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There exist both continuum and lattice regularizations of gauge theories with fermions which preserve chiral
U(1) invariance(“fermion number”). Such regularizations necessarily break gauge invariance but, in a cova-
riant gauge, one recovers gauge invariance to all orders in perturbation theory by including suitable counter-
terms. At the nonperturbative level, an apparent conflict then arises between the ¢hjraydmetry of the
regularized theory and the existence of 't Hooft vertices in the renormalized theory. The only possible resolu-
tion of the paradox is that the chiral() symmetry is broken spontaneously in the enlarged Hilbert space of
the covariantly gauge-fixed theory. The corresponding Goldstone pole is unphysical. The theory must therefore
be defined by introducing a small fermion-mass term that breaks explicitly the chitalinvariance and is
sent to zero after the infinite-volume limit has been taken. Using this careful defifetimha lattice regular-
ization) for the calculation of correlation functions in the one-instanton sector, we show that the 't Hooft
vertices are recovered as expected.
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I. INTRODUCTION AND CONCLUSION Herei runs over all the left-handed fields. In QCD-like theo-
ries, this applies in particular to dimensional regularization
Every gauge theory coupled to massless fermions has as well as to the standard lattice regularizafiB].
anomalous chiral current. Representing all fermions by left- What happens if the regulator is chirald) invariant?
handed Weyl fields, the Noether current associated with §he U1) current will now be conserved at the one-loop
common global 1) rotation is classically conserved. At the |evel. Therefore it must, when the cutoff is removed, coin-

o.ne—loop level, a gauge-.invariant definition of the current.iya with the gauge non-invariant curre}h defined in Eq.
yields the Adler-Bell-Jackiw anomafi] (1.2. (This is true up to a tern@,H,,, with H,, an anti-

cg? symmetric tensor.Since, classically, the () Noether cur-
aﬂJ;:B—ZtrFTZ, (1.1 rent is gauge invariant, this can only happen because the
a

regularization itself is not gauge invariant: a chiraltlJ

. . . invariant regularization is, necessarily, not gauge invariant.
For our notation see Appendix A. The group-theoretical con- Does this observation imply that all chiraki)-invariant

stantc is additive. (Each Weyl fermion in the fundamental regularizations must be dismissed? To begin with, in pertur-

representation contributes=3. We will assume the gauge . . . . .
symmetry to be non-anomalous throughout this pajgne batlon theory the answer is no, provided the a(_:tlon contains
can also define a conserved but gauge non-invariant curreffeVarant gauge-fixingand ghostterms. A covariant gauge
will be assumed throughout this paper. In the presence of a
=gt — o2 longitudinal kinetic term, ¢,,A )2, the theory is renormaliz-
=9, 9K, (1.2 T SR o ) .
able by power countingvithoutrelying on gauge invariance.
The renormalization program reduces to an algebraic prob-
lem and(provided the gauge symmetry is non-anomalous
1 one can restore gauge invariance to all orders in perturbation
trl AF o= 2AAA, . (1.3  theory by suitable counterternisee e.g. Ref4]).
3 Beyond perturbation theory, there is an apparent conflict
) ) o ) between chiral (1) invariance of the regularized theory and
If a gauge-invariant regularization is used, the gaugethe fact that instanton-mediated amplitudes violate the con-
invariant, non-conserved curredt, is defined(up to aZ  servation of the chiral () charge[5]. It has been pointed
facton by the fermion bilinear out long agd6—8] that, in a covariant gauge, the breaking of
chiral U(1) invariance can bespontaneousn a technical

where

C
=5 o€
o 87T2 nrpo

K

2 w o (1.4 sense. The reason is that the enlarged Hilbert space of the
= LY RTL: ' gauge-fixed theory can accommodate a hew Goldstone pole.
The latter is unphysical since it originates from e part
of the currentj'l;. If the regulator is chiral-(l) invariant,
*Email address: maarten@quark.sfsu.edu there is, in fact, no other possibility. In this paper, we re-
"Email address: shamir@post.tau.ac.il examine this question in the context of a specific lattice-
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regularization method. Our analysis reveals that a careful Llat — L=
definition of the thermodynamical limit is necessary, just as I NEi (PLo L+ XROLXRT ), (1.9
in the case of conventional spontaneous symmetry breaking.

This generalizes to continuum regularizations with chiral.

U(1) invariance such as, for example momentum-cutoﬁ‘ls exactly conserved on the lattidgéhe ellipsis stands for
! pie, : lattice terms with no continuum counterpart; see Appendix
schemes(see e.g. Ref[9]) or the dimensional-reduction

h ‘ C). But since the lattice action is not gaufleor Becchi-
scheme of Refl10]. _ o Rouet-Stora-TyutinBRST)] invariant in the gauge-fixing
The main motivation for our lattice-regularization method

. . : . ) =IO approach, the conservation dt"a“ is consistent with our
is that it may ultimately provide a non-perturbative definition earlier general comments. Following REZ3], we have veri-

of (anomaly-fre¢ chiral gauge theories. These theories areseq through an explicit one-loop lattice calculatii24] that
notoriously difficult to regularize in a gauge-invariant way. ha currentt“"2t indeed reduces in the continuum limit to the
In particular, dimensional regularization is not a gauge- H

AL . .
invariant regulator in this case. A gauge-invarigetrturba- currentJ,, defmeq in Eq(1.2.

. 2 . . The perturbative results of Ref23,24] are, however, not
tive regularization for chiral gauge theories has been foun%n

. . ough to resolve the following puzzle, which we will refer
only recently in the context O.f !att|ce gauge 'the@l)l,lz.. to as the Banks paradd®0]. In short, the paradox stems
Beyond perturbation theory, it is not known if non-Abelian

; ) . . . . from the fact that exact (1) invariance implies exact con-
chiral gauge theorl_es can be regulanzgd in a g?‘“ge"”va”a@%rvaﬁon of the corresponding(l) charge namely, of fer-
manner.(For a review of recent work in this direction see mion number. To be precise, consider a finite-volume lattice
Ref.[13]) and assume that the boundary conditions respect iti¢ U

According to the gauge-fixing approach, chiral gaugesymmetry. The Ward identity that corresponds to a global
theories are defined as the continuum limit of a lattice theoryy(1) rotation reads

whose action contains a covariant gauge-fixing term and

countertermg14—-17 (see also Ref[18] for a pedagogical (80)=q(0)=0. (1.6)
presentation and Rdf19] for a recent review of lattice chiral
gauge theorigs Carefully chosen irrelevant terms in the lat-
tice action are essential for the existence and the Continuit¥tress that, on a finite lattice, this is a rigorous reslhe

of the phase transition where the continuum limit is taken. Ininvariance of the lattice measure follows trivially from the

the Abelian case, we showed that the lattice fermions ar? . —
indeed chirally coupled to the gauge field and that perturbal@ct that there is an equal number @, anddy, Grass-

tion theory provides a valid description of the critical point mann integrals, as well as an equal numbedgg anddyg

Hereq is the fermion number, or the (W) charge, of0. We

[16]. ones) _ _ _ _
A fully non-perturbative generalization of the gauge- Th_e Ward identity(1.6) states that a fermion cqrrelanon
fixing approach to non-Abelian theories is not a simple taskfunction (O(x,X,, ...)) can be non-zero only ifj=0,

since one has to confront the issue of Gribov copies. Thigiamely if the number of; and xr fields is equal to the
important problem will not be addressed hésee Ref[17]  number ofy, and g fields. This is true for any finite lattice
for recent progregs Still, the method generates a systematicspacinga and any finite volume and, therefore, also after the
expansion around the classical vacuum and, provided the fegontinuum limit a—0 and the infinite-volume limit have
mion spectrum is gauge-anomaly free, it provides a consisseen taken. Moreover, in the continuum limit the numbers of
tent regularization in perturbation theory. By invoking the Yr and g fields must by themselves be equal, since the

familiar machinery of coIIect'ive coordﬁnate{§], it can be spectator field decouplg&2]. Hence the numbers af, and
used to generate a systematic expansion around other classt- fields must be equal too. We have thus reached the para-
cal solutions. In particular, it is possible to carry out an ana-’, - :

lytic calculation in an instanton background. This allows usgoég?lljr:?ggﬁi‘? :fﬁe]thgﬂ’ f:rvrﬁir:)nt_r:l%L:EQer”:/?olgtr:ceéﬁ”ﬂlon
to address the question, first raised in ReX0], of how P ’ g amp

: A : . tudes vanish. In other words, 't Hooft vertic€S] do not
fermion-number violating processes are realized in the > -

. Seem to occur. If the gauge-fixing approach would be utilized
gauge-fixing approach.

Let us explain the issue in more detail. The simplest chiraf0 define a vector-like theory such as massless QCD, the

X h . . same reasoning would seem to lead to the erroneous conclu-
fermion action used in the gauge-fixing approach, the so: 9

called chiral Wilson action, utilizes a set of right—handedSlon that the 1) axial charge is conserved in all physical

spectatorfields g, one per each left-handed field (see Processes.
. : : :
Appendix C for the precise definitionThe role of the spec- One can avoid the Banks paradox by adding to the lattice

i AR i i-
tators is to avoid fermion doubling on the latti¢2,3,21]. action é mass termmy; g ¢ +H.c., for the Rhy?"cal fermi
Thanks to a fermion-shift symmetry they can be proved to®nS- This allows unequal numbers %f andy,_fields to be
decouple in the continuum limf22]. compensated by insertions of the mass term. The broken,

Each term in the lattice action has OE@ or ;R and one global U(1) Ward identity in a finite(lattice) volume is now

Y or xg field. The chiral Wilson action is therefore invariant
under a common (1) rotation of all fermion fields. The OY=2m. () () — H.C
Noether current associated with this symmetry, a0} ) g hLx)gLx)—He.

(9>. .7
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The original lattice-fermion action corresponds to the limitnitions are collected in Appendix C. The construction of
m— 0, wherem denotes generically the magnitude of the propagators in the presence of approximate zero modes is
mass terms. We see that fermion-number or axial-charge viadiscussed in Appendix D.
lating amplitudes can be non-zero provided they behave like
m/m in the limit m—0. Now, we would not expect an
“m/m” behavior in a finite volume[Being valid form=0,
Eqg. (1.6) in fact implies that this is impossible in the pres-
ence of a lattice cutoff.The conclusion is that, in order to We begin with the simple example of one-flavor massless
reproduce correctly 't Hooft vertices, the infinite-volume QCD, an SUN) gauge theory coupled to one Dirac fermion
limit and them— 0 limit must not commutédence, the (1) in the fundamental representation. The anomalous current of
lattice symmetry must be brokespontaneously Eqg. (1.2 is in this case the axial current. Let us recall what
Anticipating spontaneous symmetry breakiff§SB of  the 't Hooft interaction of this theory is. In a fixed instanton
the U1) lattice symmetry we define the thermodynamicalbackground, the massless continuum Dirac opertdras
limit as the infinite-volume limit, followed by the limitn  one left-handed zero mode(x)=P u(x). Therefore the

—0. In this limit the momentum-space( Ward identity eyl fields 4, and ¢ each have a zero modén an anti-

II. ONE-FLAVOR QCD USING THE GAUGE-FIXING
APPROACH

reads, for anyp,#0, instanton background, the Weyl fields with zero modes are
B g and ¢ .) The basic axial-symmetry violating correlation
ip.(3.(P)O)=0(0). (1.8  function is
HereJ};*(p) is the Fourier transform od;'*"(x). Unlike (L () Pr(y))=u(x)u'(y)Det, 2.1

Eq.(1.7), because herg, # 0, the explicitm-dependent term _ _ _
now vanishes fom— 0. This is explained in more detail in Where the expectation value denotes Grassmann integration

the Discussion section. The identity.8) holds in the regu- only, and Det is the (renormalizedl fermion determinant
larized theory as well as in the continuum limiOn the  With the zero mode removed. Our objective will be to re-
lattice, thep,, factor on the left-hand side is modified by COVer this result starting from a lattice action with exact axial
O(ap?) terms. Again, remember that there is no room for anU(1) invariance.
anomalous term since the curre]’)}'a“ is exactly conserved The remaining step in a complete semi-classical calcula-
on the lattice] tion is the integration over the gauge and ghost fields. This

Since 't Hooft vertices do exist, this means that there ard@ises no new conceptual issues and therefore we will skip
operators for which the right-hand side of H4.8) is non- the _details. We re_c_all that the integrati@r lattice sum over
zero. Hence the left-hand side must contairGaldstone the instanton position recovers momentum conservation. The
pole As explained earlier, in the continuum limit the Gold- Gaussian integration over the non-zero gauge, fermion and
stone pole comes from thié,, part of the conserved (@) ghost_ﬂuctuatlons I_eads to 2the replacement of_the lattice’s
current and is unphysicf6—8J. bare instanton action, 782/90, by the renormalized one,

In this paper we calculate instanton-sector fermion corre87%/07(p), wherep is the instanton’s size.
lation functions on the lattice, in the semi-classical approxi- One-flavor QCD has a gauge-invariant lattice definition.
mation. We start from a lattice-fermion action with an addi- When using ordinary Wilson fermions, the lattice fermion
tional, small, mass term that breaks explicitly the unphysicafction is not invariant under axial transformations, and the
U(1) symmetry. Taking the infinite-volume and continuum paradox described in the Introduction does not afiisethe
limits, followed by them— 0 limit, we show that the antici- continuum limit one reproduces the axial anomia@y, while
pated 't Hooft vertices are recovered. Them” nature of ~ non-singlet axial symmetries are recovef@s].) In prin-
fermion-number and axial-charge violating amplitudes isciple, it should be possible to define one-flavor QCD using
manifest in our calculation. the gauge-fixing approach, too. While this has many disad-

The paper is organized as follows. In order to minimizevantages compared to the gauge-invariant definition, it has
technicalities we begin in Sec. Il with one-flavor QCD the interesting property that the paradox described in the
where, instead of the usual gauge-invariant lattice definitionlntroductionoccurs By working out one-flavor QCD we are
we define the theory via the gauge-fixing approach in theable to address, with minimal technicalities, the main issue
special case that thgeft-handed fermion spectrum happens of this paper—how a global symmetry of the lattice path
to contain one field in the fundamental representation anéntegral can be broken in the continuum limit.
one field in the complex conjugate one. In Sec. Il we work  The lattice construction of the chiral Wilson action begins
out the anomaly-free S@0) theory as the prototype of a With enumerating the left-handed fields of the target theory.
truly chiral gauge theory. Our conclusions are summarizedor one-flavor QCD we have two Wey! fieldg and ¢} in
and discussed in Sec. IV. In particular, we show that théhe fundamental and anti-fundamental representations re-
phase of the 't Hooft vertex follows the phase of the appliedspectively. As explained in the Introduction, one also needs
mass term, thus demonstrating explicitly the existence of théwo right-handed spectator fields that decouple in the con-
continuously degenerate ground states associated with SSBauum limit. These may be denoteg; and xg. In the case
The notation is listed in Appendix A, elements of @0 at hand, we may take advantage of the Dirac nature of the
group theory are discussed in Appendix B, and lattice defitarget theory and trade the left-handed anti-fundamental field
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with a right-handed fundamental ong — g, ¥°— . _ :
With a similar trade-off for the corresponding spectator field,#r With (say charge+1 andxr and ¢ with charge—1.
the lattice fermion action density can be written in the fol- This is the chiral symmetry that leads to the Banks paradox

lowing matrix form:

(xr ¥ ¥r XU

We use carets to denote lattice derivativé=or the precise

XR

a . — a
ED 0'luo7#
~ a .
o _ED
m 0
0 0

(2.2

PHYSICAL REVIEW D 67, 014501 (2003

The additional Y1) symmetry am=0 transformsy, and

[20]. The existence of this lattice symmetry would seem to
lead to the(erroneous conclusion that the axial charge is
conserved in masslegsne-flavoy QCD. As mentioned in
the Introduction, Refs[23,24 already showed that the
anomaly appears in the triangle diagram as expected. But
this still does not explain how the axial chargenist con-
served in physical processes.

We will now answer this question through an explicit cal-
culation. We calculate the lattice-fermion two point function
in the semi-classical approximation f@mal) m>0. Taking
the infinite-volume and continuum limits and finally sending
m— 0, we find that the 't Hooft interactio(2.1) is recovered.

As discussed in the literatuf—8], the continuous de-
generacy of ground states associated with SSB of the axial
U(1) is parametrized by the vacuuéhangle. The chiral Wil-
son action(C1) is invariant under & P transformation, and
this remains true in the presence of the mass term introduced
in Eq. (2.2 above. Therefore the calculation in this section
(as well as in Sec. I)l corresponds to a vacuum anghe
=0. The case of a generdlangle is explained in the Dis-

definitions of lattice derivatives and currents see Appendixyssion section.

C.) Observe that the middle two-by-two block in the above

We start with a continuunmegular-gaugeinstanton field

matrix operator resembles the massive continuum Dirac opA#(X) whose sizep is very large in lattice unitsp>a.

erator.

For orientation, we recall that in the conventional defini-
tion of Wilson fermions there are of course no spectato
fields, and covariant Wilson terms are placed in the sam
block entries as the mass terms in the above expression. T
removes the doublers in a gauge invariant way, while axi

symmetry is lost.

I

(Singular-gauge instantons are suppressed in the gauge-

fixing approach by the irrelevant terms in the lattice action;

see Appendix §.The lattice gauge field may be defined as
(x)=exdiaA,(x)]. This is a smooth configuratiofBy

;} is we mean that) ,(x)—1=0(a/p) and U ,(x) —U ,(x

+v)=0((alp)?).] For this lattice gauge field and fixeu

In order to later accommodate truly chiral gauge theories:>0, we denote the matrix operator in EQ.2) by ys M.
the doublers are removed here by introducing spectator field§ote that according to this definitioh is Hermitian.
and coupling them to the original fermions via tlieee
lattice Laplacian]. Since the Wilson terms now couple (2.2 goes over to a continuum Dirac operatér(m)
fields with different gauge-transformation properties, they= ysH(m) which depends on the original instanton field

lead to a breakdown of gauge invarian@é|. In lattice per-

In the formal continuum limit, the lattice operator in Eq.

A, (x). One obtaindD(m) by dropping the(irrelevany Wil-

turbation theory gauge invariance is regained by adding suitson terms and replacing the lattice difference operaigrs

able counterterms, and the renormalized diagrams descri
one interacting Dirac field, the quark, and one free Dirac
field, the spectator. As is usually the case for symmetrie%)i
broken by the lattice regularization, the above is true pro
vided the external momenta are vanishingly small in lattic

units. The choice of a free lattice Laplacian in HG.2)

implies the shift symmetry of the spectator fi¢RP], which

€

%d D, by the corresponding continuum derivatives. For

>0, D(m) describes a massive qudrkade ofig ), whose
rac operator islD+m, and a decoupled, free massless
spectator fieldimade of g ). Thus, D(m) has no zero

modes. We will denote b%(m) the propagator of the Her-
mitian operatoH (m). Both M ~! and G(m) admit a stan-

reduces considerably the number of counterterms. In particilard spectral decomposition.

lar, there are no counterterms of the fOEﬁXL , etc., and the

spectator field decouples in the continuum limit.

Let us now examine the @) symmetries of the action

Let us now be more precise about how the physical matrix
element is obtained. One has to multiply the correlation

function in Eqg.(2.2) by (normalized wave functionsf{(x)

(2.2). Dropping both the Wilson and the mass terms, theand fx(y) and integrate(or sum over x and y. The

action would be invariant under four separatéll$—a

physical observable is the gauge-field functional average of

fermion-number symmetry for each Weyl field. With the Wil- Det(M)(f;| M ~Lyg|f,). We will denote the generic virtu-
son terms in place, the action is still invariant under twoality of the external legs by?. As explained below, the
U(1)'s. Finally, for m#0, only the invariance under a com- matrix element is dominated by instantons of sife-Q 2
mon U1) rotation is left. This invariance corresponds to the>a?, where the last inequality follows because in the con-
baryon-number symmetry of QCD.

tinuum limit aQ?—0.
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Since the fermion determinant will b@(m), we are in-  trix and/or are not spatially constant. This more general for-
terested only in thé(1/m) piece of the propagat®). We  malism will be necessary in the next section. For a few more

claim that details on the calculation of the determinant €semment 2
_ - - in Appendix D.
lim (f 1| M "Lyl o) e = (F1l G(M) vs| f2) Sominaum: Our instanton calculation was done in the semi-classical
a-0 approximation, as is routine in the continuum. Since we have

2.3 somewhat expanded its scope by using a specific lattice-
regularization method, we will briefly review the justification
for the semi-classical approximation.

Consider a fermion-number violating amplitude with only
a minimal number of fermions, and no other particles, as the

X 2 ~2 o external legs(Here we wish to avoid the controversy about
effect of m>0 will be bounded byn*/Q” to some positive whether the fermion-number violating cross section could

power. Therefore they do not contribute to 0¢1/m) term. become large at very high energies due to multi-boson final

2 2 ; ; ivan-
FO”‘. <Q°, the difference bet\{veen eaph cqntlnuum eigen states). As before, denote the generic virtualities of the ex-
function and the corresponding lattice eigenfunction is

i : ternal legs byQ?. For instanton size?>Q~?, the overlap
202 )

bounded bya QI to;fope p%smvz r:jO\;ver. S'qu>0’ tgeth of the zero modes with the wave functions on the external
Lnovri:ist)eut(iecl)%eg\flatrl:: enti?erelove-uerrze?gy rlc;g[]ici g\pl)i,ct?Sm as_legs will provide a strong damping factor. Hence the saddle
proaches smoothly the continuum one for>0. [For the point pg, of the integration over the instanton’s S|ze;1§p

—~0O2 2 .
pairing of the lattice and the continuum eigenfunctions w Q . IfQ I'.S muEh Iargeima\/_r_léthg Conﬂﬂe_ﬁ?m. sc?fl_e, the
may momentarily assume a very large, but finite, volumeUnniNg coup gy, =9r(psp~ VQ %) Is small. This justifies

thus making the spectrum discrete; alternatively Ej3) the use of the one-instanton approximation.
can also be justified directly in the infinite-volume linit. . Ultimately, the most V'S'ble. consequence of the anomaly
In the infinite-volume limit, the massive continuum M one-flavor QCD IS that the lightest pseudo-_scalar dthee
propagator satisfies “n' meson’) is not light compared to the confinement scale
(see e.g. Ref(8]). The chiral-symmetry breaking effect ob-
1 tained from the semi-classical instanton calculation is much
G(x,y;m)y5=5u(x)uf(y)+0(1). (2.9 smaller since it is controlled by the small parameter
exp{—8ﬂ2/gr2(psp)]. We resort to this deep Euclidean regime,

Here we show explicitly only the term that diverges far because only there are we able to apply analytic methods to

—0 [compare Eq(D15)]. With the understanding that the accurately calculatg the consequences of t.he anomaly. _
matrix element is to be taken between smooth wave func- 1Nne above considerations have to do with the asymptoti-
tions f, , as described above, we thus have cally free nature of the Yang-Mills coupling, and therefore

they are completely independent of the regularization

Here “singular” denotes th&®(1/m) piece. The reason why
Eq. (2.3 is true is that a non-zenm affects only eigenfunc-
tions with eigenvalues in the region\|<=m. Indeed, for all
(lattice or continuum eigenfunctions with, say,?=Q?, the

_ 1 method. Moreover, our explicit calculation has demonstrated
lim M ~(x,y) 75:EU(X)UT(Y)+O(1)- (2.5  that no uncontrolled lattice artifacts occur. Finally, we note
a0 that the discretization of regular-gauge instantons does yield

rgauge—ﬁeld configurations that fail to satisfy the lattice Yang-
Mills equation of motion, but only by a small amount
O(al/pgy. Instanton-sector Feynman rules that generate a

For the fermionic determinant similar arguments lead, afte
renormalization, to

lim Det( M) = m[ Det +O(m)]. (2.6) systematic expansion igrz(psp) can be derived in the pres-
a0 ence of an approximate classical solution; see e.g. [R&f.
The explicit factor ofm again comes from th@approximatg IIl. CHIRAL GAUGE THEORIES

zero mode, while th€®©(m) terms account for the change in
the continuous spectrum due ma Putting this together we The lesson of the previous section is that a 't Hooft vertex
thus obtain can be interpreted as an order parameter for the spontaneous
breaking of the 1) chiral symmetry in a regularization
— 1 N scheme where chirdbut not gaugginvariance is preserved.
(LX) ¢r(y))=m[Det +O(m)]| —uCx)u’(y)+0(1)]. The introduction of a small mass term, which is sent to zero
(2.7 after the infinite-volume limit was taken, provides the neces-
sary coupling to an “external magnetic field” and allows the
Finally, taking the limitm—O we recover Eq(2.1). Equa- expectation value of a 't Hooft vertex to be non-zero. This
tion (2.7) reveals the fn/m” nature of the 't Hooft interac- reasoning is valid both in the continuum and on the lattice, if
tion. one uses the gauge-fixing approach.

The familiar equation2.4) above is particularly simple The generalization of the previous calculation to 't Hooft
and has been invoked primarily for pedagogical reasons. Inertices that violate the fermion-number symmetry of a chi-
Appendix D we show how to handle perturbations that liftral gauge theory is relatively straightforward. Starting from
the zero modes, but are not proportional to the identity mathe lattice theory, a mass perturbation that lifts the fermionic
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zero modes will again allow us to keep tl@pproximate o 0 oD,
zero modes under control while taking the infinite-volume Do=7v.(D,P.+D,Pr)=|— — . (89
and continuum limits. Performing next the limit— 0, we Oublu 0

will recover the 't Hooft vertices as before. The only step + ) . . :
which may not be obvious is that a mass perturbation thaﬂOte FhatDO?& Do: unlike the QCD case, is not anti-
ermitian. One can show that

lifts all zero modes exists in the continuum.
In this section we _demonstratg the existence of the neces- DIC,C=C,CDE . 3.9
sary mass perturbation by working out the example of an

SQ(10) chiral gauge theory[Attempting to construct the Appendixes A and B contain a number of useful relations
necessary mass perturbation for the most general anomalyhich have been used above.

free chiral gauge theory may be tedious, and thg18D Equipped with the Majorana formulation we introduce a
example is general enough to encompass the standard mogghss term
as well as the most popular grand unification schefiesa
one-generation SQO) theory the Weyl fermions reside in m— m —
the complex16 representation. We introduce covariant de- VY= (YreCi+ o eCiy). 3.9
rivatives M,N=1, . ..,10)

The mass term breaks explicitly the fermion-number symme-

D,=d,+iA"Syy, try and, in the limitm—0, provides the “seed” for sponta-
neous symmetry breakingThe mass term also breaks the

D,F(?,ﬁiA,'\fNEMN, (3.1 chiral gauge invariance; see belpw.he fermion operator
becomes

in the 16 and thel6 representations respectively. The (30 D(m)=Dg+m (3.10
generators are defined via o '
. 1 1 Equation(3.8) holds forD(m) too.
i — ;
_ _ We will soon prove thaD(m) has no zero modes, for
S[Tw . I'n]=5@A+T)3unt 5(1-T1)3un- , . : ; .
2[ vl 2( w2 2( 12N m# 0. But first, we give a simple physical explanation why
(3.2 this should be expected. Observe that

We use the 32 by 32 representation of the ten-dimensional C®l=—iCygl 10,

gamma matrices given in Appendix B. Tkeontinuum La-

grangian is wherel is the two-by-two identity matrix. Introducing a 32-
component spino¥’ whose first 16 components are equal

L= 0,D, . (3.3 to¥ we may write

In an instanton background there are four Ie_ft-handed zero @\PE\PTQ‘C\P: _ i—(\If’)TC4le“10(1+F11)\If’.

modes, one for each quark or lepton. We will show that a 2

suitable mass term lifts all four zero modes. To prepare for (3.1

the introduction of the mass term we first rewrite the La-
grangian in terms of Majorana-like fermions

\IfZ( GCE‘[

L

Because of"j, the mass term can be thought of as coming
from the vacuum expectation value of a Higgs field in 1ige
representation. This vacuum expectation value breaks
>, EZ(EL ¥l e0), (3.4 SQ10 down to SQ9). S.ince all spinor. repre;entations of
SQ(9) are real, the fermions can acquire Majorana masses
consistently with SC®) invariance. Moreover, the 16-

satisfying dimensional representation of 8 is irreducible, and
_ thereforeall 16 fermions acquire a Majorana mass.
v=vTC,C, (3.5 We will now show in more detail that there are no exact

zero modes fom#0 and that the fermion-number-violating
where € is the anti-symmetric two-dimensional tensor and’t Hooft interaction is recovered in the limih—0. We de-
C, is the four-dimensional charge conjugation matiee scribe the main steps here, relegating further technical details
Appendix A). The 16 by 16 matrix, which is related to the to Appendix B. In order to obtain information on the fermion
ten-dimensional charge-conjugation matrix, is defined in Eqpropagator form#0 we will need the general formalism of
(B3). It satisfies C*=C"=C '=C. In terms of the Appendix D, which applies to Hermitian operators. We will
Majorana-like fields the Lagrangian is rewritten as thus consider the following Hermitian operat@nd corre-

sponding propagatar

[0 D(m) [0 G'(m)
D(m)_<DT<m> 0 ) g<m)_<e(m> o |
where (3.12

1—
L£=5¥DoV, (3.6)
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Note thatD(m) carries a four-component spinor index, and
D(m) carries an eight-component spinor index. Let us first

enumerate the zero modes for=0. There are the four origi-

nal left-handed zero modes that belong to thé6 and sat-

isfy o,D,u;=0. In addition, define
vi=— ECUi* .

(3.13

Using the left handedness of and Eq.(3.8) one has

ofg--eclof

Therefore thev; are left-handed zero modes Bf) that be-

long to16. The propagatog,(x,y) is orthogonal to all eight
zero modes and satisfies

(3.19

DoGo(X,y) = & (x—y) = P(X,y), (3.19
where the zero-mode projector is
0 0 0 0
0 vi(xof(y) O 0
POYI=1 0 0 0
0 0 0 u()u(y)
(3.1

From these equations one can read off the relations satisfi

by the chiral propagator:
DoGo(x,y) = 8*(x—y) = PLui(x)v] ()P,
Go(X,Y)Do=8*(x—y) — PLui(x)u(y)P, .

The derivative acting to the left has a minus sign.

PHYSICAL REVIEW D 67, 014501 (2003

1
deﬂ'lz()\)zgfijk|)\ij)\k|. (32@

In Appendix B we prove that det()+0 for (almos) every
embedding of the instanton in $10).

Next consider correlation functions in the instanton sector.
In terms of the original Weyl fields,

(eCyly) (eCylyleC)

(W) (wyplec) |
(3.2)

Let us first see what happens if we saturate two fermion
fields ¢ (X) ¥ (y) by the O(1/m) part of the propagator.
Using Egs(3.13, (3.18, and noting the lower-right entry of
Eq. (3.21), we obtain a factor

G(m)=(WW)=

(3.22

By itself, this will give a vanishing result in the limin
—0 because d¥f(\) is O(m?). Next consider saturating
the product of four fieldsy (X) ¢ (Y) ¥ (2) ¥ (W). Sum-
ming over all possible contractions and paying attention to
Fermi statistics we get

u QU (YN

U () U (Y UKD U (W) N N NN AN D,
(3.23

efhe expression in parentheses is completely anti-symmetric

in the four indices,j,k,l. [If we would try to saturate 2
fermion fields for somen>2 with the O(1/m) part of the
propagator, the result would be identically zero due to the
anti-symmetrizatior.To evaluate the sum we write

N N NN NI D =, (3.29

We now turn tom# 0. As explained earlier, the fermion- and contracting with anothes,, we find

number symmetry is broken explicitly. This is reflected by

the fact thatG(m) does not anti-commute withs [compare
Eqg. (3.21) below]. An inspection of Eqs(3.10 and (3.12

1
C:—Gijk|)\i7jl)\;|l:det1/2()\71). (3.2

8

reveals that to first order, the mass perturbation can have

non-zero matrix elements only betweerdi@and al6 zero
mode. Let

Nij=(vilmluj)=m{v;|uj). (3.17
We find, using Eq(D15),
G(m)=|u)\j; vl +0O(1). (3.189

The first term on the right-hand side 3(1/m). Further-
more, using Eq(3.13),

)\ij sz UiTECUj , (319)

This cancels against E¢3.20, and in the limitm—0, one is
left with

(PO YY) L (2) (W) = € Ui (X) U ()
X u(z)uy(w)Det’,

(3.26

which is the expected 't Hooft vertex.

The mass term(3.9) breaks not only the unwanted
fermion-number symmetry; it also breaks chiral gauge in-
variance. This, however, does not lead to any disaster; in
fact, we know that in the UV-regulated theory the gauge
symmetry is already broken by the regulator. The crucial
point is that, in a covariantly gauge-fixed theory, the ultra-

which implies thatk;; is antisymmetric. In the zero-mode violet behavior of the vector-boson propagator ig2lior all
sector, the Majorana-fermion determinant is the analytigolarizations. Consequently, the theory remains renormaliz-

square roofPfaffian

able even if terms that break gauge invariance are added.
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Moreover, the addition of a mass term does not chang®nce in infinite volume, we obtain the correct 't Hooft ver-
the nature of the coupling of the theory. The one-loop betdices because we evidently have the correct numbéaef
function is unaffected by the mass term, and so the theory iproximatg zero modes.
still asymptotically free. Also, provided we are careful to As explained earlier, because @P invariance, the
employ a mass-independent renormalization prescriptionyacuum angle? was equal to zero in the previous sections.
universality of the renormalized coupling should be pre-Considering the one-flavor QCD example for simplicity, let
served. The same considerations imply that the continuums examine a mass term with a general axiéljlphase.
limit of the lattice theory should exist fan# 0, too. In the  (The generalization to chiral gauge theories is straightfor-
renormalized theory, a fermion-mass term is expected to inward; see Ref[28] for a discussion of) vacua in the context
duce a vector-boson mass term, and so unitarity will be vioof the standard Wilson actionThe lattice action is now
lated byO(m) effects. In the limitm— 0 (keeping physical defined by replacing the mass term in Ef.2) with a new
scales fixeglunitarity should be recovered. mass term pointing in an arbitrary axiall) direction (the

parametem is rea):

IV. DISCUSSION . R R
mye' s=m(e' 'y yrte” YPripy). (4.7)
The classically conserved chiral(l) symmetry is not
preserved by any gauge-invariant regularization, and in th% . : . —i6yg/2
) : . i By applying an axial-{1) transformation {—e™'?75'<y,
qguantized theory physical observables exist that violate thls_)e.(;yS/zX, etc) and using the invariance of the lattice

symmetry. In th'? paper we have c_onS|dered an |mp.orta fheory form=0, we can relate the value of a0 corre-
aspect of regularization methods which are not gauge invari;

: ) . . lation function to its value a#=0. For the correlation func-
ant but, instead, respect chira(1) invariance. Our concrete . .
S ) Y . tion of Eq.(2.1) the result is
motivation to do so is the gauge-fixing approach(¢hiral)
lattice gauge theories. We showed that even with a chiral- _ , _
U(1) invariant regulator, a careful treatment of tindrared (L) 9= YR p-0- (4.2
limit reproduces correctly the gauge invariant, chiral-

symmetry-violating 't Hooft vertices. In essence, our conclu-The subscriptd refers to the angle of the mass tefth1).
sions are as follows. . [Note that, in Eq.(4.2), exp{6) may be re-expressed as
(I) Since the chiral U(1) symmetry is preserved by theexp(—iq0/2) whereq=—2 is the axial charge OJ/LER-]

regularization but is not respected by physical amplitudes, it E ion(4.2) is a rigor result in the lattice theorv. A
must be broken spontaneously. (II) Therefore, in order to quation(4.2) is  rigorous result in the lattice theory.

, ) . . imilar relation holds in the thermodynamical limit. Hen
obtain the physical amplitudes, one should introduce a masS ar relation holds in the thermodynamica t. Hence

; : - e order parameter for axial(l) symmetry breaking—the
perturbation that breaks the chiral symmetry explicitly, and, - -
take the limit m—0 after the infinite-volume limit. (Ill) The t Hooft vertex—acquires a phase equal to the phase of the

) . . ) applied mass term. This proves that the SSB ground states
Hilbert space of the gauge-fixed theory will contain a corre- bpY 'S prov grou

sponding Goldstone pole, but it is unphysical, because i{’;\re indeed parametrized by theacuum ¢ angle.

originates from an unphysical (gauge non-invariant) con- The relevance of) vacua to the (L) problem was dis-
se?ved current phy gaug cussed in detail in the literature. In a continuum treatment the

. . ath integral can only be expanded perturbatively around
The second and third statements are closely tied to th : : .
first one. When there is SSB the thermodynamical limit is?elected classical fields, arlvacua must be incorporated

. . ; ” P by hand.” Here, we showed that the angle of the 't Hooft
defined by introducing an “external magnetic fieliere the ' : :
N : Do vertex arises as an unavoidable consequence of the lattice
mass term which is switched off after the infinite-volume

limit has been taken. As for the existence of a massless Oléegularization.
' POIE. \While our explicit lattice calculation does not depend on

it ‘? a consequence of locality and the Goldstone tl']eorena,]is let us recall some related observations from Réfs8|.
which, in the present context, has been noted before in Ref%;ny sector with a fixed topological charge, such as the one-

[6.7]. . . instanton sector, is a superposition of all theacua. But for
The mass perturbation allows us to avoid the Banks para- oo
ny m#0, however small, the vacuum energy density is a

dox, namely the apparent conflict between the symmetries Oﬁon—trivial function of 6. This explains why a unique
the regularized theory and of the physical amplitudes. Start- . o P why a uniq
acuum is selected in the thermodynamical limit.

ing from a gauge-fixed lattice theory that has the unwanted Had the infinite-volume limit been taken while keeping

chiral symmetry, we have demonstrated through explicit ex-m=0, the @ vacua would have remained exactly degenerate.

zyrﬁﬁztgovgftrgscrg_eliiga?r';ngri\ggrl; (fjozot:] ?‘e?rr:\(i)crjrr]f:wouunibixrlﬂhis prescription would yield a vanishing result for chiral-
violating processes in chiral gauge theories symmetry violating amplitudes. But sinausteringwould
) be violated, this prescription is inconsistent. Returning to the

Zero modes belong to the low end of the fermion P attice regularization, this may be explained as follows. If the
trum which, in general, is sensitive to infrared details such a]l, 9 ' y b '

having m= 0, finite versus infinite volume, and choices of attice volume is f|n.|te,V<oo, the limit m—0 must be
boundary conditions. Keepingh>0 provides an infrared smooth and, hence, independenifbinamely,
regularization for all fermionic correlation functions and al- . o

lows us to take the infinite-volume limit without difficulty. (PLYR)m—ov<w,6=YLYR)m—0v<s.6-0- 4.3
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Since this must be true for a#h simultaneously with Eq. the ground state changes in the process, there is a corre-
(4.2), the conclusion is that the 't Hooft vertex vanishes on asponding change in theormal-orderedcharge defined with
finite lattice, if we setm=0. [This argument is really an respect to the ground state.
alternative explanation of the Ward identit}.6), but makes The introduction ofm#0 in our work was necessary to
the role of the axial phase more explitiin implication is  control the infrared behavior of a dynamical gauge-fermion
that, clearly, one would have to keep#0 in a numerical system that undergoes spontaneous symmetry breaking of a
simulation in order to recover 't Hooft vertices. peculiar nature. In contrast, in R¢80] only the response of

The 't Hooft vertices are characterized by am/m” be- the spectrum of the axial Dirac operator to an external gauge
havior in the thermodynamical limit. Given a chiral(1l)  field was considered, and so it was not necessary to introduce
Ward identity, should anrh/m” behavior be expected from the mass perturbation.
any other term except the symmetry-breaking expectation In conclusion, in this paper we have demonstrated con-
value? The answer is no. As a concrete example consider thwincingly that, in spite of the exact chiral(l) invariance of
following momentum-space Ward identity in one-flavor the lattice action in the gauge-fixing approach, fermion-
QCD with m#0, as defined on the lattice via the gauge-number violating processes do occur, thus resolving the
fixing approach(Sec. 1). For |pa]<1 it reads[compare Eq. questions raised in Reff20].
(C7]
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(Yih) #0. o . The group generators are normalized according to
The contribution of an approximate Goldstone pole to

(J5(p)Js) should be proportional top?+wvm) ~* wherev is oTT _}5 Al
a dimensionful constant. The corresponding contribution to Ma b™ o “ab- (AL)
the Ward identity goes liken/(p?+vm) and vanishes in the .

limit m—0. The contribution of all other excitations to The dual tensor is

(35(p)Js) should be less infrared singular. Therefore nothing 1

that behaves like th/m” should arise from(Js(p)Js), as Fuv=5€umpFrp- (A2)

long as we are careful to keep the momentnoaot strictly
zero. Indeed, sending—0 as alimit is an inherent part of Tne topological charge is
the Goldstone theorertsee for example Ref29]). For m

—0 we thus obtain 2

167

v=

tr J d*xFF. (A3)
ip,(IE%(p)Js)=2(yp). (4.5

The Hermitian gamma matrices obey the Dirac algebra
This equation is a special case of the Ward iden({ity).
The problem of fermion-number violation in lattice chiral

gauge theories was previously also addressed in[B@f.In  |n four dimensions we use the representation
the (axial) Schwinger mode|31], these authors examined a

(Ve V=800 V0= V- (A4)

lattice-fermion Hamiltonian that has a “superfluous’(1) 0 o, 1 0

global symmetry. They monitored the response of the fer- Yu= > 0]/ Vs (0 1), (AS)
mion ground state to an adiabatic evolution of tAdelian) m

gauge field that changes the topological charge of the gauge - — ot -

vacuum. They found that a (W) charge of the anticipated o,=(0i), o,=0,=(0,~0). (AB)

amount is produced in the process.

The clash between chiral{ll) and gauge symmetries is at
the heart of their argument. Because of the lack of exact Pr=(1+17y5)/2, P_.=(1—1vys)/2. (A7)
gauge invariance at the lattice level, the initial and final bare
vacua are not gauge transforms of each other and their baféharge conjugation matrices play a key role in the Majorana
U(1) charges are different. During the evolution the bareformulation of Sec. Ill. In any even dimension the charge
charge is necessarily conserved. But since the bare charge @dnjugation matrix is defined b§see e.g. Refl32])

The chiral projectors are

014501-9



M. GOLTERMAN AND Y. SHAMIR

Cy,=-7,C, (A8)

and satisfiesC ?=C'=C". In 8n+2 and &+4 dimen-
sions, CT=—C, while in 8n+6 and & dimensions,C"

=C. For the above four-dimensional gamma matrices the

charge-conjugation matrix can be chosen as

)

It is unique up to a sign. The two-dimensional anti-
symmetric tensofwith e;,=1) is

€

. (A9)

C4:’)’371:(

0 1
-1 0/

For any even dimension and+# v one has

6:i0'2:< (A10)

Cyu¥o==7,C%.= 7, 7C=(%,7,)"C=~(v,.7,)"C.
(A12)

In four dimensions one has
Cy,(1=y5)=[Cy, (17 y5)]",

a relation which generalizes tm4dimensions.

(A12)

APPENDIX B: SO(10)-OLOGY

We define the ten-dimensional gamma matrices by thég

following tensor products:
I'=0ci®01®01®01®07,
I'y=0,001®01®01Q07,
I';=03001®01®01Q 07,
I'i=l®oo®0®0q,
I's=1®03@01@01® 04,
INg=Il®o,®01®0,
I'=1eI®o;00®07,
INg=1oI®l®o,®o,
[o=I®I®l®os®0,,

F10:|®|®|®|®0’2,

I =loleleleasg. (B1)
The ten-dimensional charge conjugation matrix is
Cio=iC®os, (B2)
where
C=0,00300,003. (B3)

PHYSICAL REVIEW D 67, 014501 (2003

Notice thatC;, anti-commutes withl’;;. With the above
definitions, Eq.(A11) reads

(o C)EMN 0 SN 0(0 C)
-c o/l 0 3,/ | o 3T,\-c o
(B4)

Equivalently
CSun=—STnC=—3S5C (B5)

a relation which is needed for the derivation of E8.9).
If D satisfies Eq(3.8) and has no zero modes, its inverse
satisfies

G(X,y)=(¥(X)¥(y))=—C,CGT(y,X)C,C.  (B6)

By taking a suitable limit, this generalizes to the case where
D has exact zero modes a@(x,y) is constructed from the
non-zero modes only.

We now show that, for almost every embedding of an
instanton in SQL0), det(\) # 0 [cf. Eq.(3.19]; i.e., the mass
term of Sec. Il lifts the four zero modes. We will first show
that det.) #0 for a particular embedding. We introduce 16
by 16 matricesSi(l), i=1,...,3,1=1,...,4,defined to be
tensor products of four two-by-two matrices with as the
Ith factor and the identity for the rest. The @0) generators
Sun. With M,N=1, ... ,4,generate two S(2) groups. For
3(2)==*1 we label them SQ)y, .

Each zero mode is written explicitly asuy;
=ua313233,34,i(x), where «,81,85,83,84=1,2. Herea is
the spin index. The other four indices correspond to the ten-
sor product that defines the 8ID) generators in th&6 rep-
resentation. Assuming that the instanton resides in e.g. the
SU(2), subgroup defined above, the zero modes have
S3(2)=—1 (equivalently 8,=2). Their SU(2) index is
B1. Using the explicit solution of the isospin one-half zero
mode (for a regular-gauge instantpwe have

Ua31325334,i(x):N5a,ﬁl5ﬁz,2oﬁ3ﬁ4,if(XZ), (B7)

wheref(x?) = (x?+p?) ~¥? and \'is a normalization factor.
The constants(’)ﬁ.sﬁ‘pi define the four independent zero
modes. We will label them by the eigenvalues®{3) and
S3(4). Replacing the index=1, . .. ,4, by apair of indices
T1,7,=1,2, we takwﬁslglprlfzzi(02)3371(03)347.2. In ma-
trix notation, O=io,® o3, and O has similar properties to
the four-dimensional charge-conjugation matrix. Putting to-
gether Egs(3.19, (B3) and(B7) we get

Noyryorich == m/\/zj d*x 2 (x*)tr(€%) (O T(i oy

7'17'2,7'5_
® 0-3) O)TlTZ,TiTéz m(l 0-2) 7175_( 0-3) TzTél
(B8)

which proves de() # 0 for this special case. In the first row,
the explicitio,® o3 comes from the last two factors in the
tensor productB3), while tre? comes from the first factor in
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this tensor product, and the explicit in Eq. (3.19. The Liat_ Lt
transition from the first to the second row implicitly defines E Oxp — 3,2, )=0. (C4
the normalization constant.

Shuppgse now thatl a glto,bg:jmta“?iSO(lo) is ap_lp_)::ed In the special case of one-flavor QCD let us introduce Dirac
to the above speC|a embedding of the instanton. The new, . _ -
zero modes arel| =Ru;. We claim that det((R))#0 for V=R, V=0 U, X=(rid X
almost evenR. The proof is simple. Suppose on the contrary
that defA(R)]=0 for every R in some open subset of Ziay iay - i —iay
SO(10). Since the embedding and, hence, Hgtére analytic Yoo Y, x—@TEX, e T, x—xe EC5)
functions of R, this would imply that de)=0 for all R.

This, however, contradicts E4B8) in the special cas®  and the axial current ifnote that in Eq(2.2) we setr =1]
=1|. Therefore def{) =0 may be true, at most, on a measure
zero subset of SQO0).

( XL XR) The axial transformation is

1
| N N
J)?SI;L: E{IPX’YS’}/;LUX,#wXJrM_'— ¢X+M757;LUI,M¢/X

APPENDIX C: LATTICE FORMULAS

__ ~ __ ~ —r m ~
The free symmetric lattice derivative is defined for any Xo¥s Y Xk p ™ Xock Y8 Y uXo~ T (W YoXeis

function f, by _Xx75‘/’x+,;_ $x+ﬁ75Xx+Xx+,&')’5¢x)}- (Co)
5 f= i(f ) For m# 0 the axial current satisfies the partial-conservation
KT g XTe Xl equation

where,& is a unit vector in theu direction. The correspond- E lat _ qlatt _

ing covariant derivative is a ; (J5u ™ I ,U«5l’-)_ 2mds. (€7

The difference operator on the left-hand sitlee free back-

ward derivative becomes[1—exp(—iap,)}/a=ip,+--- in

momentum space. The local scalar and pseudo-scalar lattice

densities aref, i, and Jys= ¢, ysib, . As usual they are re-

A 1 lated by an axial rotation. They do not mix with the corre-

Oy uf= ;(fx+l1+ fx_p—=2f)). spo[gdzi]ng spectator-field densities thanks to the shift symme-
try [22].

We now explain why singular-gauge instantons are sup-
pressed on the lattice by the gauge-fixing action of R3S].
Recall that, in a singular gauge, the instanton’s vector poten-
tial near the gauge singularitylocated atx=0) is A,

o ar — ~®(x),DT(x)/g whered(x)= o ,X, /|x|. The magnltude
L=, (zﬁ:_(TMDMIM_-i-)('RO'M&#X'R— 7()('RD L of this vector potential grows like lg{x|)
! On the lattice let us make th@are-field rescalingA, ,
—>A;’M=g0AX,#. Dropping the prime, we expand the link
(CD)  variable asU, ,=exp(aA, ). The gauge-fixing action con-
tains the expected longitudinal kinetic term

~ 1 t
D, fz%(ux,#fx-u}_u y fx—;})a

e X= @, p

whereU, , is the link variable. The free lattice Laplacian is

Given a set of left-handed fieId,ﬂL and corresponding spec-
tator fieldsyg, the chiral Wilson Lagrangian {gompare the
upper-right block in Eq(2.2)]

+YLOXR) |,

wherer is Wilson parameter. This action is invariant under a

. . X 1 2 2
U(1) rotation of all fermion fields tr(E 9 A ) E (2 3,A ) (C8)
- o fgp | 25092 !
N Xr—€XR, YLeT L
plus irrelevant terms. Her&, is the bare gauge-fixing param-
Xe—e k. (c2)  eter and index summations have been shown explicitly. The
leading irrelevant term that contributes to the classical poten-
The conserved 1) current is(see Ref[24]) tial is
| 2 4
=3 E LoDt Ve iU 260 ztr(g AL A (C9)
+;R’X;MXiRYXJr;L+;R‘X+;L;MXiR,x_r(ELXXiRYXJr;L The irrelevant terms break BRST invariance, and so there is

. ' ‘ no reason that regular-gauge and singular-gauge instantons
I i —i i —i i : : :
+X|R,x‘/’|_,x+;f l’/,L,XwL,LALXIRyX_XR,X+,ZLl//IL,X)}' (C3)  will have the same lattice action. _
Consider now some lattice discretization of the singular-
It satisfies the conservation equation gauge vector potential. Inevitably, tlieescaled vector po-
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tential will be O(1/a) in the hypercubgs) containing the 0=a(p|V|k),3k_jl+ Hpqf
point x=0 and the vicinity. For such a vector potential

Uy .~ 1=0(1). Thepositivity of expressioC9) and(since  where

there are infinitely many other irrelevant tepna$ the gauge-

fixing action as a wholg33] guarantees that the lattice action Hoq=(p[H|q). (D)
will be anO(1) quantitytimesl/gg. In the continuum limit
0o— 0 any such lattice configuration is suppressed.

aj» (D7)

In order to solve fo;; andfy; we have to invert ,,. Note
thatH is the continuous-index kernel of the operakbt
=|p)Hpq(al which is, by definition, the projection ¢1 onto
the subspace orthogonal to the zero mode#igf The in-
verse of the projected operator is defined My (H*) !
Let H=Ho+aV be a Schidinger-like (i.e. elliptic and =|p){p|. The corresponding kernel satisfiesH'()~*
self-adjoin} operator in ad-dimensional open infinite space. E||O)H§ql<q|. One has
We assume thdtly has a finite number afnormalized zero

APPENDIX D: CONTINUUM PROPAGATORS IN THE
PRESENCE OF APPROXIMATE ZERO MODES

modesu;(x) and thatH has no zero modes. The inverseHhf (pIH|a)=(p|Ho|a)+O(a)=E(p)d(p—q)+O(a).

denotedG, is defined by (D9)
HG=1 (D1) Therefore H*) ! exists, andcompare Eq(D3)]

where both sides are considered as operators acting on a Hpq=E~(p)8(p—a)+O(a). (D10)

suitable Hilbert space. In this appendix we explain how to
construct a systematic approximation f8r [Equation(D1)
may be rewritten in the familiar forll G(x,y) = 6(x—y) by
taking the matrix element of EqD1) between “position
eigenstates{x| and|y).]

Let us introduce the notatiofi) for the zero modes of
Ho, and|p) for the rest of its spectrun{ln instanton prob-

We are now ready to solve fg8;; and fg;. Multiplying
Eq. (D7) by H,4 we get

fgi=—aHq(PIVIK) Byt (D12)

and substituting this in EqD6) we get

lems the zero modes are the only bound states,|phdie- Bij=(i|(aV—a?V|q)H g (pIV)]j). (D12)
notes the continuum of scattering state®ne hasHg|p) ar
=E(p)|p). The propagatoG, is defined by Equation (D10) implies thatH,,;=0(1), and hence 3;;
RPN =0(a) andfy;=0(1).
HoGo=1-i)i[=Ip){pl (D2) The parametriexr dependence of the last spectral function
and has the spectral representation is determined to b&pq=0(1). To show this, take the ma-
trix element of Eq.(D5) between scattering statép| and
Go=Ip)(Go)pe(dl,  (Go)pg=E *(p)8(p—0q). 03 |a), which gives
D3
5(p—q):pr,Gp,q+a(p|V|k>fa‘k. (D13

It is convenient to expanG=G(a) too using the eigen-
modes ofH, as a complete orthonormal basis: Since we already know thdt;=0(1), thelast term on the
el ) Cex right-hand side is sub-leading. It follows th@pq=Hl;ql
G=[i)Bi; (il +1p)Gpqlal+ P picil + 1) T5i(pl- +0(a)=(Go)pq+ O(a). Moreover, by combining these re-
(D4) sults it follows that the spectral functions can be expanded as
In this expansion, the basis vectors are fixed itdepen- & POWer series imy, starting at the above-specified order for
den, while thea dependence is carried by the spectral func-8ach spectral functioriSee, hoyvleverComment Ibelow)
tions B;j, Gpq and f,;. Below, we show that the spectral ~ 1€ propagatot involves ;;~, and so it has a Laurent
functions can be expanded as power series ishereg;; is ~ Series starting at order &/ To find the singularO(1/c)
O() andG,, andf,; areO(1). They will be used to con- Piece of the propagator, we keep only B¢a) term onzthe
struct approximations fo®. right-hand side of Eq(D12). We get 8j;=N\;j 1+O(a%),

We start by substituting EqD4) into Eq. (D1). Using  Where
Holi)=0 we get Nij 1= a(i|V[j). (D14)
1=aV|i)B; (i +HG’, (D5) . . . . .

This expression is recognized as the first-order energy shifts
whereG’ consists of the last three terms on the right-handof the zero modes, as calculated using degenerate perturba-
side of Eq.(D4). By taking the matrix element between zero- tion theory. Substituting in EqD4) we obtain
mode stategi| and|j) and using(p|i)=0 we get

_ L G=|i)\ i(il+0O(). (D15)
8= a(i|VIK) By + a(i|V]g)fq; . (D6) _ _ _ o
While Eq. (D15) is all we will be using in the body of the
By taking the matrix element betweép| and|j) we get paper, it is instructive to go one step further and construct
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also theO(1) part of the propagator. To this end we approxi- Comment 1Perturbation theory is priori not valid, if

mate H,;ql by (Go)pq- Equation (D12) then yields g;;  the perturbationaV results in the disappearance of any
=Njj 2+ O(a®) where bound states from the spectrum. What we have done amounts
’ to showing that perturbation theory can still be used to con-
Aij‘2=<i|aV—a2VGOV|j>, (D16) struct anO(«a") approximation for the propagator, provided

that the integrals occurring ah ¢ 1)th order in perturbation
which, as expected, includes also the second-order energlieory converge. As already mentioned, in this paper we ac-
shifts. Next, making a similar approximation in E@11) we  tually use only Eq(D15). In four dimensions fermionic zero
have modes fall like|x| 2 or faster forjx| —o. Even if we perturb
) 1 by a spatially constant mass temm(that does not vanish at
Ip) foi(il=—aGoV|i)\j 1(j[+O(a). (D17 infinity) Eq. (D15) gives the correct expression for the

. ) _ O(1/m) part of the propagator.
This involves the first-order correction to the zero mode "comment 2In a semi-classical calculation we also have

O(1), thepropagator may be compactly expressed as the determinant. As discussed in detail in H&f7], this can
. 1. be done by splitting the functional integration into separate
Gzl"1>)‘ij,2<l A+ Got+O(a), (D18) integrations over the amplitudes of tfi@pproximatg zero
modes and over the orthogonal subspace. To leading order,
the integration over the zero mode subspace gives rise to
i,1)=(1—aGyV)|i). (D19)  det(\;) [see Eq.(D14) abovd. The integration over the or-
thogonal subspace has a non-vanishing finite l{iatiter sub-
We conclude this appendix with two technical comments. tracting UV divergences

where
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