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We compute several coefficients needed@ggr) improvement of currents in perturbation theory, using the
Brodsky-Lepage-Mackenzie prescription for choosing an optimal sgaleie then compare the results to
non-perturbative calculations. Normalization factors of the vector and axial vector currents show good agree-
ment, especially when allowing for small two-loop effects. On the other hand, there are large discrepancies in
the coefficients ofO(a) improvement terms. We suspect that they arise primarily from power corrections
inherent in the nonperturbative methods.
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I. INTRODUCTION we compare a perturbative calculation of the currents’ short-
distant coefficients to the nonperturbative results.

During the past few years the Symanzik effective field There are two issues that should be kept in mind when
theory has been an important focus of research in latticenaking such a comparison. First, the nonperturbative tech-
gauge theory. Symanzik’s idea is to describe cutoff effects imique suffers from power corrections. Asymptotically, as
lattice field theory by a continuum effective field thedy). ~ Aa—0 these are formally smaller than any error made from
One writes[1,2] truncating the perturbation series. In practice, however, these

) effects can be significant.
Lia=Lsym: @ Second, no two-loop results are available for the improve-

where the symbok= means that the lattice and Symanzik ment coefficients considered here. Tests of perturbation
field theories have the same on-shell matrix elements. FJP€0TY are, therefore, not unambiguous, because different
lattice QCD with Wilson fermiong3] the Symanzik local choices for the expansion parametgryield quantitatively

effective Lagrangian (LE) is given by[4,5] different results. The bare couplilﬁ (for the Wilson gauge
action is an especially bad expansion paraméfet]. The

1 _ obvious remedy is to rearrange the perturbative series, elimi-
£Sym=FU[F“VF,w]—Q(D+m)q nating g3 in favor of a renormalizedrunning coupling,

9 evaluated at a scale characteristic of the problem at hand.

+akK,.(qi ., F*'q+0(a?), (2)  One s then faced, however, with many choices of renormal-

ization scheme, and the question of how to determine the

whereg? is a renormalized couplingn is a renormalized “characteristic scale.” In this paper we choose the Brodsky-
quark mass, andK, ¢ is a short-distance coefficient. The Lepage-MackenzigBLM) prescription[13,14. Once this
effective field theory is useful when the scale of QCD inchoice is made, little subjectivity remains, so one can ask
lattice units is smalllLAa<1, and, as used in this paper, quantitatively whether one-loop BLM perturbation theory
whenma<1 also. With the description in hand, the lattice agrees with the nonperturbative method.
field theory can be adjusted so that it approaches its con- In the BLM method, the characteristic scale is computed
tinuum limit more quickly. The effective theory shows that if from Feynman diagrams. The new information presented in
K,.r is reduced for any given on-shell matrix element, thenthis paper consists of the calculations needed to determine
the O(a) term in Eq.(2) makes commensurately smaller the BLM scales of the normalization and improvement coef-
contributions to all other on-shell matrix elements. This ap-ficients of the vector and axial vector currents for Wilson
plication of the Symanzik effective field theory is called the fermions with Sheikholeslami-Wohlert action. These calcula-
Symanzik improvement prograf2]. tions are a by-product of our recent work on the normaliza-

A similar correspondence is set up for the vector and axiation and improvement of lattice currents with heavy quarks
vector currents(see beloy, introducing further short- [15]. Details of the calculational method may be found there.
distance coefficients. In the last several years methods have This paper is organized as follows. In Sec. Il we define
been devised to study all of them nonperturbatii@y10].  the lattice currents and review their description in the Sy-
The O(a) discretization effects violate chiral symmetry, so manzik effective field theory. Section Il recalls the BLM
the key idea is to ensure that violations of chiral symmetryprescription, focusing on points that are sometimes over-
are at leasD(a?). On the other hand, because of asymptoticlooked. Our new results for the BLM scales are given in Sec.
freedom and the success of perturbative QCD, even at GeW. This paves the way for a systematic comparison with
energied 11], one expects perturbation theory to yield accu-nonperturbative calculations of the same quantities in Sec. V.
rate estimates of the short-distance coefficients. In this papegection VI contains a few concluding remarks.

0556-2821/2003/61)/0145038)/$20.00 67 014503-1 ©2003 The American Physical Society



HARADA, HASHIMOTO, KRONFELD, AND ONOGI PHYSICAL REVIEW D67, 014503 (2003

Il. LATTICE CURRENTS III. BRODSKY-LEPAGE-MACKENZIE PRESCRIPTION

In this section we review the description of lattice cur-  In this section we review the BLM prescription, following
rents with the Symanzik effective field theory. For quarks wethe argumentation from Refl14]. This material should be
take the Sheikholeslami-Wohlert Lagrangigq, which has familiar, but some of the literature on nonperturbative im-
an improvement couplingcgy. At the tree IeveIK(r - provement blurs the difference between BLM perturbation

=%(1—cgy), SO the improvement conditiok, =0 re-  theory and other topics, such as “tadpole improvement” and
quirescgy=1-+0(g?). For one-loop calculations, it is suf- mean-field estimates of the renormalized coupling, which are
ficient to specifycg,y at the tree level. For the nonperturba- also discussed in Ref14].

tive calculations cited below,cgy—1 is determined The problem is to find a reasonably accurate one-loop
nonperturbatively by the methods of RET). estimate of a quantity, hereZ; or K;. In these cases, one
We denote the lattice fermion field witly. The lattice  gluon with momentunk and propagatob (k) appears. The
vector and axial vector currents take the form contribution from the Feynman diagrams can be written
V= ‘/" Y- aCV0"V|at(//0"" ¥, 3 1
gr{™M(p 9
Al= iy  ysi+ acadf i ysi. (4)

wherep denotesk-independent parameters, such as external
momenta. The ellipsis indicates higher-order terms that we
would like to absorb into the renormalized coupllgé An
¥mportant class of higher-order terms consists of the renor-
malization parts that dress the exchanged gluon. In the Fou-
rier transform of the heavy-quark potential, for example,

The improvement couplings, andc, should be chosen to
reduce lattice artifacts, as discussed beldw. Symanzik’s
theory of cutoff effects, the lattice currents are described b
operators in a continuum effective field thedty2,5,7

e _ "
Via=2y "div*q-aKyd,qo"'q+ -, ®) they turn g2D(k) into gZ(k)D(k), where the potential
S — V(a)=—Crgi(a)/g?. Thus,
ALEZatgi v ysq+aKadtdiysq+ - - -, (6) Y
4

. . . L k
where,.as_m Eq(Z), q is a continuum fe_rnjlor) field whose 0 [l](p):f 49\2/(|()D(k)f(k'p)+ -+ (10
dynamics is defined by ocp. The ellipsis indicates opera- (2m)

tors of dimension 5 and higher. Further dimension-4 opera-

tors are omitted from Eqg5) and(6), because they are lin- sums the renormalization parts. Other ways of dressing the
ear combinations of those listed and others that vanish by thgluon would lead to other phy5|cal running couplings, but
equations of motion. The short-distance coefficients in théhey all are the same at ordg,g* [13], where Bp=11

effective LagrangianZ; and K, (J=V,A)—are functions 3Nt is the one-loop coefficient of thg function for ny
of g2 andma, and the improvement couplings,y andc,.  light quarks. o _
Symanzik improvement is achieved by adjustiog so If there is a characteristic scalgf, one can approximate
that KJ=0._'I'henZ,V,’gl_t and ZAA(gt have the same matrix 2 )
elements agi y*q andqi y*vysq, apart from Iittice artifacts gv( k)= 2\’ q — (11
of ordera?. For light quarks one may exparxj in ma, 1+(Bo/167)g3(q*)In(k/g*)
Z,=Z,(1+makby), 7 Bo
T ’ =gf(an)+ ol @ % (12

and identifyK ; with the zeroth order of a smatha expan-
sion. At the tree level the coefficients of the normalization
factor arezl”) =1, b’ =1. In addition, the coefficient of the
lattice artlfact is

The aim is to choosg* so that higher-order terms are small,
particularly those of ordeBog(‘,, which could be enhanced
by a foolish choice ofy*. Inserting Eq.(12) into Eq. (10)

KEO] :CBO] ®) and setting the coefficient qfog(‘, to zero yields
The improvement conditioi ;=0 says that one should set Ina*a= * (19
JO]—O Consequently, one-loop calculations are based 9 a= 2/ '

solely on the first terms in Eq$3) and (4).

wherea is a reference short-distance scéa@mely, the lat-
tice spacing, and
The lattice currents in Eq$3) and(4) are useful for light quarks.
For heavy quarks the “small” improvement terms become large,
introducing unnecessary violations of heavy-quark symmetry. Bet- * g[ll(p) = J
ter currents for heavy quarks are given in R¢i5,16.

4

k
)4In(ka)2D(k)f(k,p). (14)
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Thus, the BLM prescription is to sg&=g2(q*) in the one-
loop approximation.

If one prefers a different renormalized coupling, one must
change the scale in the appropriate way. The coupling in

PHYSICAL REVIEW D67, 014503 (2003

scheme ‘S” is related to theV scheme by

1 _ 1 oG+l
04@)  9%(q) 16m2

+0(g?), (15)

whereb?) and b{" are constants independent of. The
BLM scaleqg for this scheme is given by

* * 1 (1)
Ings=Inq _Ebs . (16

cil'=-0.0163327), (24)
cil=—0.007574115). (25)

We also directly obtained
bl - bll!=0.001044416), (26)

which is more accurate than the difference of the two num-
bers quoted above. In taking the difference, large contribu-
tions from the self-energy cancel, but, even so, the near
equality of b{}] and bL\” is a bit astonishing. The mass de-

pendence oZ; shows thabl}! —bl! is not so small for the
Wilson action[15].

In our method for computing the improvement coeffi-
cients it is easy to weight the integrands withki®¢ and,

For example, for the modified minimal subtractioM_$)
schemeb{®l=—8 andb{="5/3, q¥<=e">%q* =0.435*.

thus, obtain the BLM scales. We find

With Eq. (16) one recovers the summary statement of Ref. *zMW=—0.27069119), (27
[13], namely to absorb int@% the n; dependence of the
two-loop term, which enters througBy,. * W= —0.24308609), (28)
The BLM prescription has several features that make it a
natural choice in matching calculations, such as those con- *p{H=0.32155635), (29
sidered in this paper. The effective field theory framework
suggests using a renormalized coupling, in particular one that * b%] =0.31810821), (30)
has a (quasijphysical definition in both the underlying
theory (here lattice gauge theogrgand in the effective theory *pll — *plI=0.003424751), (31)
(here the Symanzik effective field thegry~or quantitative
purposes it is more interesting to note that *clll=—0.022238815), (32)
)
11 N bs Lo a7 *clll=-0.014782662), (33
2/ %k 20 % 2 !
gs(as) 9y(g*) 16w and hence
so the numerical difference in the BLM expansion param- %
eters is small, as long agb{®)/167 is small. dz,2=2.846, (34)
* —
IV, PERTURBATIVE RESULTS dz,2=2.840, (39
In Ref. [15] we found for gauge group SB) and cgy qu/ZVa: 2.898, (36)
=1
* —
ZUW= —0.1204286), (19) Gb, 2=2.855, (37
7= —0.1164505), (19) qp,a=2.844, (38)
in excellent agreement with previous work7,18. (Refer- Oy _p.a=5.153, (39
ence[18] gives precise results as a polynomialcig,.) We VoA
also found(with c[’=0) q5,a=1.975, (40)
bl =0.15323914), 20
v ey (20 q%,a=2.653. (41)
bl =0.15218914), (22) _ _
The scales are in the expected range. The higher scale for
K{}]=c{}]+0.0163327), (22) by—Dby, means simply that Fhe difference betweep these
renormalization constants arises from very short distances.
K%]=C[A1]+O.OO7574115), (23) These numerical results are new; they have been obtained

which agree perfectly with Ref19]. Solving the improve-
ment conditionK ;=0 at this order gives

from two independent computer programs. As a further
check, we have reproduced the valuesq;)\l;a and q§Aa for

the Wilson action ¢sy,=0), given in Ref[20].
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The dominant contributor to the “large” one-loop normal- TABLE I. Comparison of perturbative and nonperturbative de-
ization constants, Eq$18)—(21), is the tadpole diagrartin terminations of the improvement coefficients/t 6.2.
Feynman gaugeof the self-energy. One might expect pertur-
bation theory to work better for quantities in which the ef-8=6.2  ay(q*) BLM Refs.[21-23  Ref.[24]
fects of tadpole diagrams largely candelbeit in a gauge-

. . Zy 0.1468 0.7612 0.7929) 0.78744)
invariant way. For exampleZ,/Z, andby, — b, are tadpole-
free and have smaller one-loop coefficients Za 0.1469 0.7850 0.808) 0.8185)
Another way to remove the tadpoles is t6 write ZalZy 0.1461 10238 1.018) 1.0395)
by 0.1467 1.2824 1.42) 1.421)
- ba 0.1468  1.2808 1.38)
Zy=UoZ;, 42 b, 01257  0.001649 0.19)
- —Cy 0.1638 0.03361 0.27) 0.092)
b;=Db;/ug, (43 —c, 0.1498  0.01426 0.038) 0.0327)
where ug is any convenient tadpole-dominated quantity. UoZy 0.1616  0.8022 0.7929) 0.78744)
Then one can take, from a nonperturbative Monte Carlo uyZ, 0.1686  0.8230 0.8@3) 0.8185)
calculation and use perturbation theory ®y andb;. The by /u, 0.1559  1.2846 1.42) 1.421)
corresponding one-loop coefficients are balug 0.1565  1.2828 1.39)
ZW =z —uf, (44) V. COMPARISON TO NONPERTURBATIVE
CALCULATIONS
b =pH 4yl (45)

With the BLM scales in hand we can compare the predic-
tion of one-loop BLM-improved perturbation theory with
nonperturbative determinations of the improvement coeffi-
cients. We shall make the comparison in two ways. First we

Similarly, to get the BLM scale

*ZM = xzH w1 (46)  compare the numerical values directly, at two values of the
bare coupling. Here there are two methods in the literature,
*pit = *plt 4 >yt (47) one based on finite-size techniques and the Sthger

functional[21-23, and another based on large volumes with
hadronic matrix elemen{R4]. The difference between these
two illustrates how large power corrections to the improve-
. 1] - . 1] 'ment coefficients are. We also compare our results graphi-
with ug"=—1/12=—0.083 and *ug"=—0.2040491). A cally, as a function of coupling, to Padg@proximants given
glance at Eqs44)—(47) shows immediately that tadpole im- in Refs. [19,21,22. These graphs are helpful for seeing
provement reduces the one-loop coefficients. With tadpolghether discrepancies in the one-loop and nonperturbative
improvement the BLM scales become estimates arise from two-loop or power corrections.

We obtaina(q*) as follows. First we compute

where *ul! is the BLM numerator{cf. Eq. (13)] for ug.
Below we takeug to be the average value of the plaquette

* p—
9z,2= 2.061, (48 2
aleI—Elnﬂj), (52)
qua= 1.803, (49)
where([J) is the ensemble average of the plaquette. Then
qgva:2_317, (50 Wwe follow Ref.[14] and takeay to be
- 0y(3.4028) = — 221 (53
Op,a=2.289. (5D Vi 1+1-4.741a,,,
The scales are lower than without tadpole improvement, butvhich agrees with the standard definition a§ with an ac-
still ultraviolet. curacy of ordera3. The scale 3.40%/is the BLM scale for

It is perhaps worthwhile emphasizing the difference be<{). We then run from 3.402/to g* with the two-loop
tween tadpole improvement and the BLM prescription. Theevolution equation. Of course, once two-loop perturbation
aim of tadpole improvement is to re-sum large contributiongheory is available, one would have to extend the accuracy of
appearing at ordeg® and higher, replacing the sum with a Eq. (53) and of the evolution.
nonperturbative estimatei, for example. The aim of the Table | gives results from our perturbative calculation
BLM prescription is to re-sum potentially large renormaliza- with nonperturbative results from the Alpha Collaboration
tion parts into the renormalized coupling. Although the aims[21-23 and from Bhattacharyat al.[24], at 3=6.2. Table
are similar, they are not identical. They are not mutuallyll gives the same comparison At=6.0. Above(below) the
exclusive, and neither is a substitute for the other. horizontal line, we have applied the BLM prescription with-
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TABLE II. Comparison of perturbative and nonperturbative de- out (with) tadpole improvement. The error bars on the entries
terminations of the improvement coefficients@t 6.0.

=60  ay(q¥) BLM Refs.[21-23  Ref.[24]
Zy 0.1602  0.7394 0.7806) 0.77Q1)
Za 0.1603  0.7654 0.799) 0.8079)
ZalZy 0.1593  1.0260 1.019) 1.0488)
by 0.1601  1.3082 1.52) 1.521)
ba 0.1603  1.3065 1.28)
by—b,  0.1352  0.001774 0.28)
—cy 0.1808  0.03711 0.32) 0.10717)
—Ca 0.1638  0.01559 0.083) 0.0379)
UgZy 0.1782  0.7872 0.7806) 0.77q1)
UoZa 0.1868  0.8095 0.799) 0.8078)
By /g 0.1712  1.3105 1.52) 1.521)
Baluy 0.1719  1.3087 1.28)

0.6

(a)

1.0

0.9

0.8

()

— NP [22]
B e BLM T
i e
0 oo | oo 5o J g gl A £ s i
‘6.0 0.2 0.4 0.6 0.8 1.0 1.2
2
8o
T
L ]
| ) |
— NP [22] -
e BLM .
\ L]
I L ! L | :
O'Z).O 0.2 04 0.6 0.8 1.0 1.2
2
8o

from Refs.[21-24 are statistical, and compiled in R¢24].

For the normalization factord, andZ,, BLM perturba-
tion theory and the nonperturbative methods agree well,
within 3—4%. The difference between the two nonperturba-
tive values ofZ,, exceeds the reported errors, but is easily
explained by power correction of order\&)?. For the
tadpole-free rati@,/Z,, and for the tadpole-improved quan-
tities upyZ;, BLM perturbation theory lies very close to the
nonperturbative range. These impressions are strengthened
by Fig. 1, which show&,, andZ, as functions ofgg. Circles
show BLM perturbation theory, and the thin solidashegl
lines indicate how two-loop contributions df a2 (*+2a?)
could modify the result. We show the result with and without
tadpole improvement in Figs(l,d) and Xa,0), respectively.
For the nonperturbative method, a heavy line shows thé Pade
approximantg22]

1-0.7663)3+0.0488);

Zy , (54
1-0.636%;
ZV
. — NP[22] AU
0.6 i e BLM tadpole 4 7]
0 L L L ! !
60 0.2 04 0.6 0.8 1.0 12
(b) 2
8o
1.0 (<
0.9 —
Z
A -
\\\ ...
0.8} N\, i
— NP[22] O\ e
e BLM tadpole o
L]
0 e b e Uy Beg o 5 B vy fRY G
'Z).O 0.2 04 0.6 0.8 1.0 1.2
(d 2
8o

FIG. 1. Zy andZ, vs g3. Heavy lines show the nonperturbative results, E§8) and (55), and shading possible corrections of order
+(Aa)?. Circles show BLM perturbation theory, with thin and dashed lines to indicate a two-loopﬁerf;nor tZa\Z,. (a) and(c) No

tadpole improvemengz5™M=1+ g\z,(qéJ)Z[,” ; (b) and(d) with tadpole improvemeng5™™ =uq[1+ g\z,(qiz:)i[f]].
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L6——T——T——T——T ] L6———T——T T
- " . - e
151 — NP[19, 22] o L[ — NP 19, 22] I
s e BLM y . s e BLM tadpole -
14f Yy 14fF A3
- AN E - A b
- ,/' o/ / 1 - YA . g
b, 13} Jei 1 b, 13fF A A
v 3: ,/'/..../’/ i L 3 i o .o.. y i
1 [ i opos 3 &g 5o p4q 30 4 ¢35 1 5 ¢ 1 [ s Lo q ¢ 0 5 55 §@ 5 3 ¢ jg g g
90 0.2 0.4 0.6 0.8 1.0 12 90 0.2 0.4 0.6 0.8 1.0 12
(a) 2 (b) vl
8o 8o

FIG. 2. by vs g2. (a) No tadpole improvemenb\E}LM:1+g\2,(qgv)b{,” . (b) with tadpole improvemenibSLM=[1+g\2,(q§V)B{,1]]/u0.
Light gray shading indicates power correctionsbtpof order = Aa; darker gray shading power correctionshig— 1 of order*a/L.

1—0.849@S+0.061Gg3 The nonperturba_tive calculation d&f, agrees with one-
A= 5 , (550  loop BLM perturbation theory. Note, however, that R&4]
1-0.7333; obtains by and by—b, directly, and thenb,=by,—(by

—b,). The agreement between BLM perturbation theory and
which deviate from the underlying calculations negligibly for the nonperturbative results fbr, andb,,— b, is not good, so
gs<1. The shaded bands behind the Padeves show a the agreement fob, may be an accident. Since the coeffi-
power correction oft (Aa)?, with A~500 GeV. The finite-  cientb{}! — bk in Eq. (26) is remarkably small, the two-loop
volume result also suffers from power corrections of ordercontribution could be as large as the one-loop term. Further-
(a/L)?. They are estimated to be small by comparing calcumore, inspection of Fig. 14 in Reff24] suggests that a fit to
lations on lattices witha/L=1/8 and 1/12[22]. Also, they the three smallest masses would yield a smaller value of
are parametrically smaller, because He2] holds LA ~2 by—b,. We consider the comparison by andby,—b, to

for all gS. be unsettled pending a two-loop calculation and a more ro-
Next let us turn to th&d(ma) corrections to the normal- bust nonperturbative c_:alcu_lation. _
ization factorsp, andb,. There is only one calculation of ~ In any case, the mild disagreement lop and by — by is

ba [24], so let us concentrate first d,. The two nonper- not of much practical importance. For the sake of argument,
turbative results fob, agree perfectly with each othésee  supposema<0.1, which holds for the light quarks for which
the tabley but they deviate significantly from one-loop the currents were designed. Then power correctiof jnat
BLM perturbation theory. Some insight can be gleaned fronfixed a, lead to an uncertainty in a decay constant or a form
Fig. 2, which shows, as a function ogé. The nonpertur-  factor of only a few per cent. After a continuum limit ex-

bative method is represented with the Pagproximan{19]  trapolation, these uncertainties will not be important.
Now let us turn to the coefficients, of the improvement

B P 4 6 terms in Eqs(3) and (4). At the tabulated values @8, the

:1 0.76135+0.001, 0'113630, (56) nonperturbative and BLM calculations of do not agree at

1-0.914%3 all. At 3=6.0(Table Il) the two nonperturbative calculations
also do not agree with each other. Figa)3showsc, as a

with light shading for a power correctior Aa. In finite  function of g3, using the Padepproximan{21]
volume there is also a power correctionktg of ordera/L;

by construction it applies tb,—1 [22], but nowL with a 1-0.748)3
varies such thaa/L = 1/8 for all g3. We model this effect as ca=—0.00758)5 ————
(by—1)(1=3), shown in the darker shading in Fig. 2. Judg- 1-0.9745
ing from its size and shape, the deviation seen in Fig. 2 looks

less like a two-loop effect than a combination of power cor-to represent the nonperturbative calculations. The disagree-
rections of ordera/L and Aa. (Similar conclusions are ment between BLM perturbation theory and ES7) sets in
reached in Refl24].) There is almost no difference whether for g§>0.9. There are two reasons to suspect that the dis-
one applies tadpole improvementlig or not, once the BLM  crepancy stems from a power correction of ordex to the
prescription is applied. These two approximations truncateesults of Ref.[21]. First, Fig. 3a) shows that it has the
higher orders of the perturbation series differently, substanshape and size of such a power correction. Second, the ex-
tiating the idea that the discrepancy is a power correction. tracted value ot, depends on the lattice derivative used to

\

(57)
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01— T L A 0.1 [ T L E L L L
0.0 s
-0.1F -
€a %
Y -02f s
—0.1F — NP [21] Y] I — NP Padé
= NP [24] A [ 4 NP[23]
+ NP [25] ' -03| = NP [24] 5
e BLM b i e BLM
PR W NN TN ST NN SN T SR AN SO S S NS WO Sl N :l‘ L [ PRI R R T S T N TN R N M
) 0.2 0.4 0.6 0.8 1.0 12 %0 0.2 0.4 0.6 0.8 1.0 1.2
(@) 2 (b) 2
8o 8o

FIG. 3. ca andcy vs gé. Shading shows power corrections of ordeA a to (a) Eq. (57), (b) Eq. (58). Points with error bars are from
(a) Refs.[24,25, (b) Refs.[23,24].

define the current25]. Note[24] that errors inc, propagate a0=g§/47r, (59)

to cy, because in the Ward identities, is multiplied by

large hadronic matrix elements such aamﬁ/mS 5

~axX2.5 GeV. This enhancement also explains why Eq. ap= aglug, (60)

(57) leads to worse scaling ih, [25]. Figure 3a) also in-

cludes the nonperturbative results of Ré#4,25. The dif- N i

ference between those points and BLM perturbation theor§S Well @Sa1x; [Eq. (52)] and ews(dys) [Eq. (17)]. With -

could be a modest two-loop effect or a small power correcOnly one-loop expansions available, the mean-field choices

tion. ag and a;; give smaller corrections, and one-loop pertur-
Forc,, the two nonperturbative results agree neither withbation theory falls short even when power corrections are

each other, nor with BLM perturbation theory. The Alpha negligible. The consistency of BLM- perturbation theory

Collaboration has only a preliminary calculatip#3]. We  for Zy, Z,, andZ,/Z, indicates that the BLM prescription

have taken the liberty of extracting results from Fig. 3 ofdoes indeed re-sum an important class of higher-order con-

Ref. [23] and fitting them to a Padéormula. The leading tributions. On the other hand, the coupliagg(q’,\‘,l—s) seems,

behavior is fixed to Eq(24), and we obtain empirically, to work less well. In continuum perturbative
QCD, it usually does not matter whether one adeptéqy),
1-0.25%2 ays(dis) Or some other renormalized couplitef the BLM

cy=—0.016333 (58)  scale, once two-loop effects are included. It would not be
surprising for the same to hold for short-distance quantities

in lattice gauge theory, such as improvement coefficients.

1-0.96332

Figure 3b) plots Eq.(58), the underlying point$23], the
nonperturbative results from hadronic correlation functions
[24], and BLM perturbation theory. As usual we show pos- VI. CONCLUSIONS

sible power corrections to E¢58) of ordertAa,Zas well as In this paper we have compared nonperturbative calcula-
the size of typical two-loop effects. At smatf, there is  tions of several improvement coefficients to perturbation
9?00' agreement witliBLM) perturbation theory, but once theory with the BLM prescription. Previously this could not
go>0.9, there is a sharp turnover. It is probably a powerhe done, because the “BLM numerators” in E487)—(33)
correction, possibly exacerbated by power corrections,to
as modeled by Eq57). With hadronic correlation functions

. . ; TABLE Ill. Expansion parameters for perturbation theory.
[24] the nonperturbative value afy, is half or a third as

large. It is not clear at present whether the discrepancy b ~ * (g
tween Ref.[24] and BLM perturbation theory is a power ? o o fra oltz)  omsldz)
correction to the former or a sizable two-loop correction t06.0 0.0796  0.1340  0.1245 0.1602 0.1784
the latter. 6.2 0.0770 0.1255 0.1166 0.1468 0.1619
We should also mention that BLM perturbation theory 6.4 0.0746 0.1183 0.1101 0.1362 0.1491
works better than several forms of mean-field perturbatiory o 0.0682 0.1016 0.0951 0.1134 0.1222
theory (let alone bare perturbation thegryn Table Ill we g 0.0531 0.0702 0.0667 0.0748 0.0786

list several choices foug:
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were not available. We find that, for the scale-independent For the improvement coefficients; andc;, the leading
quantities considered here, the integration of thepower corrections are of ordera (and in the Schidinger
log k?-weighted integrals is numerically straightforward. functional also of ordea/L =1/8), while some of the one-
BLM perturbation theory for the current normalization loop coefficients are small. It is consequently difficult to di-
factorsZ; agrees very well with nonperturbative calculationsagnose the discrepancies. By noting the size and dependence
of the same quantities. Here the leading power correction isn g3 of the differences, we concur with the authors of Refs.
only of order (Aa)?, and the small deviations can probably [24,25, namely, that power corrections contaminate the non-
be removed with a two-loop calculation. Note that generali-perturbative results. In particular, it seems unlikely that
zations of the BLM method for higher-order perturbation higher orders in perturbative series could explain all discrep-
theory have been considered in continuum perturbative QCRncies between one-loop BLM perturbation theory and the
[26] and in lattice gauge theof27]. results from Refs[21-23.
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