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We present a lattice QCD calculation of the scattering phase shift fof=t{ieS-wave two-pion system
using the finite size method proposed bysther. We work in the quenched approximation employing the
standard plaquette action gt=5.9 for gluons and the Wilson fermion action for quarks. The phase shift is
extracted from the energy eigenvalues of the two-pion system, which are obtained by a diagonalization of the
pion four-point function evaluated for a set of relative spatial momenta. In order to change the momentum of
the two-pion system, calculations are carried out 0?80, 32X 60, and 48x 60 lattices. The phase shift is
successfully calculated over the momentum rangegpd<0.3 Ge\~.
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I. INTRODUCTION zero relative momenta, which differs from the final state of
the decay having a nonzero relative momentum. An excep-
Calculation of the scattering phase shift is an importantion is the amplitude from th&K meson to the two-pion
step for expanding our understanding of strong interactionground state itself, because this can be calculated by taking
based on lattice QCD beyond the hadron mass spectrum. Ftite two-pion state with zero relative momentum in the final
scattering lengths, which are the threshold values of thatate. However, the amplitude thus obtained is unphysical,
phase shifts, several studies have already been carried oaind a reconstruction of the physical amplitude using some
For the simplest case of the two-pion system, Itk scat-  effective theory of QCD, for example chiral perturbation
tering length has been calculated in defdit-7] including  theory (CHPT), is needed. Using such an effective theory
the continuum extrapolatiof5—7]. There is also a pioneer- causes large uncertainties in the lattice prediction of the de-
ing attempt at thé =0 scattering lengtti2], which is much  cay amplitude. Hence, a method for direct calculation of the
more difficult due to the presence of box and disconnecte — 7w decay amplitude has been strongly desired.
contributions. For the scattering phase shift, in contrast, there Recently Lellouch and Lscher[13] obtained a relation
has only been one calculation fb=2 by Fiebiget al, who  between the lattice and the physical amplitude in the two-
used lattice simulations to estimate the effective two-piormpion center of mass system with the enefgy=my. In
potential and used it to calculate the phase shift in a quantuntheir derivation no effective theory is used. Lt al. [14]
mechanical treatmen8]. derived the relation from a different approach, and extended
In this article, we calculate thé=2 S-wave two-pion it to the general two-pion system with the eneigy+ m .
scattering phase shift applying &cher’s finite size method They also investigated the limitation of the relation.
[9,10]. Technically the key feature is the extraction of the In order to apply the relation to obtain the physical decay
two-pion energy eigenvalues from the pion four-point func-amplitude, one has to calculate the amplitude fiémeson
tion. This is successfully solved by a diagonalization methodo the two-pion energy eigenstate with nonzero momenta on
proposed by Lacher and Wolff11] for the O(3) nonlinear  the lattice. This is the same problem as one encounters in the
o model in two-dimensions. We also extract the scatteringcalculation of phase shifts using thédaler’s method. Thus
length from the phase shift data, and compare it with previstudy of the two-pion system represents a first step toward
ous calculations. We work in quenched lattice QCD employK — 77 decay.
ing the standard plaquette action for gluons and the Wilson This paper is organized as follows. In Sec. Il we describe
fermion action for quarks. the formalism for calculation of the scattering length and
We wish to mention that the study of the two-pion scat-phase shiff9,10]. We also discuss the method of extraction
tering phase shift also has important impact on the calculaef energy eigenvalues of the two-pion system from the pion
tion of theK— 77w decay amplitudes. A direct calculation of four-point functions. The simulation parameters used in this
the  amplitude  from the  four-point  function work are given in Sec. Ill. In Sec. IV we analyze the behav-
(0] (t) m(t)Hw(ty)K(tk)|O) is very difficult, as pointed ior of the four-point functions, and show that the diagonal-
out by Maiani and TestEL2], because the four-point function ization technique proposed by &cher and Wolff allows one
at large times is dominated by the two-pion ground state withio extract the energy eigenvalues. We then present results for
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the pion phase shift. Our conclusions are given in Sec. V. A TABLE |. Values of the zeta functionZ,y(j;n) and N,

preliminary report of the present work was presented in Ref=Z2mcz38(m?—n) for momentap®= (2/L)* n.

[15].
i n=0 (N,=1) n=1(N,=6) n=2 (N,=12)
Il. METHODS 1 —8.913632922 —1.211335686 —5.096565798

A Finite size method 2 16.532315957 23.243221879 25.661192388
" _ | f _ _ _ 3 8.401923974 13.059376755 4.254135936
t e e”‘?.r 9.3t’ e'gerw; “%S ° "’; ”°”.';‘é§ra°t'”9 t""i’_'p'gn Sysy 6.045807927  13.731214368  14.867522887
felrln on a finite periodic box of a siZe™ are quantized as g 6.426119102 11.308518083 2.283549584
ollows: 6 6.202149045 13.140942288 14.148854520
E,=2 mipl p2=(2@/iL)%n, nez. (1) 7 6.098184125 11.067054131 2.051601110
8 6.048263469 13.032596991 14.031382623
In the interacting case theth energy eigenvalue is given by 9 6.023881707 11.016034293 2.011078709
10 6.011862830 13.007939537 14.007265604

E,=2-\Vm2+p2, p2=(2w@/L)%n, neZ, neZ.

@ B. Extraction of energy eigenvalues of the two-pion system
The energy eigenvalue is written as that of the noninteracting | order to obtain the energy eigenvalues of the two-pion
two-pion system with momentupy, and—p,, but the quan-  system we construct the pion four-point function
tity n=_L2%/(2)2-p? is not an integer. The momentupy
satisfies the Lscher relatior]9,10]

773/2\/;“

GO0 =(0]2, (120 19| 0). ®

Here () is an interpolating field for th&wave two-pion

= system at time given b
tans(p,) Zoo(l;n)’ (3 Y gl y
where 8(p,,) is the Swave scattering phase shift at infinite ()= E'; m(R(Pn), ) 7(=R(pn).1), ©)
volume and
where w(ﬁn,t) is the pion interpolating field with lattice
Zoo(k;ﬁ)zi- S (m2-n)k (4 ~momentum p, at time t. The vector p, satisfies pj
VAT mezs =(2m/L)?-n(ne Z), andRis an element of the cubic group

] . . . which has 48 elements. The summation oRées the projec-
Using Eq.(3), we can obtain the scattering phase shift fromyjon 1o the A* sector of the cubic group, which equals the

the energy eigenvalue calculated in lattice iim_ulations. The wave state in the continuum, ignoring effects from states
scattering length is given bgy=Ilim,_ o tand(p)/p. with angular momenturb=4.

tions, we find by

5 Nr

1 R -
QR ()= = 3 7(Pn.LE)T(—Pn.t 7)), (10
NR =1

p2—p2=0(1/1L3%) or n—n=0(1/L)

from Eqgs.(3) and(4). Therefore, taking the volume® to be
large in lattice calculations, we can employ an expansion o\ho

Zoo(l;ﬁ) aroundn e Z given by ere

- 1 . - .
W(pn!tlgj):F|:2 (X,t)e'pn'x.gjr(x)

N
\/4w-zoo(1;ﬁ):—_'\'—”+ lim > Zoo(j;n)-(n—n)i~1,
n—Nn No«xj=1
(6)

x|

X ys

> q(yit)-g(yﬁ.} (11)

where y

Zoojin) = lim [ V&7 Zo(jiM) —Ny-(n—n) 1] (7)  The fieldm(py t, ;) is defined asr(py,t,£)) by changing
n—n §;(x) to n;(x). The functions§;(x) and »;(x) are orthogo-

nal complex random numbers in three-dimensional space,

andN,=X,_z38(m?—n). In this work we use the expan- \\hose property is

sion (6) with N=10, with which the numerical errors for all

our simulation parameters are und2¢10~8). The numeri- Ngr o o
cal calculation ofZy((j;n) is discussed in Ref9]. The val- lim NS E g;’(x)gj(y)= 53(x—y). (12
ues for severaj’s andn’s are tabulated in Table I. Ng—e "R J=1
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FIG. 1. Momenta in units of Ged/used in this work for each 10° a G, |
lattice size. We obtain scattering length and phase shift at the filled wF .
symbols. Momenta marked by open symbols are used only to ex- 10 [ ]
amine the momentum cutoff effects. The broken line shows the 1072 |- s -
upper limit of elastic scattering for the smallast, in this work, 10 ‘;‘#‘*p 7
i.e, E=2-ymZ+p?<4m,. o L .
. . o 107 [ -
The pion two-point function is constructed as wF .
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FIG. 3. Examples of the pion four-point functidd,(t) at «
When the number of random noise sourbgsis taken large  =0.1589 (,/m,=0.491) on a 32 lattice. The two subscripta
or the number of gauge configurations becomes large, wend m refer to the sink and source momemia=(2x/L)?-n and
expect k?=(2x/L)?-m. The source is located &t=8. Filled and open
symbols indicate positive and negative values. In the lower frame,
large statistical errors are f@,,(t), while those 0fG,4(t) are very
G,(t) for x=0.1589 (m,/m_ =0.491) on 32° small.

[ ] Gon A G n | ] G21|:

GNP (1)~ G (1) = (0] 2 (1) () 0),
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G MR (1)~ G (1) = (0| m(Pp ,t) 7(— Pn,te)|0),  (14)

e
[ |

0.4

and the four-point function will be symmetric under ex-

o change of the sink and source momenta. In our numerical
03 .A““ AMAMMMAMMANAL A ° calculations we use U(1) random numbers and thke
. o =2. The number of configurations is 200, 286, and 52 de-
02 ®ose — pending on the lattice size as shown in Sec. Ill. We always
check the symmetry of the four-point function across the
midpoint in the temporal direction before analysis.
X [ R R A A A The four-point function can be rewritten in terms of the
0 10 20 3t0 40 90 60 energy eigenvalug; and eigenstatf);) as
FIG. 2. Examples of effective mass of pion propag&®@d(t) at <O|Qn|9 ><Q |Qm|0>
x=0.1589 n,/m,=0.491) on a 32lattice. The subscript refers Gum(t)=> ) e E(t-ty (15
to the momentur‘rpz—(27r/L)2 n. The source is located &t 8. jez <Q |QJ>
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FIG. 4. RatioR,(t) andD,(t) for n=0 for all quark masses and lattice sizes in this work. Quark mass increases from top to bottom,
while lattice size increases from left to right. For diagonalizatiodMdt,ty), the momentum cutoff is set &=1, and the reference time

whereQ,=Q,(0) and we assume nondegeneracy of energy G(t)=VA(t)VT, (17)
i ; E =2 -Vmi+p2 isfi
eigenstates. Theth energy E;=2- ym:+pj satisfies the wheren andm are regarded as matrix indices.

Luscher relatior(3). Since the matrix elemeri0]| Q| Q) is The extraction of the energy eigenvalues from a multiex-
not diagonal generally, the four-point functi@,,(t) con-  onential Green’s function such as Ety7) is nontrivial. One
tains many exponential terms and is not a diagonal matrixan attempt multiexponential fitting to extract them, but it is
with respect to the momentum indicesandm. For simplic-  yery difficult in general. A method of extraction was pro-

ity we introduce the following matrices: posed by Lscher and Wolff[11]. They applied it to the
— \ﬁ O(3) nonlineare model in two dimensions and obtained the
Vim= (0] Q| Q) V{ Q| 1), scattering phase shift. This method has been used for many

E (-t statistical systemsl6] and also for thé =2 two-pion system
Apm(t) = Sy @ En (719, (16)  of QCD[8]. In their method the following matrix is diago-

. . Lo . . nalized at eaclt:
and rewrite the four-point function in the following matrix

form: M(t,to) =G(to) " *G(t)G(te) 2 (18)
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m/m
= 0.491

mn/ mp
=0.593

mn/ mp
=0.692

m/m
=0.752 "

FIG. 5. RatioR,(t) andD(t) for n=1 for all quark masses and lattice sizes in this work. Quark mass increases from top to bottom,
while lattice size increases from left to right. For diagonalizatiohdt,t,), the momentum cutoff is set &t=1 and 2, and the reference
time atty=18.

wheret, is some reference time. The eigenvalués,ty) of  the components o0&, (t) for n,m=<k are dominant for the
M(t,ty) can be obtained easily from Eq4.7) and(18) by kth eigenvalue\(t) in the larget andt, region, while the
components1,m>k are less important. In this work we set

A (t,to) =EV[M(t,t0)]=EV[G(1)G(to) '] t, andt large and investigate the cutoff dependence Nor
=EV[VA()A(to) 'V H=EA(1)A(ty) '] =k.
= . Ill. SIMULATION PARAMETERS
={exd —E;- (t—t9)][j=0,12...}, (19

] Our simulation is carried out in quenched lattice QCD
where EY---] means to the eigenvalue of the ma- employing the standard plaquette action for gluonsgat
trix.  Therefore after diagonalization & (t,to) we can ob-  —5.9 and the Wilson action for quarks. Quark masses are
tain the energy eigenvalugs by a single exponential fitting. chosen to be the same as in the previous study of the
In actual calculations we cannot calculate all the compoquenched hadron spectroscopy by the CP-PACS Collabora-
nents of the four-point function precisely. We have to set ajon [17], i.e., xk=0.1589, 0.1583, 0.1574, and 0.1566,
momentum cutoffpZ,=(27/L)2-N. Here we expect that which correspond to m,/m,=0.4912), 0.5931),
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TABLE II. Results forn=0 with momentum cutofN=0 andt,=18. The scattering amplitud@(ﬁ) is
defined byA(p,) =tandé(p,)/pn-E,/2. A(pn)/mi corresponds t@ay/m,, .

xk=0.1589 «k=0.1583 k=0.1574 «k=0.1566
m,/m, 0.491(2) 0.593(1) 0.692(1) 0.752(1)
m2 (Ge\?) 0.16113(97) 0.26026(90) 0.40896(91) 0.5468(11)
V=24
Fitting range 18-40 18-40 18-44 18-44
AE, (X10™* GeV) 98(14) 97.9(83) 86.3(53) 75.5(47)
72— n2 (X10 % GeV?) 39.5(56) 50.1(43) 55.4(35) 55.9(35)
Pn—Pn
n—n (x107%) 15.4(22) 19.5(17) 21.6(13) 21.8(14)
P2 (X10°* GeV?) 39.5(56) 50.1(43) 55.4(35) 55.9(35)
8(py) (deg) —1.91(37) —2.64(31) —3.03(25) —3.07(26)
A(p,) —0.214(27) —0.335(25) —0.458(24)  —0.532(29)
A(py)/m2 (1/GeV?) —1.34(17) —1.293(96) —1.119(59)  —0.975(51)
V=32
Fitting range 18-44 18-44 18-44 18-44
AE, (X107* GeV) 31.3(77) 38.6(31) 33.0(21) 29.3(16)
02— p2 (X1074 GeV?) 12.6(31) 19.7(16) 21.1(14) 21.7(12)
Pn—Pn
n—n (x107%) 8.7(22) 13.7(11) 14.66(95) 15.02(82)
2 (X10 % GeV?) 12.6(31) 19.7(16) 21.1(14) 21.7(12)
Pn
8(p,) (deg) —0.86(31) —1.62(18) —1.78(16) —1.84(14)
A(p,) —0.170(39) —0.325(24) —0.433(25)  —0.512(25)
A(pr)/m> (1/GeV?) —1.05(24) —1.250(91) —1.060(61)  —0.936(46)
V=48
Fitting range 18-44 18-44 18-4 18-44
AE, (X107 GeV) 11.8(33) 10.0(21) 8.6(14) 7.5(10)
p2—p? (X107 GeV?) 4.7(13) 5.1(11) 5.51(89) 5.55(76)
n=n (x10°9) 7.4(21) 7.9(17) 8.6(14) 8.7(12)
p2 (X10* GeV?) 4.7(13) 5.1(11) 5.51(89) 5.55(76)
8(py) (deg) —0.68(27) —0.74(23) —0.84(20) —0.85(17)
A(p,) —0.217(57) —0.294(58) —0.399(60)  —0.464(59)
A(pn)/m2 (1/GeV?) —1.35(36) —1.13(22) —0.98(15) —0.85(11)

0.6941), and0.75Z1). Thelattice cutoff is estimated from be thought to be negligible for the first several low-energy
the p meson mass, and equal@/1.934(16) GeV. states, the nondegeneracy assumption in the derivation of the

In order to examine finite-size effects for the scatteringdiagonalization method in the previous section is justified.
length and to change the momentum for the phase shift, lat- Gluon configurations are generated with the five-hit heat-
tice simulations are carried out for three lattice sizes with dath algorithm and the over-relaxation algorithm mixed in
fixed temporal siz& = 60. The number of configurations and the ratio of 1:4. The combination is called a sweep and we
the momentunp3= (27/L)?- n for each lattice size are tabu- Skip 200 sweeps between measurements of physical quanti-
lated below: ties. Quark propagators are solved with the Dirichlet bound-

ary condition imposed in the time direction and the source
operator set ats=8 to avoid effects from the temporal

L® configurations n boundary.

243 200 0, 1, 2

32 286 0,1, 2, 3 IV. RESULTS
48° 52 0, 1, 2, 3. (20

A. Effects of diagonalization

In Fig. 2 we show examples of effective mass of the pion
Here we calculate the phase shift at the momenta marked kgropagatorG/(t) for momentan=0,1,2 [p?=(2m/L)? n]
an underbar; those unmarked are used to examine the mat m,/m,=0.491 on a 32 lattice. The source operator is
mentum cutoff effects. The momenta in units of Gedho-  located atts=8. We observe a clear plateau over the time
sen in this work are plotted in Fig. 1. ranget~18-46 for small momenta, but the signal becomes
We note that the two-pion energy eigenstates are not dezoisier for large momenta. We also find very large effects
generate fon<6. Since the effects from the states 6 can  from the temporally boundary fdr>46.
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TABLE Ill. Results forn=1 with the momentum cutofN=1 andt,=18. The scattering amplitude
A(p,) is defined byA(p,) =tan&(p,)/p,-En/2.

x=0.1589 x=0.1583 xk=0.1574 x=0.1566
m,/m, 0.491(2) 0.593(1) 0.692(1) 0.752(1)
m2 (GeV?) 0.16113(97) 0.26026(90) 0.40896(91) 0.5468(11)

V=24
Fitting range 18-32 18-32 18-44 18-44
AE, (X102 GeV) 63(11) 42.7(54) 29.8(22) 25.1(16)
p2—p? (X1072 GeV?) 41.3(73) 31.3(39) 24.5(18) 22.5(14)
n=n (X102 16.1(28) 12.2(15) 9.54(71) 8.79(56)
P2 (X102 GeV?) 29.77(73) 28.76(39) 28.08(18) 27.89(14)
8(py) (deg.) —31.8(57) —23.8(30) —18.5(14) —17.0(11)
A(py) —0.77(14) —0.611(79) —0.523(40) —0.524(34)

V=32
Fitting range 18-36 18-40 18-44 18-44
AE, (X103 GeV) 22.5(15) 17.89(81) 15.11(50) 13.05(32)
p2—p? (X103 GeV?) 12.58(85) 11.42(52) 11.27(35) 10.88(26)
n—n (x1073) 8.72(59) 7.92(36) 7.82(24) 7.54(18)
P2 (X1072 GeV?) 15.678(85) 15.562(52) 15.548(35) 15.508(26)
8(p,) (deg) —16.9(12) —15.29(71) —15.08(47) —14.54(36)
A(p;) —0.432(30) —0.445(21) —0.513(16) —0.551(14)

V=48
Fitting range 18-44 18-44 18-44 18-44
AE, (X102 GeV) 6.24(81) 6.08(43) 5.10(24) 4.31(22)
p2-p? (X102 GeV?) 2.96(39) 3.46(25) 3.51(16) 3.37(18)
n—n (X1073) 4.62(60) 5.40(39) 5.48(25) 5.25(27)
P2 (X102 GeV?) 6.705(39) 6.755(25) 6.760(16) 6.746(18)
8(py) (deg) —8.8(12) —10.35(76) —10.50(49) —10.06(53)
A(py) —0.285(38) —0.402(29) —0.492(23) —0.535(28)

The pion four-point functiorG,(t) defined by Eq(8) is  where\(t,tp) is thenth eigenvalue oM (t,ty) calculated
plotted in Fig. 3 for the same parameter. The signal is veryith a finite momentum cutofpgut=(27r/L)2- N. If the four-
clear, and we see that the off-diagonal element$ i) are  point function contains only a single exponential term, i.e.,
not negligible. This means that the overlap is not diagonalg = (t)« s, .- exg —E, (t—t9], then
i.e., Vim# 8nm in Eq. (15). We also observe that the four-
point function is almost symmetric under the exchange of the Ry(t)=A.e AEn =ty (23
sink and source momenta, but the statistical errors are not .
symmetric. In the lower frame of Fig. 3, for examp®;,(t)  whereAE, =E,,—E, andA is a constant. If the momentum
suffers from large statistical error, while that Gf,4(t) is  cutoff is sufficiently large, then the eigenvalue behaves as
very small. In the following analysis we assume symmetry of\ (t,t,)= exp{—En(t—to)] and
the magnitude of error, and substitute the component with
large statistical error by the symmetric partner with smaller Dy(t)=e 4En ("t (29
error. We also see evidence of the presence of many expo- o
nential terms in the lower frame of Fig. 3. The sign®{(t) In these cases we can obtain the energy shifi,=E,
and G,,(t) is flipped att~36-38. This is possible only if —E, easily from the ratidR,(t) or D(t) by a single expo-

more than two exponential terms are present. nential fit.
In order to examine the effects of diagonalization, we cal- In Fig. 4 the ratioR,(t) andD,(t) for the ground state
culate two ratios defined by n=0 are plotted for all quark masses and lattice sizes in this
) work. ForD,(t) the momentum cutofpﬁut=(277/L)2~N is
Rn(1)=Gnn(t)-[1/GF(1)]%, (21)  setatN=1 and the reference time is taken totge- 18. We

divide D,,(t) by a constanD,(tg) to facilitate a comparison
- oo with R,(t). The statistical errors are very small and the di-
Dn(t)=Nn(t,to) - [Gr(to)/GR(1)]%, (22)  agonalization does not affect the result. We also checked the
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m /m
TP
= 0.491
m /m
TP
=0.593
FIG. 6. RatioR,(t) andD(t)
for n=2 for all quark masses and
lattice sizes in this work. Quark
mass increases from top to bot-
tom, while lattice size increases
from left to right. For diagonaliza-
m /m tion of M(t,tg), the momentum
n p cutoff is set atN=2 and 3, and
=0.692 the reference time ap=18.
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0 10 20 30 40 50 60 0 10 20 30 40 50 60

momentum cutoff dependence by takidj=2 and con- temporal boundary. We then fit the ratio by a single exponen-
firmed that it is negligible. In previous calculations of the tial form over the time range consistent with the single ex-
scattering length§1—7] the ratioRy(t) was used to extract ponential behavior. The fitting range for each parameter is
the energy shifAEy. Our calculation demonstrates the reli- tabulated in Table Il below.
ability of these calculations. A similar comparison fon=2 (the second exited statis

We compare the ratios for the first exited statel in  made in Fig. 6. The momentum cutoff is seth#=2 and
Fig. 5. The momentum cutoff is set bit=1 andN=2. We = N=3. We observe again that the diagonalization is effective
divide D,(t) by a constanD,(ts) as for the case ofi=0.  for smaller quark masses and smaller lattice sizes. The mo-
The diagonalization is effective for smaller quark masses anthentum cutoff dependence is small for all parameter region
smaller lattice sizes, while it is less so for larger quarkas for the case afi=1. Compared with th@=0 andn=1
masses and larger volumes. The momentum cutoff depercases, the signals are noisier. We observe a strange time de-
dence is negligible for the whole parameter region, howevependence in the data at,/m,=0.491 and 0.593 on a 32
We see a strange behavior néar36. We consider that this lattice att~30-46. For these data we restrict the fitting
is either due to insufficient statistics or is an effect of therange tot=18-32. We remove results at these parameters
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TABLE IV. Results forn=2 with the momentum cutofN=2 andty,=18. The scattering amplitude
A(p,) is defined byA(p,) =tan&(p,)/p,-E./2.

«k=0.1589 «k=0.1583 k=0.1574 «k=0.1566
m,/m, 0.491(2) 0.593(1) 0.692(1) 0.752(1)
m2 (GeV?) 0.16113(97) 0.26026(90) 0.40896(91) 0.5468(11)
V=32
Fitting range 18-32 18-32 18-40 18-44
AE, (X102 GeV) 40.9(56) 32.9(27) 24.3(12) 20.93(86)
p2—p? (X1072 GeV?) 27.8(38) 24.5(20) 20.3(10) 19.15(80)
—n (X1073) 19.3(27) 17.0(14) 14.10(72) 13.28(55)
P2 (X102 GeV?) 31.62(38) 31.30(20) 30.87(10) 30.756(79)
8(py) (deg) —25.2(34) —22.3(18) —18.47(93) —17.41(72)
A(py) —0.576(81) —0.552(46) —0.507(26) —0.520(22)
V=48
Fitting range 18-36 18-44 18-44 18-44
AE, (X1072 GeV) 15.9(10) 11.40(61) 9.20(38) 7.81(33)
p2—p2 (X103 GeV?) 8.57(55) 7.11(38) 6.75(28) 6.41(27)
n—n (X107?) 13.37(86) 11.09(59) 10.53(44) 10.00(42)
P2 (X1072 Ge\?) 13.675(55) 13.529(38) 13.493(28) 13.459(27)
8(p,) (deg) —17.5(11) —14.56(77) —13.83(58) —13.15(55)
A(p;) —0.464(31) —0.442(24) —0.493(21) —0.524(22)

from our final analysis. In other data clear signals of thethe choice of the fitting function. However, the dependence
single exponential behavior are seen forl8. The fitting  disappears toward the continuum limit. Compared with the
range for each parameter is listed in Table IV below. JLQCD results the lattice cutoff effect of Liet al. is very
From these results we conclude that the momentum cutomall, since their calculation is carried out with an improved
should be takemN=n for the energy shifAE,. The results gauge and improved Wilson fermion action on anisotropic
of the energy shifAE, obtained by the single exponential lattices, while the actions of JLQCD are the standard
fitting of the ratioD,(t) are tabulated in Tables II, Ill, and plaquette and the Wilson fermion actions. The values ex-
IV, where we take the momentum cutdif=n, and the ref- trapolated to the continuum limit are consistent with the

erence time,=18. In the tables we also quote the scatteringCHPT prediction 18] as shown in Table V.
amplitudeA(p,;) defined by Since we use the same actions as those of JLQCD, we

compare our results with theirs at the same gauge coupling

—  tand(p,) E,
A(pn)=?n-7n, (25) a,/m, (1/Gev?)
Pn 05 T
. _ _ _ --0--JLACD (LIN)
where we normalize the amplitude as HmA(p)=ag , - JLQCD (EXP)
mg. 1or 45 | @ Liuetal. (Schem I) i
[ ¢ 7 |-=-Luetal (Schem Il) ]
B. Results for scattering length 45 [ ¥ + ]
For n=0 the values ofp? are very small as shown in i ++ Jf ]
Table II. Therefore we may writé(p,)/m>~a,/m,, and 20 Fll p
use results fon=0 to evaluate the scattering length. K +
In Fig. 7 we recapitulate the recent results of the JLQCD -- 1
Collaboration[6] and Liuet al.[7] for thel =2 pion scatter- 235 7
ing length. The two values of Liet al. denoted agScheme
I) and (Scheme |J refer to their two different treatments of T
the finite volume corrections. The two values of JLQCD cor- 3.0 00 05 10 15 50 o5
respond to two different fitting functions for extraction of the a(1/GeV)

energy shift from the rati®y(t); (LIN) used a linear fit int
while (EXP) employs a single exponential in Figure 7 FIG. 7. Results for scattering lengtly /m_, (Ge\V?) obtained by
shows that the lattice cutoff effect is strongly dependent onhe JLQCD Collaboratiofi6] and by Liuet al.[7].
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TABLE V. Recent results for the scattering lengtly in the a,/m, (1/GeV?) at B=5.9
continuum limit. CHPT refers to the prediction of chiral perturba- Od T
tion theory. The error for this case shows theoretical uncertainties. i
ap/m, (1/Ge\?) ap-m, 08 L . 5 5 ]
JLQCD (LIN) —2.07(24) —0.0406(47) i Jf : # 0 i
JLQCD (EXP) —2.09(35) —0.0410(69) I ++ + ]
Liu et al. (Scheme) —1.75(38) —0.0342(75) d2 L Jf + .
Liu et al. (Scheme I} —2.34(46) —0.0459(91) - .
CHPT —2.265(51) —0.0444(10) - e Ours 243
-1.6 | ®  Qurs 328 -
N . - o JLQCD (LIN) | 1
con_stantﬂ=5.9 in Fig. 8. Here our data on a%attice are - o JLQCD (EXP)
omitted, because those are consistent with the results on 24 -
and 32 lattices within the very large statistical errors of — -20 —=———to—o ot e
those on the 4Blattice (see Table ll. Our data for the scat- 0.0 02 0: . (Ge\?f; 08 1.0

tering length are different from those of JLQCD obtained by
alinear fit(LIN) by about 2.5, whereas we find consistency  rig g, comparison of our results on%24nd 33 lattices with

among results obtained with the exponential fitting for foury,gse of JLQCD Collaboration on a dttice at3=5.9[6].
different lattice sizes, i.e., 34 32%, 48 from the present

work, and 18 from JLQCD. In Fig. 8 we observe that both .
our and the JLQCD results #&=5.9 are far from the CHPT In the context of our analysis, the momentum cutoff de-
predictionay/m_= — 2.265(51) 1/Ge¥. This is due to finite pendence is negligible as di§cussed .in Sec. IV. This means
lattice cutoff effects, which are rather large for the standardhat the effects due to the intermediate off-shell two-pion
actions as shown in Fig. 7. states are negligible. Thus the correctiorOglL ~°) for AE,

Here we comment on the choice of the fitting function for and AE is sufficiently small, and the time behavior can be
the ratioRy(t). In our analysis we assumed a single expo-regarded as a single exponential function in our simulation.

nential behavior, i.e.Ry(t)~Z-exd —AEy(t—tg)] for large To check this point more explicitly, we calculate the scat-
t—ts. The validity of this assumption was partially exam- tering length with the energy shift obtained with both the
ined by Sharpeet al. [1]. Writing linear and the single exponential functiontias was done by
the JLQCD Collaboration. Results are tabulated in Table VI,
1 "2 2 which shows that the two sets of values are consistent within
Ro(t)=Z-| 1-AEq (t—tg)+ 5 - (AEg " (t—tg) -
2 statistical errors, and have no volume dependence. These

facts indicate that the deviation of the JLQCD results be-
+o((t—t8)3)), (26)  tween the two fitting functions comes from the approxima-
tion of the exponential function by the linear functiontin
i.e., the value ofAEy- (t—tg)~1/L3-(t—tg) is not small
they showed in time-ordered perturbation theory that the latenough to justify such an approximation due to small lattice
tice value of AE, is related to the scattering length by the sizes.
Luscher relatior(3) up to corrections 0©(L ~°). By a simi- Another comment concerns the quenching effect on the
lar calculation, one easily shows that the value\&, devi-  ratio Ry(t). Bernard and Golterman derived the same time
ates fromAE, by terms ofO(L ~°). These effects occur due behavior (26) using quenched chiral perturbation theory
to intermediate off-shell two-pion states. (QCHPT) [19]. They predicted that the scattering length ob-

TABLE VI. Our results for the scattering length,/m._, (1/GeV?) calculated from the energy shift
obtained by the linear fittingLIN) and the exponential fittingEXP) of Ry(t) in t.

x=0.1589 xk=0.1583 xk=0.1574 k=0.1566
m,/m, 0.491(2) 0.593(1) 0.692(1) 0.752(1)
m (Ge\?) 0.16113(97) 0.26026(90) 0.40896(91) 0.5468(11)
24 LIN —1.23(14) —1.194(82) —1.042(51) —0.917(46)
EXP —1.34(17) —1.293(96) —1.119(59) —0.975(51)
32 LIN —1.02(23) —1.207(85) —1.029(58) —0.912(43)
EXP —1.05(24) —1.250(91) —1.060(61) —0.936(46)
48 LIN —1.34(35) —1.12(22) —0.97(14) —0.84(11)
EXP —1.35(36) —1.13(22) —0.98(15) —0.85(11)
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SC-amp. for m_/m_=0.491 SC-amp. for m_/m_=0.593
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FIG. 9. Scattering amplitud&(p) =tans(p)/p- E/2 for fixed quark masses. The fit curve is also plotted. The open symbols indicate data
omitted in the fitting procedure.

tained with the quenched approximation is divergent in theion of the quenching effects for the scattering length and the
chiral limit asayg~ 1/m_.. These effects are attributed to non- phase shift by lattice simulations with small quark masses is
unitarity of the quenched theory. The same results were alsionportant future work.

obtained by Colangelo and Pallah®®]. Divergence in scat-
tering lengths in the chiral limit can also occur if one uses a,
chirally nonsymmetric lattice fermion action, for example

TABLE VII. Results of fitting of the scattering amplitude with
e assumptior{chiral), and without the assumptioAy=0 (no

the Wilson fermion action. chira).
In Fig. 8 we do not observe signs of divergence toward Chiral No Chiral
the chiral limit. We consider that the effects of quenching
and broken chiral symmetry are still too small to affect dataAg — —0.069(41)
at our simulation points. Ao (1 GeVP) —1.389(84) —1.01(24)
The guenching problems can also occur for nonzero moA,, (1 GeW) 0.79(18) 0.33(33)
menta, i.e., it is not proven that the pion four-point function Ay, (1 Ge\?) —2.07(20) —2.00(20)
Gnn(t) behaves as a multiexponential functiontiike Eq.  A;; (1 GeV) 3.22(47) 3.09(48)
(15 and the diagonalization method can be used. In thig, (1 GeV) 1.27(53) 1.23(53)
work we assume that such effects are small at our simulatiop/ND. 0.863 0.782

points as confirmed for the zero momentum case. Investiga
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5(deg.) at m =0.140 GeV TABLE VIII. Our results for the scattering phase shift at several
o E T T T T T T Ty momenta at the physical pion mass.
Eo e ACM(A) 1
5L PO p* (GeV?) Vs (GeV) 3(p) (deg)
A N T Lat. (f=5.9) J 0.020 0.40 —2.71(12)
10 p ] 0.070 0.60 —8.09(59)
15 b 0.140 0.80 —14.8(12)
: HH ] 0.230 1.00 —22.0(20)
20 F HHHHHm ] 0.340 1.20 —28.6(31)
25 : HHHHHHH mental result$21,22. The values of the phase shift at sev-
30 b N eral momenta are tabulated in Table VIII. Our results are
E 30% smaller in magnitude than the experiments. A possible
B R T L S T origin of the discrepancy is finite lattice spacing effects. As
0.00 0.08 0.16 0.24 0.32 we saw in Fig. 7 the JLQCD results for scattering length
p%(GeV?) show a sizable scaling violation. Hence that of the scattering

) ) _phase shift cannot be considered small. Further calculations
FIG. 12' _Colmpanson of Quhr results for chtte””g phase shiftyaarer 1o the continuum limit or calculations with improved
a(p) at physical pion mass with experimerizsl,22. actions are desirable to obtain the continuum result for the

C. Results for scattering phase shift phase shift.

The energy shimEnEEn— E, and the phase shiﬁ(ﬁ) V. CONCLUSIONS
at our simulation points are tabulated in Tables Il, 1, and

V. The scattering amplitudé(py) defined by Eq(25) are tering length are possible with present computing resources.

also included in these tables. o .
In Fig. 9 we plot the amplitude at fixed quark mass as aThe quenche_d approximation we emp'oyed has theoretical
. — ) Issues regarding the chiral extrapolation. We see no problem,
function of the momentunpy,. In order to obtain the scat- gjiher theoretically or computationally, in avoiding this prob-
tering phase shift for various momenta at the physical piofem by going to full QCD calculations, for the simplest case

mass, we extrapolate our data with the following fitting as-g¢ the | = 2 two-pion system. The cases b0 andl=1,

We have shown in this work that calculations of the scat-

sumption: which are richer in physics content, are much more difficult
tané(a) E from the computational point of view. Algorithmic advances

A(p)= —— .= = Agy+ Agy (M2) + Agg (M2)2 are presumably needed to evaluate the box and two—loop

P 2 diagrams with good precision for nonzero momenta; these

_ - _ are needed to extract the two-pion energy eigenvalues in
+Aor (PA) +Agr (M2)(p?) +Agy (P22 (27)  these channels.
) ) Another implication of this work is feasibility of a direct
Here Ao corresponds tao/m,. In Fig. 9 we omit data cajculation of thek — 7 decay amplitude using the method
plotted with open symbols in the fitting. They are for the of | ellouch and Lscher. Diagonalization of the pion four-
momentumn=2 on a 32 lattice atm,/m,=0.491 and point function yields the two-pion eigenstate for nonzero
0.593 for which a clear plateau Dy(t) is absent. It should  relative momenta, which can be used as the final state for the
be noted that the constant tery, vanishes if the effects of K. 77 Green’s function needed in their method. Executing
quenching and chiral symmetry breaking are negligible. Wehis program for the =2 channel would be an interesting
tried to fit our data both with and without the aSSUmptionstep to take to solve this |0ng_standing prob|em_
Ago=0. The results, tabulated in Table VII, show that the
latter fit yields a value oAy, which is 1. away from zero.
The other parameters, such Ag,, which are physically
more relevant, are consistent between the two types of fits, This work is supported in part by Grants-in-Aid of the
however. From these observations we adopt the value witMinistry of Education (Nos. 11640294, 12304011,
the assumption oAy =0. The fit curves for this fitting are 12640253, 12740133, 13640259, 13640260, 13135204,
also plotted in Fig. 9. 14046202, and 147401Y3/.L. is supported by the Research
We present our results for the phase sHifp) at the for Future Programs of JSP@lo. JSPS-RFTF 97P01102

physical pion mass obtained with the fittiig7) with the  Simulations were performed on the parallel computer CP-
assumptiorAg =0 in Fig. 10. The filled points are experi- PACS.
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