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Universality, the QCD critical and tricritical point, and the quark number susceptibility
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The quark number susceptibility near the QCD critical end point~CEP!, the tricritical point~TCP! and the
O(4) critical line at finite temperature and quark chemical potential are investigated. Based on the universality
argument and numerical model calculations we propose the possibility that the hidden tricritical point strongly
affects the critical phenomena around the critical end-point. We make a semiquantitative study of the quark
number susceptibility near CEP or TCP for several quark masses on the basis of the Cornwall-Jackiw-
Tomboulis potential for QCD in the improved-ladder approximation. The results show that the susceptibility is
enhanced in a wide region around the CEP, inside which the critical exponent gradually changes from that of
the CEP to that of the TCP, indicating a crossover of different universality classes.
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I. INTRODUCTION

The vacuum of quantum chromodynamics~QCD! is be-
lieved to undergo a phase transition to the quark-glu
plasma~QGP! at high temperatureT and/or at high quark
chemical potentialm. Such a new state of matter is expect
to be produced in on-going heavy-ion collision experime
at the BNL Relativistic Heavy-Ion Collider~RHIC! and in
the future Large Hadron Collider~LHC! @1#.

The phase transition of the hadronic matter to the QGP
finite T with m50 has been studied extensively on the latti
In particular, the chiral phase transition is likely to be
second order for QCD with two massless quarks. Also,
static critical behavior is expected to fall into the universal
class of theO(4) spin model in three dimensions@2#. In
nature, the light quarks have small but finite masses and
second order transition becomes a smooth crossover.

The study of the QCD phase transition with finitem has
been retarded because reliable lattice simulations have
been available so far due to the severe fermion sign prob
Nevertheless, there is growing evidence that the phase
gram of QCD with massless two-flavors has a tricritical po
~TCP, Fig. 1, pointP) at which a line of critical points@the
O(4) line# at lowerm’s turns into a first-order phase trans
tion line at higherm’s. The existence of the TCP was in fa
suggested in various calculations based on effective theo
of QCD @3–10#. If the u- andd-quark masses are increas
from zero, a line of critical points~the wing critical line!
emerges from the TCP and the point which correspond
the physical quark massmphys is called the QCD critical end
point ~CEP, Fig. 1, pointE), because this is the point wher
the first-order phase transition line terminates. Indeed, s
evidence of the existence of the CEP was shown recentl
a lattice QCD simulation with 211 flavors by Fodor and
0556-2821/2003/67~1!/014028~12!/$20.00 67 0140
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Katz @11#. In this paper we assume that CEP exists in
phase diagram of QCD.1

Second-order phase transitions are characterized by
long-wavelength fluctuations of the order parameter. In
case of the CEP, it is the sigma (s) field. Then, it is expected
that the fluctuations of the sigma field will be reflected in t
event-by-event fluctuation of pion (p) observables due to
the thep2s coupling. Based on this observation, possib
observable signals associated with the CEP have been
ied in detail in relation to the relativistic heavy-ion collisio
experiments@12–14#.

The purpose of this paper is to point out that the anom
near the CEP is not pointlike but has much richer structu
Our starting point is a simple question: ‘‘How large is th
critical region?’’ The critical region is defined as the regio
where the mean field theory~or the Landau theory! of phase
transitions breaks down and the true nontrivial critical exp
nents can be seen. Usually, one expects that the critica
gion is surrounded by the mean field region and the criti
exponents change from the nontrivial values to the m
field values as one goes away from the critical point. O
might argue that this question is only of academic inter
because the nontrivial exponents and the mean field ex
nents are numerically not so different and probably exp
ments cannot distinguish them.~This observation is the basi
of @12#.! However, as we will see, pursuing this questi
leads to an important notion that may shed light on cert
results of both heavy-ion collision experiments and futu
lattice simulations at finite chemical potentials.

There is a well-known criterion which estimates the s
of the critical region, the Ginzburg criterion@15#. It shows
that if the singular part of the thermodynamic potentialV

1Accordingly, we fix the strange quark mass to its physical val
Below ‘‘the quark mass’’ means theu, d current quark masse
which we consider as variable parameters.
©2003 The American Physical Society28-1
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~the Landau-Ginzburg potential! for a certain second-orde
phase transition is given by

Vusingular5c~“f!21atf21bf4, ~1.1!

where f is the order parameter andt[(T2Tc)/Tc is the
reduced temperature (Tc is the critical temperature in th
mean field approximation!, the critical region is estimated t
be

utu;
Tc

2b2

ac3
. ~1.2!

At first sight, this criterion seems useless because we do
know the coefficients appearing in Eq.~1.1! for the CEP.2

However, in the next section we will derive a bound to t
size of the critical region. In fact, there is a reason to exp
that the critical region of the CEP issmall. This is because
the QCD critical end point is a descendant of the tricritic
point of the massless theory.

This observation led us to study the critical phenomena
both the CEP and TCP simultaneously and their poss
correlations. We make both qualitative and quantitat

2The size of the critical region depends on the microscopic
namics and universality tells nothing about it. A clear example is
l transition of liquid helium and the superconducting transition
metals. Although they belong to the same universality class@the
O(2) spin model#, their critical regions are very different;utu;0.3
for the l point andutu;10215 for conventional~type-I! supercon-
ductors. Just for reference, we note that for typical liquid-gas ph
transitions which belong to the same universality class as the p
transition at the CEP,utu;1022 @16#. ~Corrections to the scaling
@17# are not negligible until one reachesutu;1024.!

FIG. 1. The phase diagram of QCD in the (T,m,m) space. Point
P is the tricritical point~TCP! of the massless theory and pointE is
the critical end point~CEP! of the real world. The dotted lines
represent the second-order phase transition and the solid line r
sents the first-order phase transition.
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analyses of the physics near the TCP and CEP with partic
emphasis on the~singular! behavior of the quark numbe
susceptibilityxq defined by

xq52
1

V

]2V

]m2
, ~1.3!

whereV(T,m) is the thermodynamic potential andV is the
volume of the system.xq is a response of the quark numb
density to the variation of the quark chemical potential and
one of the key quantities characterizing the phase cha
from the hadronic matter to QGP@18–21,45#. The lattice
data show that, atm50, xq increases rapidly but smoothl
near the critical temperature@22–24#. On the other hand, the
universality argument predicts that it diverges at both
TCP and CEP with certain critical exponents. Therefore
would be important to study its critical behavior with an
without the quark masses to see whether or not it can pro
a new way of detecting the TCP or CEP on the lattice as w
as in the heavy-ion collision experiments.

In addition toxq , we occasionally mention the singula
behavior of the specific heatC and the chiral susceptibility
xch defined as

C52
T

V

]2V

]T2
, ~1.4!

xch5
1

V

]2V

]m2
. ~1.5!

From the viewpoint of critical phenomena,xq and C are
essentially the same near the TCP and CEP whilexch is
different from xq near the TCP and only slightly differen
near the CEP in the sense that will be clarified below.

In Sec. II, we make a general analysis of the interp
between TCP and CEP in the small quark mass limit ba
on the universality argument. After determining the relati
locations of the TCP and CEP in the phase diagram as fu
tions of the quark mass, we construct the Landau-Ginzb
potential for the CEP to determine the singular behavior
susceptibilities both in and beyond the mean field appro
mation. It turns out that the smallness of the quark m
gives a bound to the growth of the critical region, turning o
attention to the tricritical point. Then we discuss a possi
crossover from the tricritical universality class to the Isi
universality class.

The universality argument is so general that it gives
quantitative results. In order to reinforce the ideas given
Sec. II, in Sec. III we show the results of the numeric
calculation on a model, the Cornwall-Jackiw-Tombou
~CJT! potential for QCD@25# in the improved-ladder ap
proximation @10,26#. We will find how well the numerical
results match with the qualitative predictions of the univ
sality argument, demonstrating the power of universality.
particular, we obsere some indication of the effect of the T
on the QCD phase diagram even with a reasonable valu
the quark mass. Section IV is devoted to conclusions.
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A brief description of the model is given in Appendix A
In Appendix B, we discuss, for completeness, howxq be-
haves along theO(4) line based on the universality argu
ment. We will see that the monotonic increase so far
served on the lattice is a property only atm50.

II. UNIVERSALITY ARGUMENTS

Universality is such a strong notion of modern phys
@27# that its applicability ranges from phase transitions
ordinary liquids to thermal phase transitions of relativis
quantum field theories. In this section we study the criti
phenomena near the CEP and TCP based on the univers
argument. We will see that a lot of general information c
be extracted by the universality argument alone without m
tioning any complexities of the strong interaction.

A. The QCD critical end-point

It was suggested theoretically@4,5,8,10# and found on the
lattice @11# that QCD has the CEP at finite temperatureTc
and baryon chemical potentialmc ~Fig. 1, pointE). At the
critical end point, only thes field becomes massless and t
universality class of this phase transition is considered to
the same as that of the liquid-gas phase transition, or equ
lently, that of the three-dimensional Ising model.3

In order to exploit the power of universality to investiga
the singular behavior of various quantities, we consider
mapping of the (t I ,hI) axes of the Ising model (t I is the
reduced temperature andhI is the reduced magnetic field!
onto the (T,m,m) space (m is the light quark mass divided
by the typical scale of the problem such asTc). This can be
achieved by considering the tricritical point~TCP! at
(T,m,m)5(Tt ,m t,0) ~Fig. 1, pointP). Below we explicitly
construct the Landau-Ginzburg potential for the CEP star
from the general theory of tricritical points@29# and discuss
associated universal behaviors.

Near the TCP, the long-wavelength physics of the sys
can be described by the thermodynamic potential expan
up to the sixth order in the order parameter field~the sigma
field! s,

VMF5V02ms1
a

2
s21

b

4
s41

c

6
s6, ~2.1!

whereV0 is the contribution from short-wavelength degre
of freedom irrelevant to the study of critical phenomena.

3This is not obviousa priori and requires explanation. As we sha
see below, the phase transition at the end point is characterize
the one-component order parameterŝ. The effective Landau-
Ginzburg potential contains odd powers ofŝ, which break theŝ
→2ŝ symmetry of the Ising model. This is the same situation
the liquid-gas phase transition. Theoretically, the usual renorma
tion group argument should be reconsidered in the presence o
asymmetry@28#. Although there are some subtleties about this pr
lem, experimentallyit is clear that the liquid-gas phase transitio
and the 3D Ising model belong to the same universality class.
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At the TCP, a5b5m50. Assuming thata and b are
analytic inT andm and thatc.0 is approximately constan
near the tricritical point, we expand them as follows@30#:

a~T,m!5Ca~T2Tt!1Da~m2m t!,

b~T,m!5Cb~T2Tt!1Db~m2m t!, ~2.2!

where we have neglected higher-order terms in the devia
from the tricritical point.Ca.0 andDa.0 are related such
that the linea(T,m)50 is tangential to the first-order phas
transition curve at the TCP.b is positive for T2Tt.0 (m
,m t) on thea50 line, which leads to the condition

CbDa2CaDb.0. ~2.3!

These conditions come from the geometry of the phase
gram, namely, the fact that there is a line of~bi!critical points
at T.Tt , m,m t . We do not know the actual values of the
coefficients. But we need not know them for the pres
purpose.

If we increasem from zero, at some point„Tc(m),mc(m)…
in the (T,m) plane two minima and a maximum of the po
tential coalesce. This is the critical end point. There
sigma field acquires a nonzero expectation values0 which is
determined by the following equations@in this section we
exclusively consider the smallm limit and leave only the
leading terms inm]:

V8„Tc~m!,mc~m!,s0…52m1ams01bms0
31cs0

550,

V9„Tc~m!,mc~m!,s0…5am13bms0
215cs0

450,

V-~Tc~m!,mc~m!,s0!56bms0120cs0
350, ~2.4!

wheream[a„Tc(m),mc(m)… andbm[„Tc(m),mc(m)…. The
solution is

am5
9bm

2

20c
,

2bm5
5

541/5
c3/5m2/5,

s05A23bm

10c
. ~2.5!

Using Eqs.~2.2! and ~2.5! we can locate the critical end
point for smallm:

Tc~m!2Tt52
45Dac1/5

4~54!2/5~CbDa2CaDb!
m2/51O~m4/5!,

mc~m!2m t5
5Cac3/5

~54!1/5~CbDa2CaDb!
m2/51O~m4/5!.

~2.6!

Thus, as we increase the quark massm, the critical tempera-
ture decreases and the critical chemical potential increas
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least for smallm ~Fig. 1!. ExpandingV(T,m,s) around
„Tc(m),mc(m),s0… we obtain the Landau-Ginzburg potenti
with the new order parameterŝ[s2s0:

VMF~T,m,ŝ !5VMF„Tc~m!,mc~m!,s0…1A1ŝ1A2ŝ2

1A3ŝ31A4ŝ4, ~2.7!

where

A15~Cas01Cbs0
3!@T2Tc~m!#1~Das01Dbs0

3!

3@m2mc~m!#,

A25~Ca13Cbs0
2!@T2Tc~m!#1~Da13Dbs0

2!

3@m2mc~m!#,

A35Cb~T2Tc~m!!1Db@m2mc~m!#,

A45
2bm

2
. ~2.8!

Ai( i 51,2,3) vanish at the critical point whereasA4 does not,
indicating that „Tc(m),mc(m)… is an ordinary ~bi!critical
point as stated above.

Looking at Eqs.~2.7! and ~2.8!, we immediately notice
two important things. First,A2 is a linear combination ofT
2Tc(m) and m2mc(m). This means thatT and m are
equivalent thermodynamic variables in the sense of Griffi
and Wheeler@31# and thatA2 is the temperaturelike scalin
field which corresponds tot I of the Ising model. Second,A1,
rather than the quark mass plays the role of the ‘‘exter
field’’ which is conjugate to the new order parameter. Thu
can be identified as the magnetic fieldlike scaling fieldhI .
Indeed, it is easy to show that, on the lineA150, A2 andA3
are positive forT.Tc(m) @or m,mc(m)] and negative for
T,Tc(m) ~or m,mc(m)) and this line is asymptotically
parallel to the first order phase transition line at the criti
end point. See Fig. 2.

FIG. 2. The mapping of the Ising model axes onto the (T,m)
plane. The solid lines represent the first-order phase transition~the
coexisting line!. The dashed lines separate regions with differ
exponents.
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Now we can discuss the critical behavior of susceptib
ties; the quark number susceptibilityxq , the specific heatC,
and the chiral susceptibilityxch . In the mean field approxi-
mation, the equilibrium value ofŝ is determined by the first-
and fourth-order terms of Eq.~2.7! in the small mass limit.
Then we obtain, for paths asymptotically not parallel to t
A150 line, ~the first order phase transition line!

xq;C;m2/15ug2gcu2e,

xch;m216/15ug2gcu2e, ~2.9!

wheree[g/bd5 2
3 . ug2gcu denotes the distance from th

CEP in some units. For the path asymptotically parallel to
A150 line, the exponent isg51.e. Note that, although the
critical exponents are the same, theamplitudeof the chiral
susceptibility is enhanced whereas that of the quark num
susceptibility is suppressed by factors ofm.

Inside the critical region, where the mean field theo
breaks down,Vusingular does not admit a simple expansio
with smooth coefficients. Equation~2.7! should be regarded
as the saddle point approximation to the following function
integral:

V~T,m,ŝ !52
T

V
ln E @ds8#expS 2

1

TE d3rHe f f~r ! D ,

~2.10!

whereHe f f is the Landau-Ginzburg-Wilson Hamiltonian

He f f5A08~“s8!21A18s81A28s821A38s831A48s84.
~2.11!

Ai8( i 51 –4) are in general different fromAi due to fluctua-
tions. However, we expect that the differences betweenAi8
andAi are of the higher order inm.4 Note the appearance o
the kinetic term. The sigma field is no longer a consta
beyond the mean field approximation. The potential~2.10!
will eventually lead to thescaling equation of state@32#
written in terms of the scaling fieldsA1 andA2 ~the revised
scaling @33#!. BecauseT, m, and m participate in the
magnetic-field-like scaling field, we obtain, very schema
cally, the most singular part5

xq;
]2V

]m2
;m2/5

]2V

]A1
2

;m2/5^s8s8&,

4The coefficients are further affected by the change of integra
variables. These degrees of freedom can eliminateA38 , but do not
changeA1,28 in the leading order. In fact, only the direction ofA18 is
important for discussing the behaviors of quantities considered
~i.e., second derivatives ofV in directions parallel to theT, m, and
m axes! @31,33#.

5In calculating xch , dominant contribution todA1 /dm comes
from s0d(T2Tc(m))/dm rather thands0 /dm@T2Tc(m)#. The
latter term, being proportional toT2Tc(m), behaves as a correc
tion to the scaling. Also, if the derivative acts onA2, we get
^s82s82&;ug2gcu2a/bd, which is less singular than the magnet
susceptibility.
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C;
]2V

]T2
;m2/5

]2V

]A1
2

;m2/5^s8s8&,

xch;
]2V

]m2
;m24/5

]2V

]A1
2

;m24/5^s8s8&,

^s8s8&;ug2gcu2e, ~2.12!

where ug2gcu is the distance from the critical end point
some units.e[g/bd'0.8 for any direction which makes a
angle with theA150 line at the critical end point. For th
path asymptotically parallel to that line, the exponent isg
;1.2.e. ~These values are taken from the 3D Ising mode!

Having discussed the singular behavior of susceptibili
inside the critical region, however, we give a pessimis
result. Since we now have the Landau-Ginzburg potential
the CEP, we can discuss the size of the critical region. Re
that, according to the Ginzburg criterion~1.2!, the radius of
the critical region is proportional to the square of the coe
cient of the quartic term. Other coefficients are quark m
independent in the leading order. Thus we obtain

utu;A4
2;m4/5. ~2.13!

This gives a bound to the size of the critical region. It shrin
to zero as the quark mass decreases~see, Fig. 1!. The physi-
cal reason behind this is that the coefficient of the qua
term is zero at the tricritical point and remains small near

Generally speaking, the critical point of a strongly inte
acting system has a large critical region@34#. Thus the size of
the critical region of the CEP is subject to a competiti
between these opposite effects and the determination of
a highly nontrivial problem. However, it seems to us that
above bound~2.13! is a compelling reason to expect that t
critical region is ‘‘small.’’

If the critical region of the CEP is small, probably most
the fluctuations associated with the CEP come from the m
field region around the critical region.6 The central point of
this paper is thatif we consider the mean field region belon
ing to the CEP, we should also consider the mean field
gion belonging to the TCP.The tricritical point has, so to
speak, a ‘‘tricritical region’’~see Fig. 1!, which is a sphere or
an ellipsoid in the (T,m,m) space centered at (Tt ,m t,0).7

Then it is possible thatthe tricritical region survives in the
physical (T,m) plane. The magnitudes of theu-, d-quark

6It must be cautioned that the mean field region does not alw
exist. For example, it is known that there is no mean field region
the l transition of liquid helium~the critical region is large,utu
;0.3). However, if the critical region is squeezed by an expl
parameter of the theory as in the present situation, it would
meaningful to discuss the mean field region belonging to the crit
point. ~We thank M. A. Stephanov for a discussion on this poin!

7Here we use the term ‘‘tricritical region’’ loosely for the regio
where any mean-field-like effects of the tricritical point on susc
tibilities exist. This terminology is a bit misleading because there
no critical region for a tricritical point in the usual sense.
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masses are crucial to this. A more interesting possibility
that the critical point is inside the tricritical region and a
crossover of different universality classes occurs~not to be
confused with the crossover phase transition at lower che
cal potentials!. Namely, as we approach the CEP, the critic
exponents gradually change from those of the tricritical po
to those of the 3D Ising modelvia those of the CEP in the
mean field approximation.~Note that the mean field expo
nents of a bicritical point are different from those of a tri
ritical point.! Indeed, such a kind of crossover was expe
mentally observed in an antiferromagnet dysprosi
aluminum garnet long ago. The critical exponentb for the
magnetization tends to change from the tricritical val
~b51! to the Ising model value~b.0.31! as we go along the
wing critical line @35#.

Thus, through the consideration of the critical region,
have become aware of a possible interesting role played
the hidden tricritical point. Its critical phenomena are the
fore worth studying and will be discussed in the next secti

B. The QCD tricritical point

Motivated by the above arguments, we now turn our
tention back to the QCD tricritical point. Because the upp
critical dimension of models described by Eq.~2.1! is 3, the
origin of the coupling constant is an attractive IR fixed poi
Correspondingly, universal behaviors associated with the
critical point are well described by the mean field theory
to logarithmic corrections.8

Let us see how susceptibilities scale with respect touT
2Ttu, um2m tu andm in the mean field approximation.

At (T,m,m50), straightforward calculations show that

xq;uh2htu2gq,

xch;uh2htu2gch, ~2.14!

whereuh2htu is the distance~in some units! from the TCP in
the (T,m) plane. gq5 1

2 , gch51 for paths which are no
asymptotically tangential to the first-order phase transit
line.

At (T,m,mÞ0), the expectation value ofs is given by
the following equation:

m5as1bs31s5. ~2.15!

Near (Tt ,m t ,m) wherea5b50, ~note that this is the ‘‘near-
est’’ point to the TCP in the phase diagram with a quark m
m! we can expand the solution up to the second order ia
andb,

ys
r

t
e

al

-
s

8This is why we neglected the pion degrees of freedom in
~2.1!. Mean field theory is truly universal in the sense that it do
not depend on even the symmetry of the order parameter. Howe
the multiplicative logarithmic corrections to the scaling do depe
on the symmetry of the order parameter.
8-5



-
r

c-
pt
es

th
s

e
e
i

te

an
pe

m

n
ca
d
ro

lis

iv

r

-

hey

the

YOSHITAKA HATTA AND TAKASHI IKEDA PHYSICAL REVIEW D 67, 014028 ~2003!
s5m1/52
a

5
m23/52

b

5
m21/5

1O~a2m27/5,b2m23/5,abm21!. ~2.16!

Inserting Eq.~2.16! into Eq. ~2.1! and differentiating with
respect tom twice, we getxq . Because of Eq.~2.2! the
differentiation with respect tom is replaced by the differen
tiation with respect toa andb. Extracting the most singula
contribution, we obtain

xq;
]2V@s#

]m2
ua5b50;m22/5. ~2.17!

Analogously,

xch;m24/5. ~2.18!

The divergence ofxq is rather moderate in the mass dire
tion, from which we expect that the quark number susce
bility may still be large even with nonzero quark mass
Indeed, from Eqs.~2.9! and ~2.13! we can derive them de-
pendence ofxq at the edge of the critical region

xq;m2/15utu22/3;m2/15~m4/5!22/3;m22/5. ~2.19!

Comparing with Eq.~2.17!, we see that them-dependence is
exactly the same. There may or may not be a reason for
coincidence. In any case, this does show that the TCP i
important as the CEP at least in the small quark mass lim

Starting from the simple Landau-Ginzburg potential, w
have extracted a lot of physics near the CEP or TCP. Th
analyses show the power of universality as well as its lim
tations. For example, the universality argument does not
us whether or not the effect of the TCP survives in the (T,m)
plane with the quark mass of, say, 5 MeV. In order to qu
tify the ideas given in this section, we must resort to a s
cific model. This is the subject of the next section.

III. NUMERICAL RESULTS

In this section, we numerically calculate the quark nu
ber susceptibility in the (T,m) plane by using a model. As
expected, the susceptibility diverges both at the critical a
tricritical points. We also calculate the corresponding criti
exponent. The results clearly demonstrate that the hid
tricritical point can affect the phase diagram with nonze
quark masses.

A. CJT effective potential and the chiral phase transition

As a model, we employ the Cornwall-Jackiw-Tombou
~CJT! effective potential@25# for the two-flavor QCD in the
improved-ladder approximation@10#. A brief description of
the model is given in Appendix A. For more details, see@10#.

At zero temperature and chemical potential, the effect
potentialV is given by
01402
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V@S#522E d4p

~2p!4
ln

S2~p!1p2

p2

2
2

3CF
E dp2

1

d

dp2

ḡ2~p2!

p2

S dS~p!

dp2 D , ~3.1!

where the gauge coupling constantḡ2(p2) and the dynamical
quark mass functionS(p) are

ḡ2~p2!5
2p2a

ln@~p21pc
2!/LQCD

2#
, ~3.2!

S~p!5mq$ ln@~p21pc
2!/LQCD

2#%2a/2

1
s

p21pc
2 $ ln@~p21pc

2!/LQCD
2#%a/221. ~3.3!

pc is a momentum scale which separates the infrared~non-
perturbative! region from the ultraviolet~perturbative! re-
gion.CF5(Nc

221)/2Nc is the quadratic Casimir operator fo
the fundamental representation of the color SU(Nc) group
and a[24/(11Nc22Nf) (Nf is the number of active
flavors.9 s is proportional to the renormalization group in
variant chiral condensatêq̄q& ass52p2a^q̄q&/3 andmq is
the renormalization group invariant current quark mass.T
are related to the scale dependent massmq

L and the scale
dependent chiral condensate^q̄q&L through the perturbative
renormalization group equation

^q̄q&5
^q̄q&L

@ ln~L2/LQCD
2!#a/2

, ~3.4!

mq5mq
L@ ln~L2/LQCD

2!#a/2. ~3.5!

An overall factor (Nf52 timesNc53) is omitted in Eq.
~3.1!. The chiral condensatêq̄q& and f p are known to be
insensitive to the infrared regularization parameterpc @36#.
Therefore we takepc

2/LQCD
25e0.1 and determineLQCD to

reproduce the pion decay constantf p593 MeV in the
Pagels-Stokar formula@37# in the chiral limit. We obtain
LQCD5738 MeV for Nf52 @10#. In the following calcula-
tions, we takeL51 GeV in Eq.~3.5! and change the value
of mq

L51 GeV. For simplicity, we abbreviatemq
L51 GeV to mq

below.
At finite temperature and chemical potential,we use

imaginary time formalism@38#, and make the replacement

9Although the potential is evaluated withNf52, we takeNf53
in the gauge coupling~3.2!. In this way we include the effect of the
s quark only through the running of the coupling constant.
8-6
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E d4p

~2p!4
f ~p,p4!→T (

n52`

` E d3p

~2p!3
f ~p,vn1 im!,

~3.6!

where vn5(2n11)pT(nPZ) is the Matsubara frequenc
for the quark.10

As a normalization, we defineṼ by subtracting the
s-independent part fromV such thatṼ reduces to the value
of the free quark gas whens50. See Appendix A.

We can study the chiral phase transition and the ph
diagram by calculatingṼ@s,mq# at givenT and m and by
searching the value of the chiral condensates0 which mini-
mizes the potential. The location of the first-order phase tr
sition line is determined by finding a gap ins0. In the chiral
limit, s0 goes to zero smoothly as the second-order ph
transition line is approached from below. With finite qua
masses, there is no distinct border between the symm
and broken phases, ands0 remains finite at all temperature
and chemical potentials.

The phase diagram with several quark masses in
(T,m) plane is shown in Fig. 3. The location of the tricritic
point in the chiral limit is Tt5107 MeV and m t
5209 MeV. The open circles in Fig. 3 represent the criti
end points for different quark masses. As shown in Fig. 4,
distance between the TCP and CEP approximately scale
mq

2/5 up tomq;O(1) MeV, in agreement with Eq.~2.6!. For
larger masses,mq.10 MeV, Tc(mq) does not change muc
while mc(mq) keeps on increasing.

B. The quark number susceptibility around CEP and TCP

The quark number susceptibilityxq is calculated from the
normalized effective potentialṼ as

10However, we replacep4 with vn , not vn1 im in the gauge
coupling ~3.2! to avoid an absurd situation.

FIG. 3. The phase diagram with several quark masses.
quark masses are evaluated at the momentum scale 1 GeV.
solid and dotted lines represent the first-order and the second-o
phase transitions, respectively. The filled circle is the tricriti
point and open circles are the critical end points for different qu
masses.
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xq52
]2Ṽ@s0#

]m2
. ~3.7!

Figures 5 and 6 show the results in the chiral limit. As w
can see,xq is suppressed far below the chiral phase tran
tion line and is enhanced near the TCP. In the chirally sy
metric phase,xq is equal to the value of the massless fr
quark gasxq

free in this model. The region wherexq is en-
hanced is elongated in the direction parallel to the first-or
phase transition line. This is because the critical exponen
this direction (gq51) is larger than for other direction
(gq5 1

2 ). We also find a jump inxq along the second-orde
phase transition line. Inside the critical region, however,
jump must be replaced by acuspwith certain critical expo-

e
he
er

l
k

FIG. 4. The quark mass dependence of the critical tempera
~upper figure! and the critical chemical potential~lower figure!. The
slope of the solid line is25.

FIG. 5. The quark number susceptibility near the tricritical po
in the chiral limit. The value of the susceptibility is divided by th
of the massless free quark gas. The solid and dotted lines repre
the first- and the second-order phase transitions, respectively,
the filled circle is the tricritical point.
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nents. See Appendix B. Our model can produce only
mean field behaviors.

Next we examinexq for finite quark masses. Figures
and 8 are the results formq50.1 MeV andmq55.0 MeV,
respectively. The location of the CEP is (Tc ,mc)
5(104 MeV, 221 MeV) for mq50.1 MeV and ~95 MeV,
279 MeV! for mq55.0 MeV. xq diverges at the CEP and i
enhanced in the elongated region parallel to the first-or
phase transition line because the critical exponent is the l
est for this direction as in the massless case. Formq
50.1 MeV, the TCP is still close to the CEP and the elo
gated region includes the point (Tt ,m t) while for mq
55.0 MeV, the region deviates from it.

At first sight, one might think that the analysis made
the previous section ceases to be valid at somewhere
tweenmq50.1 MeV andmq55 MeV and the effect of the
TCP no longer survives formq55 MeV, which might be
considered as the ‘‘realistic’’ quark mass in this mode11

However, this conclusion is too hasty. We will see in the n
section that the hidden tricritical point still affects the phy
ics near the CEP even formq55 MeV.

C. The critical exponent for xq

Now let us examine the critical exponent forxq at the
CEP and TCP. We calculate it along the path parallel to thm
axis in theT-m plane from lowerm towards the CEP or TCP
at fixedTc or Tt .

First we consider the chiral limit. We expandṼ in the
vicinity of the TCP:12

11In this model̂ q̄q&L51 GeV5(2276 MeV)3 at T5m50. By us-
ing Gell-Mann–Oakes–Renner relation withmp5140 MeV,
mq

L51 GeV;4 MeV.
12The reason for this expansion is twofold. First, in order to ke

in line with the argument given in Sec. II. Second, technically
can approach the TCP much closer to determine the exponent
directly reading it from Fig. 5.

FIG. 6. The temperature dependence ofxq at fixed m’s. For
m,209 MeV, xq has a jump across the second-order phase tra
tion line @O(4) line#, which is consistent with the mean field theor
See Appendix B.
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Ṽ@s,mq50#5Vfree1a2~T,m!s21a4~T,m!s4

1a6~T,m!s6. ~3.8!

The coefficientsa2 ,a4 ,a6, andVfree are summarized in Ap-
pendix A. s0 is determined by the equation]Ṽ/]sus5s0

50. We obtain

Ṽ@s050,mq50#5Vfree ~3.9!

above the chiral transition line, and

Ṽ@s0 ,mq50#5Vfree1
a4

27a6
2 ~2a4

229a2a6!

2
2

27a6
2 ~a4

223a2a6!3/2 ~3.10!

below that line.xq is obtained by taking the second deriv
tive of Eqs. ~3.9! and ~3.10! with respect tom. Figure 9
showsxq for numbers ofum2m tu ’s. We determine the criti-
cal exponentgq defined in Eq.~2.14! numerically by using a
linear logarithmic fitting

ln xq52gqln um2m tu1const, ~3.11!

where const is independent ofm. We obtain gq50.51
60.01, which is consistent with the mean field theory.

With finite quark masses, the expectation values0 is de-
termined only numerically. This time we do not expand t
potential arounds0 and directly read the exponent from
Figs. 7 and 8. In Fig. 10,xq is plotted for numbers ofum
2mcu’s for mq50.1, 5, and 100 MeV together with the ca
culated values of the critical exponente defined in Eq.~2.9!:

ln xq52e ln um2mcu1const. ~3.12!

For mq50.1 MeV we obtainede50.5560.02. This is sig-
nificantly different from the prediction of the mean fie
theory e5 2

3 , which is clear evidence of the effect of th

p

an

FIG. 7. The quark number susceptibility formq50.1 MeV. The
value of the susceptibility is divided by that of the massless f
theory. The solid line is the first-order transition line. The op
circle represents the critical end point formq50.1 MeV. The filled
circle is at (Tt ,m t).

i-
8-8
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tricritical point. We expect that the exponent changes
wards 2

3 if we approach the CEP much closer.
For mq55 MeV, the slope of the data points changes

aroundum2mcu;0.5 MeV. Therefore we fitted the data fo
um2mcu,0.3 MeV and.1 MeV separately and obtaine
the critical exponent 0.6860.02 for um2mcu,0.3 MeV and
0.5760.01 for um2mcu.1 MeV. We interpret this change
of the exponent as thecrossoverof different universality
classes discussed in the previous section. Note that
purely mean-field-like exponent is seen in a very small
gion um2mcu,1 MeV from the CEP. This result is some
what surprising to the present authors because, as see
Fig. 8, the TCP is far away from the CEP already formq
55 MeV and the value ofxq itself is unremarkable a
(Tt ,m t). It seems that, although the analysis in the previo
section was made in the small quark mass limit, the effec
the TCP is unexpectedly robust against the increase of
quark mass.

As a check, we also calculated the exponent formq
5100 MeV and obtainede50.6460.03 which is consisten
with the mean field value23. For such a large quark mass, w

FIG. 8. The quark number susceptibility formq55 MeV. The
value of the susceptibility is divided by that of the massless f
theory. The open circle is the critical end point formq55 MeV and
the filled circle is at (Tt ,m t).

FIG. 9. The quark number susceptibility in the chiral limit as
function of um2m tu at fixed temperatureTt .
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see no indication of a change in the slope. The effect of
TCP has completely disappeared.

IV. CONCLUSIONS

Based on the universality argument and numerical mo
calculations, we studied the singular behavior of susceptib
ties near the critical or tricritical points. These two a
proaches are complementary, and we observed that
model calculation faithfully quantified the qualitative predi
tions obtained by using the universality argument as long
the mean field behaviors are concerned. The important p
is that, although we adopted a specific model, the qualita
behavior ofxq is probably model independent. In particula
our results strongly suggest a possibility that the tricritic
point affects the physics near the critical end point. In oth
words, there aretracesof the hidden tricritical point on the
QCD phase diagram. Practically, the traces will be seen
the gradual change of the critical exponents since, after
universality classes are characterized only by their criti
exponents. It is expected that the exponents change f
those of the TCP to those of the Ising model via those of
CEP in the mean field approximation. In order to really co
firm this fascinating possibility, lattice simulations at fini
chemical potentials@39# are necessary.

Finally, we briefly comment on the implication of ou
results on heavy-ion experiments. The divergence ofxq is
directly related to an anomaly in the event-by-event fluct
tion of baryon numberB ~divided by the entropyS)

^~DB!2&
S

, ~4.1!

e

FIG. 10. The quark number susceptibility formq50.1, 5, and
100 MeV as a function ofum2mcu at fixed temperatureTc(mq).
8-9
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YOSHITAKA HATTA AND TAKASHI IKEDA PHYSICAL REVIEW D 67, 014028 ~2003!
which was originally introduced in@21# to probe the decon
fined phase. Although neutrons are not observed, we ex
that the event-by-event fluctuation of theproton numberis
relatively enhanced for collisions which have passed ‘‘ne
the CEP or the TCP. Pion and diphoton observables are
cussed in@12–14#. As we remarked before, the critical exp
nents of the Ising model and the mean field theory are no
different numerically. Thus, the smallness of the critical
gion itself may not be an obstacle in the observability
critical phenomena in experiments. However, if we take
effect of the TCP seriously either by assumption or stim
lated by future lattice results, we must take into account
long-wavelength fluctuations of thepions as well as the
sigma meson because the pions are no longer the ‘‘envi
ment’’ but participate in the critical fluctuations around t
trace of the TCP.
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APPENDIX A: DESCRIPTION OF THE MODEL

1. The normalized CJT effective potential

We begin with the Cornwall-Jackiw-Tomboulis~CJT! ef-
fective potential@25# for QCD in the improved-ladder ap
proximation @10# as a functional of the quark propagat
S(p) at zero temperature and quark chemical potential a
the Wick rotation,

V@S#5V1@S#1V2@S#, ~A1!
e

01402
ct

’’
is-

o
-
f
e
-
e

n-

s-
,
-

ers

r

V1@S#5E d4p

~2p!4
tr$ ln@S0

21~p!S~p!#2S0
21~p!S~p!11%,

~A2!

V2@S#52
1

2E E d4p

~2p!4

d4k

~2p!4
g2~p2k!

3H trFla

2
gmS~k!

la

2
gnS~p!GDmn~p2k!J . ~A3!

Here ‘‘tr’’ is taken over the Dirac, flavor and color matrice
~Gell-Mann matricesla), andS0(p) andDmn(p2k) are the
free quark propagator and the gluon propagator in the L
dau gauge@Dmn(p2k)5(dmn2pmpn /p2)/p2#, respectively.
V1@S# corresponds to the 1-loop potential with the qua
1-loop diagram andV2@S# is the 2-loop potential with the
one gluon exchange.

We adopt the so-called Higashijima-Miransky approxim
tion @40,41# for the QCD running coupling constant

g2
„~p2k!2

…→u~p22k2!ḡ2~p2!1u~k22p2!ḡ2~k2!,
~A4!

where ḡ is defined in Eq.~3.2!. In this approximation with
the Landau gauge, the renormalization of the quark w
function may be neglected at zero temperature and chem
potential. At finite temperature and chemical potential
need to take the wave function renormalization into acco
even in the Landau gauge@42#. However, we ignore this
problem for the present purpose. Then the CJT effective
tential can be rewritten as Eq.~3.1! in terms of the dynamica
quark mass function S(p) using the corresponding
Schwinger-Dyson equation forS(p).

As a normalization, we defineṼ by subtracting the
s-independent part fromV such thatṼ reduces to the value
of the free quark gas whens50. We obtain
Ṽ@s,mq#5Vfree2
T

p2 (
n50

` E
0

`

dupup2ln
@S2~p2,vn

2 ;s,mq!1p21vn
22m2#214m2vn

2

@S2~p2,vn
2 ;0,mq!1p21vn

22m2#214m2vn
2

1
16T

3CFap2 (
n50

` E
0

`

dupup2
~p21vn

2!~p21vn
21pc

2!@ ln~p21vn
21pc

2!#2

~p21vn
21pc

2!ln~p21vn
21pc

2!1p21vn
2 S mqas

@ ln~p21vn
21pc

2!#22

~p21vn
21pc

2!3

3F ln~p21vn
21pc

2!112
a

2G2
s2

~p21vn
21pc

2!4
@ ln~p21vn

21pc
2!#a24F ln~p21vn

21pc
2!112

a

2G2D , ~A5!
wherea524/(11Nc22Nf) and the effective potential for th
free quarkVfree is given by

Vfree522TE d3p

~2p!3
@ ln~11e2(v2m)/T!

1 ln~11e2(v1m)/T!# ~A6!
with v5Ap21mq
2. In the chiral limit (mq50), the momen-

tum integral can be easily performed andVfree becomes

Vfree~mq50!52S m4

12p2
1

m2T2

6
1

7p2T4

180 D . ~A7!
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The quark number susceptibility of the massless free qu
gas is given by~omitting the overall factorNfNc)

xq
free~mq50!5

T2

3
1

m2

p2
. ~A8!

2. The pion decay constant in the Pagels-Stokar formula

The parameterspc and LQCD are determined such tha
they reproduce the pion decay constantf p593 MeV in the
chiral limit. We calculatef p by the Pagels-Stokar formul
@37#
sin

a
th

hi
d

01402
rk
f p

2 54NcE d4p

~2p!4

S@p;s0 ,mq50!

@S2~p;s0 ,mq50!1p2#2

3FS~p;s0 ,mq50!2
p2

2

dS~p;s0 ,mq50!

dp2 G .

~A9!

In the above equation, we setNf52 because the pion con
sists ofu andd quarks.

3. Coefficients in the mean field expansion

The explicit expressions of the coefficientsa2 ,a4 anda6
in Eq. ~3.8! are
a2~T,m!5
1

p2
T(

n50

` E dupup2H 2
2@ ln~p21vn

21pc
2!#a22~p21vn

22m2!

~p21vn
21pc

2!2@~p21vn
22m2!214m2vn

2#

1
9

2

F ln~p21vn
21pc

2!112
a

2G2

~p21vn
2!@ ln~p21vn

21pc
2!#a22

~p21vn
21pc

2!@~p21vn
21pc

2!ln~p21vn
21pc

2!1p21vn
2#
J , ~A10!

a4~T,m!5
1

p2
T(

n50

` E dupup2
@ ln~p21vn

21pc
2!#2a24@~p21vn

22m2!224m2vn
2#

~p21vn
21pc

2!4@~p21vn
22m2!214m2vn

2#2
, ~A11!

a6~T,m!52
2

3p2
T(

n50

` E dupup2
@ ln~p21vn

21pc
2!#3a26~p21vn

22m2!@~p21vn
22m2!2212m2vn

2#

~p21vn
21pc

2!6@~p21vn
22m2!214m2vn

2#3
. ~A12!
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-
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APPENDIX B: THE O„4… CRITICAL LINE

In this appendix, for completeness, we examine the
gular behavior ofxq along theO(4) line emerging from the
TCP toward the temperature axis in them50 plane~see, Fig.
1!. We call this line theO(4) line because it consists of
sequence of critical points whose universality class is
same as that of theO(4) spin model@2#. We again start with
~2.1! with m50 and the replacements2→f2[s21(p1)2

1(p2)21(p3)2. TheO(4) line in the (T,m) plane is deter-
mined by the following equation:

a~T,m!50. ~B1!

Sinceb.0 does not vanish and smoothly varies along t
line, we can drop thef6 term. If we consider the mean fiel
behavior, we can expanda around an arbitrary point (Tc ,mc)
on the line@30#

a~T,m!5C8~T2Tc!1D8~m2mc!. ~B2!

In the mean field approximation, the~singular part of! ther-
modynamic potential becomes
-

e

s

VMF50 ~B3!

above theO(4) line, and

VMF52
a2

4b
~B4!

below theO(4) line. Taking the second derivative inm, we
see that the quark number susceptibility has a discontinu
jump across (Tc ,mc) and that it is larger in the low tempera
ture phase@below theO(4) line# than in the high tempera
ture phase@above theO(4) line# except for points where
D850. Beyond the mean field approximation, we use
current theoretical estimate of the specific heat exponen
the O(4) spin model@43#

a;20.2. ~B5!

The minus sign means that the quark number susceptib
shows a cusp atTc as in the case of thel point of liquid
helium. @a is also negative for theO(2) model.# Note that
(Tc ,m50) is the point whereD850. It was shown in@44#
that theO(4) line is perpendicular to the temperature ax
8-11
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Thus the quark number susceptibility has no singularity
(Tc , m50) even in the chiral limit and increases monoto
cally as a function of the temperature, consistent with
results of lattice simulations. However, this smooth behav
n
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et
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is an exception only atm50. At any nonzerom, xq has a
cusp precisely at the critical temperatureTc(m). The cusp
becomes higher and higher as we increasem and finally di-
verges at the tricritical point.
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