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Surviving the renormalon in the heavy quark potential
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We show that the Borel resummed perturbative static potentida0 converges well, and is in remarkable
agreement with the quenched lattice calculation at distances6B0 MeV. This shows that Borel resumma-
tion is very good at handling the renormalon in the static potefdiadl in the pole magsand allows one to
use the pole mass in the perturbative calculation of heavy quark physics.
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[. INTRODUCTION summed with no difficulty. Moreover, this renormalon
caused nonperturbative effect could be computed in the

The asymptotic freedom of quantum chromodynamicsramework introduced if10], where the nonperturbative ef-
(QCD) allows one to calculate short distance physics accufect is determined based on its conjectured analyticity in the
rately using perturbation. Unexpectedly, however, the perturcomplex coupling plane. An obvious advantage of the direct
bative expansion of the static potential between a quarkcesummation is that the normalization of the potential can be
antiquark pair does not show convergence even at very shokixed. In the approaches based on the renormalon
distancegsee Fig. 1 Moreover, no agreement is seen with cancellation/absence the potential can be fixed only up to an
the accurate lattice calculations of the static potential. Thig independent constant.
led to the suggestion of a nonperturbative linear potential at As we shall see the Borel resummed potential at short
short distancd 1], which, if proven true, would violate the distance converges quickly, and agrees remarkably well with
expectation of operator product expansi®PE that the the lattice calculation, in fact better than any other approach
nonperturbative effect at short distance is at most a quadratigtroduced so far. The implication of this is significant. In the
potential. perturbative calculation of a heavy quark system one does

On the other hand, the bad convergence behavior of thot have to give up the pole mass in favor of a short distance
perturbative expansion of the potential is well understood tdnass to avoid the renormalon problem, and still can have a
be caused by the infraredR) renormalon which induces a tight control on the perturbative expansion.
constant nonperturbative effect proportional Agycp [2]- Throughout the paper, unless stated otherwise, we con-
This prompted several approaches to the problem. One igider pure QCD with no active quark flavorsl{=0), and
based on the observation that the force between a pair ¢he perturbative expansions considered are assumed to be in
static quarks is free from the leading renormalon. The potenthe modified minimal subtractionMS) scheme. As for the
tial obtained by integrating the force calculated in perturbafenormalon, we restrict our attention to the leading infrared
tion indeed agrees quite well at short distance with the latticeenormalon that is closest to the origin in the Borel plane.
potential[3], up to anr independent constant. Another ap-
proach is the renormalon subtractédS) scheme[4], in | g 6CcAL EXPANSION OF THE BOREL TRANSFORM
which one subtracts order by order the renormalon contribu-
tion from the perturbative potential. The potential calculated In general, the perturbative expansion in weak coupling
in this way also shows an improved convergence and agreeonstant is an asymptotic expansion. When the large order
ment with the lattice potential. Another idea is to employ thebehavior of the expansion is sign alternating like ¢if
cancellation of the renormalons in the static potential and the
pole mass of the heavy qualk,6]. By expanding the pole
mass and the static potential of a color singlet quarkonium in o
the running couplingrs(x) and a short distance masy )
one can avoid the renormalon problem, and indeed such an
expansion shows an improved convergefite9|.

In this paper we show that a more direct approach to the
problem is possible via the Borel resummation of the pertur-
bative potential. Since one might believe that the presence of [
an IR renormalon makes Borel resummation impossible, we
state in advance that it is perfectly possible in this case. An
IR renormalon in Borel resummation merely demands a cor- :
responding nonperturbative effect, and since in this case it is e
a constant, the dependence of the potential can be re- 0

roV(n)

FIG. 1. The static potential at leading ordéfotted, next-
leading order(dashed, and next-next-leading orddsolid). The
*Electronic address: tlee@muon.kaist.ac.kr data points denote lattice potential.
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theory it may be Borel resummed. However, when the exSinceVyp is anr independent constant proportionalAg,cp

pansion is of same sign at large orders Borel resummatiowe can ignore it as far as tliedependence of the potential is

demands a more careful treatméafl]. In the case of the concerned.

latter, one can first do Borel resummation at an unphysical The cancellation of the imaginary parts in the integral

negative coupling, at which the series is sign alternating, anterm andVyp in Eq. (1) determines the renormalon singular-

then do analytic continuation in the complex coupling plane€ity in the Borel transforn¥(b). By comparing the functional

to the physical positive coupling. The Borel resummed am+grm of

plitude obtained in such a way, however, turns out to have a

cut along the positive real axis in the coupling plane, and

consequently has an ambiguous imaginary part at a physical

coupling. In Borel integration this imaginary part arises pre-

cisely from the IR renormalon singularity of the Borel trans- 1 1

form on the integration contour. This unphysical, ambiguous o Fas(llr)Vel’zf"Oas(”’)[l— 5 (B2o

imaginary part then must be canceled by the nonperturbative

effect corresponding to the renormalon. For further details

we refer to[10]. — B Boas(1r)+ - - } (6)
Thus the static interquark potentis(r),* which has an

IR renormalon, can be written as the sum of the Borel inte-

gration with a contour on the uppésr lowen half plane and ~ With the imaginary part of the Borel integration term in Eq.

Ve* Aus

the nonperturbative effe¢i0], (1), one can see that(b) must have the singularity
N b/ Boas(1Ir)Y
V[r,as(llr)iie]z—f e YPorsiV/(b)db - Cv
rBoJoxie V(b)=————[1+cy(1—2b)+cy(1—2b)%+- -
(b)= it el -20)ep(1-20)% - ]
+ Vel ag(1r) xie], (1)
+ (analytic part, (7)

wheref, is the one loop coefficient of the QCR function,
where the “analytic part” denotes terms analytic around

Blag)= pdas =1/2. The constants and c;, which depend only on the
I K du? coefficients of thed function, were first determined iri4],
5 5 and can be computed up & from the known four loop3
=—ag(Bot Prast Boagt ), (2 function[15]:
andV(b) is the Borel transform that is given by 8, 52— Bops
n V= 5 1:Tﬁ4,
0 0

- “ V. b
V(b)=2>, (—, 3)

n=0 n! BO

 Bit+4B3B1B2—2BoB1Bo+ BY(B5—287) —2B3Bs

with V, defined in the perturbative expansion of the poten- C,=
tial, 32v(v—1)5

®

1 0
_ - n+1
MULD r zn: Vnars ™ “ The residuec,, becomes the normalization constant of the

large order behavior of the expansi@), and its exact value
Vyp denotes the renormalon caused nonperturbative effects not known, but it can be determined perturbatively using
Since the imaginary parts in the first term in Efj) and in  the method developed {116,17. Oncecy, is known, we can

Vyp, respectively, cancel, the potential can be written as  combine the two expansions of the Borel transform, E8js.
and (7), at b=0 and atb=1/2, respectively, to obtain an

1 wrie - improved description of the Borel transform in the region
V[r,as(1lr)]= WR{J e PArINY(b)db between the origin and the renormalon locatiorbat1/2.
0 0l There are, in principle, an infinite number of ways to inter-
+Re{Vyd[ T, as(1r) +i€]}. (5)  polate the two expansions, but here we shall take a simple

one which turns out to suffice our purpose very well. We
write the Borel transform as a two point expansion, which
1Because of its infrared sensitivity the static potential is dependerive call abilocal expansioff
on the ultrasoft factorization scale beginning at next-next-next-
leading ordefNNNLO) [12,13; however, to the order we are con-
cerned(NNLO), this can be ignored. 2This was first introduced ifil8] in a slightly different context.
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V(b)=lim Vyu(b) In perturbation theory the heavy quark pole mass,.
NMooo can be expanded as
N n c M ®
_ n \ T — e __\n+1
—N|'\'A”lm 2 H_(E) +m{1+2 ci(1 Mpoid s(Migs) ] = Mizs 1+n§0 Pras(Mys)" "~ |, (19
, where mygl =Mmys(Mys) ] denotes the M3nass. As in the
—2b) (9 case of the static potential the Borel resummed pole mass
can be written as

By demanding that this bilocal expansion reproduce the ex-
pansion(3) around the origin the coefficients, can be de-  my,d as(Miys) =i e]=myg
termined in terms o¥, andc; . This gives, for example, the

1

first three coefficients as 1 fetie
- —f e Phors(Misim (b)db
ho=Vo—cy(l+ci+cy), BoJo+ie
h1=Vi—2¢yBo[1-Cotv(1+Cy+Cy)], + Miel ars(Miyzs) 1€, (16)
h,=V,—4cyBY 2+ v(3+C¢1—Cy) where the Borel transforrﬁlpme(b) has the perturbative ex-
pansion
+12(1+c,+¢y)]. (10)
~ Pn( b\"
For the bilocal expansion to work it is essential to have the mpole(b):nzo m(ﬁ_o> ) (17
residuecy, calculated to a good accuracy, which is the subject
of the next section. andmyp denotes the renormalon induced nonperturbative ef-
fect. The renormalon ambiguity in the pole mass propor-
Ill. RENORMALON RESIDUE tional to Ays gives rise to a renormalon singularity that has

The residue can be determined in perturbation using thexactly the same form as E(f) of the static potential,

method developed ifil6,17]. It was shown if4,19,2Q that

Cm
the residue in the case of the static potential can be calcum od D)= ———[1+cy(1—2b) +Cy(1—2b)2+ - - -]
lated quite accurately. For completeness, we repeat the cal-" (1—2b)t*
culation here, and in the meantime obtain an improved esti- .
mate. + (analytic par}. (18

To computecy we first consider the function Now the cancellation of the renormalons img,e andV(r)

[5,6] leads to

R(b)=(1—2b)**"V(b). (12)
+ =0.
Then, cy+2c,=0 (19
1 We shall now compute the residag following the com-
cy= R(—). (12) putation ofcy, . Using the known coefficients up to NNLO
2 [24-26 of expansion(15) we have
R(b) has a cut, but is bounded, lat=1/2, and thus we can Cm~0.424410.17473+ 0.02289=0.62203.  (20)

write ¢y as a convergent series,
This time the convergence is quite good. With the two com-

- 1\" puted values we now have
ov=2 Tl 5] . (13
n=0 cy+2¢,
. , =0.02968, (21
wherer , are the coefficients of the power expansiorR¢b) Cy—2Cn

at the origin. The first three, can be calculated from the ) _ .
known V,, up to next-next-leading ordgiNNLO) [21—-23, which shows a remarkable cancellation of the two residues.

This gives an assurance on the accuracy of the calculated
residues.

cy~ —1.33333+ 0.49943- 0.33844= — 1.17234. (14) We shall now compute,, in a slightly different way. As

has been shown in solvable modglg], the knowledge on

The convergence is not that rapid but the series is oscillatinghe renormalon locations in the Borel plane can be used in
An important observation made [i9] is that the reliability — improving the residue calculation. Since we are interested in
of this estimate can be checked by the mutual cancellation dhe power expansion d®(b) around the origin, we can ob-
the renormalons in the static potential and the pole mass. tain, in principle, a better convergence by expanding it in a

and this gives
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new complex plane in which it is smoother around the origin V. DETERMINATION OF THE NONPERTURBATIVE
[18]. This can be done by pushing the renormalon singulari- EFFECT
ties save the first one away from the origin with a conformal

mapping. Let us consider the mappifi,27] In this section we give an evaluation of the renormalon

caused nonperturbative effeets using the method devel-

oped in[10]. As mentioned in Sec. Il, the role &fyp in

Vi+b—y1-2 LT . . -

w= b b/3, (22 Borel resummation is to cancel the imaginary part arising
V1+b++1-2b/3 from the renormalon singularity in the Borel integration of

the static potential. This means that, in principle, the imagi-
nary part ofVyp is calculable from perturbation theory. How-

1 ever, the real part, which is the physical quantity, cannot be
Wo==, (23) directly calculated perturbatively without further input.

5 The method for computing the real part relies on the ana-
Iyticity of Vyp in the complexag plane. As mentioned, the
potential obtained by Borel resumming the asymptotic ex-
pansion has a cut along the positive real axis indb@lane,
and from this cut the imaginary part of the perturbative term,
the integral term in Eq(1), arises. To cancel this imaginary

C~0.42441+ 0.16774+ 0.03451=0.62667, (24) part it is thus plausible to demand th&§p(r, ) also have a
' cut only along the positive real axis in the coupling plane.
which is quite close to the previous of®9). This stability is 1 his then relates the real part to the perturbatively calculable
reassuring that our computation is accurate. imaginary part(we refer the reader tfl0] for detail9. For
Now we shall quantitatively estimate the error in the com-convenience, we shall call this method of determining the
puted residug24). We do this by computing,, using an  honperturbative effectalong with the Borel integration of
estimated NNNLO coefficient of the expansi@i®). We first ~ the perturbation serigs “analytic Borel resummation”
estimate the unknown NNNLO coefficiept following the (ABR). Some nonperturbative effects in solvable models

method developed if27). First, expandR[b(w)] to O(w?)  Were shown to be calculable in ABRO]. _
with p included. This gives For ABR to work it is essential to have the functional

form of the nonperturbative effect beforehand. In the case of
R[b(w)]=0.42441 0.83872v+ 0.86284v>+ (—129.2687  the static potential it is provided by the renormalization
group equation. Sinc¥p in the MS scheme should be a
constant proportional td s, where

which maps the first renormalon bt 1/2 tow=w,, where

and all other renormalon@t b= —n andb=1/2+n where
n=1,2,3...) onto the unit circle.

ExpandingR[b(w)] at the origin toO(w?) and evaluat-
ing it at w=wg we have a new estimate of,,

+3.4350%5)w>. (25)

Note that theps-independent constant term in the coefficient
of w is much larger than the coefficients of the lower orders. 1 e 12Bgag(1K) 1
It turns out this is a generic feature of an asymptotic expan/\Ws = [Boas(1/r)]”"e "0t Hexp — ifo
sion with rapidly growing coefficients, and it can be used in

estimating higher-order unknown coefficients. From the pat- 1 By
tern of the known lower-order terms it appears quite reason- t
able to assume that the fourth coefficient is bounded by BoX”  BoX

1
B(X)

ag(1ir)

d x] , (30)

|129.2687 3.4350%; <2. (260 \e can write, by demanding,p have a cut only along the

This gives an estimate qpy: positive real axis,

=37.6322£0.58223. 2 C
> P Ve n]= S ag 1] e s

With this result we can repeat the computationcgfin w

plane, now at NNNLO, to obtain 1 (a1 1 1
Cn=0.62667+0.02553. (28) o |[BX) " Boal

We thus conclude the error in the computed resit® is B1 d

about 4%. _,3_3X X (3D

For the numerical analysis in Sec. V we use the exact
relation (19) and the pole mass resid(®@4) to computecy, .
Since the convergence in the calculation of the p0|e maszth C an undetermined real constant. Note that a cut can
residue is better than that of the potential, we would have &rise only from the prefactor in E¢30) with a nonintegew.

more accurate value this way. We thus have Now the cancellation of the imaginary part in
Vel as(1/r) =ie] with the corresponding imaginary part
cy= —1.25334~0.05106. (29 in the Borel integration term in Eq1) fixes the constant:
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o T (—v)
C=———. 32
(2Bo)* " (32

The real part ofVyp is then given by

. cyl'(—v)
R Vyplas*tie)]= WCOgVﬂ}AM_S' (33
0

rov(r)

With the calculated residuey in Eq. (29), we find atN;
:0,

R Vy\plastie)]=0.477Ays. (39 ‘ , ‘ ‘ ‘ ‘ ‘ ,
0.2 0.4 0.6 0.8
r/rs
FIG. 2. The lattice potential vs the Borel resummed potential
usingVy , (dotted, V, , (dashedl andV, , (solid).

In the numerical analysis in the next section we will combine
this result with the Borel integration of the perturbative ex-
pansions.

V. COMPARISON WITH LATTICE CALCULATION . ) ) )
NNLO potential with the lattice data. The potential at leading

The static potential in lattice calculation is extracted fromorder already fits the lattice values quite well. It is remark-
the Wilson line of a static quark-antiquark pair, computed inable that perturbative QCD is applicable at distances as large
Monte Carlo simulation. The recent calculatiof8—31  asr=(660 MeV) ..
employing large lattices up to 64achieved a remarkable
accuracy, and can probe a short distance where perturbative V1. DISCUSSION AND SUMMARY
QCD should be applicable. It is thus an ideal place where
perturbative QCD can be compared with lattice calculations. The first thing we can learn from our result is that in the

As we mentioned in the Introduction, the truncated powerstatic potential the leading renormalon is overwhelmingly
series of the perturbative expansion fails even at a very shoftominant at short distances and there cannot be any signifi-
distance. We shall now see that this problem can be cured b§ant nonperturbative effect other than that caused by the
Borel resummation. renormalon. As already observed[B4], large linear poten-

The numerical integration of the Borel integral in Hf)  tials at short distances like those proposed1i84,39 are
can be done easily iw plane defined by the mappirng2).  excluded.

Using the Cauchy’s theorem, the integration contour, for ex- The rapid convergence of the perturbative potential in
ample, on the upper half planewplane can be deformed to ABR allows one to use the pole mass in the perturbative
a ray off the origin to the unit circle in the first quadrant. This calculation of heavy quarkonium physics. Because of the bad
trick allows us to avoid the renormalon singularity on theconvergence of the truncated power series of the static po-
integration contour, and makes the computation easy. Fdential, there was a limit in the precision achievable with
details we refer the reader [@8]. perturbative QCD in quarkonium physig36,37. But, it was

For comparison with lattice calculation we take the accu-soon realized that the cancellation of renormalons in the pole
rate data of the recent computation employing large latticeghass and the static potential can be used to alleviate the
[28]. All the dimensional quantities are in units of the Som- problem[5,6]. Instead of using the pole mass directly, one
mer scalery(~0.5 fm) [32], wherer, in terms of Ayys ~ can achieve an improved convergence by simultaneously ex-
(=238 MeV) is determined in lattice computatif8] to be  panding the pole mass and static potential in the heavy quark

Hamiltonian in terms of the running couplings(«) and a
roAms=0.60248). (35  short distance mass such as M8 masg8,9]. Although this
) ) ] ) approachavoids the renormalon problem, there could be
On the side of the perturbative potential, the Borel integrajarge |ogs in the perturbative expansion which could, in prin-
tion in Eq.(5) was done using the Borel transfovg ,,V1,,  ciple, spoil the convergence. Since the expansion involves
andV,, in the bilocal expansiof9). The coupling constant two far-separated scales, the heavy quark mass and 1/
ag(1/r) was computed by numerically solving E@0) em-  (=muv, wherev is the heavy quark velociiylarge logs like
ploying the four loopB function[15]. Because of the diver- In(ru) and/or In(ww) could survive for any choice oft,
gent quark self-energy the lattice potential is determined onlyvhich in practice is typically taken as values in between the
up to anr independent constant, so we subtracted such &wo scales. With our resummation of the static potential, the
constant from the lattice data so that the lattice potential angonvergence problem at short distance is solved, so the pole
the NNLO perturbative potential agree exactly atr, mass need not be abandoned in favor of a short distance
=0.30798. mass. Once the pole mass is extracted by comparing, say, a

The result is in Fig. 2. Notice the rapid convergencecalculated quarkonium spectrum to an experimental value,
of the resummed potential at distances<0.6r; theMS mass can be obtained from the pole mass by resum-
[~(660 MeV) 1], and the excellent agreement of the ming the quark mass expansid@5) in ABR. Since the
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renormalon in the pole mass is essentially same as that in the ' ' ' ' ‘ '
static potential, we can expect a rapid convergence of the
Borel resummation of the mass expansion, and we have
checked that this is indeed the case. As an example, for the
bottom quark N¢=4) with a4(mys)=0.22 the “Borel re-
summed”(BR) massmgg, which is defined as the real part
of the integral term in Eq(16), converges as

0.6

a1/
0.4

0.2

Mgr=Mis(1+0.15769+0.00409- 0.00028. (36

Notice the rapid convergence. The renormalon caused non- o o0z 04 06 __ os
perturbative effectmyp in Eq. (16) can be determined in e
ABR, and its real part equals to Rg Vp]/2 that is given in 0
Eq. (33). An obvious advantage of the direct resummation of FiG. 3. The strong couplings obtained by employing the four
the renormalons is the separation of scales. The perturbatiygop g function (solid) and its[2/3] Padeapproximant(dashed
expansions for the pole mass and the static potential are re-
summed at their optimal scalgs=mysandu=1/r, respec-  shows that the Hamiltonian in BR scheme is formally same
tively, and there is no mixing of these scales as in the abovgs that in the on-shell scheme with the on-shell quantities
implementation of renormalon cancellation using a short dismpole andV(r) replaced by the corresponding BR quantities.
tance mass. The absence of large logs and the excellent copnys, for physical observables the specific form of the non-
vergence of the resummed mass and potential are expecteddgrturbative effects is not necessary.
provide a new level of precision calculation for heavy  The perturbative potential and the lattice values in Fig. 2
quarl_<on|um. ) . ) begin to deviate at~0.6r,, which we regard as the failure

It is worthwhile to mention that the nonperturbative ef- of the perturbative potential at these distances. It is interest-
fects Ve and myp may actually decouple completely from ing to observe that this deviation occurs approximately at the
the quarkonium system. The renormalon cancellation besame position where the four logpfunction fails. The cou-
tween the pole mass and the static potential means that thengs o (1/r) obtained by running with the four loop
ambiguous imaginary parts in these quantities cancel withou{,nction and itq 2/3] Padeapproximant, which differs from
the introduction of the nonperturbative effects. This impliesihe former only at orders higher than four loop, are plotted in
that the nonperturbative effects are actually spurious, appeagig. 3. Notice that they begin to deviate approximately at the

ing only at an intermediate step in Borel resummation, andgme distance where the perturbative potential begins to fail.
physical observables are completely independent of thenp; r=0.6r [as(1/0.6ry)=0.417] the 8 function has the
Specifically, we may write the Hamiltonian of a heavy expansion °

guarkonium system as

5 B=-—0.1521+0.308+0.143+0.097+---), (40
H=2mgget ——+V[r,aq(1/r)]. (37)
Mpole which shows the convergence is quite slow at this distance. It

seems the coupling grows too fast at these distances, since a

Putting more slowly growing coupling would fit the lattice data. This
M. o= Mar] Mz, (M=) 1+ RE Myl simultaneous deviation could be a coincidence, but a more
pole™ Merl Mirs  s(Miv) |+ Rel Mye) plausible explanation would be that the failure of héunc-
V[r,aq(1r)]=Vgrlr, (1) ]+ R Vypl, (38) tion at these distances results in an unreliable coupling,

which then causes the deviation. TBefunction would not
where the BR potential/gr denotes the real part of the in- be all that fails the perturbative potential. Since there is a
tegral term in Eq.(1), and using the cancellation of renormalon singularity &i=23/2, the bilocal expansiof®) at
2Rd myp] with ReVyp] in ABR,® we can writeH in terms  a finite order would certainly fail around=3/2. This does
of the BR quantities only: not cause any serious problem at small couplings, but as the
coupling increases this becomes problematic because the in-
52 - ) tegral term in Eq(5) receives a sizable contribution from the
H=2mgp+ ——+Verlr, as(1/r) ]+ O(p"Re myp]/ Mg). region far from the origin. By varying the upper bound of the
BR (39) integration in Eq(5) one can easily check that the resummed
potential atr =0.6r is indeed sensitive on the Borel trans-
The remaining dependence on the nonperturbative effedbrm atb=3/2. This argument suggests that the applicability
suppressed by an inverse power of the quark mass is exf the Borel resummed perturbative potential could be ex-
pected to cancel when higher-order terms in quark mass exended to larger distances once we have a better control over
pansion of the Hamiltonian are taken into account. Thisthe 8 function and the Borel transform at such distances.
Lastly, the convergence problem of the truncated power
series in the perturbative potential is only one example, al-
3This cancellation is not automatic but a feature of ABR. though a very conspicuous one, of the problem of the QCD
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expansions in general, especially, at low energies of a feyerturbative static potential and the pole mass, and the po-
GeVs. The problem was not so visible in these expansionggential obtained in such a way is in excellent agreement with
since many were considered at a fixed scale, not like théhe lattice calculation. Consequently, any significant nonper-
perturbative potential considered here where a continuum dlrbative effect at short distance other than the renormalon
scale is involved. Conventionally, in the OPE approach, ireffect is excluded, and the pole mass can be used in the
these low-energy expansions the physical quantity is orggperturbative calculation of heavy quarkonium physics. The
nized as the sum of a truncated power series and power coadvantages of the direct resummation of the renormalons in-
rections. Any difference between the truncated power serieslude rapid convergence of the summations and absence of
and the(unknown true value is swept over to the power large logs, and these can open a new level of precision cal-
corrections. Clearly, this approach fails in the static potentiatulation for heavy quarkonium. We also calculated in the
because the potential of the OPE approach is just the trurframework of ABR the renormalon caused nonperturbative
cated power series plus arindependent constant, which we effects in the static potential and the pole mass. The resum-
know has a bad convergence and disagrees with the lattiaeation method developed here may be applied to the com-
calculation. As already discussed more extensively in theutation of heavy quarkonium spectra in an approach similar
Gross—Llewellyn Smith sum rulg38], the solution to the to that employed if41], where the perturbative potential at
problem is the Borel resummation that properly accounts foshort distance is combined with the phenomenological poten-
the renormalon. Without Borel resummation the bad convertial at large distance. Also, it may be employed in the top
gence in the truncated power series results in wide fluctuathreshold production.
tions in the power corrections as the order of perturbation
varies, which is observed in many cases. $8@,4Q for
some examples.

To summarize, we have shown that the Borel resumma- The author is thankful to A. Pineda for many helpful com-
tion with a proper account of the renormalon singularity inmunications and also to G. Bali for a correspondence. This
the Borel plane can resolve the convergence problem of the/ork was supported in part by BK21 Core Project.
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