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The quark number susceptibility near the QCD critical end p@EP), the tricritical point(TCP) and the

O(4) critical line at finite temperature and quark chemical potential are investigated. Based on the universality
argument and numerical model calculations we propose the possibility that the hidden tricritical point strongly
affects the critical phenomena around the critical end-point. We make a semiquantitative study of the quark
number susceptibility near CEP or TCP for several quark masses on the basis of the Cornwall-Jackiw-
Tomboulis potential for QCD in the improved-ladder approximation. The results show that the susceptibility is

enhanced in a wide region around the CEP, inside which the critical exponent gradually changes from that of
the CEP to that of the TCP, indicating a crossover of different universality classes.
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I. INTRODUCTION Katz [11]. In this paper we assume that CEP exists in the
phase diagram of QCBb.
Second-order phase transitions are characterized by the
The vacuum of quantum chromodynami@CD) is be- long-wavelength fluctuations of the order parameter. In the
lieved to undergo a phase transition to the quark-gluorfase of the CEP, itis the sigma field. Then, it is expected
plasma(QGP at high temperaturd and/or at high quark that the fluctuations of the S|gm§1fleld will be reflected in the
chemical potentiak. Such a new state of matter is expected€Vent-by-event fluctuation of pionm{) observables due to

to be produced in on-going heavy-ion collision experimentdh€ them—o coupling. Based on this observation, possible
at the BNL Relativistic Heavy-lon CollidefRHIC) and in observable signals associated with the CEP have been stud-

the future Large Hadron Collidet HC) [1]. ied in detail in relation to the relativistic heavy-ion collision

. . experiment§12-14].
The phase transition of the hadronic matter to the QGP at The purpose of this paper is to point out that the anomaly

finite T with =0 has been studied extensively on the Iattice.near the CEP is not pointlike but has much richer structure.
In particular, the chiral p_hase transition is likely to be of o, starting point is a simple question: “How large is the
second order for QCD with two massless quarks. Also, th&yitical region?” The critical region is defined as the region
static critical behavior is expected to fall into the universality yhere the mean field theofpr the Landau theojyof phase
class of theO(4) spin model in three dimension2]. In  transitions breaks down and the true nontrivial critical expo-
nature, the light quarks have small but finite masses and theents can be seen. Usually, one expects that the critical re-
second order transition becomes a smooth crossover. gion is surrounded by the mean field region and the critical
The study of the QCD phase transition with finjtehas  exponents change from the nontrivial values to the mean
been retarded because reliable lattice simulations have négld values as one goes away from the critical point. One
been available so far due to the severe fermion sign problenfight argue that this question is only of academic interest
Nevertheless, there is growing evidence that the phase di®ecause the nontrivial exponents and the mean field expo-
gram of QCD with massless two-flavors has a tricritical pointn€nts are numerically not so different and probably experi-
(TCP, Fig. 1, pointP) at which a line of critical point§the ments cannot distinguish theifThis observation is the basis

0(4) line] at lower w’s turns into a first-order phase transi- ©f [12]) However, as we will see, pursuing this question
tion line at higheru's. The existence of the TCP was in fact leads to an important notion that may shed light on certain

suggested in various calculations based on effective theorin{gsuns of both heavy-ion collision experiments and future

. attice simulations at finite chemical potentials.

?r]:)anCzZr[(:)a ;O?i.ng t(r;fe (;Jritiig(lj f)gﬁ?;fh?ﬁigsciaiec;:clzﬁgsed There is a well-known criterion which estimates the size

4 ; . of the critical region, the Ginzburg criteridri5]. It shows
emerges from the TCP and the point which corresponds that if the singular part of the thermodynamic potentl
the physical quark mass,sis called the QCD critical end
point (CEP, Fig. 1, poinE), because this is the point where
the first-order phase transition line terminates. Indeed, SOMe1Accordingly, we fix the strange quark mass to its physical value.
evidence of the existence of the CEP was shown recently iejow “the quark mass” means tha, d current quark masses
a lattice QCD simulation with 21 flavors by Fodor and which we consider as variable parameters.
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T analyses of the physics near the TCP and CEP with particular
emphasis on thdsingulay behavior of the quark number
susceptibilityx, defined by

1 5°Q L3
Xq Vv 3,“2, :
where (T, u) is the thermodynamic potential andis the
volume of the systemy, is a response of the quark number
density to the variation of the quark chemical potential and is
u one of the key quantities characterizing the phase change
from the hadronic matter to QGPL8-21,43. The lattice
data show that, g =0, x4 increases rapidly but smoothly
near the critical temperatuf@2—24). On the other hand, the
universality argument predicts that it diverges at both the
TCP and CEP with certain critical exponents. Therefore, it
FIG. 1. The phase diagram of QCD in thg, f+,m) space. Point would be important to study its critical behavior with and
P is the tricritical point(TCP) of the massless theory and pofats  without the quark masses to see whether or not it can provide
the critical end point(CEP) of the real world. The dotted lines g new way of detecting the TCP or CEP on the lattice as well
represent the second-order phase transition and the solid line reprgs in the heavy-ion collision experiments.
sents the first-order phase transition. In addition tox,, we occasionally mention the singular
behavior of the specific he&@ and the chiral susceptibility
(the Landau-Ginzburg potentjafor a certain second-order y., defined as
phase transition is given by

T 0
Q|singu|ar= C(Vd))2+at¢2+b¢4, (1-1) C=- \_/ ﬁTz ! (1'4)
where ¢ is the order parameter ard=(T—T.)/T. is the 1 520
reduced temperatureT§ is the critical temperature in the Xeh=o ——. (1.5
mean field approximationthe critical region is estimated to V om?
be

From the viewpoint of critical phenomeng,, and C are
essentially the same near the TCP and CEP wkig is
_ (1.2)  different from x4 near the TCP and only slightly different
ac® near the CEP in the sense that will be clarified below.
In Sec. Il, we make a general analysis of the interplay

At first sight, this criterion seems useless because we do n&etween TCP and CEP in the small quark mass limit based

know the coefficients appearing in E€L.1) for the CEF? ~ ON the universality argument. After determining the relative
However, in the next section we will derive a bound to thelocations of the TCP and CEP in the phase diagram as func-

size of the critical region. In fact, there is a reason to expections of the quark mass, we construct the Landau-Ginzburg

that the critical region of the CEP &mall This is because potential for the CEP to determine the singular behavior of

the QCD critical end point is a descendant of the tricriticalSUSCePtibilities both in and beyond the mean field approxi-
point of the massless theory. mation. It turns out that the smallness of the quark mass

This observation led us to study the critical phenomena ofiVe€S & bound to the growth of the critical region, turning our
both the CEP and TCP simultaneously and their possiblé‘tte”t'O” to the tricritical point. Then we discuss a possible

correlations. We make both qualitative and quantitativeCrOSSOVer from the tricritical universality class to the Ising
universality class.

The universality argument is so general that it gives no
2The size of the critical region depends on the microscopic dy_quantltat!ve results. In order to reinforce the ideas given in
namics and universality tells nothing about it. A clear example is thesec' Il, in Sec. lll we show the results of the numencal

the Cornwall-Jackiw-Tomboulis

\ transition of liquid helium and the superconducting transition ofcalculation Qn a model, g )
metals. Although they belong to the same universality clss  (CJT) potential for QCD[25] in the improved-ladder ap-

O(2) spin modé), their critical regions are very differenft| ~0.3  Proximation[10,26. We will find how well the numerical

for the A point and|t|~ 1025 for conventional(type-I) supercon- results match with the qualitative predictions of the univer-
ductors. Just for reference, we note that for typical liquid-gas phasgality argument, demonstrating the power of universality. In
transitions which belong to the same universality class as the phagerticular, we obsere some indication of the effect of the TCP
transition at the CEFt|~10"2 [16]. (Corrections to the scaling on the QCD phase diagram even with a reasonable value of
[17] are not negligible until one reachgg~10"%.) the quark mass. Section IV is devoted to conclusions.
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A brief description of the model is given in Appendix A. At the TCP,a=b=m=0. Assuming thata and b are
In Appendix B, we discuss, for completeness, hgybe-  analytic inT and x and thatc>0 is approximately constant
haves along thé€(4) line based on the universality argu- near the tricritical point, we expand them as follol@§)]:
ment. We will see that the monotonic increase so far ob-
served on the lattice is a property onlyat&0. a(T,u)=Ca(T—T)+Dalp— ),

B(T, 1) =Cp(T—Ty) +Dp(p—pr), 2.2
II. UNIVERSALITY ARGUMENTS
_ o ) ~ where we have neglected higher-order terms in the deviation
Universality is such a strong notion of modern physicsfrom the tricritical point.C,>0 andD,>0 are related such

[27] that its applicability ranges from phase transitions inihat the linea(T, 1) =0 is tangential to the first-order phase
ordinary liquids to thermal phase transitions of relativistic,ansition curve at the TCH is positive forT—T,>0 (u
guantum field theories. In this section we study the critical<”t) on thea=0 line, which leads to the condition
phenomena near the CEP and TCP based on the universality

argument. We will see that a lot of general information can C,D,—C.Dy>0. 2.3
be extracted by the universality argument alone without men- - _
tioning any complexities of the strong interaction. These conditions come from the geometry of the phase dia-

gram, namely, the fact that there is a ling(loifcritical points
» _ atT>T,, u<pu;. We do not know the actual values of these
A. The QCD critical end-point coefficients. But we need not know them for the present
It was suggested theoreticall#,5,8,10 and found on the purpose.
lattice [11] that QCD has the CEP at finite temperatiig If we increasem from zero, at some poir{f;(m), u.(m))
and baryon chemical potentigl, (Fig. 1, pointE). At the in the (T,ux) plane two minima and a maximum of the po-
critical end point, only ther field becomes massless and thetential coalesce. This is the critical end point. There the
universality class of this phase transition is considered to bsigma field acquires a nonzero expectation vatgaevhich is
the same as that of the liquid-gas phase transition, or equivaletermined by the following equatiorié this section we
lently, that of the three-dimensional Ising model. exclusively consider the smath limit and leave only the
In order to exploit the power of universality to investigate leading terms irm]:
the singular behavior of various quantities, we consider the 3 5
mapping of the {;,h,) axes of the Ising modelt( is the Q' (Te(m), ue(M), 00)= —M+ayoo+bnog+cog=0,
reduced temperature ang is the reduced magnetic figld , 5 4
onto the {T,,m) space ( is the light quark mass divided ~ ©"(Tc(mM), uc(M),00)=an+3byop+5co(=0,
by the typical scale of the problem such®g. This can be ” 3
achieved by considering the tricritical poinfTCP) at Q"(Te(m), ue(m), 00) = 6bmog+20cap=0, 2.4

(T,u,m)=(T,,u:,0) (Fig. 1, pointP). Below we explicitly wherea, =a(To(m), uc(m)) andb,=(T(m), ue(m)). The

construct the Landau-Ginzburg potential for the CEP Startin%olution s
from the general theory of tricritical poinf29] and discuss
associated universal behaviors. 9b2
Near the TCP, the long-wavelength physics of the system an= —_
can be described by the thermodynamic potential expanded 20c
up to the sixth order in the order parameter fighe sigma .
field) o, B
) b= m_)C:-;/sr.nz/s’
— a 2 b 4 ¢ 6
QMF_QO_mU+EU +Za' +EU , (2.9

—3bp,
where(} is the contribution from short-wavelength degrees

of freedom irrelevant to the study of critical phenomena. Using Egs.(2.2) and (2.5 we can locate the critical end
point for smallm:;

3This is not obvious priori and requires explanation. As we shall 45Dacl/5 2/5 415
o L : T(m)—T=— m=~+0(m™>),

see below, the phase transition at the end point is characterized by 4(54)2/5(CbD —C,Dyp)
the one-component order parametér The effective Landau- a e
Ginzburg potential contains odd powers ®f which break ther 5C.c35
— — o symmetry of the Ising model. This is the same situation as we(M)— p= aC m2/5+ O(m4/5).
the liquid-gas phase transition. Theoretically, the usual renormaliza- = (54)Y5(C,D,—C,Dy)
tion group argument should be reconsidered in the presence of the (2.6

asymmetny{28]. Although there are some subtleties about this prob- ) N
lem, experimentallyit is clear that the liquid-gas phase transition Thus, as we increase the quark masshe critical tempera-
and the 3D Ising model belong to the same universality class.  ture decreases and the critical chemical potential increases at
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Now we can discuss the critical behavior of susceptibili-
ties; the quark number susceptibiliy,, the specific heat,
and the chiral susceptibility.,. In the mean field approxi-

mation, the equilibrium value af is determined by the first-
and fourth-order terms of Eq2.7) in the small mass limit.
Then we obtain, for paths asymptotically not parallel to the
A;=0 line, (the first order phase transition line

XqWCNmZIlﬁg_ gc| -
Xch™ milsllﬁg_gcrér (2.9

where e=y/356=%. |g—g.| denotes the distance from the
CEP in some units. For the path asymptotically parallel to the

FIG. 2. The mapping of the Ising model axes onto tiey) ~ A1=0 line, the exponent iy=1>e. Note that, although the
plane. The solid lines represent the first-order phase trangitien ~ Critical exponents are the same, taplitudeof the chiral
coexisting ling. The dashed lines separate regions with differentSusceptibility is enhanced whereas that of the quark number
exponents. susceptibility is suppressed by factorsmof

Inside the critical region, where the mean field theory
least for smallm (Fig. 1). ExpandingQ(T,u,o) around breaks down|sinquiar does not admit a simple expansion
(Te(m), me(m),op) we obtain the Landau-Ginzburg potential with smooth coe_fficients. Equa_tio(ﬂ.?) should b_e regard.ed
with the new order parametér= o— o; asti the T;addle point approximation to the following functional
integral:

Ome(T,2,0) = Que(To(M), pe(M), 00) + Ao+ Aya? T 1
Q(T,,u,a):—\—/lnf[da’]ex;{—?f d3rHeff(r)>,

+ A3+ Ao, 2.
30 40 (2.7 (2.10
where whereH . is the Landau-Ginzburg-Wilson Hamiltonian
A1=(Ca00+ Cpog)[T—To(M)]+ (D oo+ Dyo) Hor=AY(Va' )2+ ALo’ + Ayo' 2+ Ala' 3+ Ao,
2.11
X[p=pc(m)], (
A/ (i=1-4) are in general different fros; due to fluctua-
A,=(Ca+3Cpo3)[T—Te(m)]+ (Dy+ 3D o) tions. However, we expect that the differences betwagén
YTy andA, are of the higher order im.* Note the appearance of
(= nc(m], the kinetic term. The sigma field is no longer a constant
beyond the mean field approximation. The potentiall0
A3=Cp(T=Tc(m))+Dpl = pmc(mM)], will eventually lead to thescaling equation of stat¢32]
written in terms of the scaling field&; andA, (the revised
A= —bn 2.9 scaling [33]). BecauseT, w, and m participate in the
4_ e .

magnetic-field-like scaling field, we obtain, very schemati-
cally, the most singular part
A;i(i=1,2,3) vanish at the critical point whereAs does not,
indicating that (T¢(m),uc(m)) is an ordinary (bi)critical S TRV
point as stated above. Xa™ ﬁ_ﬂzwm me (o'o’),
Looking at Egs.(2.7) and (2.8, we immediately notice !
two important things. FirstA;, is a linear combination of
eqTJ(i\(/g]l)en?rt]ﬁ e’Ler oﬁé;(n?rr.]i (;I' C::ri arg:aea}snisn ;[ngge?\gg gf grr(iaffiths “The coefficients are further affected by the change of integration

and Wheelef31] and thatA, is the temperaturelike scaling varlables,. These degr_ees of freedom can e“m'm@te bl.“ do not
field which corresponds tq of the Ising model. Second changeA; , in the leading order. In fact, only the direction &f is
) L important for discussing the behaviors of quantities considered here

r_ath?r th_an _the qgark mass plays the role of the HEXtema i.e., second derivatives @} in directions parallel to th&, u, and
field” which is conjugate to the new order parameter. Thus it axes [31,33.

can be identified as the magnetic fieldlike scaling file]d SIn calculating y,, dominant contribution tadA; /dm comes

Indeed, it is easy to show that, on the liAg=0, A; andAs  from ¢od(T—T¢(m))/dm rather thandey/dm[T—Te(m)]. The
are positive forT>T¢(m) [or u<u(m)] and negative for |atter term, being proportional t6—T.(m), behaves as a correc-

T<Tc(m) (or u<mc(m)) and this line is asymptotically tion to the scaling. Also, if the derivative acts ok, we get
parallel to the first order phase transition line at the critical{ ¢'2¢'2)~ |g—g.|~*/#°, which is less singular than the magnetic

end point. See Fig. 2. susceptibility.
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520 520 masses are crucial to this. A more interesting possibility is
C~—~m?P—~m*¥o'0"), that the critical point is inside the tricritical region and a
aT? dA7 crossover of different universality classes occuret to be
confused with the crossover phase transition at lower chemi-
FQ cal potentials Namely, as we approach the CEP, the critical
Xch™ me 3_A§~m (a'a’), exponents gradually change from those of the tricritical point

to those of the 3D Ising modefia those of the CEP in the
L . mean field approximation(Note that the mean field expo-
(') ~[g—gc "¢ (212 nents of a bicritical point are different from those of a tric-

. , " . ritical point) Indeed, such a kind of crossover was experi-
where|g—g.| is the distance from the critical end point in mentally observed in an antiferromagnet dysprosium

some unitse=y/5~0.8 for any direction which makes an 5jyminum garnet long ago. The critical exponghfor the
angle with theA,=0 line at the critical end point. For the agnetization tends to change from the tricritical value
path asymptotically parallel to that line, the exponentyis (B=1) to the Ising model valué8=0.31) as we go along the
~1.2>e. (These values are taken from the 3D Ising madel. ying critical line [35].

_ Having discussed the singular behavior of susceptibilities * Thys, through the consideration of the critical region, we
inside the critical region, however, we give a pessimistichaye hecome aware of a possible interesting role played by
result. Since we now have the Landau-Ginzburg potential foghe hidden tricritical point. Its critical phenomena are there-

the CEP, we can discuss the size of the critical region. Recajbre worth studying and will be discussed in the next section.
that, according to the Ginzburg criterigh.2), the radius of

the critical region is proportional to the square of the coeffi-
cient of the quartic term. Other coefficients are quark mass B. The QCD tricritical point

independent in the leading order. Thus we obtain Motivated by the above arguments, we now turn our at-

tention back to the QCD tricritical point. Because the upper
critical dimension of models described by Eg.1) is 3, the
o ) . ) . origin of the coupling constant is an attractive IR fixed point.
This gives a bound to the size of the critical region. It Sh””kSCorrespondingly, universal behaviors associated with the tri-

to zero as the quark mass decredses, Fig. 1 The physi- (yitical point are well described by the mean field theory up
cal reason behind this is that the coefficient of the quartig, logarithmic correctiong.

term is zero at the tricritical point and remains small near it.
Generally speaking, the critical point of a strongly inter- _

acting system has a large critical regi@l]. Thus the size of

the critical region of the CEP is subject to a competition

between these opposite effects and the determination of it is Xq~|h—ht|_7“,

a highly nontrivial problem. However, it seems to us that the

above bound2.13 is a compelling reason to expect that the

critical region is “small.” Xen~|h—hy| ™ %en, (2.14
If the critical region of the CEP is small, probably most of

the fluctuations associated with the CEP come from the mean : . . . .

field region around the critical regidhThe central point of v;/1here|h—ht|| Is the d_'S}anCé'rlioTe unltﬁfromh_thr(]e TCPin

this paper is thaif we consider the mean field region belong—t N (T"“). plane. =32, yen=1 for paths which are not

ing to the CEP, we should also consider the mean field reg;.\symptoncally tangential to the first-order phase transition

gion belonging to the TCPThe tricritical point has, so to Imi T 0) th . lue of is ai b

speak, a “tricritical region”(see Fig. 1, which is a sphere or th ft I(I 4, M7 )'t't e. expectation value af is given by

an ellipsoid in the T,u,m) space centered aff(,u,,0).’ € following equation:

Then it is possible thathe tricritical region survives in the

physical (T,u) plane The magnitudes of the-, d-quark m=ac+ba3+o°. (2.15

|t|~AZ~m*S, (2.13

Let us see how susceptibilities scale with respecfTto
T, |u— u andmin the mean field approximation.
At (T,u,m=0), straightforward calculations show that

81t must be cautioned that the mean field region does not alwaygIear (T_t ¢, M) Wher§a= b=0, (not_e that th|s_ is the “near-
exist. For example, it is known that there is no mean field region fof€St” point to the TCP in the phase diagram with a quark mass
the A transition of liquid helium(the critical region is largeltf ~ M We can expand the solution up to the second ordex in
~0.3). However, if the critical region is squeezed by an explicitandb,
parameter of the theory as in the present situation, it would be
meaningful to discuss the mean field region belonging to the critical
point. (We thank M. A. Stephanov for a discussion on this ppint.  This is why we neglected the pion degrees of freedom in Eq.
"Here we use the term “tricritical region” loosely for the region (2.1). Mean field theory is truly universal in the sense that it does
where any mean-field-like effects of the tricritical point on suscep-not depend on even the symmetry of the order parameter. However,
tibilities exist. This terminology is a bit misleading because there isthe multiplicative logarithmic corrections to the scaling do depend
no critical region for a tricritical point in the usual sense. on the symmetry of the order parameter.
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a b 4

2 2
cr=m1/5—§m‘3’5—§m‘1/5 V[E]=—2J d’p InE (P)+p
(2m)* p?
+0(a’m "5,b?’m~ %5 abm1). (2.16 ) 1 /dE(p)
— e | AP ——= , (3.
. . . - . 3C 2( 2 \ 2
Inserting Eq.(2.16 into Eq. (2.1) and differentiating with F d g%(p) \ dp
respect tou twice, we gety,. Because of Eq(2.2) the dp? p?

differentiation with respect ta is replaced by the differen-

tiation with respect t@a andb. Extracting the most singular _
contribution, we obtain where the gauge coupling constagitp?) and the dynamical

quark mass functio (p) are

70 o] _
Xq~—2|a:b:0~m 2, (2.17) _ 272%a
Iy 2(p?)= 3.2
9°(p*) >3 oo (
In[(p“+pg)/Ageo]
Analogously,
S(p)=mg{In[(p2+ p?)/ A et~ 2
a8 (219 (p)=mg{In[(p*+pg)/ Aqco 1}
+ =[PP+ pD Ao V2L (3.3
The divergence of is rather moderate in the mass direc- p2+p2 P+ Pc)/ Aqcp : :
Cc

tion, from which we expect that the quark number suscepti-
bility may still be large even with nonzero quark masses. ) )
Indeed, from Egs(2.9) and (2.13 we can derive then de-  Pc iS @ momentum scale which separates the infraneoh-
pendence of, at the edge of the critical region perturbativg region from the ultraviolet(perturbative re-
gion.Cg= (Nﬁ— 1)/2N, is the quadratic Casimir operator for
215+ —2/3 _ 2/15 A5\ —2/3__ o~ 2/5 the fundamental representation of the color SY)( group
Xa~ M ) m— (219 and a=24/(1IN.—2N;) (N; is the number of active

. . _ flavors? o is proportional to the renormalization group in-
Comparing with Eq(2.17), we see that thexdependence is variant chiral condensat@q) aso=_2m2a(qq)/3 andm, is

exactly the same. There may or may not be a reason for thige renormalization group invariant current quark mass. They
coincidence. In any case, this does show that the TCP is 836 related to the scale dependent masand the scale

importa_nt as the CEP.at least in the Sma“ quark mass Iimltdependent chiral condensdigg)” through the perturbative
Starting from the simple Landau-Ginzburg potential, We o normalization group equation

have extracted a lot of physics near the CEP or TCP. These
analyses show the power of universality as well as its limi-

tations. For example, the universality argument does not tell — (qq) s

us whether or not the effect of the TCP survives in theu) (qq)= (A2 A~ 2)7a2" (3.9

plane with the quark mass of, say, 5 MeV. In order to quan- LIn( qco )]

tify the ideas given in this section, we must resort to a spe-

cific model. This is the subject of the next section. mq=m3[ln(A2/AQCD2)]a’2. (3.5
. NUMERICAL RESULTS An overall factor Ny=2 timesN.=3) is omitted in Eq.

In this section, we numerically calculate the quark num-(3-1. The chiral condensatq) and f, are known to be
ber susceptibility in the [,x) plane by using a model. As Insensitive to the |n2frared 2regulrimzann parqmqigr[36].
expected, the susceptibility diverges both at the critical and herefore we takep/Aqcp’=e"* and determined ocp to
tricritical points. We also calculate the corresponding critical’€produce the pion decay constahf=93 MeV in the
exponent. The results clearly demonstrate that the hiddeRagels-Stokar formul@37] in the chiral limit. We obtain

tricritical point can affect the phase diagram with nonzeroAqco= 738 MeV for Ny=2 [10]. In the following calcula-
quark masses. tions, we takeA =1 GeV in Eq.(3.5 and change the value

of my~* V. For simplicity, we abbreviaten; ~* ¥ to m,
below.
At finite temperature and chemical potential,we use the
As a model, we employ the Cornwall-Jackiw-Tomboulis imaginary time formalisn{38], and make the replacement
(CJT) effective potentia[25] for the two-flavor QCD in the
improved-ladder approximatiofl0]. A brief description of

A. CJT effective potential and the chiral phase transition

the model is given in Appendix A. For more details, §&@. 9Although the potential is evaluated witi; =2, we takeN;=3
At zero temperature and chemical potential, the effectiven the gauge coupling3.2). In this way we include the effect of the
potentialV is given by s quark only through the running of the coupling constant.
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20— . . . ' '

| ) =
110 y my=100MeV | D
=
_ mg=1MeV 'Tu
3 m=5MeV =
= Chiral Limit
— 100 mg=10MeV :
/ m=50MeV
0t \\
. 30 .

200 Z
1 [MeV]

Hety [MeV]

FIG. 3. The phase diagram with several quark masses. The
quark masses are evaluated at the momentum scale 1 GeV. The
solid and dotted lines represent the first-order and the second-order . )
phase transitions, respectively. The filled circle is the tricritical 10
point and open circles are the critical end points for different quark
masses.

m, [MeV]

FIG. 4. The quark mass dependence of the critical temperature
(upper figure and the critical chemical potentidbwer figure. The

d*p - d®p e
f(p.p)—T F(p,wntiw), slope of the solid line i.
f (PP 2 e (Pentin) )
(3.6 V[ 57
where w,=(2n+1)7T(ne Z) is the Matsubara frequency Xd ap? ' '

for the quark® , . o
o - . Figures 5 and 6 show the results in the chiral limit. As we
As a normalization, we defin/ by subtracting the : : ;
: — can seeyq is suppressed far below the chiral phase transi-
o-independent part fron¥’ such thatv reduces to the value jon jine and is enhanced near the TCP. In the chirally sym-

of the free quark gas whem=0. See Appendix A. metric phasey, is equal to the value of the massless free

We can study the chiral phase transition and the phas&uark gangee in this model. The region wherg, is en-

diagram by calculating/[ o,m] at givenT and u and by  hanced is elongated in the direction parallel to the first-order
searching the value of the chiral condensagewhich mini-  phase transition line. This is because the critical exponent for
mizes the potential. The location of the first-order phase trantis direction (y=1) is larger than for other directions
sition line is determined by finding a gap @. In the chiral (Vo= 1). We also find a jump inyq along the second-order
limit, oo goes to zero smoothly as the second-order phasghase transition line. Inside the critical region, however, the

transition line is approached from below. With finite quarkjump must be rep|aced by(a_jspwnh certain critical expo-
masses, there is no distinct border between the symmetric

and broken phases, awng remains finite at all temperatures 120
and chemical potentials.

The phase diagram with several quark masses in the
(T,w) plane is shown in Fig. 3. The location of the tricritical
point in the chiral limit is T,=107 MeV and pu; 10
=209 MeV. The open circles in Fig. 3 represent the critical %
end points for different quark masses. As shown in Fig. 4, the =,
distance between the TCP and CEP approximately scales as +
mz"® up tomy~0O(1) MeV, in agreement with Eq2.6). For 100
larger massesn,>10 MeV, T.(m,) does not change much
while u(my) keeps on increasing.

B. The quark number susceptibility around CEP and TCP 9G 59 250 300

i [MeV]

The quark number susceptibilify, is calculated from the

normalized effective potential as FIG. 5. The quark number susceptibility near the tricritical point
in the chiral limit. The value of the susceptibility is divided by that
of the massless free quark gas. The solid and dotted lines represent
However, we replace, with w,, not w,+iux in the gauge the first- and the second-order phase transitions, respectively, and
coupling (3.2 to avoid an absurd situation. the filled circle is the ftricritical point.

014028-7



YOSHITAKA HATTA AND TAKASHI IKEDA

10

1,=209 mg=0 MeV

free

Xo'Xq

200

225

175

p=250MeV

110
T [MeV]

(o=
= ]
N

ol
O

FIG. 6. The temperature dependencexgf at fixed u's. For
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120

110

T [MeV]

100 |

300

200 250
i [MeV]

FIG. 7. The quark number susceptibility for,=0.1 MeV. The

#<209 MeV, x4 has a jump across the second-order phase transialue of the susceptibility is divided by that of the massless free

tion line[O(4) line], which is consistent with the mean field theory.
See Appendix B.

nents. See Appendix B. Our model can produce only the

mean field behaviors.
Next we examiney, for finite quark masses. Figures 7

and 8 are the results fan,=0.1 MeV andm,=5.0 MeV,
respectively. The location of the CEP isTy, uc)
=(104 MeV, 221 MeV) formy=0.1 MeV and (95 MeV,
279 MeV) for my=5.0 MeV. x, diverges at the CEP and is

theory. The solid line is the first-order transition line. The open
circle represents the critical end point fog,= 0.1 MeV. The filled
circle is at Ty, ).

V[U, my= 0]= Viree™ aZ(T-M)O'2+ aA(T-M)UA

+ag(T,u)o®. (3.9

The coefficientsa,,a,,ag, andVy,e are summarized in Ap-
pendix A. oq is determined by the equatioJS?rT//¢9<r|,,:(,0

enhanced in the elongated region parallel to the first-order 0- We obtain

phase transition line because the critical exponent is the larg-

est for this direction as in the massless case. Fgr

=0.1 MeV, the TCP is still close to the CEP and the elon-

gated region includes the pointT,u;) while for m,
=5.0 MeV, the region deviates from it.

At first sight, one might think that the analysis made in
the previous section ceases to be valid at somewhere b
tweenm,=0.1 MeV andm,=5 MeV and the effect of the
TCP no longer survives fomy=5 MeV, which might be
considered as the “realistic” quark mass in this motlel.
However, this conclusion is too hasty. We will see in the nex
section that the hidden tricritical point still affects the phys-
ics near the CEP even fon,=5 MeV.

C. The critical exponent for x4

Now let us examine the critical exponent fgy, at the
CEP and TCP. We calculate it along the path parallel tquthe
axis in theT-u plane from loweru towards the CEP or TCP
at fixedT. or T;.

First we consider the chiral limit. We exparYd in the
vicinity of the TCP2

Yn this modekqq),—1 cev=(—276 MeV)® atT=u=0. By us-
ing Gell-Mann—Oakes—Renner relation witm_ =140 MeV,

m, ~* V~4 MeV.

12The reason for this expansion is twofold. First, in order to keep

v[aozoaquo]zvfree (3.9
above the chiral transition line, and
_ ay 2
V[ag M= 0]=Vireet _2(23-4_ 9ajas)
27ag
e_
2 2 32
— ——(a3—3azae) (3.10

27ag

tbelow that line.x is obtained by taking the second deriva-

tive of Egs.(3.9) and (3.10 with respect tou. Figure 9
showsy for numbers of u— u|’s. We determine the criti-
cal exponenty, defined in Eq(2.14) numerically by using a
linear logarithmic fitting

(3.1)

where const is independent gf. We obtain y,=0.51
+0.01, which is consistent with the mean field theory.
With finite quark masses, the expectation vadtieis de-
termined only numerically. This time we do not expand the
potential aroundo, and directly read the exponent from
Figs. 7 and 8. In Fig. 10y, is plotted for numbers ofu
—Hg's for mg=0.1, 5, and 100 MeV together with the cal-
culated values of the critical exponentefined in Eq(2.9):

(3.12

In xq=— vqIn |t — u¢| + const,

In xq=—€In|pw—ue|+const.

in line with the argument given in Sec. II. Second, technically weFor mg=0.1 MeV we obtainede=0.55+0.02. This is sig-
can approach the TCP much closer to determine the exponent thaificantly different from the prediction of the mean field

directly reading it from Fig. 5.

theory e=%, which is clear evidence of the effect of the
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120

ququee my =0.1 MeV

£=0.55+0.02

110

T [MeV]

100 €=0.68+0.02 mg =5 MeV

90

150 200 £=0.57 £0.01

300

250
u[MeV]

FIG. 8. The quark number susceptibility for,=5 MeV. The 10
value of the susceptibility is divided by that of the massless free
theory. The open circle is the critical end point fog=5 MeV and 10"k
the filled circle is at Ty, ) -

my =100 MeV

€=0.64+0.03

tricritical point. We expect that the exponent changes to- 10°F
wards$ if we approach the CEP much closer.

Formy=5 MeV, the slope of the data points changes at . L
around|u— u¢|~0.5 MeV. Therefore we fitted the data for 10 10 10 10
| = ue|<0.3 MeV and>1 MeV separately and obtained Il MeV]

the critical exponent 0.680.02 for | u— | <0.3 MeV and FIG. 10. The quark number susceptibility for,=0.1, 5, and

0.57+0.01 for |u— pc[>1 MeV. We interpret this change 109 pev as a function ofu— x| at fixed temperatur@(my,).
of the exponent as therossoverof different universality

classes discussed in the previous section. Note that trgee no indication of a change in the slope. The effect of the
purely mean-field-like exponent is seen in a very small re-TCP has completely disappeared.

gion |u— u/<1 MeV from the CEP. This result is some-

what surprising to the present authors because, as seen in IV. CONCLUSIONS

Fig. 8, the TCP is far away from the CEP already fog Based on the universality argument and numerical model
=5 MeV and the value ofy, itself is unremarkable at cgcyations, we studied the singular behavior of susceptibili-
(Tt ue). It seems that, although the analysis in the previousijes near the critical or tricritical points. These two ap-
section was made in the small quark mass limit, the effect Of)roaches are complementary, and we observed that the
the TCP is unexpectedly robust against the increase of thg,qqe| calculation faithfully quantified the qualitative predic-
quark mass. tions obtained by using the universality argument as long as

As a check, we also calculated the exponent fef  he mean field behaviors are concerned. The important point
=100 MeV and obtaine@=0.64+0.03 which is consistent s that, although we adopted a specific model, the qualitative
with the mean field valug. For such a large quark mass, we pepayior ofyq is probably model independent. In particular,
our results strongly suggest a possibility that the tricritical
point affects the physics near the critical end point. In other
words, there aréracesof the hidden tricritical point on the
QCD phase diagram. Practically, the traces will be seen as
the gradual change of the critical exponents since, after all,
universality classes are characterized only by their critical
exponents. It is expected that the exponents change from
those of the TCP to those of the Ising model via those of the
CEP in the mean field approximation. In order to really con-
firm this fascinating possibility, lattice simulations at finite
chemical potential§39] are necessary.

Finally, we briefly comment on the implication of our
results on heavy-ion experiments. The divergencey ofis
o 00 o directly related to an anomaly in the event-by-event fluctua-

Iy [MeV] tion of baryon numbeB (divided by the entropys)

my =0 MeV

2
FIG. 9. The quark number susceptibility in the chiral limit as a ((AB)%) (4.1)
function of |u— u,| at fixed temperaturd@, . s '
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which was originally introduced ifi21] to probe the decon- 4

d
fined phase. Although neutrons are not observed, we expe®t [ S]= p4tr{|n[sgl(p)S(p)]—Sgl(p)S(p)+ 1},
that the event-by-event fluctuation of tipgoton numberis 2m)
relatively enhanced for collisions which have passed “near” (A2)

the CEP or the TCP. Pion and diphoton observables are dis- 1 do  d%k
cussed if12-14. As we remarked before, the critical expo- V,[S]=— _f f P 92(p—k)
nents of the Ising model and the mean field theory are not so 2 (2m* (2m)*
different numerically. Thus, the smallness of the critical re- a a

gion itself may not be an obstacle in the observability of Z 5 S(k))\—y S(p)
critical phenomena in experiments. However, if we take the 2 ¢ 277
effect of the TCP seriously either by assumption or stimu-

lated by future lattice results, we must take into account th A
long-wavelength fluctuations of thpions as well as the (Cell-Mann matrices\®), andSy(p) andD,,,(p—k) are the

sigma meson because the pions are no longer the “enviror{[€€ duark propagator and the gluon propagator in the Lan-

_ — _ 2 2 .
ment” but participate in the critical fluctuations around the 484 9augéD ,,(p—k)=(5,,—P,p,/p7)/p”], respectively.
trace of the TCP. V4[S] corresponds to the 1-loop potential with the quark

1-loop diagram and/,[S] is the 2-loop potential with the
one gluon exchange.
We adopt the so-called Higashijima-Miransky approxima-
We greatly thank T. Hatsuda and T. Kunihiro for their tion [40,41] for the QCD running coupling constant
continuous encouragement and numerous valuable discus- ) ) 5 2D o 5 23 o
sions. We also thank M. Asakawa, K. Itakura, L. McLerran, 9 ((P—K)9)— 8(p°—k9)g(p7) + 6(k"—p)g=(k?),
R.D. Pisarski, and M.A. Stephanov for discussions and com- (A4)
ments. T.I. is supported by Special Postdoctoral Research
Program of RIKEN. Y.H. acknowledges RIKEN BNL Re-
search Center where this work was completed.
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e\Wnereg is defined in Eq(3.2). In this approximation with

the Landau gauge, the renormalization of the quark wave

function may be neglected at zero temperature and chemical

potential. At finite temperature and chemical potential we

APPENDIX A: DESCRIPTION OF THE MODEL need to take the wave function renormalization into account
1. The normalized CJT effective potential even in the Landau gaude2]. However, we ignore this

N ) problem for the present purpose. Then the CJT effective po-
We begin with the Cornwall-Jackiw-Tombouli€JT) ef-

) X . ; tential can be rewritten as E(8.1) in terms of the dynamical
fective potential[25] for QCD in the improved-ladder ap-

Lo . quark mass function3(p) using the corresponding
proximation [10] as a functional of the quark propagator Schwinger-Dyson equation fa&(p).

at zero temperature and quark chemical potential after L S~ .
S(p) P q P As a normalization, we defin/ by subtracting the

the Wick rotation, ) -
o-independent part fronv such thatV reduces to the value
V[S]=V4[S]+V,[S], (A1) of the free quark gas whem=0. We obtain

[S2(P%, 0f;0,Mmg) + P*+ wf — w1+ 4uw]
[S%(P% 07;:0mg) + p*+ wf — p?)P+ dpo]

- T o (*
V[O':mq]:Vfree_ ) 2 f d|p| p2|n
< n=0 JO

+

s (o (PP WD) (2 024 LI+ 024 PO [ [In(pP+ wdt pd)] 2
>, |, dpir=, :

3Ceam? i p*+ wp+pY)In(p*+ wpt pe) + PP+ wf (P*+ wi+pg)°
x| In(p?+ w2+ p?)+1— a_ 0—2[|n(p2+w2+ p3) 12 4 In(p?+ w2+ p?)+1— a i (A5)
n c 2 (p2+wﬁ+pg)4 n c n c 2 '

wherea=24/(1_1Nc_— 2Ny) and the effective potential for the with w=/p*+ qu_ In the chiral limit (my=0), the momen-
free quarkVyee is given by tum integral can be easily performed avigl. becomes

Viee=—2T dp [In(1+e (@~ WIT)
free™ (277_)3

M4 ,(LZTZ 7 ’772T4

Vfree(quo):_ 127T2+ 6 + 180 .

(A7)
+In(1+e (@+rmiTy] (A6)
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The .quafrk number. s_usceptibility of the massless free quark , d*p S[p;og,My=0)
gas is given byomitting the overall factoN{N.) fo=4N, i, s
(2m)* [24(p;o9,mg=0)+p7]
2 d3(p;0q,my=0)
T2 42 x| 3 (p: o p- 100,Mg
fi —0) — p;oq,Mg=0) .
Xq (Mg=0)= I+ = (A8) 0-"a 2 dp?

(A9)

In the above equation, we sKt=2 because the pion con-

2. The pion decay constant in the Pagels-Stokar formula sists ofu andd quarks.

The parameterp, and Aqcp are determined such that

they reproduce the pion decay constépt=93 MeV in the 3. Coefficients in the mean field expansion
chiral limit. We calculatef . by the Pagels-Stokar formula  The explicit expressions of the coefficiersts,a, andag
[37] in Eq. (3.8 are

2[In(pP?+ w2+ pA) 12 3PP+ wi— u?)
(PP+ it PO (PP+ wf— )P+ dpe]
2
(P*+ wd)[IN(P?+ i+ p2) ]2 2

1 ]
aT.u)=—=T> f d|plp®
T n=0

a
In(p?+ w2+ p2)+1— >

9
= (A10)
2 P+ opt PRLPP+ wp + POIN(PP+ wf + pY) + PP+ i
1 * [ln(p2+w2+pZ)]2a74[(p2+wZ_M2)2_4M2w2
‘514(1—"““):_2-'—Z fd|p|p2 2 nz C24 2, 2 nzz 2 272 . (A11)
T n=0 (P*+ @i+ po) '[P+ o — 1)+ 4uwy]
aTp= 2 . J d|p|p2[|n<p2+w§+p§>]3a-6<p2+wﬁ—uz>[(p2+wﬁ—uzﬁ—mzwﬁ . A
3n? =0 (P*+ 0+ Q) °L(PP+ wf— ) 2+ 4pPop]®
|
APPENDIX B: THE 0O(4) CRITICAL LINE Que=0 (B3)
In this appendix, for completeness, we examine the sin- h i
gular behavior ofy, along theO(4) line emerging from the above theO(4) line, and
TCP toward the temperature axis in time=0 plane(see, Fig. 2
1). We call this line theO(4) line because it consists of a Que=— a (B4)
sequence of critical points whose universality class is the 4b

same as that of th@(4) spin mode[2]. We again start with
(2.1) with m=0 and the replacement?— ¢°=c?+ (712  below theO(4) line. Taking the second derivative in, we
+(m)2+(73)2. TheO(4) line in the (T,«) plane is deter- See that the quark number susceptibility has a discontinuous

mined by the following equation: jump across ¢, uc) and that it is larger in the low tempera-
ture phasdbelow theO(4) line] than in the high tempera-
a(T,u)=0. (B1) ture phasdabove theO(4) line] except for points where

D’'=0. Beyond the mean field approximation, we use the
current theoretical estimate of the specific heat exponent of

Sinceb>0 does not vanish and smoothly varies along thisthe0(4) spin mode[43]

line, we can drop the® term. If we consider the mean field
behavior, we can exparadaround an arbitrary poinfl{;, u¢) a~—02 (B5)
on the line[30] o

The minus sign means that the quark number susceptibility
a(T,u)=C(T=T)+D"(r— uc). (B2)  shows a cusp af, as in the case of the point of liquid
helium.[ « is also negative for th€(2) model] Note that
In the mean field approximation, tisingular part of ther-  (T.,u=0) is the point wherdd’ =0. It was shown if44]
modynamic potential becomes that theO(4) line is perpendicular to the temperature axis.
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Thus the quark number susceptibility has no singularity ats an exception only at=0. At any nonzerou, x4 has a
(Te, »=0) even in the chiral limit and increases monotoni- cusp precisely at the critical temperatufg(x). The cusp
cally as a function of the temperature, consistent with thebecomes higher and higher as we increasand finally di-
results of lattice simulations. However, this smooth behavioverges at the tricritical point.
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