia*
Dipartimento di Fisica dell’Universita` di Genova and INFN, I-16146, Genova, Italy

Maria-Paola Lombardo†

INFN, Sezione di Padova, and Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
~Received 2 October 2002; published 28 January 2003!

We study QCD at nonzero temperature and baryon density in the framework of the analytic continuation
from an imaginary chemical potential. We carry out simulations of QCD with four flavors of staggered
fermions, and reconstruct the phase diagram in the temperature-imaginarym plane. We considerAnsätze for
the analytic continuation of the critical line and other observables motivated both by theoretical considerations
and mean field calculations in four fermion models and random matrix theory. We determine the critical line,
and the analytic continuation of the chiral condensate, up tomB.500 MeV. The results are in qualitative
agreement with the predictions of model field theories, and consistent with a first order chiral transition. The
correlation between the chiral transition and the deconfinement transition observed atm50 persists at nonzero
density.
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I. INTRODUCTION

QCD at finite temperature and density is of fundamen
importance, both on purely theoretical and phenomenolo
cal grounds. At high temperature asymptotic freedom w
produce deconfinement and chiral symmetry restoration
high density a richer phase structure and new phenom
have been predicted@1#. In principle, the lattice formulation
provides a rigorous framework for the study of such ph
nomena. In practice, however, the lattice regularization
usually combined with importance sampling, which cann
be naively applied at nonzero baryon density, where
quark determinant becomes complex@2#.

It has been recently realized@3# that this problem can be
circumvented in the highT, low m part of the QCD phase
diagram where one can take advantage of physical fluc
tions@4#. Interesting physical information can be obtained
computing the derivatives with respect tom at zero chemical
potential and high temperature@5–7#. Fodor and Katz pro-
posed an improved reweighting and applied it to the study
the four @8# and two plus one flavor model@9#. In Refs.
@10–12# the imaginary chemical potential approach was
vocated and exploited in connection with the canonical f
malism. In Ref.@13# it was proposed that the analytic co
tinuation from an imaginary chemical potential could
practical at high temperature, and the idea was tested in
infinite coupling limit. In Refs.@14,15# the method was ap
plied successfully to the dimensionally reduced model.
Ref. @16# it was proposed that the critical line itself can b
analytically continued and results for two flavors of sta
gered fermions were presented.

In this work we study QCD with four flavors of staggere
fermions within the imaginary chemical potential approa
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Some of the results presented here have been prelimin
reported in@17#.

In the next section we review the formalism and t
method. In Sec. III we reconstruct the phase diagram in
temperature-imaginary chemical potential plane. This is
interesting physical question by itself; it is a mandatory s
toward the reconstruction of the phase diagram for r
chemical potential, and provides some guidance for the a
lytic continuation. In Sec. IV we discuss a few aspects of
analytic continuation and offer two examples from mod
field theories: we will note there that by consideringm2

rather thanm, an analogy can be made between QCD
finite baryon density and ordinary statistical systems in
ternal fields. The remaining part of the paper is devoted
numerical results at nonzero baryon density. The critical l
is presented in Sec. V, including a first assessment of
dependence on the number of flavors obtained combining
results by de Forcrand and Philipsen@16# with ours, and a
cross-check with the four flavor results by Fodor and K
@9#. The results for the chiral condensate are presente
Sec. VI. In Sec. VII we discuss the nature of the chiral tra
sition. Finally in Sec. VIII we summarize our results an
give our conclusions.

II. FORMALISM AND METHOD

In the following we will briefly review the formulation of
lattice QCD with a nonzero chemical potentialm and the
possible uses of working with a purely imaginarym. The
zero density QCD partition function, Z(V,T)
5Tr(e2HQCD/T), with HQCD the QCD Hamiltonian, can be
discretized on a Euclidean lattice with a finite temporal e
tent t51/T:

Z5E ~DUDcDc̄ !e2bSG[U]e2SF[U,c,c̄]

5E ~DU !e2bSG[U]detM @U#, ~1!
©2003 The American Physical Society05-1
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whereU are the gauge link variables,c and c̄ are the fer-
mionic variables,SG is the pure gauge action andSF is the
fermionic action which can be expressed in terms of the
mionic matrixM @U#, SF5c̄M @U#c.

To describe QCD at finite density the grand canoni
partition function, Z(V,T,m)5Tr(e2(HQCD2mN) /T), where
N5*d3xc†c is the quark number operator, can be used. T
correct way to introduce a finite chemical potentialm on the
lattice @2# is to modify the temporal links appearing in th
integrand in Eq.~1! as follows:

Ut→eamUt ~ forward temporal link!,

Ut
†→e2amUt

† ~backward temporal link!, ~2!

where a is the lattice spacing.SG is left invariant by this
transformation but detM @U# gets a complex phase whic
makes importance sampling, and therefore standard la
Monte Carlo simulations, unfeasible.

The situation is different when the chemical potential
purely imaginary: Ut→eiam IUt , Ut

†→e2 iam IUt
† . This is

like adding a constantU(1) background field to the origina
theory; detM @U# is again real and positive and simulatio
are as easy as atm50. The question then arises how sim
lations at imaginary chemical potential may be of any help
get physical insight in finite density QCD.

One possibility is analytic continuation, which should
practical at relatively high temperature@13#. Z(V,T,m) is
expected to be an analytical even function ofm away from
phase transitions. For small enoughm one can write

logZ~m!5a01a2m21a4m41O~m6!, ~3!

logZ~m I !5a02a2m I
21a4m I

41O~m I
6!. ~4!

Simulations at smallm I will thus allow a determination of
the expansion coefficients for the free energy and, an
gously, for other physical quantities, which can be cro
checked with those obtained by reweighting techniques~see
@18–20# for further material on the reweighting approach!.
This method is expected to be useful in the high tempera
regime, where the first coefficients should be sensibly dif
ent from zero; moreover, the region of interest for pres
experiments@BNL Relativistic Heavy Ion Collider~RHIC!
CERN Large Hadron Collider~LHC!# is that of high tem-
peratures and small chemical potential, withm/T;0.1. This
method has been already investigated in the strong coup
regime @13#, in the dimensionally reduced 3D QCD theo
@14#, and in full QCD with two flavors@16#. The Taylor
expansion coefficients can also be measured as deriva
with respect tom at m50 @5–7#.

Z(V,T,im I) can also be used to reconstruct the canon
partition functionZ(V,T,n) at fixed quark numbern @21#,
i.e., at fixed density:
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Z~V,T,n!5Tr~e2HQCD/Td~N2n!!

5
1

2p
TrS e2HQCD/TE

0

2p

dueiu(N2n)D
5

1

2pE0

2p

due2 iunZ~V,T,iuT!. ~5!

As n grows, the factore2 iun oscillates more and more rap
idly and the error in the numerical integration grows exp
nentially with n: this makes the application of the metho
difficult, especially at low temperatures, whereZ(V,T,im I)
depends very weakly onm I . The method has been applied
QCD @11# and in the 2D Hubbard model@10,12#, where
Z(V,T,n) has been reconstructed up ton56 @12#.

The study of the phase structure of QCD in theT-im I
plane is also interesting on its own, as we will discuss in
next section, and will help us understand the ranges of
plicability of analytic continuation.

Results reported in the present paper refer to QCD w
four degenerate staggered flavors of bare massmq50.05 on
a 16434 lattice, where the phase transition is expected a
critical couplingbc.5.04 @22#. The standard hybrid Monte
Carlo ~HMC! algorithm has been used.

III. THE PHASE DIAGRAM IN THE IMAGINARY
µ-TEMPERATURE SPACE

Let us write Z(u)[Z(V,T,iuT)5Tr(eiuNe2HQCD/T).
SinceN is a number operator,Z(u) is clearly periodic inu
with period 2p; moreover, a period 2p/3 is expected in the
confined phase, where only physical states with anN mul-
tiple of 3 are present. However, it has been shown by R
erge and Weiss@21# that Z(u) is always periodic 2p/3, for
any physical temperature, and that the only difference
tween the lowT and the highT phase should be a smooth
analytic periodic behavior at lowT, as predicted from a
strong coupling calculation, and a nonanalytic periodic b
havior at high T with discontinuities in the first derivatives
the free energy atu5(2p/3)(k11/2), as predicted from a
weak coupling calculation. This suggests a very interest
scenario for the phase diagram of QCD in theT-im I plane
which needs confirmation by lattice calculations.

In order to get more insight into the phase structure of
theory, it is very useful to consider the phase of the trace
the Polyakov loop P(xW ). Let us parametrizeP(xW )
[uP(xW )ueif, and let^f& be the average value of the phas
In the pure gauge theory the average Polyakov loop is n
zero only in the deconfined phase, where the center sym
try is spontaneously broken and^f&52kp/3, k521,0,1,
i.e., the Polyakov loop effective potential is flat in the co
fined phase and develops three degenerate minima abov
critical temperature. In the presence of dynamical fermio
P(xW ) enters explicitly the fermionic determinant andZ3 is
broken: the effect of the determinant is therefore like that
an external magnetic field which aligns the Polyakov lo
along ^f&50. In the high temperature phase theZ3 degen-
eracy is lifted and̂ f&50 is the true vacuum.
5-2
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When m I5” 0, what enters the fermionic determinant
P(xW )eiu, u[m I /T, instead ofP(xW ). Therefore the determi
nant now tends to align̂f&1u along zero, like a magnetic
field pointing in the2u direction. Hence one expects^f&
52u at low temperatures. At high temperatures the ferm
onic determinant still lifts theZ3 degeneracy, but it isu that
fixes which is the vacuum. In particular for (k21/2)
,(3/2p)u,(k11/2) one expects^f&;2kp/3 and u
5(2p/3)(k11/2) should correspond to phase transitio
from oneZ3 sector to the other.

In Fig. 1 we report our results for̂f& versus the imagi-
nary chemical potential for different values ofb. SinceT
51/(Nta) and Nt54 in our case, we haveu54am I . For
b54.94 and 5.01, which are below the criticalb at m I
50, bc(m I50)[bc.5.04, one haŝ f&.2u524am I ,
i.e., ^f& is driven continuously by the fermionic determinan
For b55.10, which is well abovebc , we see that̂f&.0,
almost independently ofm I , as long asu,p/3, while for
u.p/3 there is a sudden change to^f&.2p/3: we are
clearly crossing the Roberge-Weiss~RW! phase transition
from oneZ3 sector to the other. At intermediate values,b
55.065 and 5.085,̂f&.0 until a critical value ofam I ,
where it starts moving almost linearly withm I crossing con-
tinuously theZ3 boundary: in this case there is no RW pha
transition, but there is anyway a critical value ofm I after
which ^f& is no more constrained to be.0 and changes
again linearly withu: as we will soon clarify, this critical
value ofm I corresponds to the crossing of the chiral critic
line, i.e., the continuation in theT-m I plane of the chiral
phase transition.

We display our results for the chiral condensate in Fig
We expect a periodicity with period 2p/3 in terms ofu.
Moreover,^c̄c&, like the partition function, is an even func
tion of m I : this, combined with the periodicity, leads to sym
metry around all pointsu5np/3, with n an integer number
for ^c̄c& as well as for the partition function itself. Forb
,bc (b54.94 in the figure!, ^c̄c& has a continuous depen
dence onam I with the expected periodicity and symmetrie
For b.bc the correct periodicity and symmetries are s
observed but the dependence is less trivial. Atb55.065

FIG. 1. Average value of the Polyakov loop phase as a func
of the imaginary chemical potential for different values ofb. The
vertical dashed line corresponds tou5m I /T5p/3.
01450
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there is a critical valueam I.0.17 for which the theory has a
transition to a spontaneously broken chiral symmetry pha
we are clearly going through the chiral critical line. Th
same happens forb55.085 atam I.0.22: in this case we
have proceeded further, observing also the transition bac
a chirally restored phase atam I.0.30, which is, correctly,
the symmetric point with respect tou5p/3. At b55.10 we
never cross, when moving inm I , the chiral critical line, but
only RW critical lines@error bars for the determinations a
b55.10 and on the critical lines (u5p/3 and u5p) are
probably underestimated#.

Besides the sets of runs at fixedb and variablem I , we
have also performed runs at fixedm I and variableb to look
for other locations of the chiral line in theT-m I plane. In
every case the location of the phase transition has not b
determined by looking at susceptibilities, since our statis
for each single run were rather poor to this aim~of the order
of 1000 molecular dynamics time units!, but rather by look-
ing at sharp changes of various physical quantities, am
which is the chiral condensate or the Polyakov loop. In ea
case sharp drops or jumps have been observed, allow
quite precise determinations of the transition point and s
gesting the first order nature of the phase transition als
m I5” 0. The drop of the condensate is always coincident w
the sharp jump of the Polyakov loop, also atm I5” 0, suggest-
ing that the coincidence of chiral symmetry restoration a
deconfinement holds true also atm I5” 0. A summary of all
our determinations of the chiral critical line is reported
Table I.

It is interesting to illustrate in more details the determin
tion of the end point of the RW critical line,bE
55.097(2). We have performed a simulation at exactlyu
5p/3, starting thermalization from a zero field configur
tion: we thus drive the system to one side of the RW criti
line ~assuming that the line is there!, i.e., on the border of
oneZ3 sector, since on the 16334 lattice it is already prac-
tically unfeasible to flip through the RW line in a reasonab
simulation time. Let us now consider the baryon dens

n
FIG. 2. Average value of the chiral condensate as a function

the imaginary chemical potential for different values ofb. The
vertical dashed lines correspond tou5m I /T5(2k11)p/3. The
continuous line in the lower picture is the result of a quadratic fi
small values ofam I obtained atb55.10.
5-3
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^b&5(T/V)(]/]m)ln Z: it is an odd function ofm, sinceZ is
an even function. Therefore, for an imaginary chemical
tential, ^b& is also purely imaginary and an odd function
m I . This, combined with the periodicity inm I , leads to the
expectation that̂b&(u5p/32)52^b&(u5p/31). Last rela-
tion clearly implies that̂ b&50 atu5p/3, unlesŝ b& is not
continuous on that point. Thus a nonzero value of^b& at u
5p/32 implies the presence of the Roberge-Weiss criti
line. On the right-hand side of Fig. 3 the imaginary part
^b& at u5p/32 is plotted as a function ofb: one can clearly
see a transition from a zero to a nonzero expectation va
which permits the determination ofbE . We have verified
that atbE also the chiral condensate and the Polyakov lo
have a sharp change, as we show in Fig. 4, and this imp
that at this point, foru5p/3, we also meet the chiral critica
line, so that the RW critical line ends on the chiral critic
line. On the left-hand side of Fig. 3 we present instead
imaginary part of̂ b& as a function ofm I for different values
of b,bE : in this casê b& is always zero and continuous
u5p/3, but it is interesting to note how it starts developi
the discontinuity asb→bE .

We present in Fig. 5 a sketch of the phase diagram in t
b-m I plane, as emerges from our data and by exploiting
above-mentioned symmetries. We can distinguish a reg
where chiral symmetry is spontaneously broken~indicated as
IV in the figure! and three regions~I, II, and III!, which
correspond to differentZ3 sectors and repeat periodicall
where chiral symmetry is restored. The chiral critical li
separates region IV from other regions, while the RW criti
lines separate regions I, II, and III among themselves. As
have noticed above, the sharp drops of the chiral conden

TABLE I. Locations of the chiral critical line.

m I bc

0.00 5.0400~30!

0.10 5.0470~15!

0.15 5.0540~15!

0.173~3! 5.0650
0.20 5.0765~20!

0.222~3! 5.0850
0.2617994 5.0970~20!

FIG. 3. Imaginary part of the barion density as a function ofm I

for different values ofb ~left-hand side!, and as a function ofb at
u5m I /T5p/32 ~right-hand side!.
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at the transition points suggest that the chiral critical line
also first order atm I5” 0, so that we expect all regions to b
separeted by first order critical lines.

IV. FROM IMAGINARY TO REAL µ AND THE CRITICAL
LINE IN THE T,µ2 PLANE

We will concern ourselves with the properties of the cri
cal line, as well as with them dependence of a number o
physical observables. To this end one needs to analytic
continue the results from purely imaginary to real chemi
potential: generically speaking, one deals with a function
a purely imaginary variable, continues it to the entire co
plex plane, and finally takes the limite→0 of f (x1 i e), x,
ande being real variables. General arguments guarantee
the analytical continuation is unique in the analyticity d
main of the function. In practice,f (x) is unknown and has to
be approximated by some series expansion or suita

FIG. 4. Chiral condensate~white circles! and absolute value o
the Polyakov loop~black circles! as a function ofb for u5p/3.
The sharp changes of the two quantities coincide with the loca
of the end point of the RW critical line.

FIG. 5. A sketch of the phase diagram in them I-b plane. The
filled circles represent direct determinations of the chiral criti
line location from our simulations. The rest of the chiral line h
been obtained by interpolation and by exploiting the symmetries
the partition function.
5-4
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ansatz. In either case, one has to pay attention to the fact
by modifying the original expression by a nonleading ter
the difference in physical quantities is still nonleading. Th
can be complicated, and often mathematical arguments n
to be supplemented by some physical insight@23#, even in
relatively simple cases@24#.

The critical line itself can be analytically continued fro
an imaginary to real chemical potential: a nice argument
gether with an application to the two flavor model has be
given in @16#. The analytical continuation of the critical lin
is easily discussed by considering thatZ(m), an even func-
tion of m, is real valuedfor either real and purely imaginar
m: for real m, the imaginary part of the determinant cance
out in the statistical ensemble, and it is even possible
cancel it exactly on a finite number of configurations
considering the appropriate symmetry transformat
@25,26#; for an imaginary chemical potential, the determina
itself is real, yielding automatically a real partition functio
For a complexm, Z(m) is, in general, complex.

We can map the complexm plane onto the complexm2

plane, and considerZ(m2) ~on a finite lattice this is an exac
polynomial!. Then,Z is real valued on the realm2 axis, com-
plex elsewhere: the situation is analogous to, e.g., the p
tion function as a function of a magnetic field, which b
comes complex as soon as the external field beco
complex, and the physical domain~real partition function! is
associated with real values of the couplings. The critical
havior of the system is then dictated by the zeroes of
partition function ~Lee-Yang zeroes! in the complex m2

plane. The locus of the Lee-Yang zeroes is thought to
associated with a general surface of phase separation@27#,
and phase transition points, for each value of the temp
ture, are associated with the Lee-Yang edge building up
the infinite volume limit, thus defining a curve in theT,m2

plane.
This simple reasoning shows that it is sensible to think

the critical line as asmooth function T(m2), making the
analytic continuation from positive to negativem2 values
very natural. Indeed, experience with statistical mod
shows that not only the critical line, but also the critic
exponents, are smooth functions of the couplings@28# ~aside,
of course, from end points, bifurcation points, etc.!. Hence,
they can be safely expanded, either via Taylor expansion
suitable ansatz. In particular,mc

250 has no special characte
it is just the point where the Lee-Yang edge hits the real a
whereT5Tc .

Clearly the analytic continuation from imaginary chem
cal potential is practical when the critical line is smooth, a
a few coefficients suffice to describe it. It is then of som
interest to discuss examples whose critical lines are exa
computable: we will indeed find that a second order expr
sion in T and m well approximates the critical lineover a
large m interval.

A. The Gross-Neveu model

The Gross-Neveu model in three dimensions is intera
ing, renormalizable and can be chosen with the same gl
symmetries as those of QCD which, when spontaneou
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broken at strong coupling, produce Goldstone particles
dynamical mass generation. As such, the Gross-Neveu m
~as well as some other four fermion models! can provide
some guidance to the understanding of the QCD critical
havior ~see, e.g., Refs.@29–31#!.

The critical line for the three-dimensional Gross-Nev
model was calculated in Ref.@32# and reads

12m/S052T/S0 ln~11e2m/T!, ~6!

whereS0 is the order parameter in the normal phase. Sett
m50 in the above equation gives the critical temperature
zero chemical potential,Tc(m50)5S0/2 ln 2.0.72S0 .

Expanding now ln(11e(2x)).ln 221
2x11

8x
2, and eliminat-

ing S0 in favor of Tc , we get

~T21/2Tc!
21m2/~8 ln 2!5Tc

2/4. ~7!

It is easy to check that this expression approximates v
well the exact result~6!, so that a second order expression
m is a good approximation to the critical line in this mode

B. Random matrix theories

As it is well known~see, e.g.,@33#!, there is a remarkable
relation between the symmetry breaking classes of QCD
the classification of chiral random matrix ensembles.

For QCD with fermions in the complex representati
~i.e., Nc.2, fundamental fermions! with a pattern of SSB
SU(Nf)R3SU(Nf)L→SU(Nf), the corresponding RMT is
chiral unitary with the Dyson indexb52. On the lattice,
staggered fermions have unusual patterns ofxSB: all real
and pseudoreal representations are swapped. However
complex representations, the corresponding RMT ensem
remains chiral unitary@33#. The critical line in theT,m plane
for this ensemble derived in Ref.@34#,

~m21T2!21m22T250, ~8!

is thus valid both on the lattice and in the continuum. E
panding it toO(m2) we obtain

T25Tc
223m2 ~9!

and by comparison with the exact result~8!, we note that this
expression describes well the critical line basically till its e
point.

V. THE CRITICAL LINE FOR THE FOUR
FLAVOR MODEL

In Sec. III we have presented our measurements of
critical points in the temperature-imaginary chemical pote
tial plane, see again Table I. Here we use those data to
construct the critical line for the real chemical potential. W
used both leastx2 and least squares fits to a second ord
polynomial, and we studied the effect of a fourth order ter

A significant sample of the results of the leastx2 and least
squares fits to a second order polynomials
5-5
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bc~m!5a1bm2 ~10!

are collected in Table II and Table III.
The weight of each data point for the least square fits

zero or one, i.e., we either include or discard it, and
quality of our fits—for differentm ranges as indicated in th
tables—is measured by the squared sum of residuals, t
compared with((Db)2. Some of the fits~whose results are
omitted! included a linear term, and we confirm that it
compatible with zero, as it should be on symmetry groun
The leastx2 fits have been performed by discarding o
point at a time.

From the least square polynomial fits we obtain

bc55.038~2!10.94~7!mc
2 ~11!

and from the minimumx2 polynomial fits:

bc55.036~2!~2!10.98~3!~6!mc
2 . ~12!

The central values are the average of the results. The
error is the mean~absolute! deviation, the second one is th
maximum error measured in individual fits. We combine
of these estimates to quote as our final result for the crit
line in lattice units:

b55.037~3!10.96~10!m21O~m4!. ~13!

The continuation to the real chemical potential is sho
in Fig. 6. The dotted lines are drawn in correspondence
the central values of the fit parameters~13! plus and minus
the quoted errors. The dispersion remains reasonable in a
interval of chemical potentials (m50.2 corresponds, roughly
to a baryochemical potential of about 370 MeV andm50.3
to about 516 MeV!. Moreover, in the same interval, we no
a nice agreement between our results and those obtaine
Fodor and Katz via their improved reweighting@8# in the

TABLE II. Results of leastx2 quadratic fits to the critical line.

Discardedm a b x2/dof

0.00 5.035~2! 1.014~74! 2.67
0.10 5.034~3! 1.024~90! 2.98
0.15 5.038~1! 0.954~30! 0.49
0.175 5.036~3! 0.984~77! 3.49
0.20 5.036~3! 0.977~77! 3.33
0.22 5.037~3! 0.926~117! 3.09

TABLE III. Results of the least squares quadratic fits to t
critical line.

m range a b SSR (Db2

p1 @0:0.17# 5.039~2! 0.79~12! 1.4e-05 831026

p2 @0:0.20# 5.038~2! 0.90~10! 2.8e-05 1.031025

p3 @0:0.22# 5.038~2! 0.94~7! 3.1e-05 1.231025
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same four flavor model and with the same quark massmq
50.05. Obviously our results, being uncorrelated, look le
regular.

The line obtained via improved reweighting changes c
cavity aroundm.0.4. This is not easy to understand from
physical point of view, but, from a purely numerical perspe
tive, this behavior could be reproduced by a negative fou
order coefficient in the expansion of the critical line. It wou
then be desirable to place at least bounds on the coeffic
of the fourth order term, but, on the other hand, as the q
dratic fits are satisfactory, this is not an easy task. To ge
feeling of the effect of a fourth order term we constrained
constant and the second order term to leave the fourth o
coefficient as a variable. The results are given in Fig. 7.

The solid line corresponds to the result of a second or
fit up to m50.2. The dotted line is the correction to th
result induced by a fourth order correction, which is ve
small. More sizable corrections are induced by constrain

FIG. 6. The critical line of four flavor QCD,mq50.05, in the
m2, b plane. The dotted lines show the range of the results of
quadratic fits described in the text. The triangles are our results
the critical coupling from Table I. The results by Fodor and Ka
~diamonds! are plotted for comparison.

FIG. 7. O(m4) effects on the critical line of four flavor QCD
The solid line shows the results of a second order fit, and the
dotted line the results of a fourth order fit with the first and seco
order coefficients constrained to their central values. The up
~lower! thick dotted line shows the results of a fourth order fit wi
the second coefficent constrained to its best value plus~minus! its
error. See text for details.
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the second order coefficient to its extreme value~as inferred
from the error bars! and then fitting the fourth order term a
a free parameter.

From Figs. 6 and 7 we conclude that the imagina
chemical potential approach provides a safe estimate for
critical line up tom.0.3 ~corresponding to a baryochemic
potential of about 500 MeV! before losing accuracy, and tha
within this interval the imaginary chemical potential and r
weighting give consistent results for the critical line. The lo
of accuracy for the imaginary chemical potential results
mostly due to the influence of the fourth order term: w
emphasize anyway that the results obtained with a fou
order term are much less accurate; however, they are co
tent with the ones coming from a second order polynom
To reduce the error band we would need better data for
critical line at the imaginary chemical potential.

To convert to physical units we need the lattice spacing
a function of the coupling. We used as an input the latt
spacing measured atb55.10 @35# to fix the scale in the
two-loopb function. We have verified that the ratior measof
the scales taken at the two extrema of the interval of inte
@5.04:5.10# measured in@35# agrees within a few percen
with the ratio r 2loop coming from the two-loopb function.
Clearly the uncertainty induced by the interpolation and
by the choice of theb used as an input is less than th
numerical errors on the lattice results.

In Fig. 8 the external band shows the results of the c
version to physical units by use of the two-loopb function,
the errors being those induced by the analytic continuat
In the same plot we draw the ellipse arc

T5A~Tc
22km2!, ~14!

which turns out to be a nice approximation to the data
physical units, withk50.021@this is just the result of the fi
in the interval~0:400 MeV! to the central values of our criti
cal line#. Other functional forms would work as well, and,
particular, the parabolaT5Tc(120.5km2/Tc

2) obviously
provides a good approximation to the data, given the sm
ness of (k/Tc)

2.

FIG. 8. The critical line of four flavor QCD, withmq50.05. The
result and the error band are fromb55.037(3)10.96(10)m2 con-
verted to physical units. The result~central line! is well approxi-
mated byT5TcA@12(0.021/2)(m2/Tc

2).
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The results by de Forcrand and Philipsen@16# combined
with ours allow an assessment of the flavor dependenc
the critical line in QCD: this is done in Fig. 9 in the form o
a scale invariant plot. We omit the error bars for the sake
clarity, and just remind the reader that the errors—both
the two and the four flavor model—are reasonably small
to mB.500 MeV. We see that the transition in four flavo
QCD lies consistently below that of the two flavor theor
and that this effect increases with increasing density. It lo
as if the production of real fermions further favors the pha
transition, which is indeed the expected behavior~see, e.g.,
@36#!.

VI. CHIRAL CONDENSATE

Taylor expansion and Fourier decomposition are natu
parametrizations for our observables. In particular, the an
sis of the phase diagram in the temperature-imagin
chemical potential plane suggests we use Fourier analysi
T<Tc . Moreover, the fugacity expansion

Z5( cne3mnNt ~15!

hints that this would be easier in the cold phase, at stron
coupling, where a few coefficients might suffice. At hig
temperature, in the weak coupling regime, on the other ha
perturbation theory might serve as guidance, suggesting
the first few terms of the Taylor expansion might be adequ
in a wider range of chemical potentials.

As the chiral condensate is an even function of the che
cal potential, its Fourier decomposition reads

^c̄c&5(
n

an
F cos~nNtNcm I !, ~16!

which is easily continued to the real chemical potential

^c̄c&5(
n

an
F cosh~nNtNcmR!. ~17!

FIG. 9. Scale invariant plot for the QCD critical line at hig
temperature from the imaginary chemical potential. Results for
flavors of staggered fermions~solid line! are from de Forcrand and
Philipsen. The four flavor critical line~dotted! lies consistently be-
low the two flavor one, the effect growing larger at larger densi
5-7
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In our Fourier analysis of the chiral condensate results
limit ourselves ton50,1,2 and we assess the validity of th
fits via both the value of thex2 and the stability ofa0

F anda1
F

given by one and two cosine fits. We summarize the res
of the Fourier analysis of the chiral condensate results
Table IV.

The Fourier analysis turns out to be satisfactory atb
55.01 andb55.03 where—as discussed in Sec. III a
shown in Fig. 2—the chiral condensate is a continuous fu
tion of b. One cosine fit is actually enough to describe o
data atb55.01 andb55.03, with the current statistical ac
curacy: adding a term cos(2NtNcm)5cos(24m) in the expan-
sion does not modify the value of the coefficientsa0

F anda1
F ,

and does not particularly improve thex2. The term cos(24m)
is needed anyway in order to assess the errors on the ana
continuation to realmB , as we will discuss below.

At b55.10~in the fits we discarded, of course, the poin
corresponding to the RW discontinuity! we know ~see again
Sec. III and Fig. 2! that the periodicity is no longer smooth
Indeed, the values of the first two Fourier coefficients dep
on the type of the fit~two or three parameters!.

Next, we have considered polynomial fits. In these fits
exploited the symmetries and the periodicity of the mode
improve the statistical accuracy: all of the results were tra
lated, or symmetrized, to the first half period. For a qu
comparison with the Fourier analysis we use a polynomia
of the form

^c̄c&5a0
P272a2

Pm21864a4
Pm4. ~18!

When one cosine fit is adequate, the Taylor expansion wo
give a0

P5a0
F1a1

F , and a2
P5a4

P . At b55.01 andb55.03
this is indeed the case, within our largish errors. Forb
55.10 a second order Taylor expansion is adequate am
,0.2, while a fourth order term does not substantially i
prove the behavior. As discussed above, the quality of
polynomial fits should improve at higher temperature, clo
to the perturbative regime, where a second order polynom
should become exact. Results for the polynomial fits are
lected in Table V.

We can now continue the results of the Fourier analysi
a real chemical potential. Figure 10 shows the behavio
the chiral condensate as a function of the real chemical

TABLE IV. Fourier coefficients for the chiral condensate. T
constant and the first coefficient are satisfactorily determined
T,TE .

b a0
F a1

F a2
F x2/dof

5.03 0.931~1! 20.0251~22! 0 1.31
5.03 0.930~2! 20.0230~26! 20.0034~26! 1.15

5.01 0.974~1! 20.0106~9! 0 0.87
5.01 0.974~1! 20.0107~10! 20.0003~12! 0.98

5.10 0.396~1! 20.024~1! 0 1.22294
5.10 0.404~4! 20.38~6! 0.007~3! 0.96
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tential forb55.01 andb55.03, using Eq.~17! for both one
and two cosine fits. We show the error band induced by
fits with a cos(24m) term in the large chemical potentia
range. The symbols~triangles and squares! are instead plot-
ted only in the broken phase, i.e., form,mc(b) ~see next the
section for more on this point!.

We have checked that the analytic continuation to the r
chemical potential of the results of the polynomial fits:

^c̄c&5a0
P172a2

Pm21864a4
Pm4 ~19!

is affected by comparable, if not smaller, systematic errors
the ones observed with the Fourier parametrization.

As a final comment on the polynomial fit results, we co
sider the temperature dependence ofa2

P . The Maxwell rela-
tion

]J0

]m
5

]^c̄c&
]m

~20!

shows thata2
P is proportional to the derivative with respect

the quark mass of the quark number susceptibility~by taking
the m derivative of either sides of the relation above!. The
results of the polynomail fits suggest that such derivatives
lattice units–do not change much with temperature, in c
trast with the quark number susceptibility itself: in fact, th

r
TABLE V. Coefficients of a polynomial fit for the chiral con

densatef (x)5a0
P272a2

Px21864a4
Px4.

b a0
P a2

P a4
P x2/dof

5.03 0.905~2! 20.0272~40! 20.0261~70! 1.17
5.01 0.963~1! 20.011~3! 20.009~4! 1.03
5.10 0.372~1! 20.019 ~1! 0 1.03

FIG. 10. The analytic continuation to a real chemical poten
of the chiral condensate: the large bands are the error bands
ciated with the second Fourier coefficient. The symbols—triang
and squares—are printed only in the broken phase, for one~smaller
errors! and two~larger errors! Fourier coefficient results. The criti
cal chemical potential—where the symbols stop—has been infe
from Fig. 8 and related discussions. The results are consistent
a first order chiral transition.
5-8
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results for the number density~we postpone a discussion o
thermodynamics to another publication and we just quote
central values! are

J050.055m11.30m3, ~21!

J050.073m11.44m3, ~22!

J050.455m11.39m3 ~23!

at b55.01,5.03,5.10 from top to bottom. The coefficient
the first term is the quark number susceptibility in latti
units, which increases rapidly in the plasma phase a
should.

VII. NATURE OF THE CHIRAL PHASE TRANSITION

We have discussed in Sec. II the interrelation between
chiral condensate and the Polyakov loop at least up tom
50.2. Obviously, the observed correlation holds true at
real chemical potential as well: we can consider the diff
ence between the critical coupling for the chiral condens
and the Polyakov loop:bc

x(m)2bc
P(m). Our results sugges

that bc
x(m)2bc

P(m)50 at imaginarym in a nonzero inter-
val. It should then remain zero also at the real chem
potential. We can then conclude that, within the present
curacy, the near coincidence of the chiral and deconfin
transitions persists at nonzero baryon density in a four fla
model.

As for the order of the phase transition, let us consi
again Fig. 10 where, together with the error band in a lar
m interval, we have plotted, as triangles and squares,
results from one and two cosine fits, form,mc(b), inferred
from the results of Sec. III above. The behavior shown
Fig. 10 is then consistent with a first order transition.

VIII. SUMMARY

We have studied the phase diagram of four flavor QCD
the imaginary chemical potential-temperature plane. We h
measured the location of the end point of the Roberge-W
line and inferred that the RW line ends on the chiral critic
line.

We have continued our results to a real chemical pot
tial. The critical line in lattice units reads
k-

n-

m
o
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bc55.037~3!20.96~10!m21O~m4!, ~24!

which, in physical units, is well described by

Tc~m!5A~Tc
2~0!20.021m2! ~25!

or, equivalently, by

Tc~m!.Tc~0!S 12
0.021

2Tc
2~0!

m2D ~26!

over a large interval of chemical potentials. It is of som
interest to notice that this feature is also observed in sim
models, where we have found that the critical line is w
approximated by a second order polynomial up tom.Tc .

We have found a good agreement with the results
Fodor and Katz@8# up to m.400 MeV. Our results are stil
compatible with theirs, within largish errors, up tom
.500 MeV. Beyond that value ofm our results do not have
much statistical significance and a comparison is no lon
meaningful. We emphasize that the main source of un
tainty on our results is statistical, and it is associated wit
poor knowledge of the fourth order coefficient, which a
pears to be very small.

We have studied the flavor dependence of the results
comparing our findings for the critical line of four flavo
QCD with those obtained by de Forcrand and Philipsen@16#
in the two flavor model, and found it to be what is expect
on physical grounds.

We have studied the character of the chiral transition.
have found indications that it remains correlated with t
transition associated with the Polyakov loop. The dep
dence of the chiral condensate on the chemical potentia
consistent with a first order transition.
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