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Surviving the renormalon in the heavy quark potential

Taekoon Lee*
Department of Physics, Korea Advanced Institute of Science and Technology, Daejon 305-701, Korea

~Received 2 October 2002; published 27 January 2003!

We show that the Borel resummed perturbative static potential atNf50 converges well, and is in remarkable
agreement with the quenched lattice calculation at distances 1/r *660 MeV. This shows that Borel resumma-
tion is very good at handling the renormalon in the static potential~and in the pole mass!, and allows one to
use the pole mass in the perturbative calculation of heavy quark physics.
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I. INTRODUCTION

The asymptotic freedom of quantum chromodynam
~QCD! allows one to calculate short distance physics ac
rately using perturbation. Unexpectedly, however, the per
bative expansion of the static potential between a qua
antiquark pair does not show convergence even at very s
distances~see Fig. 1!. Moreover, no agreement is seen wi
the accurate lattice calculations of the static potential. T
led to the suggestion of a nonperturbative linear potentia
short distance@1#, which, if proven true, would violate the
expectation of operator product expansion~OPE! that the
nonperturbative effect at short distance is at most a quad
potential.

On the other hand, the bad convergence behavior of
perturbative expansion of the potential is well understood
be caused by the infrared~IR! renormalon which induces
constant nonperturbative effect proportional toLQCD @2#.
This prompted several approaches to the problem. On
based on the observation that the force between a pa
static quarks is free from the leading renormalon. The pot
tial obtained by integrating the force calculated in pertur
tion indeed agrees quite well at short distance with the lat
potential @3#, up to anr independent constant. Another a
proach is the renormalon subtracted~RS! scheme@4#, in
which one subtracts order by order the renormalon contr
tion from the perturbative potential. The potential calcula
in this way also shows an improved convergence and ag
ment with the lattice potential. Another idea is to employ t
cancellation of the renormalons in the static potential and
pole mass of the heavy quark@5,6#. By expanding the pole
mass and the static potential of a color singlet quarkonium
the running couplingas(m) and a short distance massm(m)
one can avoid the renormalon problem, and indeed suc
expansion shows an improved convergence@7–9#.

In this paper we show that a more direct approach to
problem is possible via the Borel resummation of the per
bative potential. Since one might believe that the presenc
an IR renormalon makes Borel resummation impossible,
state in advance that it is perfectly possible in this case.
IR renormalon in Borel resummation merely demands a c
responding nonperturbative effect, and since in this case
a constant, ther dependence of the potential can be
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summed with no difficulty. Moreover, this renormalo
caused nonperturbative effect could be computed in
framework introduced in@10#, where the nonperturbative ef
fect is determined based on its conjectured analyticity in
complex coupling plane. An obvious advantage of the dir
resummation is that the normalization of the potential can
fixed. In the approaches based on the renorma
cancellation/absence the potential can be fixed only up to
r independent constant.

As we shall see the Borel resummed potential at sh
distance converges quickly, and agrees remarkably well w
the lattice calculation, in fact better than any other appro
introduced so far. The implication of this is significant. In th
perturbative calculation of a heavy quark system one d
not have to give up the pole mass in favor of a short dista
mass to avoid the renormalon problem, and still can hav
tight control on the perturbative expansion.

Throughout the paper, unless stated otherwise, we c
sider pure QCD with no active quark flavors (Nf50), and
the perturbative expansions considered are assumed to
the modified minimal subtraction (MS) scheme. As for the
renormalon, we restrict our attention to the leading infrar
renormalon that is closest to the origin in the Borel plane

II. BILOCAL EXPANSION OF THE BOREL TRANSFORM

In general, the perturbative expansion in weak coupl
constant is an asymptotic expansion. When the large o
behavior of the expansion is sign alternating like inf4

FIG. 1. The static potential at leading order~dotted!, next-
leading order~dashed!, and next-next-leading order~solid!. The
data points denote lattice potential.
©2003 The American Physical Society20-1
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theory it may be Borel resummed. However, when the
pansion is of same sign at large orders Borel resumma
demands a more careful treatment@11#. In the case of the
latter, one can first do Borel resummation at an unphys
negative coupling, at which the series is sign alternating,
then do analytic continuation in the complex coupling pla
to the physical positive coupling. The Borel resummed a
plitude obtained in such a way, however, turns out to hav
cut along the positive real axis in the coupling plane, a
consequently has an ambiguous imaginary part at a phy
coupling. In Borel integration this imaginary part arises p
cisely from the IR renormalon singularity of the Borel tran
form on the integration contour. This unphysical, ambiguo
imaginary part then must be canceled by the nonperturba
effect corresponding to the renormalon. For further det
we refer to@10#.

Thus the static interquark potentialV(r ),1 which has an
IR renormalon, can be written as the sum of the Borel in
gration with a contour on the upper~or lower! half plane and
the nonperturbative effect@10#,

V@r ,as~1/r !6 i e#5
1

rb0
E

06 i e

`6 i e

e2b/b0as(1/r )Ṽ~b!db

1VNP@r ,as~1/r !6 i e#, ~1!

whereb0 is the one loop coefficient of the QCDb function,

b~as!5m2
das

dm2

52as
2~b01b1as1b2as

21••• !, ~2!

and Ṽ(b) is the Borel transform that is given by

Ṽ~b!5 (
n50

`
Vn

n! S b

b0
D n

, ~3!

with Vn defined in the perturbative expansion of the pote
tial,

V~r ,as!5
1

r (
n

`

Vnas
n11 . ~4!

VNP denotes the renormalon caused nonperturbative ef
Since the imaginary parts in the first term in Eq.~1! and in
VNP, respectively, cancel, the potential can be written as

V@r ,as~1/r !#5
1

rb0
ReF E

06 i e

`6 i e

e2b/b0as(1/r )Ṽ~b!dbG
1Re$VNP@r ,as~1/r !6 i e#%. ~5!

1Because of its infrared sensitivity the static potential is depend
on the ultrasoft factorization scale beginning at next-next-ne
leading order~NNNLO! @12,13#; however, to the order we are con
cerned~NNLO!, this can be ignored.
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SinceVNP is anr independent constant proportional toLQCD
we can ignore it as far as ther dependence of the potential
concerned.

The cancellation of the imaginary parts in the integ
term andVNP in Eq. ~1! determines the renormalon singula
ity in the Borel transformṼ(b). By comparing the functiona
form of

VNP}LMS̄

}
1

r
as~1/r !2ne21/2b0as(1/r )F12

1

2
~b2b0

2b1
2!/b0

3as~1/r !1•••G ~6!

with the imaginary part of the Borel integration term in E
~1!, one can see thatṼ(b) must have the singularity

Ṽ~b!5
cV

~122b!11n
@11c1~122b!1c2~122b!21•••#

1~analytic part!, ~7!

where the ‘‘analytic part’’ denotes terms analytic aroundb
51/2. The constantsn and ci , which depend only on the
coefficients of theb function, were first determined in@14#,
and can be computed up toc2 from the known four loopb
function @15#:

n5
b1

2b0
2

, c15
b1

22b0b2

4nb0
4

,

c25
b1

414b0
3b1b222b0b1

2b21b0
2~b2

222b1
3!22b3b0

4

32n~n21!b0
8

.

~8!

The residuecV becomes the normalization constant of t
large order behavior of the expansion~4!, and its exact value
is not known, but it can be determined perturbatively us
the method developed in@16,17#. OncecV is known, we can
combine the two expansions of the Borel transform, Eqs.~3!
and ~7!, at b50 and atb51/2, respectively, to obtain an
improved description of the Borel transform in the regi
between the origin and the renormalon location atb51/2.
There are, in principle, an infinite number of ways to inte
polate the two expansions, but here we shall take a sim
one which turns out to suffice our purpose very well. W
write the Borel transform as a two point expansion, whi
we call abilocal expansion,2nt

t-

2This was first introduced in@18# in a slightly different context.
0-2
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Ṽ~b!5 lim
N,M→`

ṼN,M~b!

5 lim
N,M→`

H (
n50

N
hn

n! S b

b0
D n

1
cV

~122b!11n F11(
i 51

M

ci~1

22b! i G J . ~9!

By demanding that this bilocal expansion reproduce the
pansion~3! around the origin the coefficientshn can be de-
termined in terms ofVn andci . This gives, for example, the
first three coefficients as

h05V02cV~11c11c2!,

h15V122cVb0@12c21n~11c11c2!#,

h25V224cVb0
2@21n~31c12c2!

1n2~11c11c2!#. ~10!

For the bilocal expansion to work it is essential to have
residuecV calculated to a good accuracy, which is the subj
of the next section.

III. RENORMALON RESIDUE

The residue can be determined in perturbation using
method developed in@16,17#. It was shown in@4,19,20# that
the residue in the case of the static potential can be ca
lated quite accurately. For completeness, we repeat the
culation here, and in the meantime obtain an improved e
mate.

To computecV we first consider the function

R~b![~122b!11nṼ~b!. ~11!

Then,

cV5RS 1

2D . ~12!

R(b) has a cut, but is bounded, atb51/2, and thus we can
write cV as a convergent series,

cV5 (
n50

`

r nS 1

2D n

, ~13!

wherer n are the coefficients of the power expansion ofR(b)
at the origin. The first threer n can be calculated from th
known Vn up to next-next-leading order~NNLO! @21–23#,
and this gives

cV'21.3333310.4994320.33844521.17234. ~14!

The convergence is not that rapid but the series is oscillat
An important observation made in@19# is that the reliability
of this estimate can be checked by the mutual cancellatio
the renormalons in the static potential and the pole mass
01402
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In perturbation theory the heavy quark pole massmpole
can be expanded as

mpole@as~mMS!#5mMSF11 (
n50

`

pnas~mMS!n11G , ~15!

wheremMS@[mMS(mMS)# denotes the MS̄mass. As in the
case of the static potential the Borel resummed pole m
can be written as

mpole@as~mMS!6 i e#5mMSF1

1
1

b0
E

06 i e

`6 i e

e2b/b0as(mMS)m̃pole~b!dbG
1mNP@as~mMS!6 i e#, ~16!

where the Borel transformm̃pole(b) has the perturbative ex
pansion

m̃pole~b!5 (
n50

`
pn

n! S b

b0
D n

, ~17!

andmNP denotes the renormalon induced nonperturbative
fect. The renormalon ambiguity in the pole mass prop
tional to LMS gives rise to a renormalon singularity that h
exactly the same form as Eq.~7! of the static potential,

m̃pole~b!5
cm

~122b!11n
@11c1~122b!1c2~122b!21•••#

1~analytic part!. ~18!

Now the cancellation of the renormalons in 2mpole andV(r )
@5,6# leads to

cV12cm50. ~19!

We shall now compute the residuecm following the com-
putation ofcV . Using the known coefficients up to NNLO
@24–26# of expansion~15! we have

cm'0.4244110.1747310.0228950.62203. ~20!

This time the convergence is quite good. With the two co
puted values we now have

cV12cm

cV22cm
50.02968, ~21!

which shows a remarkable cancellation of the two residu
This gives an assurance on the accuracy of the calcul
residues.

We shall now computecm in a slightly different way. As
has been shown in solvable models@10#, the knowledge on
the renormalon locations in the Borel plane can be used
improving the residue calculation. Since we are intereste
the power expansion ofR(b) around the origin, we can ob
tain, in principle, a better convergence by expanding it in
0-3
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new complex plane in which it is smoother around the ori
@18#. This can be done by pushing the renormalon singul
ties save the first one away from the origin with a conform
mapping. Let us consider the mapping@18,27#

w5
A11b2A122b/3

A11b1A122b/3
, ~22!

which maps the first renormalon atb51/2 to w5w0, where

w05
1

5
, ~23!

and all other renormalons~at b52n and b51/21n where
n51,2,3, . . . ) onto the unit circle.

ExpandingR@b(w)# at the origin toO(w2) and evaluat-
ing it at w5w0 we have a new estimate ofcm ,

cm'0.4244110.1677410.0345150.62667, ~24!

which is quite close to the previous one~20!. This stability is
reassuring that our computation is accurate.

Now we shall quantitatively estimate the error in the co
puted residue~24!. We do this by computingcm using an
estimated NNNLO coefficient of the expansion~15!. We first
estimate the unknown NNNLO coefficientp3 following the
method developed in@27#. First, expandR@b(w)# to O(w3)
with p3 included. This gives

R@b~w!#50.4244110.83872w10.86284w21~2129.2687

13.43505p3!w3. ~25!

Note that thep3-independent constant term in the coefficie
of w3 is much larger than the coefficients of the lower orde
It turns out this is a generic feature of an asymptotic exp
sion with rapidly growing coefficients, and it can be used
estimating higher-order unknown coefficients. From the p
tern of the known lower-order terms it appears quite reas
able to assume that the fourth coefficient is bounded by

u129.268723.43505p3u,2. ~26!

This gives an estimate onp3:

p3537.632260.58223. ~27!

With this result we can repeat the computation ofcm in w
plane, now at NNNLO, to obtain

cm50.6266760.02553. ~28!

We thus conclude the error in the computed residue~24! is
about 4%.

For the numerical analysis in Sec. V we use the ex
relation~19! and the pole mass residue~24! to computecV .
Since the convergence in the calculation of the pole m
residue is better than that of the potential, we would hav
more accurate value this way. We thus have

cV521.2533460.05106. ~29!
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IV. DETERMINATION OF THE NONPERTURBATIVE
EFFECT

In this section we give an evaluation of the renormal
caused nonperturbative effectVNP using the method devel
oped in @10#. As mentioned in Sec. II, the role ofVNP in
Borel resummation is to cancel the imaginary part aris
from the renormalon singularity in the Borel integration
the static potential. This means that, in principle, the ima
nary part ofVNP is calculable from perturbation theory. How
ever, the real part, which is the physical quantity, cannot
directly calculated perturbatively without further input.

The method for computing the real part relies on the a
lyticity of VNP in the complexas plane. As mentioned, the
potential obtained by Borel resumming the asymptotic
pansion has a cut along the positive real axis in theas plane,
and from this cut the imaginary part of the perturbative ter
the integral term in Eq.~1!, arises. To cancel this imaginar
part it is thus plausible to demand thatVNP(r ,as) also have a
cut only along the positive real axis in the coupling plan
This then relates the real part to the perturbatively calcula
imaginary part~we refer the reader to@10# for details!. For
convenience, we shall call this method of determining
nonperturbative effect~along with the Borel integration o
the perturbation series! ‘‘analytic Borel resummation’’
~ABR!. Some nonperturbative effects in solvable mod
were shown to be calculable in ABR@10#.

For ABR to work it is essential to have the function
form of the nonperturbative effect beforehand. In the case
the static potential it is provided by the renormalizati
group equation. SinceVNP in the MS scheme should be
constant proportional toLMS, where

LMS5
1

r
@b0as~1/r !#2ne21/2b0as(1/r )expH 2

1

2E0

as(1/r )F 1

b~x!

1
1

b0x2
2

b1

b0
2x

GdxJ , ~30!

we can write, by demandingVNP have a cut only along the
positive real axis,

VNP@r ,as~1/r !#5
C

r
@2as~1/r !#2ne21/2b0as(1/r )

3expH 2
1

2E0

as(1/r )F 1

b~x!
1

1

b0as
2

2
b1

b0
2x

GdxJ , ~31!

with C an undetermined real constant. Note that a cut
arise only from the prefactor in Eq.~30! with a nonintegern.
Now the cancellation of the imaginary part i
VNP@r ,as(1/r )6 i e# with the corresponding imaginary pa
in the Borel integration term in Eq.~1! fixes the constantC:
0-4



ine
x

m
in

e
at
er
n
e

ho
d

ex
o
is

he
F

cu
ce

ra

t

-
n
h
an

ce

e

ng
rk-
rge

he
ly
nifi-
the

in
ive
bad
po-

ith

ole
the

ne
ex-
ark

e
in-
ves

1/

the
the
pole
nce

ay, a
lue,
um-

tial
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C5
cVG~2n!

~2b0!11n
. ~32!

The real part ofVNP is then given by

Re@VNP~as6 i e!#5
cVG~2n!

211nb0

cos~np!LMS. ~33!

With the calculated residuecV in Eq. ~29!, we find atNf
50,

Re@VNP~as6 i e!#50.477LMS. ~34!

In the numerical analysis in the next section we will comb
this result with the Borel integration of the perturbative e
pansions.

V. COMPARISON WITH LATTICE CALCULATION

The static potential in lattice calculation is extracted fro
the Wilson line of a static quark-antiquark pair, computed
Monte Carlo simulation. The recent calculations@28–31#
employing large lattices up to 644 achieved a remarkabl
accuracy, and can probe a short distance where perturb
QCD should be applicable. It is thus an ideal place wh
perturbative QCD can be compared with lattice calculatio

As we mentioned in the Introduction, the truncated pow
series of the perturbative expansion fails even at a very s
distance. We shall now see that this problem can be cure
Borel resummation.

The numerical integration of the Borel integral in Eq.~5!
can be done easily inw plane defined by the mapping~22!.
Using the Cauchy’s theorem, the integration contour, for
ample, on the upper half plane inw plane can be deformed t
a ray off the origin to the unit circle in the first quadrant. Th
trick allows us to avoid the renormalon singularity on t
integration contour, and makes the computation easy.
details we refer the reader to@18#.

For comparison with lattice calculation we take the ac
rate data of the recent computation employing large latti
@28#. All the dimensional quantities are in units of the Som
mer scaler 0('0.5 fm) @32#, where r 0 in terms of LMS̄
('238 MeV) is determined in lattice computation@33# to be

r 0LMS̄50.602~48!. ~35!

On the side of the perturbative potential, the Borel integ
tion in Eq.~5! was done using the Borel transformṼ0,2,Ṽ1,2,
and Ṽ2,2 in the bilocal expansion~9!. The coupling constan
as(1/r ) was computed by numerically solving Eq.~30! em-
ploying the four loopb function @15#. Because of the diver
gent quark self-energy the lattice potential is determined o
up to an r independent constant, so we subtracted suc
constant from the lattice data so that the lattice potential
the NNLO perturbative potential agree exactly atr /r 0
50.30798.

The result is in Fig. 2. Notice the rapid convergen
of the resummed potential at distancesr &0.6r 0

@'(660 MeV)21#, and the excellent agreement of th
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NNLO potential with the lattice data. The potential at leadi
order already fits the lattice values quite well. It is rema
able that perturbative QCD is applicable at distances as la
as r 5(660 MeV)21.

VI. DISCUSSION AND SUMMARY

The first thing we can learn from our result is that in t
static potential the leading renormalon is overwhelming
dominant at short distances and there cannot be any sig
cant nonperturbative effect other than that caused by
renormalon. As already observed in@3,4#, large linear poten-
tials at short distances like those proposed in@1,34,35# are
excluded.

The rapid convergence of the perturbative potential
ABR allows one to use the pole mass in the perturbat
calculation of heavy quarkonium physics. Because of the
convergence of the truncated power series of the static
tential, there was a limit in the precision achievable w
perturbative QCD in quarkonium physics@36,37#. But, it was
soon realized that the cancellation of renormalons in the p
mass and the static potential can be used to alleviate
problem @5,6#. Instead of using the pole mass directly, o
can achieve an improved convergence by simultaneously
panding the pole mass and static potential in the heavy qu
Hamiltonian in terms of the running couplingas(m) and a
short distance mass such as theMS mass@8,9#. Although this
approachavoids the renormalon problem, there could b
large logs in the perturbative expansion which could, in pr
ciple, spoil the convergence. Since the expansion invol
two far-separated scales, the heavy quark mass andr
('mv, wherev is the heavy quark velocity! large logs like
ln(rm) and/or ln(m/m) could survive for any choice ofm,
which in practice is typically taken as values in between
two scales. With our resummation of the static potential,
convergence problem at short distance is solved, so the
mass need not be abandoned in favor of a short dista
mass. Once the pole mass is extracted by comparing, s
calculated quarkonium spectrum to an experimental va
the MS mass can be obtained from the pole mass by res
ming the quark mass expansion~15! in ABR. Since the

FIG. 2. The lattice potential vs the Borel resummed poten

using Ṽ0,2 ~dotted!, Ṽ1,2 ~dashed!, andṼ2,2 ~solid!.
0-5
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renormalon in the pole mass is essentially same as that in
static potential, we can expect a rapid convergence of
Borel resummation of the mass expansion, and we h
checked that this is indeed the case. As an example, for
bottom quark (Nf54) with as(mMS)50.22 the ‘‘Borel re-
summed’’~BR! massmBR, which is defined as the real pa
of the integral term in Eq.~16!, converges as

mBR5mMS~110.1576910.0040920.00028!. ~36!

Notice the rapid convergence. The renormalon caused n
perturbative effectmNP in Eq. ~16! can be determined in
ABR, and its real part equals to2Re@VNP#/2 that is given in
Eq. ~33!. An obvious advantage of the direct resummation
the renormalons is the separation of scales. The perturba
expansions for the pole mass and the static potential are
summed at their optimal scalesm5mMS̄ andm51/r , respec-
tively, and there is no mixing of these scales as in the ab
implementation of renormalon cancellation using a short d
tance mass. The absence of large logs and the excellent
vergence of the resummed mass and potential are expect
provide a new level of precision calculation for hea
quarkonium.

It is worthwhile to mention that the nonperturbative e
fects VNP and mNP may actually decouple completely from
the quarkonium system. The renormalon cancellation
tween the pole mass and the static potential means tha
ambiguous imaginary parts in these quantities cancel with
the introduction of the nonperturbative effects. This impl
that the nonperturbative effects are actually spurious, app
ing only at an intermediate step in Borel resummation, a
physical observables are completely independent of th
Specifically, we may write the Hamiltonian of a heav
quarkonium system as

H52mpole1
pW 2

mpole
1V@r ,as~1/r !#. ~37!

Putting

mpole5mBR@mMS,as~mMS!#1Re@mNP#,

V@r ,as~1/r !#5VBR@r ,as~1/r !#1Re@VNP#, ~38!

where the BR potentialVBR denotes the real part of the in
tegral term in Eq. ~1!, and using the cancellation o
2Re@mNP# with Re@VNP# in ABR,3 we can writeH in terms
of the BR quantities only:

H52mBR1
pW 2

mBR
1VBR@r ,as~1/r !#1O~pW 2Re@mNP#/mBR

2 !.

~39!

The remaining dependence on the nonperturbative ef
suppressed by an inverse power of the quark mass is
pected to cancel when higher-order terms in quark mass
pansion of the Hamiltonian are taken into account. T

3This cancellation is not automatic but a feature of ABR.
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shows that the Hamiltonian in BR scheme is formally sa
as that in the on-shell scheme with the on-shell quanti
mpole andV(r ) replaced by the corresponding BR quantitie
Thus, for physical observables the specific form of the n
perturbative effects is not necessary.

The perturbative potential and the lattice values in Fig
begin to deviate atr'0.6r 0, which we regard as the failure
of the perturbative potential at these distances. It is inter
ing to observe that this deviation occurs approximately at
same position where the four loopb function fails. The cou-
plings as(1/r ) obtained by running with the four loopb
function and its@2/3# Padéapproximant, which differs from
the former only at orders higher than four loop, are plotted
Fig. 3. Notice that they begin to deviate approximately at
same distance where the perturbative potential begins to
At r 50.6r 0 @as(1/0.6r 0)50.417# the b function has the
expansion

b520.152~110.30810.14310.0971••• !, ~40!

which shows the convergence is quite slow at this distanc
seems the coupling grows too fast at these distances, sin
more slowly growing coupling would fit the lattice data. Th
simultaneous deviation could be a coincidence, but a m
plausible explanation would be that the failure of theb func-
tion at these distances results in an unreliable coupl
which then causes the deviation. Theb function would not
be all that fails the perturbative potential. Since there i
renormalon singularity atb53/2, the bilocal expansion~9! at
a finite order would certainly fail aroundb*3/2. This does
not cause any serious problem at small couplings, but as
coupling increases this becomes problematic because th
tegral term in Eq.~5! receives a sizable contribution from th
region far from the origin. By varying the upper bound of th
integration in Eq.~5! one can easily check that the resumm
potential atr *0.6r 0 is indeed sensitive on the Borel tran
form atb*3/2. This argument suggests that the applicabi
of the Borel resummed perturbative potential could be
tended to larger distances once we have a better control
the b function and the Borel transform at such distances

Lastly, the convergence problem of the truncated pow
series in the perturbative potential is only one example,
though a very conspicuous one, of the problem of the Q

FIG. 3. The strong couplings obtained by employing the fo
loop b function ~solid! and its@2/3# Padéapproximant~dashed!.
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SURVIVING THE RENORMALON IN THE HEAVY QUARK . . . PHYSICAL REVIEW D 67, 014020 ~2003!
expansions in general, especially, at low energies of a
GeVs. The problem was not so visible in these expansio
since many were considered at a fixed scale, not like
perturbative potential considered here where a continuum
scale is involved. Conventionally, in the OPE approach,
these low-energy expansions the physical quantity is o
nized as the sum of a truncated power series and power
rections. Any difference between the truncated power se
and the~unknown! true value is swept over to the powe
corrections. Clearly, this approach fails in the static poten
because the potential of the OPE approach is just the t
cated power series plus anr independent constant, which w
know has a bad convergence and disagrees with the la
calculation. As already discussed more extensively in
Gross–Llewellyn Smith sum rule@38#, the solution to the
problem is the Borel resummation that properly accounts
the renormalon. Without Borel resummation the bad conv
gence in the truncated power series results in wide fluc
tions in the power corrections as the order of perturbat
varies, which is observed in many cases. See@39,40# for
some examples.

To summarize, we have shown that the Borel resumm
tion with a proper account of the renormalon singularity
the Borel plane can resolve the convergence problem of
s

a

D

ys

d
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perturbative static potential and the pole mass, and the
tential obtained in such a way is in excellent agreement w
the lattice calculation. Consequently, any significant nonp
turbative effect at short distance other than the renorma
effect is excluded, and the pole mass can be used in
perturbative calculation of heavy quarkonium physics. T
advantages of the direct resummation of the renormalons
clude rapid convergence of the summations and absenc
large logs, and these can open a new level of precision
culation for heavy quarkonium. We also calculated in t
framework of ABR the renormalon caused nonperturbat
effects in the static potential and the pole mass. The res
mation method developed here may be applied to the c
putation of heavy quarkonium spectra in an approach sim
to that employed in@41#, where the perturbative potential a
short distance is combined with the phenomenological po
tial at large distance. Also, it may be employed in the t
threshold production.
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