
PHYSICAL REVIEW D 67, 014501 ~2003!
Fermion-number violation in regularizations that preserve fermion-number symmetry
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There exist both continuum and lattice regularizations of gauge theories with fermions which preserve chiral
U~1! invariance~‘‘fermion number’’!. Such regularizations necessarily break gauge invariance but, in a cova-
riant gauge, one recovers gauge invariance to all orders in perturbation theory by including suitable counter-
terms. At the nonperturbative level, an apparent conflict then arises between the chiral U~1! symmetry of the
regularized theory and the existence of ’t Hooft vertices in the renormalized theory. The only possible resolu-
tion of the paradox is that the chiral U~1! symmetry is broken spontaneously in the enlarged Hilbert space of
the covariantly gauge-fixed theory. The corresponding Goldstone pole is unphysical. The theory must therefore
be defined by introducing a small fermion-mass term that breaks explicitly the chiral U~1! invariance and is
sent to zero after the infinite-volume limit has been taken. Using this careful definition~and a lattice regular-
ization! for the calculation of correlation functions in the one-instanton sector, we show that the ’t Hooft
vertices are recovered as expected.

DOI: 10.1103/PhysRevD.67.014501 PACS number~s!: 11.15.Ha
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I. INTRODUCTION AND CONCLUSION

Every gauge theory coupled to massless fermions ha
anomalous chiral current. Representing all fermions by l
handed Weyl fields, the Noether current associated wit
common global U~1! rotation is classically conserved. At th
one-loop level, a gauge-invariant definition of the curre
yields the Adler-Bell-Jackiw anomaly@1#

]mJm
L 5

cg2

8p2trFF̃. ~1.1!

For our notation see Appendix A. The group-theoretical c
stantc is additive.~Each Weyl fermion in the fundamenta
representation contributesc5 1

2 . We will assume the gaug
symmetry to be non-anomalous throughout this paper.! One
can also define a conserved but gauge non-invariant cur

Ĵm
L 5Jm

L 2g2Km , ~1.2!

where

Km5
c

8p2 emnrstrS AnFrs2
1

3
AnArAsD . ~1.3!

If a gauge-invariant regularization is used, the gau
invariant, non-conserved currentJm

L is defined~up to a Z
factor! by the fermion bilinear

(
i

c̄L
i smcL

i . ~1.4!
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Herei runs over all the left-handed fields. In QCD-like the
ries, this applies in particular to dimensional regularizati
as well as to the standard lattice regularization@2,3#.

What happens if the regulator is chiral-U~1! invariant?
The U~1! current will now be conserved at the one-loo
level. Therefore it must, when the cutoff is removed, co

cide with the gauge non-invariant currentĴm
L defined in Eq.

~1.2!. ~This is true up to a term]nHmn with Hmn an anti-
symmetric tensor.! Since, classically, the U~1! Noether cur-
rent is gauge invariant, this can only happen because
regularization itself is not gauge invariant: a chiral-U~1!-
invariant regularization is, necessarily, not gauge invarian

Does this observation imply that all chiral-U~1!-invariant
regularizations must be dismissed? To begin with, in per
bation theory the answer is no, provided the action conta
covariant gauge-fixing~and ghost! terms. A covariant gauge
will be assumed throughout this paper. In the presence
longitudinal kinetic term, (]mAm)2, the theory is renormaliz-
able by power countingwithout relying on gauge invariance
The renormalization program reduces to an algebraic pr
lem and~provided the gauge symmetry is non-anomalo!
one can restore gauge invariance to all orders in perturba
theory by suitable counterterms~see e.g. Ref.@4#!.

Beyond perturbation theory, there is an apparent con
between chiral U~1! invariance of the regularized theory an
the fact that instanton-mediated amplitudes violate the c
servation of the chiral U~1! charge@5#. It has been pointed
out long ago@6–8# that, in a covariant gauge, the breaking
chiral U~1! invariance can bespontaneousin a technical
sense. The reason is that the enlarged Hilbert space o
gauge-fixed theory can accommodate a new Goldstone p
The latter is unphysical since it originates from theKm part
of the currentĴm

L . If the regulator is chiral-U~1! invariant,
there is, in fact, no other possibility. In this paper, we r
examine this question in the context of a specific lattic
©2003 The American Physical Society01-1
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regularization method. Our analysis reveals that a car
definition of the thermodynamical limit is necessary, just
in the case of conventional spontaneous symmetry break
This generalizes to continuum regularizations with chi
U~1! invariance such as, for example, momentum-cut
schemes~see e.g. Ref.@9#! or the dimensional-reduction
scheme of Ref.@10#.

The main motivation for our lattice-regularization meth
is that it may ultimately provide a non-perturbative definiti
of ~anomaly-free! chiral gauge theories. These theories a
notoriously difficult to regularize in a gauge-invariant wa
In particular, dimensional regularization is not a gaug
invariant regulator in this case. A gauge-invariantperturba-
tive regularization for chiral gauge theories has been fou
only recently in the context of lattice gauge theory@11,12#.
Beyond perturbation theory, it is not known if non-Abelia
chiral gauge theories can be regularized in a gauge-inva
manner.~For a review of recent work in this direction se
Ref. @13#.!

According to the gauge-fixing approach, chiral gau
theories are defined as the continuum limit of a lattice the
whose action contains a covariant gauge-fixing term
counterterms@14–17# ~see also Ref.@18# for a pedagogical
presentation and Ref.@19# for a recent review of lattice chira
gauge theories!. Carefully chosen irrelevant terms in the la
tice action are essential for the existence and the contin
of the phase transition where the continuum limit is taken
the Abelian case, we showed that the lattice fermions
indeed chirally coupled to the gauge field and that pertur
tion theory provides a valid description of the critical poi
@16#.

A fully non-perturbative generalization of the gaug
fixing approach to non-Abelian theories is not a simple ta
since one has to confront the issue of Gribov copies. T
important problem will not be addressed here~see Ref.@17#
for recent progress!. Still, the method generates a systema
expansion around the classical vacuum and, provided the
mion spectrum is gauge-anomaly free, it provides a con
tent regularization in perturbation theory. By invoking th
familiar machinery of collective coordinates@5#, it can be
used to generate a systematic expansion around other c
cal solutions. In particular, it is possible to carry out an a
lytic calculation in an instanton background. This allows
to address the question, first raised in Ref.@20#, of how
fermion-number violating processes are realized in
gauge-fixing approach.

Let us explain the issue in more detail. The simplest ch
fermion action used in the gauge-fixing approach, the
called chiral Wilson action, utilizes a set of right-hand
spectatorfields xR

i , one per each left-handed fieldcL
i ~see

Appendix C for the precise definition!. The role of the spec-
tators is to avoid fermion doubling on the lattice@2,3,21#.
Thanks to a fermion-shift symmetry they can be proved
decouple in the continuum limit@22#.

Each term in the lattice action has onec̄L or x̄R and one
cL or xR field. The chiral Wilson action is therefore invaria
under a common U~1! rotation of all fermion fields. The
Noether current associated with this symmetry,
01450
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Jm
L,latt;(

i
~ c̄L

i smcL
i 1x̄R

i s̄mxR
i 1••• !, ~1.5!

is exactly conserved on the lattice~the ellipsis stands for
lattice terms with no continuum counterpart; see Appen
C!. But since the lattice action is not gauge@nor Becchi-
Rouet-Stora-Tyutin~BRST!# invariant in the gauge-fixing
approach, the conservation ofJm

L,latt is consistent with our
earlier general comments. Following Ref.@23#, we have veri-
fied through an explicit one-loop lattice calculation@24# that
the currentJm

L,latt indeed reduces in the continuum limit to th

currentĴm
L defined in Eq.~1.2!.

The perturbative results of Refs.@23,24# are, however, not
enough to resolve the following puzzle, which we will ref
to as the Banks paradox@20#. In short, the paradox stem
from the fact that exact U~1! invariance implies exact con
servation of the corresponding U~1! charge, namely, of fer-
mion number. To be precise, consider a finite-volume latt
and assume that the boundary conditions respect the~1!
symmetry. The Ward identity that corresponds to a glo
U~1! rotation reads

^dO&5q^O&50. ~1.6!

Hereq is the fermion number, or the U~1! charge, ofO. We
stress that, on a finite lattice, this is a rigorous result.~The
invariance of the lattice measure follows trivially from th
fact that there is an equal number ofdcL and dc̄L Grass-
mann integrals, as well as an equal number ofdxR anddx̄R
ones.!

The Ward identity~1.6! states that a fermion correlatio
function ^O(x1 ,x2 , . . . )& can be non-zero only ifq50,
namely if the number ofcL and xR fields is equal to the
number ofc̄L andx̄R fields. This is true for any finite lattice
spacinga and any finite volume and, therefore, also after t
continuum limit a→0 and the infinite-volume limit have
been taken. Moreover, in the continuum limit the numbers
xR and x̄R fields must by themselves be equal, since
spectator field decouples@22#. Hence the numbers ofcL and
c̄L fields must be equal too. We have thus reached the p
doxical conclusion that, even though the lattice-fermi
spectrum is chiral@16#, all fermion-number violating ampli-
tudes vanish. In other words, ’t Hooft vertices@5# do not
seem to occur. If the gauge-fixing approach would be utiliz
to define a vector-like theory such as massless QCD,
same reasoning would seem to lead to the erroneous con
sion that the U~1! axial charge is conserved in all physic
processes.

One can avoid the Banks paradox by adding to the lat
action a mass term,mi j cL

i cL
j 1H.c., for the physical fermi-

ons. This allows unequal numbers ofcL and c̄L fields to be
compensated by insertions of the mass term. The bro
global U~1! Ward identity in a finite~lattice! volume is now

q^O&52mi j K S (
x

cL
i ~x!cL

j ~x!2H.c.DOL . ~1.7!
1-2
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The original lattice-fermion action corresponds to the lim
m→0, wherem denotes generically the magnitude of t
mass terms. We see that fermion-number or axial-charge
lating amplitudes can be non-zero provided they behave
m/m in the limit m→0. Now, we would not expect an
‘‘ m/m’’ behavior in a finite volume.@Being valid form50,
Eq. ~1.6! in fact implies that this is impossible in the pre
ence of a lattice cutoff.# The conclusion is that, in order t
reproduce correctly ’t Hooft vertices, the infinite-volum
limit and them→0 limit must not commute. Hence, the U~1!
lattice symmetry must be brokenspontaneously.

Anticipating spontaneous symmetry breaking~SSB! of
the U~1! lattice symmetry we define the thermodynamic
limit as the infinite-volume limit, followed by the limitm
→0. In this limit the momentum-space U~1! Ward identity
reads, for anypmÞ0,

ipm^J̃m
L,latt~p!O&5q^O&. ~1.8!

Here J̃m
L,latt(p) is the Fourier transform ofJm

L,latt(x). Unlike
Eq. ~1.7!, because herepmÞ0, the explicitm-dependent term
now vanishes form→0. This is explained in more detail in
the Discussion section. The identity~1.8! holds in the regu-
larized theory as well as in the continuum limit.@On the
lattice, thepm factor on the left-hand side is modified b
O(ap2) terms. Again, remember that there is no room for
anomalous term since the currentJm

L,latt is exactly conserved
on the lattice.#

Since ’t Hooft vertices do exist, this means that there
operators for which the right-hand side of Eq.~1.8! is non-
zero. Hence the left-hand side must contain aGoldstone
pole. As explained earlier, in the continuum limit the Gol
stone pole comes from theKm part of the conserved U~1!
current and is unphysical@6–8#.

In this paper we calculate instanton-sector fermion co
lation functions on the lattice, in the semi-classical appro
mation. We start from a lattice-fermion action with an ad
tional, small, mass term that breaks explicitly the unphys
U~1! symmetry. Taking the infinite-volume and continuu
limits, followed by them→0 limit, we show that the antici-
pated ’t Hooft vertices are recovered. The ‘‘m/m’’ nature of
fermion-number and axial-charge violating amplitudes
manifest in our calculation.

The paper is organized as follows. In order to minimi
technicalities we begin in Sec. II with one-flavor QC
where, instead of the usual gauge-invariant lattice definit
we define the theory via the gauge-fixing approach in
special case that the~left-handed! fermion spectrum happen
to contain one field in the fundamental representation
one field in the complex conjugate one. In Sec. III we wo
out the anomaly-free SO~10! theory as the prototype of
truly chiral gauge theory. Our conclusions are summari
and discussed in Sec. IV. In particular, we show that
phase of the ’t Hooft vertex follows the phase of the appl
mass term, thus demonstrating explicitly the existence of
continuously degenerate ground states associated with S
The notation is listed in Appendix A, elements of SO~10!
group theory are discussed in Appendix B, and lattice d
01450
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nitions are collected in Appendix C. The construction
propagators in the presence of approximate zero mode
discussed in Appendix D.

II. ONE-FLAVOR QCD USING THE GAUGE-FIXING
APPROACH

We begin with the simple example of one-flavor massl
QCD, an SU~N! gauge theory coupled to one Dirac fermio
in the fundamental representation. The anomalous curren
Eq. ~1.1! is in this case the axial current. Let us recall wh
the ’t Hooft interaction of this theory is. In a fixed instanto
background, the massless continuum Dirac operatorD” has
one left-handed zero modeu(x)5PLu(x). Therefore the
Weyl fieldscL and c̄R each have a zero mode.~In an anti-
instanton background, the Weyl fields with zero modes
cR andc̄L .) The basic axial-symmetry violating correlatio
function is

^cL~x!c̄R~y!&5u~x!u†~y!Det8, ~2.1!

where the expectation value denotes Grassmann integra
only, and Det8 is the ~renormalized! fermion determinant
with the zero mode removed. Our objective will be to r
cover this result starting from a lattice action with exact ax
U~1! invariance.

The remaining step in a complete semi-classical calcu
tion is the integration over the gauge and ghost fields. T
raises no new conceptual issues and therefore we will s
the details. We recall that the integration~or lattice sum! over
the instanton position recovers momentum conservation.
Gaussian integration over the non-zero gauge, fermion
ghost fluctuations leads to the replacement of the lattic
bare instanton action, 8p2/g0

2, by the renormalized one
8p2/gr

2(r), wherer is the instanton’s size.
One-flavor QCD has a gauge-invariant lattice definitio

When using ordinary Wilson fermions, the lattice fermio
action is not invariant under axial transformations, and
paradox described in the Introduction does not arise.~In the
continuum limit one reproduces the axial anomaly@3#, while
non-singlet axial symmetries are recovered@25#.! In prin-
ciple, it should be possible to define one-flavor QCD us
the gauge-fixing approach, too. While this has many dis
vantages compared to the gauge-invariant definition, it
the interesting property that the paradox described in
Introductionoccurs. By working out one-flavor QCD we are
able to address, with minimal technicalities, the main iss
of this paper—how a global symmetry of the lattice pa
integral can be broken in the continuum limit.

The lattice construction of the chiral Wilson action begi
with enumerating the left-handed fields of the target theo
For one-flavor QCD we have two Weyl fieldscL andcL

c in
the fundamental and anti-fundamental representations
spectively. As explained in the Introduction, one also ne
two right-handed spectator fields that decouple in the c
tinuum limit. These may be denotedxR andxR

c . In the case
at hand, we may take advantage of the Dirac nature of
target theory and trade the left-handed anti-fundamental fi
1-3
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M. GOLTERMAN AND Y. SHAMIR PHYSICAL REVIEW D 67, 014501 ~2003!
with a right-handed fundamental onecL
c→c̄R , c̄L

c→cR .
With a similar trade-off for the corresponding spectator fie
the lattice fermion action density can be written in the f
lowing matrix form:

~ x̄R c̄L c̄R x̄L!S 0 0 2
a

2
ĥ s̄m]̂m

0 m smD̂m 2
a

2
ĥ

2
a

2
ĥ s̄mD̂m m 0

sm]̂m 2
a

2
ĥ 0 0

D
3S xL

cR

cL

xR

D . ~2.2!

We use carets to denote lattice derivatives.~For the precise
definitions of lattice derivatives and currents see Appen
C.! Observe that the middle two-by-two block in the abo
matrix operator resembles the massive continuum Dirac
erator.

For orientation, we recall that in the conventional defi
tion of Wilson fermions there are of course no specta
fields, and covariant Wilson terms are placed in the sa
block entries as the mass terms in the above expression.
removes the doublers in a gauge invariant way, while a
symmetry is lost.

In order to later accommodate truly chiral gauge theor
the doublers are removed here by introducing spectator fi
and coupling them to the original fermions via the~free!
lattice Laplacianĥ. Since the Wilson terms now coupl
fields with different gauge-transformation properties, th
lead to a breakdown of gauge invariance@26#. In lattice per-
turbation theory gauge invariance is regained by adding s
able counterterms, and the renormalized diagrams desc
one interacting Dirac field, the quark, and one free Di
field, the spectator. As is usually the case for symmet
broken by the lattice regularization, the above is true p
vided the external momenta are vanishingly small in latt
units. The choice of a free lattice Laplacian in Eq.~2.2!
implies the shift symmetry of the spectator field@22#, which
reduces considerably the number of counterterms. In part
lar, there are no counterterms of the formc̄RxL , etc., and the
spectator field decouples in the continuum limit.

Let us now examine the U~1! symmetries of the action
~2.2!. Dropping both the Wilson and the mass terms,
action would be invariant under four separate U~1!’s—a
fermion-number symmetry for each Weyl field. With the W
son terms in place, the action is still invariant under tw
U~1!’s. Finally, for mÞ0, only the invariance under a com
mon U~1! rotation is left. This invariance corresponds to t
baryon-number symmetry of QCD.
01450
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The additional U~1! symmetry atm50 transformsxL and
cR with ~say! charge11 andxR and cL with charge21.
This is the chiral symmetry that leads to the Banks para
@20#. The existence of this lattice symmetry would seem
lead to the~erroneous! conclusion that the axial charge
conserved in massless~one-flavor! QCD. As mentioned in
the Introduction, Refs.@23,24# already showed that the
anomaly appears in the triangle diagram as expected.
this still does not explain how the axial charge isnot con-
served in physical processes.

We will now answer this question through an explicit ca
culation. We calculate the lattice-fermion two point functio
in the semi-classical approximation for~small! m.0. Taking
the infinite-volume and continuum limits and finally sendin
m→0, we find that the ’t Hooft interaction~2.1! is recovered.

As discussed in the literature@6–8#, the continuous de-
generacy of ground states associated with SSB of the a
U~1! is parametrized by the vacuumu angle. The chiral Wil-
son action~C1! is invariant under aCP transformation, and
this remains true in the presence of the mass term introdu
in Eq. ~2.2! above. Therefore the calculation in this secti
~as well as in Sec. III! corresponds to a vacuum angleu
50. The case of a generalu angle is explained in the Dis
cussion section.

We start with a continuumregular-gaugeinstanton field
Am(x) whose sizer is very large in lattice units,r@a.
~Singular-gauge instantons are suppressed in the ga
fixing approach by the irrelevant terms in the lattice actio
see Appendix C.! The lattice gauge field may be defined
Um(x)5exp@iaAm(x)#. This is a smooth configuration.@By
this we mean thatUm(x)2I 5O(a/r) and Um(x)2Um(x

1 n̂)5O„(a/r)2
….] For this lattice gauge field and fixedm

.0, we denote the matrix operator in Eq.~2.2! by g5M.
Note that according to this definitionM is Hermitian.

In the formal continuum limit, the lattice operator in E
~2.2! goes over to a continuum Dirac operatorD(m)
5g5H(m) which depends on the original instanton fie
Am(x). One obtainsD(m) by dropping the~irrelevant! Wil-

son terms and replacing the lattice difference operators]̂m

and D̂m by the corresponding continuum derivatives. Form
.0, D(m) describes a massive quark~made ofcR,L), whose
Dirac operator isD” 1m, and a decoupled, free massle
spectator field~made of xR,L). Thus, D(m) has no zero
modes. We will denote byG(m) the propagator of the Her
mitian operatorH(m). Both M 21 andG(m) admit a stan-
dard spectral decomposition.

Let us now be more precise about how the physical ma
element is obtained. One has to multiply the correlat
function in Eq.~2.1! by ~normalized! wave functionsf 1

†(x)
and f 2(y) and integrate~or sum! over x and y. The
physical observable is the gauge-field functional average
Det(M)^ f 1uM 21g5u f 2&. We will denote the generic virtu-
ality of the external legs byQ2. As explained below, the
matrix element is dominated by instantons of sizer2;Q22

@a2, where the last inequality follows because in the co
tinuum limit a2Q2→0.
1-4
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Since the fermion determinant will beO(m), we are in-
terested only in theO(1/m) piece of the propagator~s!. We
claim that

lim
a→0

^ f 1uM 21g5u f 2& lattice
singular5^ f 1uG~m!g5u f 2&continuum

singular .

~2.3!

Here ‘‘singular’’ denotes theO(1/m) piece. The reason why
Eq. ~2.3! is true is that a non-zerom affects only eigenfunc-
tions with eigenvaluesl in the regionulu&m. Indeed, for all
~lattice or continuum! eigenfunctions with, say,l2>Q2, the
effect of m.0 will be bounded bym2/Q2 to some positive
power. Therefore they do not contribute to theO(1/m) term.
For l2<Q2, the difference between each continuum eige
function and the corresponding lattice eigenfunction
bounded bya2Q2 to some positive power. Sincem.0, the
inverse eigenvaluesl21 are bounded from above, and th
contribution of the entire low-energy lattice spectrum a
proaches smoothly the continuum one fora→0. @For the
pairing of the lattice and the continuum eigenfunctions
may momentarily assume a very large, but finite, volum
thus making the spectrum discrete; alternatively Eq.~2.3!
can also be justified directly in the infinite-volume limit.#

In the infinite-volume limit, the massive continuum
propagator satisfies

G~x,y;m!g55
1

m
u~x!u†~y!1O~1!. ~2.4!

Here we show explicitly only the term that diverges form
→0 @compare Eq.~D15!#. With the understanding that th
matrix element is to be taken between smooth wave fu
tions f 1,2 as described above, we thus have

lim
a→0

M 21~x,y!g55
1

m
u~x!u†~y!1O~1!. ~2.5!

For the fermionic determinant similar arguments lead, a
renormalization, to

lim
a→0

Det~M!5m@Det81O~m!#. ~2.6!

The explicit factor ofm again comes from the~approximate!
zero mode, while theO(m) terms account for the change
the continuous spectrum due tom. Putting this together we
thus obtain

^cL~x!c̄R~y!&5m@Det81O~m!#S 1

m
u~x!u†~y!1O~1! D .

~2.7!

Finally, taking the limitm→0 we recover Eq.~2.1!. Equa-
tion ~2.7! reveals the ‘‘m/m’’ nature of the ’t Hooft interac-
tion.

The familiar equation~2.4! above is particularly simple
and has been invoked primarily for pedagogical reasons
Appendix D we show how to handle perturbations that
the zero modes, but are not proportional to the identity m
01450
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trix and/or are not spatially constant. This more general f
malism will be necessary in the next section. For a few m
details on the calculation of the determinant seeComment 2
in Appendix D.

Our instanton calculation was done in the semi-class
approximation, as is routine in the continuum. Since we h
somewhat expanded its scope by using a specific latt
regularization method, we will briefly review the justificatio
for the semi-classical approximation.

Consider a fermion-number violating amplitude with on
a minimal number of fermions, and no other particles, as
external legs.~Here we wish to avoid the controversy abo
whether the fermion-number violating cross section co
become large at very high energies due to multi-boson fi
states.! As before, denote the generic virtualities of the e
ternal legs byQ2. For instanton sizer2@Q22, the overlap
of the zero modes with the wave functions on the exter
legs will provide a strong damping factor. Hence the sad
point rsp of the integration over the instanton’s size isrsp

2

;Q22. If Q2 is much larger than the confinement scale, t
running couplinggr5gr(rsp;AQ22) is small. This justifies
the use of the one-instanton approximation.

Ultimately, the most visible consequence of the anom
in one-flavor QCD is that the lightest pseudo-scalar state~the
‘‘ h8 meson’’! is not light compared to the confinement sca
~see e.g. Ref.@8#!. The chiral-symmetry breaking effect ob
tained from the semi-classical instanton calculation is mu
smaller since it is controlled by the small parame
exp@28p2/gr

2(rsp)#. We resort to this deep Euclidean regim
because only there are we able to apply analytic method
accurately calculate the consequences of the anomaly.

The above considerations have to do with the asympt
cally free nature of the Yang-Mills coupling, and therefo
they are completely independent of the regularizat
method. Moreover, our explicit calculation has demonstra
that no uncontrolled lattice artifacts occur. Finally, we no
that the discretization of regular-gauge instantons does y
gauge-field configurations that fail to satisfy the lattice Yan
Mills equation of motion, but only by a small amoun
O(a/rsp). Instanton-sector Feynman rules that generat
systematic expansion ingr

2(rsp) can be derived in the pres
ence of an approximate classical solution; see e.g. Ref.@27#.

III. CHIRAL GAUGE THEORIES

The lesson of the previous section is that a ’t Hooft ver
can be interpreted as an order parameter for the spontan
breaking of the U~1! chiral symmetry in a regularization
scheme where chiral~but not gauge! invariance is preserved
The introduction of a small mass term, which is sent to z
after the infinite-volume limit was taken, provides the nec
sary coupling to an ‘‘external magnetic field’’ and allows th
expectation value of a ’t Hooft vertex to be non-zero. Th
reasoning is valid both in the continuum and on the lattice
one uses the gauge-fixing approach.

The generalization of the previous calculation to ’t Hoo
vertices that violate the fermion-number symmetry of a c
ral gauge theory is relatively straightforward. Starting fro
the lattice theory, a mass perturbation that lifts the fermio
1-5
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zero modes will again allow us to keep the~approximate!
zero modes under control while taking the infinite-volum
and continuum limits. Performing next the limitm→0, we
will recover the ’t Hooft vertices as before. The only st
which may not be obvious is that a mass perturbation
lifts all zero modes exists in the continuum.

In this section we demonstrate the existence of the ne
sary mass perturbation by working out the example of
SO~10! chiral gauge theory.@Attempting to construct the
necessary mass perturbation for the most general anom
free chiral gauge theory may be tedious, and the SO~10!
example is general enough to encompass the standard m
as well as the most popular grand unification schemes.# In a
one-generation SO~10! theory the Weyl fermions reside i
the complex16 representation. We introduce covariant d
rivatives (M ,N51, . . .,10)

Dm5]m1 iAm
MNSMN ,

D̄m5]m1 iAm
MN S̄MN , ~3.1!

in the16 and the16 representations respectively. The SO~10!
generators are defined via

i

2
@GM ,GN#5

1

2
~11G11!SMN1

1

2
~12G11!S̄MN .

~3.2!

We use the 32 by 32 representation of the ten-dimensio
gamma matrices given in Appendix B. The~continuum! La-
grangian is

L5c̄LsmDmcL . ~3.3!

In an instanton background there are four left-handed z
modes, one for each quark or lepton. We will show tha
suitable mass term lifts all four zero modes. To prepare
the introduction of the mass term we first rewrite the L
grangian in terms of Majorana-like fermions

C5S eCc̄L
T

cL
D , C̄5~ c̄L cL

TeC!, ~3.4!

satisfying

C̄[CTC4C, ~3.5!

where e is the anti-symmetric two-dimensional tensor a
C4 is the four-dimensional charge conjugation matrix~see
Appendix A!. The 16 by 16 matrixC, which is related to the
ten-dimensional charge-conjugation matrix, is defined in
~B3!. It satisfies C* 5C T5C 215C. In terms of the
Majorana-like fields the Lagrangian is rewritten as

L5
1

2
C̄D0C, ~3.6!

where
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D05gm~DmPL1D̄mPR!5S 0 smDm

s̄mD̄m 0 D . ~3.7!

Note thatD0
†Þ2D0 : unlike the QCD case,D0 is not anti-

Hermitian. One can show that

D0
†C4C5C4CD0* . ~3.8!

Appendixes A and B contain a number of useful relatio
which have been used above.

Equipped with the Majorana formulation we introduce
mass term

m

2
C̄C5

m

2
~cL

TeCcL1c̄LeCc̄L
T!. ~3.9!

The mass term breaks explicitly the fermion-number symm
try and, in the limitm→0, provides the ‘‘seed’’ for sponta
neous symmetry breaking.~The mass term also breaks th
chiral gauge invariance; see below.! The fermion operator
becomes

D~m!5D01m. ~3.10!

Equation~3.8! holds forD(m) too.
We will soon prove thatD(m) has no zero modes, fo

mÞ0. But first, we give a simple physical explanation wh
this should be expected. Observe that

C^ I 52 iC10G10,

whereI is the two-by-two identity matrix. Introducing a 32
component spinorC8 whose first 16 components are equ
to C we may write

C̄C[CTC4CC52
i

2
~C8!TC4C10G10~11G11!C8.

~3.11!

Because ofG10, the mass term can be thought of as comi
from the vacuum expectation value of a Higgs field in the10
representation. This vacuum expectation value bre
SO~10! down to SO~9!. Since all spinor representations o
SO~9! are real, the fermions can acquire Majorana mas
consistently with SO~9! invariance. Moreover, the 16
dimensional representation of SO~9! is irreducible, and
thereforeall 16 fermions acquire a Majorana mass.

We will now show in more detail that there are no exa
zero modes formÞ0 and that the fermion-number-violatin
’t Hooft interaction is recovered in the limitm→0. We de-
scribe the main steps here, relegating further technical de
to Appendix B. In order to obtain information on the fermio
propagator formÞ0 we will need the general formalism o
Appendix D, which applies to Hermitian operators. We w
thus consider the following Hermitian operator~and corre-
sponding propagator!:

D~m!5S 0 D~m!

D†~m! 0 D , G~m!5S 0 G†~m!

G~m! 0 D .

~3.12!
1-6
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Note thatD(m) carries a four-component spinor index, a
D(m) carries an eight-component spinor index. Let us fi
enumerate the zero modes form50. There are the four origi-
nal left-handed zero modesui that belong to the16 and sat-
isfy smDmui50. In addition, define

v i52eCui* . ~3.13!

Using the left handedness ofui and Eq.~3.8! one has

D0
†S 0

v i
D 52C4CS D0S 0

ui
D D *

50. ~3.14!

Therefore thev i are left-handed zero modes ofD0
† that be-

long to16. The propagatorG0(x,y) is orthogonal to all eight
zero modes and satisfies

D0G0~x,y!5d4~x2y!2P~x,y!, ~3.15!

where the zero-mode projector is

P~x,y!5S 0 0 0 0

0 v i~x!v i
†~y! 0 0

0 0 0 0

0 0 0 ui~x!ui
†~y!

D .

~3.16!

From these equations one can read off the relations sati
by the chiral propagator:

D0G0~x,y!5d4~x2y!2PLv i~x!v i
†~y!PL ,

G0~x,y!DQ 05d4~x2y!2PLui~x!ui
†~y!PL .

The derivative acting to the left has a minus sign.
We now turn tomÞ0. As explained earlier, the fermion

number symmetry is broken explicitly. This is reflected
the fact thatG(m) does not anti-commute withg5 @compare
Eq. ~3.21! below#. An inspection of Eqs.~3.10! and ~3.12!
reveals that to first order, the mass perturbation can h
non-zero matrix elements only between a16 and a16 zero
mode. Let

l i j 5^v i umuuj&5m^v i uuj&. ~3.17!

We find, using Eq.~D15!,

G~m!5uui&l i j
21^v j u1O~1!. ~3.18!

The first term on the right-hand side isO(1/m). Further-
more, using Eq.~3.13!,

l i j 5mE ui
TeCuj , ~3.19!

which implies thatl i j is antisymmetric. In the zero-mod
sector, the Majorana-fermion determinant is the analy
square root~Pfaffian!
01450
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det1/2~l!5
1

8
e i jkl l i j lkl . ~3.20!

In Appendix B we prove that det(l)Þ0 for ~almost! every
embedding of the instanton in SO~10!.

Next consider correlation functions in the instanton sec
In terms of the original Weyl fields,

G~m!5^CC̄&5S ^eCc̄L
Tc̄L& ^eCc̄L

TcL
TeC&

^cLc̄L& ^cLcL
TeC&

D .

~3.21!

Let us first see what happens if we saturate two ferm
fields cL(x)cL(y) by the O(1/m) part of the propagator
Using Eqs.~3.13!, ~3.18!, and noting the lower-right entry o
Eq. ~3.21!, we obtain a factor

ui~x!uj~y!l i j
21 . ~3.22!

By itself, this will give a vanishing result in the limitm
→0 because det1/2(l) is O(m2). Next consider saturating
the product of four fieldscL(x)cL(y)cL(z)cL(w). Sum-
ming over all possible contractions and paying attention
Fermi statistics we get

ui~x!uj~y!uk~z!ul~w!~l i j
21lkl

211l ik
21l l j

211l i l
21l jk

21!.

~3.23!

The expression in parentheses is completely anti-symme
in the four indicesi , j ,k,l . @If we would try to saturate 2n
fermion fields for somen.2 with the O(1/m) part of the
propagator, the result would be identically zero due to
anti-symmetrization.# To evaluate the sum we write

~l i j
21lkl

211l ik
21l l j

211l i l
21l jk

21!5ce i jkl , ~3.24!

and contracting with anothere i jkl we find

c5
1

8
e i jkl l i j

21lkl
215det1/2~l21!. ~3.25!

This cancels against Eq.~3.20!, and in the limitm→0, one is
left with

^cL~x!cL~y!cL~z!cL~w!&5e i jkl ui~x!uj~y!

3uk~z!ul~w!Det8,

~3.26!

which is the expected ’t Hooft vertex.
The mass term~3.9! breaks not only the unwante

fermion-number symmetry; it also breaks chiral gauge
variance. This, however, does not lead to any disaster
fact, we know that in the UV-regulated theory the gau
symmetry is already broken by the regulator. The cruc
point is that, in a covariantly gauge-fixed theory, the ult
violet behavior of the vector-boson propagator is 1/p2 for all
polarizations. Consequently, the theory remains renorma
able even if terms that break gauge invariance are adde
1-7
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Moreover, the addition of a mass term does not cha
the nature of the coupling of the theory. The one-loop b
function is unaffected by the mass term, and so the theor
still asymptotically free. Also, provided we are careful
employ a mass-independent renormalization prescript
universality of the renormalized coupling should be p
served. The same considerations imply that the continu
limit of the lattice theory should exist formÞ0, too. In the
renormalized theory, a fermion-mass term is expected to
duce a vector-boson mass term, and so unitarity will be v
lated byO(m) effects. In the limitm→0 ~keeping physical
scales fixed! unitarity should be recovered.

IV. DISCUSSION

The classically conserved chiral U~1! symmetry is not
preserved by any gauge-invariant regularization, and in
quantized theory physical observables exist that violate
symmetry. In this paper we have considered an impor
aspect of regularization methods which are not gauge inv
ant but, instead, respect chiral U~1! invariance. Our concrete
motivation to do so is the gauge-fixing approach to~chiral!
lattice gauge theories. We showed that even with a chi
U~1! invariant regulator, a careful treatment of theinfrared
limit reproduces correctly the gauge invariant, chir
symmetry-violating ’t Hooft vertices. In essence, our conc
sions are as follows.

(I) Since the chiral U(1) symmetry is preserved by t
regularization but is not respected by physical amplitudes
must be broken spontaneously. (II) Therefore, in order
obtain the physical amplitudes, one should introduce a m
perturbation that breaks the chiral symmetry explicitly, a
take the limit m→0 after the infinite-volume limit. (III) The
Hilbert space of the gauge-fixed theory will contain a cor
sponding Goldstone pole, but it is unphysical, becaus
originates from an unphysical (gauge non-invariant) co
served current.

The second and third statements are closely tied to
first one. When there is SSB the thermodynamical limit
defined by introducing an ‘‘external magnetic field’’~here the
mass term! which is switched off after the infinite-volum
limit has been taken. As for the existence of a massless p
it is a consequence of locality and the Goldstone theo
which, in the present context, has been noted before in R
@6,7#.

The mass perturbation allows us to avoid the Banks p
dox, namely the apparent conflict between the symmetrie
the regularized theory and of the physical amplitudes. St
ing from a gauge-fixed lattice theory that has the unwan
chiral symmetry, we have demonstrated through explicit
amples how this mechanism works for the anomalous a
symmetry of QCD-like theories and for fermion-numbe
violating processes in chiral gauge theories.

Zero modes belong to the low end of the fermion sp
trum which, in general, is sensitive to infrared details such
having mÞ0, finite versus infinite volume, and choices
boundary conditions. Keepingm.0 provides an infrared
regularization for all fermionic correlation functions and a
lows us to take the infinite-volume limit without difficulty
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Once in infinite volume, we obtain the correct ’t Hooft ve
tices because we evidently have the correct number of~ap-
proximate! zero modes.

As explained earlier, because ofCP invariance, the
vacuum angleu was equal to zero in the previous section
Considering the one-flavor QCD example for simplicity, l
us examine a mass term with a general axial-U~1! phase.
~The generalization to chiral gauge theories is straightf
ward; see Ref.@28# for a discussion ofu vacua in the context
of the standard Wilson action.! The lattice action is now
defined by replacing the mass term in Eq.~2.2! with a new
mass term pointing in an arbitrary axial-U~1! direction ~the
parameterm is real!:

mc̄eiug5c5m~eiuc̄LcR1e2 iuc̄RcL!. ~4.1!

By applying an axial-U~1! transformation (c→e2 iug5/2c,
x→eiug5/2x, etc.! and using the invariance of the lattic
theory form50, we can relate the value of anyuÞ0 corre-
lation function to its value atu50. For the correlation func-
tion of Eq. ~2.1! the result is

^cLc̄R&u5eiu^cLc̄R&u50 . ~4.2!

The subscriptu refers to the angle of the mass term~4.1!.
@Note that, in Eq.~4.2!, exp(iu) may be re-expressed a
exp(2iqu/2) whereq522 is the axial charge ofcLc̄R .]

Equation~4.2! is a rigorous result in the lattice theory.
similar relation holds in the thermodynamical limit. Henc
the order parameter for axial-U~1! symmetry breaking—the
’t Hooft vertex—acquires a phase equal to the phase of
applied mass term. This proves that the SSB ground st
are indeed parametrized by the~vacuum! u angle.

The relevance ofu vacua to the U~1! problem was dis-
cussed in detail in the literature. In a continuum treatment
path integral can only be expanded perturbatively arou
selected classical fields, andu vacua must be incorporate
‘‘by hand.’’ Here, we showed that theu angle of the ’t Hooft
vertex arises as an unavoidable consequence of the la
regularization.

While our explicit lattice calculation does not depend
this, let us recall some related observations from Refs.@6–8#.
Any sector with a fixed topological charge, such as the o
instanton sector, is a superposition of all theu vacua. But for
any mÞ0, however small, the vacuum energy density is
non-trivial function of u. This explains why a uniqueu
vacuum is selected in the thermodynamical limit.

Had the infinite-volume limit been taken while keepin
m50, theu vacua would have remained exactly degenera
This prescription would yield a vanishing result for chira
symmetry violating amplitudes. But sinceclusteringwould
be violated, this prescription is inconsistent. Returning to
lattice regularization, this may be explained as follows. If t
lattice volume is finite,V,`, the limit m→0 must be
smooth and, hence, independent ofu: namely,

^cLc̄R&m→0,V,`,u5^cLc̄R&m→0,V,`,u50 . ~4.3!
1-8
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Since this must be true for allu simultaneously with Eq.
~4.2!, the conclusion is that the ’t Hooft vertex vanishes on
finite lattice, if we setm50. @This argument is really an
alternative explanation of the Ward identity~1.6!, but makes
the role of the axial phase more explicit.# An implication is
that, clearly, one would have to keepmÞ0 in a numerical
simulation in order to recover ’t Hooft vertices.

The ’t Hooft vertices are characterized by an ‘‘m/m’’ be-
havior in the thermodynamical limit. Given a chiral U~1!
Ward identity, should an ‘‘m/m’’ behavior be expected from
any other term except the symmetry-breaking expecta
value? The answer is no. As a concrete example conside
following momentum-space Ward identity in one-flav
QCD with mÞ0, as defined on the lattice via the gaug
fixing approach~Sec. II!. For upau!1 it reads@compare Eq.
~C7!#

ipm^ J̃5m
latt~p!J5&522m^ J̃5~p!J5&12^c̄c&. ~4.4!

In this equation,J5m
latt is the conserved U~1! axial current in

the limit m→0, and c̄c and J5 are the local scalar an
pseudo-scalar lattice densities. As in Eq.~1.8! the tilde de-
notes Fourier transform. The expectation value ofc̄c corre-
sponds to the limitx5y in Eq. ~2.1!. While in this limit the
semi-classical calculation ceases to be reliable, we take
non-zero result for the ’t Hooft vertex as evidence th

^c̄c&Þ0.
The contribution of an approximate Goldstone pole

^J̃5(p)J5& should be proportional to (p21vm)21 wherev is
a dimensionful constant. The corresponding contribution
the Ward identity goes likem/(p21vm) and vanishes in the
limit m→0. The contribution of all other excitations t

^J̃5(p)J5& should be less infrared singular. Therefore noth
that behaves like ‘‘m/m’’ should arise from^J̃5(p)J5&, as
long as we are careful to keep the momentumnot strictly
zero. Indeed, sendingp→0 as alimit is an inherent part of
the Goldstone theorem~see for example Ref.@29#!. For m
→0 we thus obtain

ipm^J5m
latt~p!J5&52^c̄c&. ~4.5!

This equation is a special case of the Ward identity~1.8!.
The problem of fermion-number violation in lattice chir

gauge theories was previously also addressed in Ref.@30#. In
the ~axial! Schwinger model@31#, these authors examined
lattice-fermion Hamiltonian that has a ‘‘superfluous’’ U~1!
global symmetry. They monitored the response of the
mion ground state to an adiabatic evolution of the~Abelian!
gauge field that changes the topological charge of the ga
vacuum. They found that a U~1! charge of the anticipated
amount is produced in the process.

The clash between chiral-U~1! and gauge symmetries is a
the heart of their argument. Because of the lack of ex
gauge invariance at the lattice level, the initial and final b
vacua are not gauge transforms of each other and their
U~1! charges are different. During the evolution the ba
charge is necessarily conserved. But since the bare char
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the ground state changes in the process, there is a c
sponding change in thenormal-orderedcharge defined with
respect to the ground state.

The introduction ofmÞ0 in our work was necessary t
control the infrared behavior of a dynamical gauge-ferm
system that undergoes spontaneous symmetry breaking
peculiar nature. In contrast, in Ref.@30# only the response o
the spectrum of the axial Dirac operator to an external ga
field was considered, and so it was not necessary to introd
the mass perturbation.

In conclusion, in this paper we have demonstrated c
vincingly that, in spite of the exact chiral U~1! invariance of
the lattice action in the gauge-fixing approach, fermio
number violating processes do occur, thus resolving
questions raised in Ref.@20#.
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APPENDIX A: NOTATION

The group generators are normalized according to

trTaTb5
1

2
dab . ~A1!

The dual tensor is

F̃mn5
1

2
emnlrFlr . ~A2!

The topological charge is

n5
g2

16p2trE d4xFF̃. ~A3!

The Hermitian gamma matrices obey the Dirac algebra

$gm ,gn%5dmn , gm
† 5gm . ~A4!

In four dimensions we use the representation

gm5S 0 sm

s̄m 0 D , g55S 1 0

0 21D , ~A5!

sm5~sW ,i !, s̄m5sm
† 5~sW ,2 i !. ~A6!

The chiral projectors are

PR5~11g5!/2, PL5~12g5!/2. ~A7!

Charge conjugation matrices play a key role in the Majora
formulation of Sec. III. In any even dimension the char
conjugation matrix is defined by~see e.g. Ref.@32#!
1-9
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Cgm52gm
TC, ~A8!

and satisfiesC215C†5CT. In 8n12 and 8n14 dimen-
sions, CT52C, while in 8n16 and 8n dimensions,CT

5C. For the above four-dimensional gamma matrices
charge-conjugation matrix can be chosen as

C45g3g15S e 0

0 e D . ~A9!

It is unique up to a sign. The two-dimensional an
symmetric tensor~with e1251) is

e5 is25S 0 1

21 0D . ~A10!

For any even dimension andmÞn one has

Cgmgn52gm
TCgn5gm

Tgn
TC5~gngm!TC52~gmgn!TC.

~A11!

In four dimensions one has

Cgm~16g5!5@Cgm~17g5!#T, ~A12!

a relation which generalizes to 4n dimensions.

APPENDIX B: SO„10…-OLOGY

We define the ten-dimensional gamma matrices by
following tensor products:

G15s1^ s1^ s1^ s1^ s1 ,

G25s2^ s1^ s1^ s1^ s1 ,

G35s3^ s1^ s1^ s1^ s1 ,

G45I ^ s2^ s1^ s1^ s1 ,

G55I ^ s3^ s1^ s1^ s1 ,

G65I ^ I ^ s2^ s1^ s1 ,

G75I ^ I ^ s3^ s1^ s1 ,

G85I ^ I ^ I ^ s2^ s1 ,

G95I ^ I ^ I ^ s3^ s1 ,

G105I ^ I ^ I ^ I ^ s2 ,

G115I ^ I ^ I ^ I ^ s3 . ~B1!

The ten-dimensional charge conjugation matrix is

C105 iC^ s2 , ~B2!

where

C5s2^ s3^ s2^ s3 . ~B3!
01450
e

e

Notice that C10 anti-commutes withG11. With the above
definitions, Eq.~A11! reads

S 0 C
2C 0D S SMN 0

0 S̄MN
D 52S SMN

T 0

0 S̄MN
T D S 0 C

2C 0D .

~B4!

Equivalently

CS̄MN52SMN
T C52SMN* C, ~B5!

a relation which is needed for the derivation of Eq.~3.8!.
If D satisfies Eq.~3.8! and has no zero modes, its inver

satisfies

G~x,y![^C~x!C̄~y!&52C4CGT~y,x!C4C. ~B6!

By taking a suitable limit, this generalizes to the case wh
D has exact zero modes andG(x,y) is constructed from the
non-zero modes only.

We now show that, for almost every embedding of
instanton in SO~10!, det(l)Þ0 @cf. Eq.~3.19!#; i.e., the mass
term of Sec. III lifts the four zero modes. We will first sho
that det(l)Þ0 for a particular embedding. We introduce 1
by 16 matricesSi( l ), i 51, . . . ,3, l 51, . . . ,4,defined to be
tensor products of four two-by-two matrices withs i as the
l th factor and the identity for the rest. The SO~10! generators
SMN , with M ,N51, . . . ,4,generate two SU~2! groups. For
S3(2)561 we label them SU~2! R,L .

Each zero mode is written explicitly asui
5uab1b2b3b4 ,i(x), wherea,b1 ,b2 ,b3 ,b451,2. Herea is
the spin index. The other four indices correspond to the t
sor product that defines the SO~10! generators in the16 rep-
resentation. Assuming that the instanton resides in e.g.
SU~2! L subgroup defined above, the zero modes h
S3(2)521 ~equivalently b252). Their SU(2)L index is
b1 . Using the explicit solution of the isospin one-half ze
mode~for a regular-gauge instanton! we have

uab1b2b3b4 ,i~x!5Nda,b1
db2,2Ob3b4 ,i f ~x2!, ~B7!

where f (x2)5(x21r2)23/2 andN is a normalization factor.
The constantsOb3b4 ,i define the four independent zer

modes. We will label them by the eigenvalues ofS2(3) and
S3(4). Replacing the indexi 51, . . . ,4, by apair of indices
t1 ,t251,2, we takeOb3b4 ,t1t2

5 i (s2)b3t1
(s3)b4t2

. In ma-

trix notation,O5 is2^ s3 , andO has similar properties to
the four-dimensional charge-conjugation matrix. Putting
gether Eqs.~3.19!, ~B3! and ~B7! we get

lt1t2 ,t
18t

28
52mN 2E d4x f2~x2!tr~e2!„O T~ is2

^ s3!O…t1t2 ,t
18t

28
5m~ is2!t1t

18
~s3!t2t

28
,

~B8!

which proves det(l)Þ0 for this special case. In the first row
the explicit is2^ s3 comes from the last two factors in th
tensor product~B3!, while tre2 comes from the first factor in
1-10
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this tensor product, and the explicite in Eq. ~3.19!. The
transition from the first to the second row implicitly defin
the normalization constant.

Suppose now that a global rotationRPSO(10) is applied
to the above special embedding of the instanton. The n
zero modes areui85Rui . We claim that det(l(R))Þ0 for
almost everyR. The proof is simple. Suppose on the contra
that det@l(R)#50 for every R in some open subset o
SO~10!. Since the embedding and, hence, det(l) are analytic
functions ofR, this would imply that det(l)50 for all R.
This, however, contradicts Eq.~B8! in the special caseR
5I . Therefore det(l)50 may be true, at most, on a measu
zero subset of SO~10!.

APPENDIX C: LATTICE FORMULAS

The free symmetric lattice derivative is defined for a
function f x by

]̂x,m f 5
1

2a
~ f x1m̂2 f x2m̂!,

wherem̂ is a unit vector in them direction. The correspond
ing covariant derivative is

D̂x,m f 5
1

2a
~Ux,m f x1m̂2Ux2m̂,m

†
f x2m̂!,

whereUx,m is the link variable. The free lattice Laplacian

ĥx,m f 5
1

a2 ~ f x1m̂1 f x2m̂22 f x!.

Given a set of left-handed fieldscL
i and corresponding spec

tator fieldsxR
i , the chiral Wilson Lagrangian is@compare the

upper-right block in Eq.~2.2!#

L5(
i

S c̄L
i smD̂mcL

i 1x̄R
i s̄m]̂mxR

i 2
ar

2
~ x̄R

i ĥcL
i

1c̄L
i ĥxR

i ! D , ~C1!

wherer is Wilson parameter. This action is invariant unde
U~1! rotation of all fermion fields

cL
i →eiacL

i , xR
i →eiaxR

i , c̄L
i →e2 iac̄L

i ,

x̄R
i →e2 iax̄R

i . ~C2!

The conserved U~1! current is~see Ref.@24#!

Jx,m
L,latt5

1

2 (
i

$c̄L,x
i smUx,mcL,x1m̂

i
1c̄L,x1m̂

i
smUx,m

† cL,x
i

1x̄R,x
i s̄mxR,x1m̂

i
1x̄R,x1m̂

i
s̄mxR,x

i 2r ~ c̄L,x
i xR,x1m̂

i

1x̄R,x
i cL,x1m̂

i
2c̄L,x1m̂

i
xR,x

i 2x̄R,x1m̂
i

cL,x
i !%. ~C3!

It satisfies the conservation equation
01450
w

(
m

~Jx,m
L,latt2Jx2m̂,m

L,latt
!50. ~C4!

In the special case of one-flavor QCD let us introduce Di
fermions c5(cR ,cL), c̄5(c̄L ,c̄R), x5(xR ,xL), x̄

5(x̄L ,x̄R). The axial transformation is

c→e2 iag5c, x→eiag5x, c̄→c̄e2 iag5, x̄→x̄eiag5,
~C5!

and the axial current is@note that in Eq.~2.2! we setr 51]

Jx,5m
latt 5

1

2
$c̄xg5gmUx,mcx1m̂1c̄x1m̂g5gmUx,m

† cx

2x̄xg5gmxx1m̂2x̄x1m̂g5gmxx2r ~ c̄xg5xx1m̂

2x̄xg5cx1m̂2c̄x1m̂g5xx1x̄x1m̂g5cx!%. ~C6!

For mÞ0 the axial current satisfies the partial-conservat
equation

1

a (
m

~Jx,5m
latt 2Jx2m̂,5m

latt
!522mJx5 . ~C7!

The difference operator on the left-hand side~the free back-
ward derivative! becomes@12exp(2iapm)#/a5ipm1••• in
momentum space. The local scalar and pseudo-scalar la
densities arec̄xcx andJx55c̄xg5cx . As usual they are re-
lated by an axial rotation. They do not mix with the corr
sponding spectator-field densities thanks to the shift sym
try @22#.

We now explain why singular-gauge instantons are s
pressed on the lattice by the gauge-fixing action of Ref.@33#.
Recall that, in a singular gauge, the instanton’s vector po
tial near the gauge singularity~located at x50) is Am
;F(x)]mF†(x)/g whereF(x)5smxm /uxu. The magnitude
of this vector potential grows like 1/(guxu).

On the lattice let us make the~bare-field! rescalingAx,m

→Ax,m8 5g0Ax,m . Dropping the prime, we expand the lin
variable asUx,m5exp(iaAx,m). The gauge-fixing action con
tains the expected longitudinal kinetic term

1

j0g0
2 trS (

m
]mAmD 2

5
1

2j0g0
2 (

a
S (

m
]mAm

a D 2

, ~C8!

plus irrelevant terms. Herej0 is the bare gauge-fixing param
eter and index summations have been shown explicitly. T
leading irrelevant term that contributes to the classical pot
tial is

a2

2j0g0
2 trS (

m
Am

2 (
n

An
4D . ~C9!

The irrelevant terms break BRST invariance, and so ther
no reason that regular-gauge and singular-gauge instan
will have the same lattice action.

Consider now some lattice discretization of the singul
gauge vector potential. Inevitably, the~rescaled! vector po-
1-11
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tential will be O(1/a) in the hypercube~s! containing the
point x50 and the vicinity. For such a vector potenti
Ux,m2I 5O(1). Thepositivity of expression~C9! and~since
there are infinitely many other irrelevant terms! of the gauge-
fixing action as a whole@33# guarantees that the lattice actio
will be an O(1) quantitytimes1/g0

2. In the continuum limit
g0→0 any such lattice configuration is suppressed.

APPENDIX D: CONTINUUM PROPAGATORS IN THE
PRESENCE OF APPROXIMATE ZERO MODES

Let H5H01aV be a Schro¨dinger-like ~i.e. elliptic and
self-adjoint! operator in ad-dimensional open infinite space
We assume thatH0 has a finite number of~normalized! zero
modesui(x) and thatH has no zero modes. The inverse ofH,
denotedG, is defined by

HG51, ~D1!

where both sides are considered as operators acting
suitable Hilbert space. In this appendix we explain how
construct a systematic approximation forG. @Equation~D1!
may be rewritten in the familiar formHG(x,y)5d(x2y) by
taking the matrix element of Eq.~D1! between ‘‘position
eigenstates’’̂ xu and uy&.]

Let us introduce the notationu i & for the zero modes o
H0 , andup& for the rest of its spectrum.~In instanton prob-
lems the zero modes are the only bound states, andup& de-
notes the continuum of scattering states.! One hasH0up&
5E(p)up&. The propagatorG0 is defined by

H0G0512u i &^ i u5up&^pu ~D2!

and has the spectral representation

G05up&~G0!pq^qu, ~G0!pq5E21~p!d~p2q!.
~D3!

It is convenient to expandG5G(a) too using the eigen-
modes ofH0 as a complete orthonormal basis:

G5u i &b i j
21^ j u1up&Gpq^qu1up& f p j^ j u1u j & f p j* ^pu.

~D4!

In this expansion, the basis vectors are fixed (a indepen-
dent!, while thea dependence is carried by the spectral fun
tions b i j , Gpq and f p j . Below, we show that the spectra
functions can be expanded as power series ina whereb i j is
O(a) andGpq and f p j areO(1). They will be used to con-
struct approximations forG.

We start by substituting Eq.~D4! into Eq. ~D1!. Using
H0u i &50 we get

15aVu i &b i j
21^ j u1HG8, ~D5!

whereG8 consists of the last three terms on the right-ha
side of Eq.~D4!. By taking the matrix element between zer
mode stateŝi u and u j & and usinĝ pu i &50 we get

d i j 5a^ i uVuk&bk j
211a^ i uVuq& f q j . ~D6!

By taking the matrix element between^pu and u j & we get
01450
a
o

-

d

05a^puVuk&bk j
211Hpqf q j , ~D7!

where

Hpq5^puHuq&. ~D8!

In order to solve forb i j and f q j we have to invertHpq . Note
that Hpq is the continuous-index kernel of the operatorH'

[up&Hpq^qu which is, by definition, the projection ofH onto
the subspace orthogonal to the zero modes ofH0 . The in-
verse of the projected operator is defined byH' (H')21

5up&^pu. The corresponding kernel satisfies (H')21

[up&Hpq
21^qu. One has

^puHuq&5^puH0uq&1O~a!5E~p!d~p2q!1O~a!.
~D9!

Therefore (H')21 exists, and@compare Eq.~D3!#

Hpq
215E21~p!d~p2q!1O~a!. ~D10!

We are now ready to solve forb i j and f q j . Multiplying
Eq. ~D7! by Hpq

21 we get

f q j52aHqp
21^puVuk&bk j

21 , ~D11!

and substituting this in Eq.~D6! we get

b i j 5^ i u~aV2a2Vuq&Hqp
21^puV!u j &. ~D12!

Equation ~D10! implies that Hqp
215O(1), and hence b i j

5O(a) and f q j5O(1).
The parametrica dependence of the last spectral functi

is determined to beGpq5O(1). To show this, take the ma
trix element of Eq.~D5! between scattering states^pu and
uq&, which gives

d~p2q!5Hpp8Gp8q1a^puVuk& f qk* . ~D13!

Since we already know thatf q j5O(1), thelast term on the
right-hand side is sub-leading. It follows thatGpq5Hpq

21

1O(a)5(G0)pq1O(a). Moreover, by combining these re
sults it follows that the spectral functions can be expanded
a power series ina, starting at the above-specified order f
each spectral function.~See, however,Comment 1below.!

The propagatorG involvesb i j
21 , and so it has a Lauren

series starting at order 1/a. To find the singular,O(1/a)
piece of the propagator, we keep only theO(a) term on the
right-hand side of Eq.~D12!. We get b i j 5l i j ,11O(a2),
where

l i j ,15a^ i uVu j &. ~D14!

This expression is recognized as the first-order energy s
of the zero modes, as calculated using degenerate pertu
tion theory. Substituting in Eq.~D4! we obtain

G5u i &l i j ,1
21^ j u1O~1!. ~D15!

While Eq. ~D15! is all we will be using in the body of the
paper, it is instructive to go one step further and constr
1-12
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also theO(1) part of the propagator. To this end we appro
mate Hpq

21 by (G0)pq . Equation ~D12! then yields b i j

5l i j ,21O(a3) where

l i j ,25^ i uaV2a2VG0Vu j &, ~D16!

which, as expected, includes also the second-order en
shifts. Next, making a similar approximation in Eq.~D11! we
have

up& f p j^ j u52aG0Vu i &l i j ,1
21^ j u1O~a!. ~D17!

This involves the first-order correction to the zero mo
wave function. Putting everything together we find that,
O(1), thepropagator may be compactly expressed as

G5u i ,1&l i j ,2
21^ j ,1u1G01O~a!, ~D18!

where

u i ,1&5~12aG0V!u i &. ~D19!

We conclude this appendix with two technical comments
,’’

a,

s.

01450
-

gy

t

Comment 1.Perturbation theory isa priori not valid, if
the perturbationaV results in the disappearance of an
bound states from the spectrum. What we have done amo
to showing that perturbation theory can still be used to c
struct anO(an) approximation for the propagator, provide
that the integrals occurring at (n11)th order in perturbation
theory converge. As already mentioned, in this paper we
tually use only Eq.~D15!. In four dimensions fermionic zero
modes fall likeuxu23 or faster foruxu→`. Even if we perturb
by a spatially constant mass termm ~that does not vanish a
infinity! Eq. ~D15! gives the correct expression for th
O(1/m) part of the propagator.

Comment 2.In a semi-classical calculation we also ha
to separate out the approximate zero mode contribution
the determinant. As discussed in detail in Ref.@27#, this can
be done by splitting the functional integration into separ
integrations over the amplitudes of the~approximate! zero
modes and over the orthogonal subspace. To leading o
the integration over the zero mode subspace gives ris
det(l1) @see Eq.~D14! above#. The integration over the or
thogonal subspace has a non-vanishing finite limit~after sub-
tracting UV divergences!.
.
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@11# M. Lüscher, J. High Energy Phys.06, 028 ~2000!.
@12# H. Suzuki, Nucl. Phys.B585, 471 ~2000!.
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