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Perturbative calculation of O„a… improvement coefficients
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We compute several coefficients needed forO(a) improvement of currents in perturbation theory, using the
Brodsky-Lepage-Mackenzie prescription for choosing an optimal scaleq* . We then compare the results to
non-perturbative calculations. Normalization factors of the vector and axial vector currents show good agree-
ment, especially when allowing for small two-loop effects. On the other hand, there are large discrepancies in
the coefficients ofO(a) improvement terms. We suspect that they arise primarily from power corrections
inherent in the nonperturbative methods.
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I. INTRODUCTION

During the past few years the Symanzik effective fie
theory has been an important focus of research in lat
gauge theory. Symanzik’s idea is to describe cutoff effect
lattice field theory by a continuum effective field theory@1#.
One writes@1,2#

Llat8LSym, ~1!

where the symbol8 means that the lattice and Symanz
field theories have the same on-shell matrix elements.
lattice QCD with Wilson fermions@3# the Symanzik local
effective Lagrangian (LEL) is given by@4,5#

LSym5
1

2g2
tr@FmnFmn#2q̄~D” 1m!q

1aKs•Fq̄ismnFmnq1O~a2!, ~2!

where g2 is a renormalized coupling,m is a renormalized
quark mass, andaKs•F is a short-distance coefficient. Th
effective field theory is useful when the scale of QCD
lattice units is small,La!1, and, as used in this pape
when ma!1 also. With the description in hand, the lattic
field theory can be adjusted so that it approaches its c
tinuum limit more quickly. The effective theory shows that
Ks•F is reduced for any given on-shell matrix element, th
the O(a) term in Eq. ~2! makes commensurately small
contributions to all other on-shell matrix elements. This a
plication of the Symanzik effective field theory is called t
Symanzik improvement program@2#.

A similar correspondence is set up for the vector and a
vector currents ~see below!, introducing further short-
distance coefficients. In the last several years methods h
been devised to study all of them nonperturbatively@6–10#.
The O(a) discretization effects violate chiral symmetry, s
the key idea is to ensure that violations of chiral symme
are at leastO(a2). On the other hand, because of asympto
freedom and the success of perturbative QCD, even at G
energies@11#, one expects perturbation theory to yield acc
rate estimates of the short-distance coefficients. In this pa
0556-2821/2003/67~1!/014503~8!/$20.00 67 0145
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we compare a perturbative calculation of the currents’ sh
distant coefficients to the nonperturbative results.

There are two issues that should be kept in mind wh
making such a comparison. First, the nonperturbative te
nique suffers from power corrections. Asymptotically,
La→0 these are formally smaller than any error made fr
truncating the perturbation series. In practice, however, th
effects can be significant.

Second, no two-loop results are available for the impro
ment coefficients considered here. Tests of perturba
theory are, therefore, not unambiguous, because diffe
choices for the expansion parameterg2 yield quantitatively
different results. The bare couplingg0

2 ~for the Wilson gauge
action! is an especially bad expansion parameter@12#. The
obvious remedy is to rearrange the perturbative series, el
nating g0

2 in favor of a renormalized~running! coupling,
evaluated at a scale characteristic of the problem at ha
One is then faced, however, with many choices of renorm
ization scheme, and the question of how to determine
‘‘characteristic scale.’’ In this paper we choose the Brodsk
Lepage-Mackenzie~BLM ! prescription @13,14#. Once this
choice is made, little subjectivity remains, so one can
quantitatively whether one-loop BLM perturbation theo
agrees with the nonperturbative method.

In the BLM method, the characteristic scale is compu
from Feynman diagrams. The new information presented
this paper consists of the calculations needed to determ
the BLM scales of the normalization and improvement co
ficients of the vector and axial vector currents for Wils
fermions with Sheikholeslami-Wohlert action. These calcu
tions are a by-product of our recent work on the normali
tion and improvement of lattice currents with heavy qua
@15#. Details of the calculational method may be found the

This paper is organized as follows. In Sec. II we defi
the lattice currents and review their description in the S
manzik effective field theory. Section III recalls the BLM
prescription, focusing on points that are sometimes ov
looked. Our new results for the BLM scales are given in S
IV. This paves the way for a systematic comparison w
nonperturbative calculations of the same quantities in Sec
Section VI contains a few concluding remarks.
©2003 The American Physical Society03-1
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II. LATTICE CURRENTS

In this section we review the description of lattice cu
rents with the Symanzik effective field theory. For quarks
take the Sheikholeslami-Wohlert Lagrangian@4#, which has
an improvement couplingcSW. At the tree level Ks•F

[0]

5 1
4 (12cSW), so the improvement conditionKs•F50 re-

quirescSW511O(g2). For one-loop calculations, it is suf
ficient to specifycSW at the tree level. For the nonperturb
tive calculations cited below,cSW21 is determined
nonperturbatively by the methods of Ref.@7#.

We denote the lattice fermion field withc. The lattice
vector and axial vector currents take the form

Vlat
m 5c̄ igmc2acV]n latc̄smnc, ~3!

Alat
m 5c̄ igmg5c1acA] lat

m c̄ ig5c. ~4!

The improvement couplingscV andcA should be chosen to
reduce lattice artifacts, as discussed below.1 In Symanzik’s
theory of cutoff effects, the lattice currents are described
operators in a continuum effective field theory@1,2,5,7#

Vlat
m 8Z̄V

21q̄igmq2aKV]nq̄smnq1•••, ~5!

Alat
m 8Z̄A

21q̄igmg5q1aKA]mq̄ig5q1•••, ~6!

where, as in Eq.~2!, q is a continuum fermion field whos
dynamics is defined byLQCD. The ellipsis indicates opera
tors of dimension 5 and higher. Further dimension-4 ope
tors are omitted from Eqs.~5! and ~6!, because they are lin
ear combinations of those listed and others that vanish by
equations of motion. The short-distance coefficients in
effective Lagrangian—Z̄J and KJ (J5V,A)—are functions
of g2 andma, and the improvement couplingscSW andcJ .

Symanzik improvement is achieved by adjustingcJ so
that KJ50. Then Z̄VVlat

m and Z̄AAlat
m have the same matrix

elements asq̄igmq andq̄igmg5q, apart from lattice artifacts
of ordera2. For light quarks one may expandZ̄J in ma,

Z̄J5ZJ~11mabJ!, ~7!

and identifyKJ with the zeroth order of a smallma expan-
sion. At the tree level the coefficients of the normalizati
factor areZJ

[0]51, bJ
[0]51. In addition, the coefficient of the

lattice artifact is

KJ
[0]5cJ

[0] . ~8!

The improvement conditionKJ50 says that one should se
cJ

[0]50. Consequently, one-loop calculations are ba
solely on the first terms in Eqs.~3! and ~4!.

1The lattice currents in Eqs.~3! and~4! are useful for light quarks.
For heavy quarks the ‘‘small’’ improvement terms become lar
introducing unnecessary violations of heavy-quark symmetry. B
ter currents for heavy quarks are given in Refs.@15,16#.
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III. BRODSKY-LEPAGE-MACKENZIE PRESCRIPTION

In this section we review the BLM prescription, followin
the argumentation from Ref.@14#. This material should be
familiar, but some of the literature on nonperturbative im
provement blurs the difference between BLM perturbat
theory and other topics, such as ‘‘tadpole improvement’’ a
mean-field estimates of the renormalized coupling, which
also discussed in Ref.@14#.

The problem is to find a reasonably accurate one-lo
estimate of a quantityz, hereZ̄J or KJ . In these cases, on
gluon with momentumk and propagatorD(k) appears. The
contribution from the Feynman diagrams can be written

gR
2z [1]~p!5g0

2E d4k

~2p!4
D~k! f ~k,p!1•••, ~9!

wherep denotesk-independent parameters, such as exter
momenta. The ellipsis indicates higher-order terms that
would like to absorb into the renormalized couplinggR

2 . An
important class of higher-order terms consists of the ren
malization parts that dress the exchanged gluon. In the F
rier transform of the heavy-quark potential, for examp
they turn g0

2D(k) into gV
2(k)D(k), where the potential

V(q)52CFgV
2(q)/q2. Thus,

gR
2z [1]~p!5E d4k

~2p!4
gV

2~k!D~k! f ~k,p!1••• ~10!

sums the renormalization parts. Other ways of dressing
gluon would lead to other physical running couplings, b
they all are the same at orderb0g4 @13#, where b0511
2 2

3 nf is the one-loop coefficient of theb function for nf
light quarks.

If there is a characteristic scaleq* , one can approximate

gV
2~k!5

gV
2~q* !

11~b0/16p2!gV
2~q* !ln~k/q* !2

~11!

5gV
2~q* !1

b0

16p2
gV

4~q* !ln~q* /k!21•••. ~12!

The aim is to chooseq* so that higher-order terms are sma
particularly those of orderb0gV

4 , which could be enhanced
by a foolish choice ofq* . Inserting Eq.~12! into Eq. ~10!
and setting the coefficient ofb0gV

4 to zero yields

ln q* a5
* z [1]

2z [1]
, ~13!

wherea is a reference short-distance scale~namely, the lat-
tice spacing!, and

* z [1]~p!5E d4k

~2p!4
ln~ka!2D~k! f ~k,p!. ~14!

,
t-
3-2



us

e

it
o
r
th
g

m

m-
bu-
ear
-

fi-

for
se

ces.
ined
er

PERTURBATIVE CALCULATION OF O(a) . . . PHYSICAL REVIEW D67, 014503 ~2003!
Thus, the BLM prescription is to setgR
25gV

2(q* ) in the one-
loop approximation.

If one prefers a different renormalized coupling, one m
change the scale in the appropriate way. The coupling
scheme ‘‘S’’ is related to theV scheme by

1

gS
2~q!

5
1

gV
2~q!

1
b0bS

(1)1bS
(0)

16p2
1O~g2!, ~15!

where bS
(0) and bS

(1) are constants independent ofnf . The
BLM scaleqS* for this scheme is given by

ln qS* 5 ln q* 2
1

2
bS

(1) . ~16!

For example, for the modified minimal subtraction (MS)
scheme,bMS

(0)
528 andbMS

(1)
55/3, qMS

* 5e25/6q* 50.435q* .
With Eq. ~16! one recovers the summary statement of R
@13#, namely to absorb intoqS* the nf dependence of the
two-loop term, which enters throughb0.

The BLM prescription has several features that make
natural choice in matching calculations, such as those c
sidered in this paper. The effective field theory framewo
suggests using a renormalized coupling, in particular one
has a ~quasi-!physical definition in both the underlyin
theory~here lattice gauge theory! and in the effective theory
~here the Symanzik effective field theory!. For quantitative
purposes it is more interesting to note that

1

gS
2~qS* !

5
1

gV
2~q* !

1
bS

(0)

16p2
1O~g2!, ~17!

so the numerical difference in the BLM expansion para
eters is small, as long asg2bS

(0)/16p2 is small.

IV. PERTURBATIVE RESULTS

In Ref. @15# we found for gauge group SU~3! and cSW
51

ZV
[1]520.129423~6!, ~18!

ZA
[1]520.116450~5!, ~19!

in excellent agreement with previous work@17,18#. ~Refer-
ence@18# gives precise results as a polynomial incSW.) We
also found~with cJ

[0]50)

bV
[1]50.153239~14!, ~20!

bA
[1]50.152189~14!, ~21!

KV
[1]5cV

[1]10.016332~7!, ~22!

KA
[1]5cA

[1]10.0075741~15!, ~23!

which agree perfectly with Ref.@19#. Solving the improve-
ment conditionKJ50 at this order gives
01450
t
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cV
[1]520.016332~7!, ~24!

cA
[1]520.0075741~15!. ~25!

We also directly obtained

bV
[1]2bA

[1]50.0010444~16!, ~26!

which is more accurate than the difference of the two nu
bers quoted above. In taking the difference, large contri
tions from the self-energy cancel, but, even so, the n
equality of bV

[1] and bA
[1] is a bit astonishing. The mass de

pendence ofZ̄J shows thatbV
[1]2bA

[1] is not so small for the
Wilson action@15#.

In our method for computing the improvement coef
cients it is easy to weight the integrands with ln(ka)2 and,
thus, obtain the BLM scales. We find

* ZV
[1]520.270691~19!, ~27!

* ZA
[1]520.243086~09!, ~28!

* bV
[1]50.321556~35!, ~29!

* bA
[1]50.318108~21!, ~30!

* bV
[1]2 * bA

[1]50.0034247~51!, ~31!

* cV
[1]520.0222383~15!, ~32!

* cA
[1]520.0147825~62!, ~33!

and hence

qZV
* a52.846, ~34!

qZA
* a52.840, ~35!

qZA /ZV
* a52.898, ~36!

qbV
* a52.855, ~37!

qbA
* a52.844, ~38!

qbV2bA
* a55.153, ~39!

qcV
* a51.975, ~40!

qcA
* a52.653. ~41!

The scales are in the expected range. The higher scale
bV2bA means simply that the difference between the
renormalization constants arises from very short distan
These numerical results are new; they have been obta
from two independent computer programs. As a furth
check, we have reproduced the values ofqZV

* a andqZA
* a for

the Wilson action (cSW50), given in Ref.@20#.
3-3
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The dominant contributor to the ‘‘large’’ one-loop norma
ization constants, Eqs.~18!–~21!, is the tadpole diagram~in
Feynman gauge! of the self-energy. One might expect pertu
bation theory to work better for quantities in which the e
fects of tadpole diagrams largely cancel~albeit in a gauge-
invariant way!. For example,ZA /ZV andbV2bA are tadpole-
free and have smaller one-loop coefficients.

Another way to remove the tadpoles is to write

ZJ5u0Z̃J , ~42!

bJ5b̃J /u0 , ~43!

where u0 is any convenient tadpole-dominated quanti
Then one can takeu0 from a nonperturbative Monte Carl
calculation and use perturbation theory forZ̃J and b̃J . The
corresponding one-loop coefficients are

Z̃J
[1]5ZJ

[1]2u0
[1] , ~44!

b̃J
[1]5bJ

[1]1u0
[1] . ~45!

Similarly, to get the BLM scale

* Z̃J
[1]5 * ZJ

[1]2 * u0
[1] , ~46!

* b̃J
[1]5 * bJ

[1]1 * u0
[1] , ~47!

where * u0
[1] is the BLM numerator@cf. Eq. ~13!# for u0.

Below we takeu0
4 to be the average value of the plaquet

with u0
[1]521/12520.083̄ and * u0

[1]520.204049(1). A
glance at Eqs.~44!–~47! shows immediately that tadpole im
provement reduces the one-loop coefficients. With tadp
improvement the BLM scales become

qZ̃V
* a52.061, ~48!

qZ̃A
* a51.803, ~49!

qb̃V
* a52.317, ~50!

qb̃A
* a52.289. ~51!

The scales are lower than without tadpole improvement,
still ultraviolet.

It is perhaps worthwhile emphasizing the difference b
tween tadpole improvement and the BLM prescription. T
aim of tadpole improvement is to re-sum large contributio
appearing at orderg2 and higher, replacing the sum with
nonperturbative estimate (u0, for example!. The aim of the
BLM prescription is to re-sum potentially large renormaliz
tion parts into the renormalized coupling. Although the ai
are similar, they are not identical. They are not mutua
exclusive, and neither is a substitute for the other.
01450
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V. COMPARISON TO NONPERTURBATIVE
CALCULATIONS

With the BLM scales in hand we can compare the pred
tion of one-loop BLM-improved perturbation theory wit
nonperturbative determinations of the improvement coe
cients. We shall make the comparison in two ways. First
compare the numerical values directly, at two values of
bare coupling. Here there are two methods in the literatu
one based on finite-size techniques and the Schro¨dinger
functional@21–23#, and another based on large volumes w
hadronic matrix elements@24#. The difference between thes
two illustrates how large power corrections to the improv
ment coefficients are. We also compare our results gra
cally, as a function of coupling, to Pade´ approximants given
in Refs. @19,21,22#. These graphs are helpful for seein
whether discrepancies in the one-loop and nonperturba
estimates arise from two-loop or power corrections.

We obtainaV(q* ) as follows. First we compute

a13152
3

4p
ln^h&, ~52!

where ^h& is the ensemble average of the plaquette. Th
we follow Ref. @14# and takeaV to be

aV~3.402/a![
2a131

11A124.741a131

, ~53!

which agrees with the standard definition ofaV with an ac-
curacy of orderas

3 . The scale 3.402/a is the BLM scale for
^h&. We then run from 3.402/a to q* with the two-loop
evolution equation. Of course, once two-loop perturbat
theory is available, one would have to extend the accurac
Eq. ~53! and of the evolution.

Table I gives results from our perturbative calculati
with nonperturbative results from the Alpha Collaborati
@21–23# and from Bhattacharyaet al. @24#, at b56.2. Table
II gives the same comparison atb56.0. Above~below! the
horizontal line, we have applied the BLM prescription wit

TABLE I. Comparison of perturbative and nonperturbative d
terminations of the improvement coefficients atb56.2.

b56.2 aV(q* ) BLM Refs. @21–23# Ref. @24#

ZV 0.1468 0.7612 0.7922~9! 0.7874~4!

ZA 0.1469 0.7850 0.807~8! 0.818~5!

ZA /ZV 0.1461 1.0238 1.019~8! 1.039~5!

bV 0.1467 1.2824 1.41~2! 1.42~1!

bA 0.1468 1.2808 1.32~5!

bV2bA 0.1257 0.001649 0.11~5!

2cV 0.1638 0.03361 0.21~7! 0.09~2!

2cA 0.1498 0.01426 0.038~4! 0.032~7!

u0Z̃V
0.1616 0.8022 0.7922~9! 0.7874~4!

u0Z̃A
0.1686 0.8230 0.807~8! 0.818~5!

b̃V /u0
0.1559 1.2846 1.41~2! 1.42~1!

b̃A /u0
0.1565 1.2828 1.32~5!
3-4
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TABLE II. Comparison of perturbative and nonperturbative d
terminations of the improvement coefficients atb56.0.

b56.0 aV(q* ) BLM Refs. @21–23# Ref. @24#

ZV 0.1602 0.7394 0.7809~6! 0.770~1!

ZA 0.1603 0.7654 0.791~9! 0.807~8!

ZA /ZV 0.1593 1.0260 1.012~9! 1.048~8!

bV 0.1601 1.3082 1.54~2! 1.52~1!

bA 0.1603 1.3065 1.28~5!

bV2bA 0.1352 0.001774 0.24~5!

2cV 0.1808 0.03711 0.32~7! 0.107~17!

2cA 0.1638 0.01559 0.083~5! 0.037~9!

u0Z̃V
0.1782 0.7872 0.7809~6! 0.770~1!

u0Z̃A
0.1868 0.8095 0.791~9! 0.807~8!

b̃V /u0
0.1712 1.3105 1.54~2! 1.52~1!

b̃A /u0
0.1719 1.3087 1.28~5!
01450
out ~with! tadpole improvement. The error bars on the entr
from Refs.@21–24# are statistical, and compiled in Ref.@24#.

For the normalization factorsZV andZA , BLM perturba-
tion theory and the nonperturbative methods agree w
within 3–4%. The difference between the two nonperturb
tive values ofZV exceeds the reported errors, but is eas
explained by power correction of order (La)2. For the
tadpole-free ratioZA /ZV and for the tadpole-improved quan
tities u0Z̃J , BLM perturbation theory lies very close to th
nonperturbative range. These impressions are strength
by Fig. 1, which showsZV andZA as functions ofg0

2. Circles
show BLM perturbation theory, and the thin solid~dashed!
lines indicate how two-loop contributions of6aV

2 (62aV
2)

could modify the result. We show the result with and witho
tadpole improvement in Figs. 1~b,d! and 1~a,c!, respectively.
For the nonperturbative method, a heavy line shows the P´
approximants@22#

ZV5
120.7663g0

210.0488g0
4

120.6369g0
2

, ~54!

-

er
FIG. 1. ZV andZA vs g0
2. Heavy lines show the nonperturbative results, Eqs.~54! and ~55!, and shading possible corrections of ord

6(La)2. Circles show BLM perturbation theory, with thin and dashed lines to indicate a two-loop term6aV
2 or 62aV

2 . ~a! and ~c! No

tadpole improvement,ZJ
BLM511gV

2(qZJ
* )ZJ

[1] ; ~b! and ~d! with tadpole improvement,ZJ
BLM5u0@11gV

2(qZ̃J
* )Z̃J

[1] #.
3-5
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FIG. 2. bV vs g0
2. ~a! No tadpole improvement,bV

BLM511gV
2(qbV

* )bV
[1] ; ~b! with tadpole improvement,bV

BLM5@11gV
2(qb̃V

* )b̃V
[1] #/u0.

Light gray shading indicates power corrections tobV of order6La; darker gray shading power corrections tobV21 of order6a/L.
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ZA5
120.8496g0

210.0610g0
4

120.7332g0
2

, ~55!

which deviate from the underlying calculations negligibly f
g0

2<1. The shaded bands behind the Pade´ curves show a
power correction of6(La)2, with L;500 GeV. The finite-
volume result also suffers from power corrections of ord
(a/L)2. They are estimated to be small by comparing cal
lations on lattices witha/L51/8 and 1/12@22#. Also, they
are parametrically smaller, because Ref.@22# holds LL;2
for all g0

2.
Next let us turn to theO(ma) corrections to the normal

ization factors,bV andbA . There is only one calculation o
bA @24#, so let us concentrate first onbV . The two nonper-
turbative results forbV agree perfectly with each other~see
the tables!, but they deviate significantly from one-loo
BLM perturbation theory. Some insight can be gleaned fr
Fig. 2, which showsbV as a function ofg0

2. The nonpertur-
bative method is represented with the Pade´ approximant@19#

bV5
120.7613g0

210.0012g0
420.1136g0

6

120.9145g0
2

, ~56!

with light shading for a power correction6La. In finite
volume there is also a power correction tobV of ordera/L;
by construction it applies tobV21 @22#, but nowL with a
varies such thata/L51/8 for all g0

2. We model this effect as
(bV21)(16 1

8 ), shown in the darker shading in Fig. 2. Jud
ing from its size and shape, the deviation seen in Fig. 2 lo
less like a two-loop effect than a combination of power c
rections of ordera/L and La. ~Similar conclusions are
reached in Ref.@24#.! There is almost no difference wheth
one applies tadpole improvement tobV or not, once the BLM
prescription is applied. These two approximations trunc
higher orders of the perturbation series differently, subst
tiating the idea that the discrepancy is a power correctio
01450
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n-

The nonperturbative calculation ofbA agrees with one-
loop BLM perturbation theory. Note, however, that Ref.@24#
obtains bV and bV2bA directly, and thenbA5bV2(bV
2bA). The agreement between BLM perturbation theory a
the nonperturbative results forbV andbV2bA is not good, so
the agreement forbA may be an accident. Since the coef
cientbV

[1]2bA
[1] in Eq. ~26! is remarkably small, the two-loop

contribution could be as large as the one-loop term. Furth
more, inspection of Fig. 14 in Ref.@24# suggests that a fit to
the three smallest masses would yield a smaller value
bV2bA . We consider the comparison ofbA and bV2bA to
be unsettled pending a two-loop calculation and a more
bust nonperturbative calculation.

In any case, the mild disagreement onbV andbV2bA is
not of much practical importance. For the sake of argume
supposema,0.1, which holds for the light quarks for whic
the currents were designed. Then power corrections inbJ , at
fixed a, lead to an uncertainty in a decay constant or a fo
factor of only a few per cent. After a continuum limit ex
trapolation, these uncertainties will not be important.

Now let us turn to the coefficientscJ of the improvement
terms in Eqs.~3! and ~4!. At the tabulated values ofb, the
nonperturbative and BLM calculations ofcA do not agree at
all. At b56.0 ~Table II! the two nonperturbative calculation
also do not agree with each other. Fig. 3~a! showscA as a
function of g0

2, using the Pade´ approximant@21#

cA520.00756g0
2

120.748g0
2

120.977g0
2

~57!

to represent the nonperturbative calculations. The disag
ment between BLM perturbation theory and Eq.~57! sets in
for g0

2.0.9. There are two reasons to suspect that the
crepancy stems from a power correction of orderLa to the
results of Ref.@21#. First, Fig. 3~a! shows that it has the
shape and size of such a power correction. Second, the
tracted value ofcA depends on the lattice derivative used
3-6
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FIG. 3. cA andcV vs g0
2. Shading shows power corrections of order6La to ~a! Eq. ~57!, ~b! Eq. ~58!. Points with error bars are from

~a! Refs.@24,25#, ~b! Refs.@23,24#.
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define the current@25#. Note @24# that errors incA propagate
to cV , because in the Ward identitiescA is multiplied by
large hadronic matrix elements such asamK

2 /ms

;a32.5 GeV. This enhancement also explains why E
~57! leads to worse scaling inf p @25#. Figure 3~a! also in-
cludes the nonperturbative results of Refs.@24,25#. The dif-
ference between those points and BLM perturbation the
could be a modest two-loop effect or a small power corr
tion.

For cV , the two nonperturbative results agree neither w
each other, nor with BLM perturbation theory. The Alph
Collaboration has only a preliminary calculation@23#. We
have taken the liberty of extracting results from Fig. 3
Ref. @23# and fitting them to a Pade´ formula. The leading
behavior is fixed to Eq.~24!, and we obtain

cV520.01633g0
2

120.257g0
2

120.963g0
2

. ~58!

Figure 3~b! plots Eq. ~58!, the underlying points@23#, the
nonperturbative results from hadronic correlation functio
@24#, and BLM perturbation theory. As usual we show po
sible power corrections to Eq.~58! of order6La, as well as
the size of typical two-loop effects. At smallg0

2, there is
good agreement with~BLM ! perturbation theory, but onc
g0

2.0.9, there is a sharp turnover. It is probably a pow
correction, possibly exacerbated by power corrections tocA
as modeled by Eq.~57!. With hadronic correlation functions
@24# the nonperturbative value ofcV is half or a third as
large. It is not clear at present whether the discrepancy
tween Ref.@24# and BLM perturbation theory is a powe
correction to the former or a sizable two-loop correction
the latter.

We should also mention that BLM perturbation theo
works better than several forms of mean-field perturbat
theory ~let alone bare perturbation theory!. In Table III we
list several choices foras :
01450
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a05g0
2/4p, ~59!

ã05a0 /u0 , ~60!

as well asa131 @Eq. ~52!# and aMS(qMS
* ) @Eq. ~17!#. With

only one-loop expansions available, the mean-field choi
ã0 anda131 give smaller corrections, and one-loop pertu
bation theory falls short even when power corrections
negligible. The consistency of BLM-V perturbation theory
for ZV , ZA , andZA /ZV indicates that the BLM prescription
does indeed re-sum an important class of higher-order c
tributions. On the other hand, the couplingaMS(qMS

* ) seems,
empirically, to work less well. In continuum perturbativ
QCD, it usually does not matter whether one adoptsaV(qV* ),
aMS(qMS

* ) or some other renormalized coupling~at the BLM
scale!, once two-loop effects are included. It would not b
surprising for the same to hold for short-distance quanti
in lattice gauge theory, such as improvement coefficients

VI. CONCLUSIONS

In this paper we have compared nonperturbative calc
tions of several improvement coefficients to perturbat
theory with the BLM prescription. Previously this could n
be done, because the ‘‘BLM numerators’’ in Eqs.~27!–~33!

TABLE III. Expansion parameters for perturbation theory.

b a0 ã0
a131 aV(qZV

* ) aMS(qZV
* )

6.0 0.0796 0.1340 0.1245 0.1602 0.1784
6.2 0.0770 0.1255 0.1166 0.1468 0.1619
6.4 0.0746 0.1183 0.1101 0.1362 0.1491
7.0 0.0682 0.1016 0.0951 0.1134 0.1222
9.0 0.0531 0.0702 0.0667 0.0748 0.0786
3-7
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were not available. We find that, for the scale-independ
quantities considered here, the integration of
logk2-weighted integrals is numerically straightforward.

BLM perturbation theory for the current normalizatio
factorsZJ agrees very well with nonperturbative calculatio
of the same quantities. Here the leading power correctio
only of order (La)2, and the small deviations can probab
be removed with a two-loop calculation. Note that gener
zations of the BLM method for higher-order perturbati
theory have been considered in continuum perturbative Q
@26# and in lattice gauge theory@27#.
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For the improvement coefficientsbJ and cJ , the leading
power corrections are of orderLa ~and in the Schro¨dinger
functional also of ordera/L51/8), while some of the one
loop coefficients are small. It is consequently difficult to d
agnose the discrepancies. By noting the size and depend
on g0

2 of the differences, we concur with the authors of Re
@24,25#, namely, that power corrections contaminate the n
perturbative results. In particular, it seems unlikely th
higher orders in perturbative series could explain all discr
ancies between one-loop BLM perturbation theory and
results from Refs.@21–23#.
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