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We report the results of calculations of pseudoscalar-isoscalar hadronic current correlators using the
Nambu-Jona-Lasinio model and the real-time finite-temperature formd[i$ns work represents a continu-
ation of results reported previously for other current correlgtd®esults are presented for the temperatures
range 1.=T/T.<6.0, whereT, is the temperature of the confinement-deconfinement transition, which we
take to beT,=170 MeV. Some resonant features are seen in our calculations. In order to understand the origin
of these resonances, we have performed relativistic random phase approxifRRincalculations of the
temperature-dependent spectrum of theesons folf <T.. For the RPA calculations, use is made of a simple
model in which we introduce temperature-dependent constituent quark masses calculated in a mean-field
approximation and a temperature-dependent confining interaction whose form is motivated by recent studies
made using lattice simulations of QCD with dynamical quarks. We also introduce temperature-dependent
coupling constants in our generalized NJL model. Our motivation in the latter case is the simulation of the
approach to a weakly interacting system at high temperatures and the avoidangecohdensates” which
would indicate instability of the ground state of the model. We present some evidence that supports our use of
temperature-dependent coupling constants for the NJL model. We suggest that our results may be of interest to
researchers who use lattice simulations of QCD to obtain temperature-dependent spectral functions for various
hadronic current correlation functions.
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[. INTRODUCTION stants and mixing angles of thg and »’ mesons. In order
to obtain the spectrum of the eta mesons at finite tempera-
Recently we have seen a good deal of interest in the cature, we make some assumptions which lead to relatively
culation of hadronic current correlation functions at finite simple calculations. For example, we use temperature-
temperature using lattice simulations of QQD-5]. The dependent mass values for the constituent quarks obtained in
procedure involves the calculation of the correlation functiona mean-field analysis and also introduce a temperature-
in Euclidean space and the solution of an integral equation tdependent confining interaction that is motivated by some
obtain the spectral functions. Various temperature-dependentécent results obtained in lattice simulations of QCD with
resonant structures are found in the spectral functions. It is alynamical quarks. In addition, we have introduced a tem-
interest to obtain further understanding of the nature of thesperature dependence of the coupling constants of the NJL
resonances using chiral Lagrangian models, such as that afodel. Our original motivation for introducing that tempera-
the Nambu—Jona-LasinitNJL) model [6], which are suc- ture dependence was to model the various physical mecha-
cessful in reproducing some of the low-energy properties ohisms that work against the development of pion condensa-
QCD. We have made some calculations of spectral functionson [14]. However, in the present work we argue that, if the
making use of a generalized Nambu-Jona-Lasinio moddNJL model is to be used at high temperatures, such tempera-
[7]. In that work we studied correlators for currents with theture dependence is needed to avoid results that are inconsis-
guantum numbers of they, fy, 7, andp mesons. In the tent with what is known about QCD thermodynamics. For
present work we extend our study to the pseudoscalamur studies we have introduced coupling consta@{s)
isoscalar correlators. In this case the correlators are calcu=G(0)[1—0.17T/T.], whereT, is the temperature of the
lated in terms of excitations that have the quantum numbersonfinement-deconfinement transition, which we take to be
of the » mesons. One of our goals in the present study is ta =170 MeV. At that temperature the coupling constants
relate the pseudoscalar-isoscalar spectral functions to there reduced by 17%. The coupling constants are equal to
properties of they mesons at finite temperature. The tem-zero beyondl =5.88T.. Thus, we see that in this model the
perature dependence of the spectrum of the eta mesonsshort-range interaction is present in the rangesTO
obtained using our generalized NJL model which includes a<5.88T., while the confining interaction is taken to vanish
covariant model of confinemef8—13]. At zero temperature for T=1.2T.. That feature of the model is also consistent
our model provides an excellent fit to the properties of thewith what is known concerning QCD thermodynamics.
7(547), n'(958) mesons and their radial excitatiofi<]. Ideally, it would be preferable if we could calculate the
(The model gives quite satisfactory results for the decay contemperature-dependent spectrum of thenesons, including
the radial excitations, in the imaginary-time Matsubara for-
malism or in the real-time finite-temperature formalism
*Email address: casbc@cunyvm.cuny.edu [15,16. That is a formidable task which is beyond the scope
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of the present work, but might be considered at some future ;g0 F
time. (On the whole, there are some unresolved questions
concerning the use of the field-theoretic finite-temperature
theory in the confined phase of QCD which are not present
when considering the deconfined phade. those cases in

which our results may be compared to those of the Matsub% 040
ara formalism we find general agreemghf]. However, we @ 035
need to assume for the present work that, with the use o o.30
temperature-dependent constituent quark mass values, g o35}
temperature-dependent  confining  interaction, and = ;,,L
temperature-dependent coupling constants, we have intro

0.55
0.50
0.45

0.15

duced the most important features that influencesttspec- -
trum for T<T,. o107
The organization of our work is as follows. In Sec. Il we 005
discuss the calculation of polarization functions of the NJL o.00 3 o 0.2 0.3 04
model at finite temperature. In Sec. Ill we describe the cal- T (GeV)

culation of the pseudoscalar-isoscalar hadronic current corre-

lation functions and present various results of our numerical FIG. 1. Temperature-dependent constituent mass vahy¢s)
computations. Since the use of temperature-dependent coand my(T) calculated using Eq.2.2 are shown. Herem
pling constants is an unusual feature of our model, we pro=0.0055 GeV, = m2=0.130 GeV, and G(T)=5.6911
vide some justification for the use of such coupling constants-0.17(T/T)], if we use Klevansky’s notatiofil9].

in Sec. IV. In Sec. V we introduce the Lagrangian of our

model that is used for our random phase approximation m(T) 1

(RPA) calculations. We make reference to the RPA equations m(T)=m%+2Gg(T)N, J’ dp—tan)‘( BE )
that were used to calculate the properties of hmesons at

T=0 in earlier work and describe the motivation for the 2.2
introduction of a temperature-dependent confining interac-

tion. We present some results of our numerical calculation¥ith Gs(T) 11.3§1-0.17T/T,] GeV, my=0.0055 GeV,
and relate the results of our RPA calculations Tor T, to ~ and mS=0.130 GeV. Thus, we see thas(T) is reduced

the results obtained for the correlation functionsTorTc. from the valueGg(0) by 17% whenT=T.. The results
Finally, Sec. VI contains some further discussion and concluobtained in this manner fan,(T) and ms(T) are shown in
sions. Fig. 1. Here, the temperature dependence we have introduced
for Gg(T) serves to provide a somewhat more rapid restora-
Il. POLARIZATION EUNCTIONS AT FINITE tion of chiral symmetry than that which is found for a con-
TEMPERATURE stant value 0iGg. That feature and the temperature depen-

dence of the confining potential leads to the deconfinement
In an earlier work we carried out a Euclidean-space calof the light mesons considered hereTa: T,.

culation of the up, down, and strange constituent quark For the calculation of polarization functions fof
masses taking into account the 't Hooft interaction and our>1.2T, we may neglect the confining interaction. However,
confining interaction18]. The 't Hooft interaction plays only we include temperature-dependent quark mass values in our
a minor role, but does provide coupling of the equations forcalculations. The basic polarization functions that are calcu-
the various constituent masses. If we neglect the confiningated in the NJL model are shown in Fig. 2. We will consider
interaction and the 't Hooft interaction in the mean-field cal- .5 |culations of such functions in the frame whéte 0. In

culation of the constituent masses, we can compensate fof; aarlier work, calculations were made after a confinement

their absence by making a modest change in the val@0f  \ertex was included. That vertex is represented by the filled
the coupling constant of the NJL model. For the calculations

of this work we calculate the quark masses using the formal-
ism presented in the Klevansky revigi9]. (Note that our . j\(PZ) P.. O P
value of Gg is twice the value of5 used in that review.The
relevant equation is Ed5.38 of Ref.[19]. Here, we pufu

=0 and write 2
4 J(P% P.. O P
m(T) (A p? 1

m(T):m°+4GNC(_2)f dp—tanl‘(—ﬁEp),
m 0 Ep 2 FIG. 2. The upper figure represents the basic polarization dia-
2.9 gram of the NJL model in which the lines represent a constituent
i . quark and a constituent antiquark. The lower figure shows a con-
whereA =0.631 GeV is a cutoff for the momentum integral, finement vertexfilled triangular regioh used in our earlier work.
B=1/T, andE, [p2+ m?(T)]¥2 In our calculations we re- For the present work we neglect confinement Tor 1.2T,, with
placeG by GS(T)/2 and solve the equation T.=170 MeV.
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triangular region in Fig. 2. However, we here consider cal-where m; and m, depend upon temperature. In the frame
culations forT=1.2T where confinement may be neglected. where P=0 and in the casen,=m,, we haveBs=2P3(1

_ The procedure we adopt is based upon the real-time. 42/p2). For the scalar case, wit; =m,, we find
finite-temperature formalism, in which the imaginary part of

the polarization function may be calculated. Then, the real 2 am2\ 32

part of the function is obtained using a dispersion relation. |m j(p2 T)= — 0(1_ _) e K 11-2n,(k)],

The result we need for this work has been already given in Am P2

the work of Kobes and Semendf0]. (In Ref. [20] the (2.9
guark momentum in Fig. 2 ikand the antiguark momentum

is k—P. We will adopt that notation in this section for ease where

of reference to the results presented in R2€].) With ref-

erence to Eq(5.4) of Ref.[20], we write the imaginary part _ P§

2__0_ 2
of the scalar polarization function as k= 4 m*(T).

(2.9

1 ko, We may evaluate Eq(2.8) for m(T)=my(T)=mgy(T)

Im J%(P?,T)= E(ZNC)ﬁsE(po)f 2m)¢ e and define Ind3(P2,T). Then we pum(T)=m(T), and we
define ImJ§(P2,T). These two functions are needed for a

™ ){[1—n (K) = ny(K)] calculation of the scalar-isoscalar correlatdiote that the
2E1(k)2E5(k) 1 2 factor of 2 arising from the flavor trace should be moved
0 when we define the polarization function for a specific quark

X 8(p”—E1(K) —E(k))—[n1(k) —ny(k)] flavor) The real parts of the functiong3(P?,T) and
X 8(p%+ E1(K) — Eo(K))—[No(K) —ny(K) ] J3(P?,T) may be obtained using a dispersion relation, as

noted earlier.
X 5(p°—Eq (k) +Ep(k)) For pseudoscalar mesons, we replgeeby

—[1=ny(k) = na(k)]18(p°+ E4 (k)
+Ep(K)}. 2.3

X

Bp=—Tiiys(k+my)iys(k—=P+my)]  (2.10

=2P?-2(m;—m,)?, (2.1
Here, E; (k) =[k?+m2(T)]Y2 Relative to Eq(5.4) of Ref. _ _ 5. R
[20], we have changed the sign, removed a factay®ofand ~ Which formy=m; is Bp=2Pg in the frame wher®=0. We
have included a statistical factor oNg, where the factor of find, for the mesons,
2 arises from the flavor trace. In addition, we have included 5 )
a Gaussian regulator expk%a?], with «=0.605 GeV, ’fm‘]P(PZ T)= NcPo ( 1 4m(T)

1/2
—K2/a?
o . L e 1-2n4(k)],
which is the same as that used in most of our applications o A PS [ 1(0)]

the NJL model in the calculation of meson properfigs15|. (2.12
We also note that

wherek?=P3/4—m?(T), as above. Thus, we see that, rela-
1 tive to the scalar case, the phase-space factor has an expo-
2.9 nent of 1/2 corresponding tosawave amplitude, rather than
the p-wave amplitude of scalar mesons. For the scalars, the
exponent of the phase-space factor is 3/2, as seen in Eq.
and (2.9
For a study of vector mesons we consider

M= emy 1

na(k)= (2.9 Brov=TH v, (k+my) y,(k—P+m,)] (2.13

ePEAK) 4 1

and calculate
For the calculation of the imaginary part of the polarization
function, we may putk?=m3(T) and k—P)?=m3(T), g“’BY =4[P2—m?—m3+4m;m,], (2.14
since in that calculation the quark and antiquark are on mass .
shell. We will first remark upon the calculation of scalar yhich, in the equal-mass case, is equal ©24 8m2(T),
correlators. In that case, the facg in Eq. (2.3) arises from

a trace involving Dirac matrices, such that whenm;=m, andP=0. Note that for the elevated tempera-

tures considered in this wonk,(T) =my(T) is quite small,
so that 423+ 8m2(T) can be approximated byR§ when we

Bs=—Trl(k+my)(kK=P+my)] (2.6 consider thep meson. The generalization of these results for
the study of the pseudoscalar-isoscalar correlators will be
=2P?—2(m;+m,)?, (2.7 taken up in the next section.
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IIl. CALCULATION OF HADRONIC CURRENT
CORRELATION FUNCTIONS 0.25

In this section we consider the calculation of temperature-<
dependent hadronic current correlation functions. The gen-@
eral form of the correlator is a transform of a time-ordered ™
product of currents,

0.20

0.15

Im C"(P’)

C(PZ,T)=iJ d*x€PX(T[j ()i (0)]), 3.0

0.10

where the double brackets are a reminder that we are consic
ering the finite-temperature case.

For the study of pseudoscalar states, we may conside
currents of the fornjp ;(x) =q(x)i ys\'q(x), where, in the
case of thewr mesons,i=1, 2, and 3. For the study of
pseudoscalar-isoscalar mesons, we again introgggéx)
=q(x))\iq(x), but herei=0 for the flavor-singlet current FIG. 3. The imaginary part of the pseudoscalar-isoscalar cor-
andi =8 for the flavor-octet current. relatorCOO( Pz) is shown. Here]’/Tczl.Z(solid Iine), 1.6(dashed

In the case of ther mesons, the correlator may be ex- line), 2.0 (dotted ling, 4.0 (dashed-dotted line and 6.0(dash—
pressed in terms of the basic vacuum polarization function ofiouble-dotted ling In this work we useGgo=8.09 GeV?, Ggg

0.05

0.00

the NJL model,Jp(P2,T) [19,21,23. Thus, =13.02 GeV'*, andGog—~0.4953 GeV'*.
C.(P?,T)=Jp(P%T) (3.2 and
T 6, (MIPRT)

. : . Coo P%T)  Cog(P?T)
where G(T) is the coupling constant appropriate for our C(P?,T)= 5 2 . (3.8
study of the = mesons. We have foundG_(0) CeoP%T)  Coe(P7T)
=13.49 GeV ? by fitting the pion mass in a calculation
made afT =0, with m,=my=0.364 GeV[14]. We then write the matrix relation

The calculation of the correlator for pseudoscalar-
isoscalar states is more complex, since there are both flavor- ) ) i1
singlet and flavor-octet states to consider. We may define C(PET)=J(PED[1-G(MJI(P-T)] . (39
polarization functions foru, d, and s quarks: J,(P?,T),
2 2 ;
Ja(P%.T), andJ4(P*,T). (We recall that the factor of 2 aris-  £qr some purposes it may be useful to also define a
ing from the flavor trace is not included when these functionsy,5irix
are calculated.In terms of these polarization functions we
may then define
t(P%,T)=[1-G(T)I(P*T]'G(T),  (3.10

2
Joo P2, T)= §[JU(P21T)+Jd(PZyT)+Js(P2;T)]y (3.3
wheret(P?,T) has the structure shown in Eq8.6)—(3.9).
2 The same resonant structures are seen in 8¢&#¢,T) and
Jod P2 T) = = [J4(P2,T)+34(P2T) —234(P2T)], t(P2T). o
3 Some of our results for the imaginary parts of the
(84 pseudoscalar-isoscalar correlatd®gy(P?), Cge(P?), and
and Cog(P?) are shown in Figs. 3, 4, and 5, respectively. In these
figures the values ar@/T.=1.2 (solid line), T/T.=1.6
) 1 5 ) ) (dashed ling T/T,=2.0 (dotted ling, T/T.=4.0 (dash-
Jgg(P5,T)= §[Ju(P ,T)+34(P=,T)+435(P5,T)]. dotted ling, andT/T.=6.0 (dash—double-dotted lineThere
(3.5 is a large peak seen in Figs. 3-5 at about 775 MeV. It is
worth noting that the state that evolves from th&(958)
We also introduce the matrices with increasing temperature has a mass of about 750 MeV
Ig(P2T) JogP2T) for T=T.. However, an analysis of the mixing angle for the
o . } (3.6)  State at 775 MeV shows that it is mainly as state. Further
Jgo(P5,T)  Jeg(P5T) work is needed to understand the relation between the
bound-state spectrum far<T. and the resonant structures
G(T)= Godl T) Goe(T) 3.7 seen forT>T,.. We discuss the temperature dependence of
Ggo(T) Ggg(T) |’ ' the 7 spectrum in the Sec. V.

J(P2T)=
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FIG. 4. The imaginary part of the correlatBgg(P?) is shown.

(See caption to Fig. B.

IV. TEMPERATURE-DEPENDENT COUPLING
CONSTANTS OF THE NJL MODEL

tion. We make reference to Fig. 1.3 of REE6]. That figure
shows the behavior of the ratidT* and 3P/T* for the pure
gauge sector of QCD. Hereis the energy density and is
the pressure. Ideal gas behavior implees3P. The values
of €/T* and 3P/T* are compared to the valuegg/T*

0.07

0.06

0.05

0.04

0.03 4

0.02 1

PHYSICAL REVIEW B7, 014022 (2003

T —r—T
62 04 06 08 10 12 14

16 18 20
P? (GeV?)

FIG. 6. The imaginary part of the correlatBgg(P?) is shown

for T/T.=4.0. The dashed line is the result for the temperature-
dependent coupling constants of our model, while the solid line
represents the results for coupling constants kept at Theid val-
ues.(See caption to Fig. BThe dotted line shows the values of the
correlator when the coupling constants are set equal to zero.
Since the introduction of temperature-dependent coupling

constants for the NJL model is a novel feature of our workqom gt high temperature. In order to understand this feature
we provide arguments in this section to justify their introduc-i, our model. we can calculate the correlator withnstant

values of Gyp, Ggg, and Gpg and with Gyg(T)=Gpd 1
—0.17T/T.], etc. (In this work we useGq,=8.09 GeV ?,
Ggg=13.02 GeV ?, andGyg= —0.4953 GeV 2.)

We now consider the values of 18yg(P?) for T/T,
=4.0. In Fig. 6 we show the values of I8y¢(P?) calculated

_ 2 H

=87°/15 for an ideal gluon gas. It may be seen from thej, oyr model with temperature-dependent coupling constants
figure that atT=3T, there are still significant differences 55 5 dashed line. The dotted line shows the values of the
from the ideal gluon gas result. Deviations from ideal gas,grelator forGgy= Ggg= Gog=0, while the solid line shows

behavior become progressively smaller with increadifg,

the values when the coupling constants are kept at their val-

and could be considered to be relatively unimportant for oq aiT=0. We see that we have some resonant behavior in

) the case the constants are temperature independent.
The use of our energy-dependent coupling constants is

meant to be consistent with the approach to asymptotic free-

TIT>5.

0.05 1
0.10
0.04
0.05 /,' —
& (A ‘\ %’
> b
] 0.00 - 4] 0.03 -
o© N e
=~ -0.05-
- &
o -0.10 [+% i
"1; \-E: 0.02
o (8]
-0.15
E E
-0.20 0.01
-0.25
.0.30 4 o0 t~—vV—r—v—"rr—7TrT"T7T 7T TTTT T
. 00 02 04 06 08 10 12 14 16 18 2.0
T T T T 1

T T T
0.0 0.5 1.0 1.5 2.0 25 30 35
P* (GeV?)

FIG. 5. The imaginary part of the correlatGgg(P?) is shown.

(See caption to Fig. B.

4.0

P* (GeV?)

FIG. 7. The imaginary part of the correlatgg(P?) is shown

for T/T.=5.88. (See caption to Fig. BHere the dashed and dotted

lines of Fig. 6 coincide.
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In Fig. 7 we show similar results far/T,=5.88. Here the 3000
temperature-dependent coupling constants are equal to zero, y
so that the lines corresponding to the dashed and dotted lines 5500 L {
of Fig. 6 coincide. The solid line again shows some resonant /’é,ig ot .
behavior at a value of/T., where we expect only very Sl Joot
weak interactions associated with asymptotic freedom. We 3 2000} PATILY
conclude that the model with constant values of the coupling § L
constants yields unacceptable results, while our model, ;" 1500 |- ‘nn ° i}
which has temperature-dependent coupling constants, be- £2° v };.’,fi i ;"‘;{ et
haves as one may expect, when the results of lattice simula- 1 AR AP AR
tions of QCD thermodynamics are taken into account. f"
500 "‘ L L L L 1 ) i
V. CALCULATION OF MESON PROPERTIES AT FINITE 0 05 1 15 2 25 3 35 4
TEMPERATURE IN A GENERALIZED NJL MODEL r (fm)

WITH CONFINEMENT
FIG. 8. A comparison of quenche@pen symbols and un-
~ Itis useful to record the Lagrangian used in our calculaguenchedsolid symbol3 results for the interquark potential at fi-
tions of meson properties: nite temperature[23]. The dotted line is the zero-temperature
guenched potential. Here, the symbols fb+0.80T, (open tri-

— — — : angle3, T=0.88T. (open circleg and T=0.94T. (open squares
L£=q(i4—m°)q+ 78 'Zo [(g\'a)?+(diysh'q)?] represent the quenched results. The results with dynamical fermions
. are given atT=0.68T, (solid downward-pointing triangles T

8 o =0.80T. (solid upward-pointing triangles T=0.88T. (solid
Z [(g\' yﬂq (q)\i%yﬂq)z] circles, andT=0.94T, (solid squares

8

Gp o o temperature dependence of the qoupling constants and con-
+7{de[q(l+ ¥s5)d]+defa(1—ys)ql}+ Leons- stituent mass values, we also introduced a temperature-
dependent confining potential, whose form was motivated by
(5.2 recent lattice simulations of QCD in which the temperature
dependence of the confining interaction was calculated with
Here, m® is a current quark mass matrixm®  dynamical quark$23]. (See Fig. 8.In order to include such
=diag (m%,m3,m2). The\' are the Gell-Manr(flavor) ma-  effects, we modified the form of our confining interaction,

C _ . .
trices, \°= y2/3L with 1 being the unit matrix. The fourth v (") =« exd—ur], by replacingu by
term on the right-hand side of E¢b.1) is the 't Hooft inter-

action. Finally, L., represents the model of confinement = Mo 5.2
: u(T) ; (5.2
we have used in our work. - T
As noted earlier, we have recently reported results of our T,

calculations of the temperature dependence of the spectra of

various meson$14]. These calculations were made usingwith u,=0.010 GeV. The maximum value &f(r,T) is
our generalized NJL model which includes a covariant modethen

of confinement. We have presented results forthe, a,,

fo, andKg mesons in Refl14]. The equations that we solve X( )= (5.3
are of the form of relativistic random-phase-approximation ma (T)e '
equations. The derivation of these equations for pseudoscalar

mesons is given in Ref13], where we discuss the equations k[1-0.7(T/Te)?]

for pionic, kaonic, and eta mesons. The equations for the eta - o€ ’ (5.4

mesons are the most complicated, since we consider singlet-
octet mixing as well as pseudoscalar—axial-vector mixing. Irwith r,,,=1/u(T). To better represent the qualitative fea-
that case there are eight vertex functions to considettures of the results shown in Fig. 8, we u%&(r,T)
Toos Tags Tegs Tags Tegs Tags Tpg, Tag,  =xrexgd—u(Tr] for r<rg,, and VE(r, T)=V5a(T) for
where P refers to theys vertex andA refers to theyyys r>rmax- We also note that we use Lorentz-vector confine-
vertex, which mixes with the/; vertex. Corresponding to the ment and carry out all our calculations in momentum space.
eight vertex functions one may define eight wave function(The value ofx used in our work is 0.055 GéV) Values of
amplitudeq 13]. Since the RPA equations for the study of the V(r,T) are shown in Fig. 9.
eta meson are quite lengtfy3], we do not reproduce them In Fig. 10 we show the results of our calculations of the
here. temperature-dependent spectrum of #henesons. We show

In the RPA equations we replaog, andmg by my(T) and  the behavior of then(547), %'(958), and seven states
my(T) of Fig. 1 and use the temperature-dependent couplingvhich represent radial excitations. The energies of the addi-
constants described earlier in this work. In addition to thetional states found when diagonalizing the RPA Hamiltonian
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0.8 |-

0.6 |-

vV ¢(r,T) (GeV)

04

02

0.0 1 1 L L ]

02 04 06 08 10

r (fm) T,

FIG. 9. The potentiaM®(r,T) is shown for T/T.=0 (solid
line), T/T.=0.4 (dotted ling, T/T.=0.6 (dashed ling T/T.=0.8
(dash-dotted ling T/T.=0.9 (short-dashed line and T/T.=1.0
(dash—double-dotted lineHere, VE(r,T) = «r exd — w(T)r], with
w(T)=0.01 GeV[1—0.7(T/T)?] and k=0.055 GeV.

FIG. 10. The temperature-dependent spectrum ofstlreesons
is shown. For the most highly excited radial excitations we repre-
sent the mass values obtained by dots. There are no bound states for
T>T,.

. formalisms could be modified so that calculations could be
are represented by dots in the rangeU/T.< 0.6. We note made in the confined phase of QCD. The study of radial

that the masses of the nodeless stdthe » and ') are oy cirations in these finite-temperature theories may be quite
fairly constant over a broad range of temperatures. That Chafjigic it since their study requires a model of confinement. It

acteristic seems to be a feature of the behavior of pseudg 550 very difficult to obtain information concerning radial

Goldstone bosons at finite temperature. excitations, if an analytic continuation to real time is neces-
As the temperature is increased, fewer states are bound ry

the confining field which decreases in magnitude with in- 5. interesting feature of our analysis is the use of

creasing temperature. At=T, only the state that evolves emnerature-dependent coupling constants in the NJL model.
from the 7(547) is bound. That state disappears from they, the present work, we have provided some justification for
spectrum forT>T.. We believe that the crossing of levels he inrroduction of such constants. Our work suggests that
seen atT/T,=0.9 is due to the rapid decrease Wf,(T)  the coupling constants of the NJL model may also be density
relative toms(T) with increasingT/T,. (See Fig. 1. That dependent, since one expects that high density may play a
feature could lead to gpredominately nn state with a node similar role as high temperature, leading ultimately to a
to have a lower energy than(predominantly nodelessss ~ Weakly interacting system at high density. We have intro-
state. duced density-dependent coupling constants in R24]
where we considered the confinement-deconfinement transi-
tion in the presence of matter. Since the study of matter at
high density is a topic of active investigati¢a5—31, our

We believe it is of interest to supplement lattice studies ofsuggestion of density-dependent coupling constants may
hadronic current correlation functions with calculationshave important consequences for such studies.
made using chiral Lagrangian models of the type considered Note added in proofThe formalism presented here is lim-
in this work. We have made some progress in exhibitingted to rather small values ¢ because of the regulator that
results for such correlators in Rdf7] and in the present appears in Eqs(2.8) and (2.12. Recently we have shown
study. It might be of some interest to compare our results fohow the formalism may be modified so that the results are
our temperature-dependent RPA calculations with results obvalid for large P2 [32], while still exhibiting the resonant
tained in the imaginary-time or real-time formalisms, if thesestructures at lowP?, such as those found in this work.

VI. DISCUSSION AND CONCLUSIONS
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