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IÄ2 pion scattering phase shift with Wilson fermions

S. Aoki,1 M. Fukugita,2 S. Hashimoto,3 K-I. Ishikawa,1,4 N. Ishizuka,1,4 Y. Iwasaki,1 K. Kanaya,1 T. Kaneko,3 Y. Kuramashi,3

V. Lesk,4 M. Okawa,5 Y. Taniguchi,1 A. Ukawa,1,4 and T. Yoshie´1,4

~CP-PACS Collaboration!
1Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan

2Institute for Cosmic Ray Research, University of Tokyo, Tanashi, Tokyo 188-8502, Japan
3High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan

4Center for Computational Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
5Department of Physics, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan

~Received 20 September 2002; published 17 January 2003!

We present a lattice QCD calculation of the scattering phase shift for theI 52 S-wave two-pion system
using the finite size method proposed by Lu¨scher. We work in the quenched approximation employing the
standard plaquette action atb55.9 for gluons and the Wilson fermion action for quarks. The phase shift is
extracted from the energy eigenvalues of the two-pion system, which are obtained by a diagonalization of the
pion four-point function evaluated for a set of relative spatial momenta. In order to change the momentum of
the two-pion system, calculations are carried out on 243360, 323360, and 483360 lattices. The phase shift is
successfully calculated over the momentum range 0,p2,0.3 GeV2.
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I. INTRODUCTION

Calculation of the scattering phase shift is an import
step for expanding our understanding of strong interacti
based on lattice QCD beyond the hadron mass spectrum
scattering lengths, which are the threshold values of
phase shifts, several studies have already been carried
For the simplest case of the two-pion system, theI 52 scat-
tering length has been calculated in detail@1–7# including
the continuum extrapolation@5–7#. There is also a pioneer
ing attempt at theI 50 scattering length@2#, which is much
more difficult due to the presence of box and disconnec
contributions. For the scattering phase shift, in contrast, th
has only been one calculation forI 52 by Fiebiget al., who
used lattice simulations to estimate the effective two-p
potential and used it to calculate the phase shift in a quan
mechanical treatment@8#.

In this article, we calculate theI 52 S-wave two-pion
scattering phase shift applying Lu¨scher’s finite size method
@9,10#. Technically the key feature is the extraction of t
two-pion energy eigenvalues from the pion four-point fun
tion. This is successfully solved by a diagonalization meth
proposed by Lu¨scher and Wolff@11# for the O(3) nonlinear
s model in two-dimensions. We also extract the scatter
length from the phase shift data, and compare it with pre
ous calculations. We work in quenched lattice QCD empl
ing the standard plaquette action for gluons and the Wil
fermion action for quarks.

We wish to mention that the study of the two-pion sc
tering phase shift also has important impact on the calc
tion of theK→pp decay amplitudes. A direct calculation o
the amplitude from the four-point functio
^0up(tp)p(tp)HW(tH)K(tK)u0& is very difficult, as pointed
out by Maiani and Testa@12#, because the four-point functio
at large times is dominated by the two-pion ground state w
0556-2821/2003/67~1!/014502~13!/$20.00 67 0145
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zero relative momenta, which differs from the final state
the decay having a nonzero relative momentum. An exc
tion is the amplitude from theK meson to the two-pion
ground state itself, because this can be calculated by ta
the two-pion state with zero relative momentum in the fin
state. However, the amplitude thus obtained is unphysi
and a reconstruction of the physical amplitude using so
effective theory of QCD, for example chiral perturbatio
theory ~CHPT!, is needed. Using such an effective theo
causes large uncertainties in the lattice prediction of the
cay amplitude. Hence, a method for direct calculation of
K→pp decay amplitude has been strongly desired.

Recently Lellouch and Lu¨scher@13# obtained a relation
between the lattice and the physical amplitude in the tw
pion center of mass system with the energyEp5mK . In
their derivation no effective theory is used. Linet al. @14#
derived the relation from a different approach, and exten
it to the general two-pion system with the energyEp5” mK .
They also investigated the limitation of the relation.

In order to apply the relation to obtain the physical dec
amplitude, one has to calculate the amplitude fromK meson
to the two-pion energy eigenstate with nonzero momenta
the lattice. This is the same problem as one encounters in
calculation of phase shifts using the Lu¨scher’s method. Thus
study of the two-pion system represents a first step tow
K→pp decay.

This paper is organized as follows. In Sec. II we descr
the formalism for calculation of the scattering length a
phase shift@9,10#. We also discuss the method of extractio
of energy eigenvalues of the two-pion system from the p
four-point functions. The simulation parameters used in t
work are given in Sec. III. In Sec. IV we analyze the beha
ior of the four-point functions, and show that the diagon
ization technique proposed by Lu¨scher and Wolff allows one
to extract the energy eigenvalues. We then present result
©2003 The American Physical Society02-1
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the pion phase shift. Our conclusions are given in Sec. V
preliminary report of the present work was presented in R
@15#.

II. METHODS

A. Finite size method

The energy eigenvalues of a noninteracting two-pion s
tem on a finite periodic box of a sizeL3 are quantized as
follows:

En52•Amp
2 1pn

2, pn
25~2p/L !2

•n, nPZ. ~1!

In the interacting case thenth energy eigenvalue is given b

Ēn52•Amp
2 1 p̄n

2, p̄n
25~2p/L !2

•n̄, n̄¹Z, nPZ.
~2!

The energy eigenvalue is written as that of the noninterac
two-pion system with momentump̄n and2p̄n , but the quan-
tity n̄5L2/(2p)2

• p̄n
2 is not an integer. The momentump̄n

2

satisfies the Lu¨scher relation@9,10#

tand~ p̄n!5
p3/2An̄

Z00~1;n̄!
, ~3!

whered( p̄n) is the S-wave scattering phase shift at infini
volume and

Z00~k;n̄!5
1

A4p
• (

mPZ3
~m22n̄!2k. ~4!

Using Eq.~3!, we can obtain the scattering phase shift fro
the energy eigenvalue calculated in lattice simulations. T
scattering length is given bya05 lim p̄→0 tand( p̄)/ p̄.

In the limit of large volume or weak two-pion interac
tions, we find

p̄n
22pn

25O~1/L3! or n̄2n5O~1/L ! ~5!

from Eqs.~3! and~4!. Therefore, taking the volumeL3 to be
large in lattice calculations, we can employ an expansion
Z00(1;n̄) aroundnPZ given by

A4p•Z00~1;n̄!52
Nn

n̄2n
1 lim

N→`
(
j 51

N

Z00~ j ;n!•~ n̄2n! j 21,

~6!

where

Z00~ j ;n!5 lim
n̄→n

@A4p•Z00~ j ;n̄!2Nn•~n2n̄!2 j # ~7!

and Nn5(mPZ3d(m22n). In this work we use the expan
sion ~6! with N510, with which the numerical errors for a
our simulation parameters are underO(1028). The numeri-
cal calculation ofZ00( j ;n) is discussed in Ref.@9#. The val-
ues for severalj ’s andn’s are tabulated in Table I.
01450
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B. Extraction of energy eigenvalues of the two-pion system

In order to obtain the energy eigenvalues of the two-p
system we construct the pion four-point function

Gnm
(NR)

~ t !5^0uVn~ t !Vm
(NR)

~ tS!u0&. ~8!

HereVn(t) is an interpolating field for theS-wave two-pion
system at timet given by

Vn~ t !5
1

48
•(

R
p~R~pW n!,t !p~2R~pW n!,t !, ~9!

where p(pW n ,t) is the pion interpolating field with lattice
momentum pW n at time t. The vector pW n satisfies pn

2

5(2p/L)2
•n(nPZ), andR is an element of the cubic grou

which has 48 elements. The summation overR is the projec-
tion to theA1 sector of the cubic group, which equals th
S-wave state in the continuum, ignoring effects from sta
with angular momentumL>4.

For the source we use another operatorVn
(NR)(t) defined

by

Vn
(NR)

~ t !5
1

NR
•(

j 51

NR

p~pW n ,t,j j !p~2pW n ,t,h j !, ~10!

where

p~pW n ,t,j j !5
1

L3
•F(

xW
q̄~xW ,t !eipW n•xW

•j j
†~xW !G

3g5F(
yW

q~yW ,t !•j j~yW !.G ~11!

The fieldp(pW n ,t,h j ) is defined asp(pW n ,t,j j ) by changing
j j (xW ) to h j (xW ). The functionsj j (xW ) andh j (xW ) are orthogo-
nal complex random numbers in three-dimensional spa
whose property is

lim
NR→`

1

NR
•(

j 51

NR

j j
†~xW !j j~yW !5d3~xW2yW !. ~12!

TABLE I. Values of the zeta functionZ00( j ;n) and Nn

5(mPZ3d(m22n) for momentap25(2p/L)2
•n.

j n50 (Nn51) n51 (Nn56) n52 (Nn512)

1 28.913632922 21.211335686 25.096565798
2 16.532315957 23.243221879 25.661192388
3 8.401923974 13.059376755 4.254135936
4 6.945807927 13.731214368 14.867522887
5 6.426119102 11.308518083 2.283549584
6 6.202149045 13.140942288 14.148854520
7 6.098184125 11.067054131 2.051601110
8 6.048263469 13.032596991 14.031382623
9 6.023881707 11.016034293 2.011078709
10 6.011862830 13.007939537 14.007265604
2-2
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The pion two-point function is constructed as

Gn
p(NR)

~ t !5
1

NR
•(

j 51

NR

^0up~pW n ,t !p~2pW n ,tS ,j j !u0&.

~13!

When the number of random noise sourcesNR is taken large
or the number of gauge configurations becomes large,
expect

FIG. 1. Momenta in units of GeV2 used in this work for each
lattice size. We obtain scattering length and phase shift at the fi
symbols. Momenta marked by open symbols are used only to
amine the momentum cutoff effects. The broken line shows
upper limit of elastic scattering for the smallestmp in this work,
i.e., E52•Amp

2 1p2,4mp .

FIG. 2. Examples of effective mass of pion propagatorGn
p(t) at

k50.1589 (mp /mr50.491) on a 323 lattice. The subscriptn refers
to the momentump25(2p/L)2

•n. The source is located att58.
01450
e

Gnm
(NR)

~ t !;Gnm~ t !5^0uVn~ t !Vm~ tS!u0&,

Gn
p(NR)

~ t !;Gn
p~ t !5^0up~pW n ,t !p~2pW n ,tS!u0&, ~14!

and the four-point function will be symmetric under e
change of the sink and source momenta. In our numer
calculations we use U(1) random numbers and takeNR
52. The number of configurations is 200, 286, and 52
pending on the lattice size as shown in Sec. III. We alwa
check the symmetry of the four-point function across t
midpoint in the temporal direction before analysis.

The four-point function can be rewritten in terms of th
energy eigenvalueĒj and eigenstateuV̄ j& as

Gnm~ t !5 (
j PZ

^0uVnuV̄ j&^V̄ j uVmu0&

^V̄ j uV̄ j&
•e2Ēj •(t2tS), ~15!

d
x-
e

FIG. 3. Examples of the pion four-point functionGnm(t) at k
50.1589 (mp /mr50.491) on a 323 lattice. The two subscriptsn
and m refer to the sink and source momentap25(2p/L)2

•n and
k25(2p/L)2

•m. The source is located att58. Filled and open
symbols indicate positive and negative values. In the lower fra
large statistical errors are forG12(t), while those ofG21(t) are very
small.
2-3
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FIG. 4. RatioRn(t) andDn(t) for n50 for all quark masses and lattice sizes in this work. Quark mass increases from top to b
while lattice size increases from left to right. For diagonalization ofM (t,t0), the momentum cutoff is set atN51, and the reference time
at t0518.
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whereVn5Vn(0) and we assume nondegeneracy of ene

eigenstates. Thej th energy Ēj52•Amp
2 1 p̄ j

2 satisfies the

Lüscher relation~3!. Since the matrix element^0uVnuV̄m& is
not diagonal generally, the four-point functionGnm(t) con-
tains many exponential terms and is not a diagonal ma
with respect to the momentum indicesn andm. For simplic-
ity we introduce the following matrices:

Vnm5^0uVnuV̄m&/A^V̄muV̄m&,

Dnm~ t !5dnm•e2Ēn•(t2tS), ~16!

and rewrite the four-point function in the following matri
form:
01450
y

ix

G~ t !5VD~ t !VT, ~17!

wheren andm are regarded as matrix indices.
The extraction of the energy eigenvalues from a multie

ponential Green’s function such as Eq.~17! is nontrivial. One
can attempt multiexponential fitting to extract them, but it
very difficult in general. A method of extraction was pro
posed by Lu¨scher and Wolff@11#. They applied it to the
O(3) nonlinears model in two dimensions and obtained th
scattering phase shift. This method has been used for m
statistical systems@16# and also for theI 52 two-pion system
of QCD @8#. In their method the following matrix is diago
nalized at eacht:

M ~ t,t0!5G~ t0!21/2G~ t !G~ t0!21/2, ~18!
2-4
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FIG. 5. RatioRn(t) andDn(t) for n51 for all quark masses and lattice sizes in this work. Quark mass increases from top to b
while lattice size increases from left to right. For diagonalization ofM (t,t0), the momentum cutoff is set atN51 and 2, and the referenc
time at t0518.
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wheret0 is some reference time. The eigenvaluesl(t,t0) of
M (t,t0) can be obtained easily from Eqs.~17! and ~18! by

l~ t,t0!5Ev@M ~ t,t0!#5Ev@G~ t !G~ t0!21#

5Ev@VD~ t !D~ t0!21V21#5Ev@D~ t !D~ t0!21#

5$exp@2Ēj•~ t2t0!#u j 50,1,2, . . . %, ~19!

where Ev@¯# means to the eigenvalue of the m
trix. Therefore after diagonalization ofM (t,t0) we can ob-
tain the energy eigenvaluesĒj by a single exponential fitting

In actual calculations we cannot calculate all the com
nents of the four-point function precisely. We have to se
momentum cutoffpcut

2 5(2p/L)2
•N. Here we expect tha
01450
-
a

the components ofGnm(t) for n,m<k are dominant for the
kth eigenvaluelk(t) in the larget and t0 region, while the
componentsn,m.k are less important. In this work we se
t0 and t large and investigate the cutoff dependence forN
>k.

III. SIMULATION PARAMETERS

Our simulation is carried out in quenched lattice QC
employing the standard plaquette action for gluons atb
55.9 and the Wilson action for quarks. Quark masses
chosen to be the same as in the previous study of
quenched hadron spectroscopy by the CP-PACS Collab
tion @17#, i.e., k50.1589, 0.1583, 0.1574, and 0.156
which correspond to mp /mr50.491(2), 0.593(1),
2-5
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TABLE II. Results forn50 with momentum cutoffN50 andt0518. The scattering amplitudeA( p̄n) is

defined byA( p̄n)5tand( p̄n)/ p̄n•Ēn /2. A( p̄n)/mp
2 corresponds toa0 /mp .

k50.1589 k50.1583 k50.1574 k50.1566
mp /mr 0.491(2) 0.593(1) 0.692(1) 0.752(1)

mp
2 (GeV2) 0.16113(97) 0.26026(90) 0.40896(91) 0.5468(11)

V5243

Fitting range 18–40 18–40 18–44 18–44
DEn (31024 GeV) 98(14) 97.9(83) 86.3(53) 75.5(47)
p̄n

22pn
2 (31024 GeV2) 39.5(56) 50.1(43) 55.4(35) 55.9(35)

n̄2n (31023) 15.4(22) 19.5(17) 21.6(13) 21.8(14)

p̄n
2 (31024 GeV2) 39.5(56) 50.1(43) 55.4(35) 55.9(35)

d( p̄n) (deg) 21.91(37) 22.64(31) 23.03(25) 23.07(26)

A( p̄n) 20.214(27) 20.335(25) 20.458(24) 20.532(29)

A( p̄n)/mp
2 (1/GeV2) 21.34(17) 21.293(96) 21.119(59) 20.975(51)

V5323

Fitting range 18–44 18–44 18–44 18–44
DEn (31024 GeV) 31.3(77) 38.6(31) 33.0(21) 29.3(16)
p̄n

22pn
2 (31024 GeV2) 12.6(31) 19.7(16) 21.1(14) 21.7(12)

n̄2n (31023) 8.7(22) 13.7(11) 14.66(95) 15.02(82)

p̄n
2 (31024 GeV2) 12.6(31) 19.7(16) 21.1(14) 21.7(12)

d( p̄n) (deg) 20.86(31) 21.62(18) 21.78(16) 21.84(14)

A( p̄n) 20.170(39) 20.325(24) 20.433(25) 20.512(25)

A( p̄n)/mp
2 (1/GeV2) 21.05(24) 21.250(91) 21.060(61) 20.936(46)

V5483

Fitting range 18–44 18–44 18–4 18–44
DEn (31024 GeV) 11.8(33) 10.0(21) 8.6(14) 7.5(10)
p̄n

22pn
2 (31024 GeV2) 4.7(13) 5.1(11) 5.51(89) 5.55(76)

n̄2n (31023) 7.4(21) 7.9(17) 8.6(14) 8.7(12)

p̄n
2 (31024 GeV2) 4.7(13) 5.1(11) 5.51(89) 5.55(76)

d( p̄n) (deg) 20.68(27) 20.74(23) 20.84(20) 20.85(17)

A( p̄n) 20.217(57) 20.294(58) 20.399(60) 20.464(59)

A( p̄n)/mp
2 (1/GeV2) 21.35(36) 21.13(22) 20.98(15) 20.85(11)
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0.692(1), and0.752(1). Thelattice cutoff is estimated from
the r meson mass, and equals 1/a51.934(16) GeV.

In order to examine finite-size effects for the scatter
length and to change the momentum for the phase shift,
tice simulations are carried out for three lattice sizes wit
fixed temporal sizeT560. The number of configurations an
the momentumpn

25(2p/L)2
•n for each lattice size are tabu

lated below:

L3 configurations n

243 200 0, 1, 2

323 286 0, 1, 2, 3

483 52 0, 1, 2, 3. ~20!

Here we calculate the phase shift at the momenta marke
an underbar; those unmarked are used to examine the
mentum cutoff effects. The momenta in units of GeV2 cho-
sen in this work are plotted in Fig. 1.

We note that the two-pion energy eigenstates are not
generate forn<6. Since the effects from the statesn.6 can
01450
t-
a

by
o-

e-

be thought to be negligible for the first several low-ener
states, the nondegeneracy assumption in the derivation o
diagonalization method in the previous section is justified

Gluon configurations are generated with the five-hit he
bath algorithm and the over-relaxation algorithm mixed
the ratio of 1:4. The combination is called a sweep and
skip 200 sweeps between measurements of physical qu
ties. Quark propagators are solved with the Dirichlet bou
ary condition imposed in the time direction and the sou
operator set attS58 to avoid effects from the tempora
boundary.

IV. RESULTS

A. Effects of diagonalization

In Fig. 2 we show examples of effective mass of the pi
propagatorGn

p(t) for momentan50,1,2 @p25(2p/L)2
•n#

at mp /mr50.491 on a 323 lattice. The source operator i
located attS58. We observe a clear plateau over the tim
ranget;18–46 for small momenta, but the signal becom
noisier for large momenta. We also find very large effe
from the temporally boundary fort.46.
2-6
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TABLE III. Results for n51 with the momentum cutoffN51 and t0518. The scattering amplitude

A( p̄n) is defined byA( p̄n)5tand( p̄n)/ p̄n•Ēn /2.

k50.1589 k50.1583 k50.1574 k50.1566
mp /mr 0.491(2) 0.593(1) 0.692(1) 0.752(1)

mp
2 (GeV2) 0.16113(97) 0.26026(90) 0.40896(91) 0.5468(11)

V5243

Fitting range 18–32 18–32 18–44 18–44
DEn (31023 GeV) 63(11) 42.7(54) 29.8(22) 25.1(16)

p̄n
22pn

2 (31023 GeV2) 41.3(73) 31.3(39) 24.5(18) 22.5(14)

n̄2n (31022) 16.1(28) 12.2(15) 9.54(71) 8.79(56)

p̄n
2 (31022 GeV2) 29.77(73) 28.76(39) 28.08(18) 27.89(14)

d( p̄n) (deg.) 231.8(57) 223.8(30) 218.5(14) 217.0(11)

A( p̄n) 20.77(14) 20.611(79) 20.523(40) 20.524(34)

V5323

Fitting range 18–36 18–40 18–44 18–44
DEn (31023 GeV) 22.5(15) 17.89(81) 15.11(50) 13.05(32)

p̄n
22pn

2 (31023 GeV2) 12.58(85) 11.42(52) 11.27(35) 10.88(26)

n̄2n (31022) 8.72(59) 7.92(36) 7.82(24) 7.54(18)

p̄n
2 (31022 GeV2) 15.678(85) 15.562(52) 15.548(35) 15.508(26)

d( p̄n) (deg) 216.9(12) 215.29(71) 215.08(47) 214.54(36)

A( p̄n) 20.432(30) 20.445(21) 20.513(16) 20.551(14)

V5483

Fitting range 18–44 18–44 18–44 18–44
DEn (31023 GeV) 6.24(81) 6.08(43) 5.10(24) 4.31(22)

p̄n
22pn

2 (31023 GeV2) 2.96(39) 3.46(25) 3.51(16) 3.37(18)

n̄2n (31022) 4.62(60) 5.40(39) 5.48(25) 5.25(27)

p̄n
2 (31022 GeV2) 6.705(39) 6.755(25) 6.760(16) 6.746(18)

d( p̄n) (deg) 28.8(12) 210.35(76) 210.50(49) 210.06(53)

A( p̄n) 20.285(38) 20.402(29) 20.492(23) 20.535(28)
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The pion four-point functionGnm(t) defined by Eq.~8! is
plotted in Fig. 3 for the same parameter. The signal is v
clear, and we see that the off-diagonal elements (n5” m) are
not negligible. This means that the overlap is not diagon
i.e., Vnm}” dnm in Eq. ~15!. We also observe that the fou
point function is almost symmetric under the exchange of
sink and source momenta, but the statistical errors are
symmetric. In the lower frame of Fig. 3, for example,G12(t)
suffers from large statistical error, while that ofG21(t) is
very small. In the following analysis we assume symmetry
the magnitude of error, and substitute the component w
large statistical error by the symmetric partner with sma
error. We also see evidence of the presence of many e
nential terms in the lower frame of Fig. 3. The sign ofG12(t)
and G21(t) is flipped att;36–38. This is possible only i
more than two exponential terms are present.

In order to examine the effects of diagonalization, we c
culate two ratios defined by

Rn~ t ![Gnn~ t !•@1/Gn
p~ t !#2, ~21!

Dn~ t ![ln~ t,t0!•@Gn
p~ t0!/Gn

p~ t !#2, ~22!
01450
y

l,

e
ot

f
th
r
o-

l-

whereln(t,t0) is the nth eigenvalue ofM (t,t0) calculated
with a finite momentum cutoffpcut

2 5(2p/L)2
•N. If the four-

point function contains only a single exponential term, i.
Gnm(t)}dnm•exp@2Ēn•(t2tS)#, then

Rn~ t !5A•e2DEn•(t2tS), ~23!

whereDEn[Ēn2En andA is a constant. If the momentum
cutoff is sufficiently large, then the eigenvalue behaves
ln(t,t0)5exp@2Ēn•(t2t0)# and

Dn~ t !5e2DEn•(t2t0). ~24!

In these cases we can obtain the energy shiftDEn[Ēn
2En easily from the ratioRn(t) or Dn(t) by a single expo-
nential fit.

In Fig. 4 the ratioRn(t) and Dn(t) for the ground state
n50 are plotted for all quark masses and lattice sizes in
work. For Dn(t) the momentum cutoffpcut

2 5(2p/L)2
•N is

set atN51 and the reference time is taken to bet0518. We
divide Dn(t) by a constantDn(tS) to facilitate a comparison
with Rn(t). The statistical errors are very small and the
agonalization does not affect the result. We also checked
2-7
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FIG. 6. RatioRn(t) andDn(t)
for n52 for all quark masses and
lattice sizes in this work. Quark
mass increases from top to bo
tom, while lattice size increase
from left to right. For diagonaliza-
tion of M (t,t0), the momentum
cutoff is set atN52 and 3, and
the reference time att0518.
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momentum cutoff dependence by takingN52 and con-
firmed that it is negligible. In previous calculations of th
scattering lengths@1–7# the ratioR0(t) was used to extrac
the energy shiftDE0. Our calculation demonstrates the re
ability of these calculations.

We compare the ratios for the first exited staten51 in
Fig. 5. The momentum cutoff is set atN51 andN52. We
divide Dn(t) by a constantDn(tS) as for the case ofn50.
The diagonalization is effective for smaller quark masses
smaller lattice sizes, while it is less so for larger qua
masses and larger volumes. The momentum cutoff dep
dence is negligible for the whole parameter region, howe
We see a strange behavior neart536. We consider that this
is either due to insufficient statistics or is an effect of t
01450
d

n-
r.

temporal boundary. We then fit the ratio by a single expon
tial form over the time range consistent with the single e
ponential behavior. The fitting range for each paramete
tabulated in Table III below.

A similar comparison forn52 ~the second exited state! is
made in Fig. 6. The momentum cutoff is set atN52 and
N53. We observe again that the diagonalization is effect
for smaller quark masses and smaller lattice sizes. The
mentum cutoff dependence is small for all parameter reg
as for the case ofn51. Compared with then50 andn51
cases, the signals are noisier. We observe a strange tim
pendence in the data atmp /mr50.491 and 0.593 on a 323

lattice at t;30–46. For these data we restrict the fittin
range tot518–32. We remove results at these parame
2-8
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TABLE IV. Results for n52 with the momentum cutoffN52 and t0518. The scattering amplitude

A( p̄n) is defined byA( p̄n)5tand( p̄n)/ p̄n•Ēn /2.

k50.1589 k50.1583 k50.1574 k50.1566
mp /mr 0.491(2) 0.593(1) 0.692(1) 0.752(1)

mp
2 (GeV2) 0.16113(97) 0.26026(90) 0.40896(91) 0.5468(11)

V5323

Fitting range 18–32 18–32 18–40 18–44
DEn (31023 GeV) 40.9(56) 32.9(27) 24.3(12) 20.93(86)

p̄n
22pn

2 (31023 GeV2) 27.8(38) 24.5(20) 20.3(10) 19.15(80)

n̄2n (31022) 19.3(27) 17.0(14) 14.10(72) 13.28(55)

p̄n
2 (31022 GeV2) 31.62(38) 31.30(20) 30.87(10) 30.756(79)

d( p̄n) (deg) 225.2(34) 222.3(18) 218.47(93) 217.41(72)

A( p̄n) 20.576(81) 20.552(46) 20.507(26) 20.520(22)

V5483

Fitting range 18–36 18–44 18–44 18–44
DEn (31023 GeV) 15.9(10) 11.40(61) 9.20(38) 7.81(33)

p̄n
22pn

2 (31023 GeV2) 8.57(55) 7.11(38) 6.75(28) 6.41(27)

n̄2n (31022) 13.37(86) 11.09(59) 10.53(44) 10.00(42)

p̄n
2 (31022 GeV2) 13.675(55) 13.529(38) 13.493(28) 13.459(27)

d( p̄n) (deg) 217.5(11) 214.56(77) 213.83(58) 213.15(55)

A( p̄n) 20.464(31) 20.442(24) 20.493(21) 20.524(22)
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from our final analysis. In other data clear signals of t
single exponential behavior are seen fort.18. The fitting
range for each parameter is listed in Table IV below.

From these results we conclude that the momentum cu
should be takenN>n for the energy shiftDEn . The results
of the energy shiftDEn obtained by the single exponenti
fitting of the ratioDn(t) are tabulated in Tables II, III, and
IV, where we take the momentum cutoffN5n, and the ref-
erence timet0518. In the tables we also quote the scatter
amplitudeA( p̄n) defined by

A~ p̄n!5
tand~ p̄n!

p̄n

•

Ēn

2
, ~25!

where we normalize the amplitude as limp̄→0A( p̄)5a0
•mp .

B. Results for scattering length

For n50 the values ofp̄n
2 are very small as shown in

Table II. Therefore we may writeA( p̄n)/mp
2 ;a0 /mp , and

use results forn50 to evaluate the scattering length.
In Fig. 7 we recapitulate the recent results of the JLQC

Collaboration@6# and Liuet al. @7# for the I 52 pion scatter-
ing length. The two values of Liuet al. denoted as~Scheme
I! and ~Scheme II! refer to their two different treatments o
the finite volume corrections. The two values of JLQCD c
respond to two different fitting functions for extraction of th
energy shift from the ratioR0(t); ~LIN ! used a linear fit int
while ~EXP! employs a single exponential int. Figure 7
shows that the lattice cutoff effect is strongly dependent
01450
e

ff

g

-

n

the choice of the fitting function. However, the dependen
disappears toward the continuum limit. Compared with
JLQCD results the lattice cutoff effect of Liuet al. is very
small, since their calculation is carried out with an improv
gauge and improved Wilson fermion action on anisotro
lattices, while the actions of JLQCD are the standa
plaquette and the Wilson fermion actions. The values
trapolated to the continuum limit are consistent with t
CHPT prediction@18# as shown in Table V.

Since we use the same actions as those of JLQCD,
compare our results with theirs at the same gauge coup

FIG. 7. Results for scattering lengtha0 /mp (GeV2) obtained by
the JLQCD Collaboration@6# and by Liuet al. @7#.
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constantb55.9 in Fig. 8. Here our data on a 483 lattice are
omitted, because those are consistent with the results on3

and 323 lattices within the very large statistical errors
those on the 483 lattice ~see Table II!. Our data for the scat
tering length are different from those of JLQCD obtained
a linear fit~LIN ! by about 2.5s, whereas we find consistenc
among results obtained with the exponential fitting for fo
different lattice sizes, i.e., 243, 323, 483 from the present
work, and 163 from JLQCD. In Fig. 8 we observe that bot
our and the JLQCD results atb55.9 are far from the CHPT
predictiona0 /mp522.265(51)1/GeV2. This is due to finite
lattice cutoff effects, which are rather large for the stand
actions as shown in Fig. 7.

Here we comment on the choice of the fitting function f
the ratioR0(t). In our analysis we assumed a single exp
nential behavior, i.e.,R0(t);Z•exp@2DE0(t2tS)# for large
t2tS . The validity of this assumption was partially exam
ined by Sharpeet al. @1#. Writing

R0~ t !5Z•S 12DE0•~ t2tS!1
1

2
•~DE08!2

•~ t2tS!2

1O„~ t2tS!3
…D , ~26!

they showed in time-ordered perturbation theory that the
tice value ofDE0 is related to the scattering length by th
Lüscher relation~3! up to corrections ofO(L25). By a simi-
lar calculation, one easily shows that the value ofDE08 devi-
ates fromDE0 by terms ofO(L25). These effects occur du
to intermediate off-shell two-pion states.

TABLE V. Recent results for the scattering lengtha0 in the
continuum limit. CHPT refers to the prediction of chiral perturb
tion theory. The error for this case shows theoretical uncertaint

a0 /mp (1/GeV2) a0•mp

JLQCD ~LIN ! 22.07(24) 20.0406(47)
JLQCD ~EXP! 22.09(35) 20.0410(69)
Liu et al. ~Scheme I! 21.75(38) 20.0342(75)
Liu et al. ~Scheme II! 22.34(46) 20.0459(91)
CHPT 22.265(51) 20.0444(10)
01450
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In the context of our analysis, the momentum cutoff d
pendence is negligible as discussed in Sec. IV. This me
that the effects due to the intermediate off-shell two-pi
states are negligible. Thus the correction ofO(L25) for DE0

andDE08 is sufficiently small, and the time behavior can b
regarded as a single exponential function in our simulatio

To check this point more explicitly, we calculate the sc
tering length with the energy shift obtained with both t
linear and the single exponential function int as was done by
the JLQCD Collaboration. Results are tabulated in Table
which shows that the two sets of values are consistent wi
statistical errors, and have no volume dependence. Th
facts indicate that the deviation of the JLQCD results b
tween the two fitting functions comes from the approxim
tion of the exponential function by the linear function int,
i.e., the value ofDE0•(t2tS);1/L3

•(t2tS) is not small
enough to justify such an approximation due to small latt
sizes.

Another comment concerns the quenching effect on
ratio R0(t). Bernard and Golterman derived the same tim
behavior ~26! using quenched chiral perturbation theo
~QCHPT! @19#. They predicted that the scattering length o

FIG. 8. Comparison of our results on 243 and 323 lattices with
those of JLQCD Collaboration on a 163 lattice atb55.9 @6#.

s.
t
TABLE VI. Our results for the scattering lengtha0 /mp (1/GeV2) calculated from the energy shif
obtained by the linear fitting~LIN ! and the exponential fitting~EXP! of R0(t) in t.

k50.1589 k50.1583 k50.1574 k50.1566
mp /mr 0.491(2) 0.593(1) 0.692(1) 0.752(1)

mp
2 (GeV2) 0.16113(97) 0.26026(90) 0.40896(91) 0.5468(11)

243 LIN 21.23(14) 21.194(82) 21.042(51) 20.917(46)
EXP 21.34(17) 21.293(96) 21.119(59) 20.975(51)

323 LIN 21.02(23) 21.207(85) 21.029(58) 20.912(43)
EXP 21.05(24) 21.250(91) 21.060(61) 20.936(46)

483 LIN 21.34(35) 21.12(22) 20.97(14) 20.84(11)
EXP 21.35(36) 21.13(22) 20.98(15) 20.85(11)
2-10
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FIG. 9. Scattering amplitudeA( p̄)5tand( p̄)/ p̄•Ē/2 for fixed quark masses. The fit curve is also plotted. The open symbols indicate
omitted in the fitting procedure.
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tained with the quenched approximation is divergent in
chiral limit asa0;1/mp . These effects are attributed to no
unitarity of the quenched theory. The same results were
obtained by Colangelo and Pallante@20#. Divergence in scat-
tering lengths in the chiral limit can also occur if one use
chirally nonsymmetric lattice fermion action, for examp
the Wilson fermion action.

In Fig. 8 we do not observe signs of divergence towa
the chiral limit. We consider that the effects of quenchi
and broken chiral symmetry are still too small to affect d
at our simulation points.

The quenching problems can also occur for nonzero m
menta, i.e., it is not proven that the pion four-point functi
Gnm(t) behaves as a multiexponential function int like Eq.
~15! and the diagonalization method can be used. In
work we assume that such effects are small at our simula
points as confirmed for the zero momentum case. Invest
01450
e

so

a

d

a

-

is
n

a-

tion of the quenching effects for the scattering length and
phase shift by lattice simulations with small quark masse
important future work.

TABLE VII. Results of fitting of the scattering amplitude with
the assumption~chiral!, and without the assumptionA0050 ~no
chiral!.

Chiral No Chiral

A00 — 20.069(41)
A10 (1 GeV2) 21.389(84) 21.01(24)
A20 (1 GeV4) 0.79(18) 0.33(33)
A01 (1 GeV2) 22.07(20) 22.00(20)
A11 (1 GeV4) 3.22(47) 3.09(48)
A02 (1 GeV4) 1.27(53) 1.23(53)
x2/ND. 0.863 0.782
2-11
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C. Results for scattering phase shift

The energy shiftDEn[Ēn2En and the phase shiftd( p̄n)
at our simulation points are tabulated in Tables II, III, a
IV. The scattering amplitudeA( p̄n) defined by Eq.~25! are
also included in these tables.

In Fig. 9 we plot the amplitude at fixed quark mass a
function of the momentump̄n

2 . In order to obtain the scat
tering phase shift for various momenta at the physical p
mass, we extrapolate our data with the following fitting a
sumption:

A~ p̄![
tand~ p̄!

p̄
•

Ē

2
5A001A10•~mp

2 !1A20•~mp
2 !2

1A01•~ p̄2!1A11•~mp
2 !~ p̄2!1A02•~ p̄2!2. ~27!

Here A10 corresponds toa0 /mp . In Fig. 9 we omit data
plotted with open symbols in the fitting. They are for th
momentumn52 on a 323 lattice at mp /mr50.491 and
0.593 for which a clear plateau inDn(t) is absent. It should
be noted that the constant termA00 vanishes if the effects o
quenching and chiral symmetry breaking are negligible.
tried to fit our data both with and without the assumpti
A0050. The results, tabulated in Table VII, show that t
latter fit yields a value ofA00 which is 1.7s away from zero.
The other parameters, such asA10, which are physically
more relevant, are consistent between the two types of
however. From these observations we adopt the value
the assumption ofA0050. The fit curves for this fitting are
also plotted in Fig. 9.

We present our results for the phase shiftd(p) at the
physical pion mass obtained with the fitting~27! with the
assumptionA0050 in Fig. 10. The filled points are exper

FIG. 10. Comparison of our results for scattering phase s
d(p) at physical pion mass with experiments@21,22#.
01450
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mental results@21,22#. The values of the phase shift at se
eral momenta are tabulated in Table VIII. Our results a
30% smaller in magnitude than the experiments. A poss
origin of the discrepancy is finite lattice spacing effects.
we saw in Fig. 7 the JLQCD results for scattering leng
show a sizable scaling violation. Hence that of the scatter
phase shift cannot be considered small. Further calculat
nearer to the continuum limit or calculations with improve
actions are desirable to obtain the continuum result for
phase shift.

V. CONCLUSIONS

We have shown in this work that calculations of the sc
tering length are possible with present computing resour
The quenched approximation we employed has theore
issues regarding the chiral extrapolation. We see no prob
either theoretically or computationally, in avoiding this pro
lem by going to full QCD calculations, for the simplest ca
of the I 52 two-pion system. The cases ofI 50 and I 51,
which are richer in physics content, are much more diffic
from the computational point of view. Algorithmic advance
are presumably needed to evaluate the box and two-l
diagrams with good precision for nonzero momenta; th
are needed to extract the two-pion energy eigenvalue
these channels.

Another implication of this work is feasibility of a direc
calculation of theK→pp decay amplitude using the metho
of Lellouch and Lu¨scher. Diagonalization of the pion four
point function yields the two-pion eigenstate for nonze
relative momenta, which can be used as the final state for
K→pp Green’s function needed in their method. Executi
this program for theI 52 channel would be an interestin
step to take to solve this long-standing problem.
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TABLE VIII. Our results for the scattering phase shift at seve
momenta at the physical pion mass.

p2 (GeV2) As (GeV) d(p) (deg)

0.020 0.40 22.71(12)
0.070 0.60 28.09(59)
0.140 0.80 214.8(12)
0.230 1.00 222.0(20)
0.340 1.20 228.6(31)
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