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Dip-bump structure of the elastic hadron-hadron differential cross section
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For elastic hadron-hadron diffraction scattering, we examine the relation between the zeros of the scattering
amplitude and the zeros of the Fourier-Bessel-transformed eikonal function from the impact-parameter space to
the momentum-transfer space. Any zero of the transformed eikonal function produces a zero trajectory which
becomes confluent with the one of the black-disk amplitude as the energy goes higher.
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[. INTRODUCTION rameterJ, the Bessel function of order zero, afidthe real
eikonal function. Here the scattering amplitUelgs, t) is nor-
Much effort has been devoted to the study of the diffrac-malized to give the differential cross section as
tion interactions by quantum chromodynamics which is the
fundamental theory of the strong interactiph], but a de-

— 2
tailed clarification of this interaction has not been attained H—W“:(S*m : )
yet. We consider it still useful to make phenomenological
studies along with those of the basic theory. The real part of the scattering amplitude is not considered in

The dip-bump structure of the differential cross section ofthe present analysis. The real part tends to mask the dip
elastic hadron-hadron scattering is a characteristic signatukgrycture arising from the imaginary part in the differential
of diffraction scattering. We observe such dip-bump struccross section and in the quantitative analysis of the experi-
tures inpp and pp scattering in the energy region of the mental data it has to be included. If it is required, we can
CERN Intersecting Storage Ring$SR) and some symptoms introduce it by the derivative dispersion relatifg].
of such structures also for meson-baryon scattering of which In the eikonal model approach the eikonal function
experiments are available only at sub-ISR energies. The dif)(s,b) is related to the hadron dynamics. It is sometimes
fraction pattern of the differential cross section is producedmore appropriate to discuss the Fourier-Bessel-transformed
by the zeros of the scattering amplitude. In this paper Weikonal function Q(s,t) from impact-parameter space to

discuss the question of whether these zeros eme@ngtyor  momentum-transfer space rather than the eikonal function
in pairs. This simple question seems to have been given n@) (s p) itself. This is defined by

clear answer, either theoretically or experimentally.

Il. BASIC FORMULAS Q(sit)= fo Q(s,b)Jo(\/—th)bdb. 3

We assume the dominance of the imaginary part of the _
crossing even amplitude for the diffraction scattering in theln the following we refer ta)(s,t) as thet-eikonal function
following analysis; hence, we do not distinguish betweerwhen we distinguish it specifically frof(s,b).
hadron-hadron scattering and antihadron-hadron scattering. The zeros of the scattering amplitude, which is going to
Let us take the impact-parameter representation of the imagproduce the dip-bump structure of the differential cross sec-
nary part of the scattering amplitude, Fis,t) as tion, are induced in the framework of the eikonal picture
either (i) by the zerosinherentin the t-eikonal function
_ "1 _a-asb — Q(s,t) or (ii) by the higher order effects of the eikonal func-
ImF(s,b) fo (1-e ol \/_tb)bdb’ @) tion generated by the exponentiation of the eikonal function
Q(s,b) as in Eq.(1). It is clear that the zeros of the scatter-
where s is the squared total energy in the center-of-massng amplitude are created in pairs in the latter csde
system,t the squared momentum transfbrthe impact pa- As for pp scattering, which shows a distinct dip-bump
structure of the differential cross section in the ISR energy
region, the scattering in the small momentum-transfer region

*Email address: kawasaki@cc.gifu-u.ac.jp up to the dip-bump structure can be well described either by
"Email address: tmaehar@hiroshima-u.ac.jp the positive-definitg-eikonal function or by the one having
*Email address: yonezawa@fuhc.fukuyama-u.ac.jp zero. The representative of the former type of eikonal func-
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tion is the classical Chou-YangCY) model where the 150
t-eikonal function is given by the product of the absorptive [
matter distribution form factors of two hadrons and hence is

positive definite forpp and pp scattering(4]. This type of 100 |
model having a positive-definiteeikonal function, however, -
has the difficulty of the appearance of a secondary dip
against the experimental data, associated with the first one, if .t
we extend the applicability of the model beyond the first o s
dip-bump region. In fact we would have a secondary dip at I
[t|=4 (GeVic)? at the ISR energy region for theeikonal

(mb)

Chou-Yang model

function given by the product of dipole form factors. B
This difficulty can be overcome if theeikonal function 0 5 10 ) 15 G
has a simple zero in the momentum trangféb] and the It| [(GeV/c)“]

model given by Bourrely, Soffer, and WBSW) [6] has , ) o
such an amplitude. A careful study of this problem has been G- 1. The zero trajectories of the imaginary part of the scat-
made for the experimental data pfp scattering at 23.5 tering amplitude for th&=0 case{the Chou-Yang modg|
<s<62.5 GeV and the existence of a zero |#t=7.0
+2.0 (GeVk)? has been concluded by Carvalho and Menon
[7]. This zero can be interpreted in a sense as developing intrﬁ
the first dip of thepp differential cross section aft| t
~1.4 (GeVk)? in the ISR region. Here we should stress tha
the isolated zero at~—1.4 (GeVk)? of the scattering am-
plitude without its nearby associate does not necessarily i
ply a zero of thet-eikonal function at a small momentum
transfer given by Carvalho and Menon. The existence of th
zero att~ —7 (GeV/c)? is the consequence of the observed
behavior of the differential cross section, especially at small

momentum transfers. Case 1:k=0

lowing we take only the paramet& as energy variant as in

e factorized eikonal function modg8], in keeping with

e other parameters fixed at the values as prescribed above
tand below. In reality all parameters would be energy depen-
dent if the formula(4) or a similar expression is used to
nfepresent the correct eikonal function, and the effects from
the energy variation may deform the zero trajectories, but the
gssential features of the structure of the trajectories given in
the following will be unchanged.

First we take the cask=0. This is the CY model, of
which zero trajectories are first given in Rg9] and shown

In the following we examine how the zeros of the here in Fig. 1. If the total cross section increases, there is a
t-eikonal function affect the zeros of the scattering ampli-pair creation of dips atr~30 mb at point A in Fig. 1. For

tude. For this purpose we take a model eikonal function illustrative purposes we assign a number in parentheses to
each trajectory as shown in Fig. 1. The behavior of the first

Q(st)= FXF oy, (4)  trajectory(l) is consistent with the observed dip structure of
) the pp differential cross section in the ISR energy region and
whereF; andF, are the factors having simple zeros and nofyther with thepp experimental data of the CERN Super

zekros in the region-t=0, respectively. For simplicity we p .0 Synchrotron (Bp S) at higher energy. Trajectotyl)
take is, however, incompatible with thpp experimental data in
FI;(S,t) _ Ck(S)H:(: [(1—t/7) (5) f[he ISR energy region without its corresponding dip structure
in the experimental data. See Fig. 2 below.

IIl. A SIMPLE MODEL FOR THE EIKONAL FUNCTION

and

Fr=(1—t/?)"". (6)

This t-eikonal function is a sum of the multipole terms with
multiplicity I, 1—1,...]—k. HereCK, 7, «, andl are free
parameters to be fixed by the experiment, and it is under-
stood thatF2(s,t)=C°. Here we do not intend to make a
guantitative analysis of the experimental data which requires
more sophisticated parametrization of the eikonal function
than the expressiof@), but to clarify the qualitative behavior
of the zero trajectories of the scattering amplitude in the total
cross-section ;) —momentum-transfe(t) plane. | [(GeV/c)?

We assumé=4 andx?=0.71 (GeVk)? of the electro-
magnetic form factor of the proton, by paying respect to the F|G. 2. The differential cross sections pp scattering atys
CY model. Forl =4, ks limited tok<3 to secure the non- =52.8 GeV. The dotted curve represents kke0 case(the Chou-
singular behavior of the eikonal functida(s,b). In the fol-  Yang mode), the solidk=1. Here no real part is included.

do/dt [mb (GeV/c)?2]
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FIG. 3. The zero trajectories of the imaginary part of the scat- FIG. 4. The zero trajectories of the imaginary part of the scat-
tering amplitude for the&k=1 case(the solid curvg together with  tering amplitude for thek=2 case (the solid curvg of |7y
k=0 (the Chou-Yang modgkthe dotted curve =9 (GeV/c)? together withk=0 (the Chou-Yang modglthe dot-

ted curve.
Case 2:k=1

appears singly, thé-eikonal function necessitates an addi-
tional zero. Such a zero will be able to exist only in the
region |t|>10 (GeVk)? for consistency with the ISRp
experimental data of the differential cross section measure-

This difficulty for the behavior of the secondary trajectory
(I can be solved if thé-eikonal function has a zero in the
momentum transfer and we examine theikonal function
with one zero,k=1. We assumer;=—5.0 (GeVk)?,

: : : ts.
which roughly reproduces the feature of the differential crosg"en R
section for the preserf,, with |=4. We show some ex- We show in Figs. 4 and 5 how the second zero would

. . . affect the zero trajectories of the scattering amplitude. We
amples of the differential cross sections by the CY cdse ( . . . -
=O§ and one-zero cas&€ 1) in Fig. 2 as \)//vell as the ex- ( give the trajectories for,= —9 and 15 (GeVk)” in Fig.

. . . . 4 and Fig. 5, respectively. In the cases=-9 and
perimental data of thep differential cross section a{/s -~ 2 . Lo .
—52.8 GeV[10]. Here the parameteig® and C! assumed 15 (GeVCk)4, the trajectory beginning from, flows into

) . (I and(IV), respectively. It is to be noted that for the eiko-
for these_examples give th? total cross sectipn42 and 38 nal function(4) the trajectory starting fromr,| as small as
mb_ fork.—O and 1, respectively. In Fig. 3 we show the €104, (GeVk)? becomes confluent wittlV). The zero trajec-
gaje_ctques,f fonkThO an_dl_<:|1. I _ct:f':lrt\tr)_e|se|e_r15h0év t\l;le zzero tory starting from the second zero of theikonal function

eglnnlrl% rort? € g”g.ma pqts.' 1o _lLI:‘h-él:;. 4 (Gevz)z never becomes confluent with trajectdt ): this is evident
pazsfesth € 1?I ser\{et tlp.potSI '?)n a}r?h CY‘ (Ge )th from the behavior of the sign of the scattering amplitude.
and tur elr ows into trajectory ortne case as the Trajectory(lll ) can be created only in pairs with eithg) or
value of C* or the total cross section increases.

It should b ked that th i ti f th (V).
¢ should be remarked that the pair creation of In€ Z€ro  »q the total cross section increases, the zero trajectories of
trajectories no longer occurs at point A: instead trajectori

es. _ ;

. n 2 asesk=1 and 2 become confluent with those of cdse
(It) and i) St‘?rtl from point B adt.|~5 (CieV/c) _around =0 which is characterized by the peripheral mass parameter
o=~60 mb. This is the energy region ofp® S for pp scat-

9 k. If the experimental measurement is confined toghmll
tering. At Js=540 GeV thepp experiments have giveo,

~60 mb, but the differential cross section measurements 150
have been performed only in the regifth<1.6 (GeVk)? I
[11]. At higher energy Tevatron experiments have been car-
ried out in the ranget|<0.6 (GeVk)? at 1800 GeV[12].
Hence the experimental data available at present are very
limited in this energy region, and are particularly null in the
large momentum transfer region, so we cannot test this pre- I
diction of thek=1 eikonal function for the pair creation of o s
trajectories(Il) and (Ill). I

100

o ¢

Case 3:k=2

I n n I n n I I 1 I I n n n I I n
0 5 10 15 20

Unlike the pole of the scattering amplitude, the zero has It [(GeV/c)Q]

no simple physical significance. The hadron dynamics pro-
ducing the zero of thet-eikonal function at t~ FIG. 5. The zero trajectories of the imaginary part of the scat-
—7 (GeVic)? [7] is not clear and there is no reason for tering amplitude for thek=2 case (the solid curvg of |z
denying the existence of further zeros. If the pair creation=15 (GeVk)? together withk=0 (the Chou-Yang modgl(the
does not occur around point B in Fig. 3 and the second diplotted curve
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momentum-transfer  region, for example, <(|

<2 (GeV/c)?, the differences of the amplitudes betwden
=1 andk=2 are very marginal as can be expected from the
distant location of the second zero &t in the t-eikonal
function. The effects of the second zero can be found by
performing experiments at large momentum transfers.

IV. MORE REALISTIC MODELS

It is worthwhile to examine the zero trajectories of the
amplitudes which better reproduce the differential cross sec-
tion data than formula&4), since the simple eikonal function
(4) reproduces only the gross features of the experimental

PHYSICAL REVIEW D 67, 014013 (2003
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FIG. 6. The differential cross sections pp scattering at 52.8

differential cross section. We show the zero trajectories for
the scattering amplitudes which well describe the differentiaGeV by the BSW mode{the solid curvé [6], the modified three-
cross section in the ISR energy region. We take the scatterirjPonentiamodel(the dotted curve and themultipolemodel (the
amplitudes referred to asodified three-exponentisnd ash-dotted curye{13].

multipoleamplitude which have been previously obtained by
a phenomenological fit to thpp elastic differential cross
section data at/s=52.8 GeV[13]. The amplitudes are

The eikonal functions of the BSW and theodified three-
exponential amplitude have one zero aft|=3.8 and
7.0 (GeVk)?, respectively, while themultipole amplitude

)2 has two zeros alt|=7.6 and 24.0 (Ge\W)?. The zero of
ImF(s,t)=A,eB1"2+ A,eB?— Al 1+ ¢ 1_t_> B2, BSW is located at somewhat smat|=3.8 (GeVk)? in
0 ) view of the results of Carvalho and Menoit|=7.0

+2.0 (GeVk)? [7].

The results for the zero trajectories are given in Fig. 7.
There are some significant differences of the behaviors of
trajectorieg(ll) and(lll) between the case with one zdthe
BSW andmodified three exponentiahodels and the case
with two zeros(the multipole mode) in the range of total
cross sectiorr;=60—-90 mb. In themultipole case the sec-

and

_w t( t) t) "
Im F(S,t)—A 1—E 1—5 1—P . (8)

The eikonal functions at 52.8 GeV are constructed nu . .
merically from these two scattering amplitudes and the zer(‘i)m.j zero traJecFory startin
trajectories of the scattering amplitude are evaluated by ad-eikonal funzptlon_ at a Iarge momentum _transfet|
suming the energy dependence of the factorized eikonal pic= 24 (G€VE)“, while trajectoriesl) and (Ill) start by the

. . N 2 .
ture for these eikonals. This implies that we are treating th@alr creation arounft|~5 and 7 (GeVé)* in the BSW and
zeros of thet-eikonal function as energy fixed as in the pre- modified three-exponentialases, respectively. The fact that

ceding analysis by formuld4), but its consequences are in the multipole case the second zero trajectory starts from

enough to realize what occurs if the zeros are energy mo\;_he distant second zero of theeikonall function .is rather
ing different from the simple model amplitud@) which pro-

In addition to these two phenomenological amplitudes, welUCES a zero tzfa]ectory flowing int®v) even for a smallr,|
also take an eikonal model of Bourrely, Soffer, and Jgu @S 11 (GeVe)*.

We use only the momentum-transfer dependence of the BSW
eikonal function as

150

a2+t 1

Q) ,
® a?—t (1—t/m2)%(1—t/m3)?

9

100

(mb)

and proceed with a factorized-eikonal analysis.
We show in Fig. 6 the differential cross sectionspjf
scattering at 52.8 GeV given by these three amplitudes. Here

—_ .

only the contributions from the imaginary part of the scatter- eeee - mod. 3-exp.

ing amplitude are given. The real part is small at this energy I — - - multipole

and its main effect is to fill up the discrepancy between the 0 e
calculated cross sections and the experimental data in the dip It [(GeV/c)2]

region observed in this figure. In the case of the BSW model

they have tried to fit the experiments over a wide energy FIG. 7. The zero trajectories of the imaginary part of the scat-
range by a relatively simple form for the eikonal function tering amplitude for the BSW modéhe solid curv[6], themodi-
with a prescribed energy dependence. This seems to cost afiéd three-exponentiamodel (the dotted curve and multipole
which is not good at large momentum transfers. model (the dash-dotted cury¢13].
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If we compare thenmodified three-exponentiand multi- 150
pole models, we can see that both show almost the same zero [
trajectories and also scattering amplitudes in the ratjge

<7 (GeVIlc)?. This is reasonable since both amplitudes are o |

practically the same in the rang=<10 (GeVk)? at 52.8 2

GeV. At present we cannot predict from the available experi- g
mental data opp andpp scattering whether the second zero .t
appears singly or not. It is necessary to perform a measure- S

ment of the differential cross section in the wide region of
momentum transfelt|<10 (GeV/k)? in the range of the to-

tal cross sectiow;=60—90 mb in order to obtain the answer. ol o —
There would be some changes in the numerical details in 0 s 10 5 15 2
the preceding analysis coming from the uncertainty of the It| [(GeV/e)“]

eikonal function, but the basic pattern of the zero trajectories
shown in Figs. 1, 3, 4, and 5, and also in Fig. 7, will not be
changed essentialyL4].

FIG. 8. The zero trajectories of the imaginary part of the scat-
tering amplitude for the asymptotic amplitud&0) with ©=0.6
GeV (the solid curve together with thet-eikonal function(4) k

=0 (the Chou-Yang modglthe dotted curve

V. ASYMPTOTIC BEHAVIOR OF THE ZERO

TRAJECTORIES sion (10) indicates the degree of how the black-disk feature

is developed in the amplitude.

In Fig. 7 we can observe how the trajectories of three : ) . .
amplitudes become mutually confluent as the total cross sec- For thet-eikonal function(4) with (5) and(6) the periph-

tion grows. Asymptotically the elastic hadron-hadron scatter-eral behavior is dominated by the factef,. The zeros of

ing amplitude is considered as becoming a black-disk Onéhet—eikonal function do not affect the asymptotic behavior

[15]. Such a behavior is consistent with the prediction of theOf the eikonal function and do not produce new trajectories.

axiomatic field theory[16]. In a previous paper we have Any zero trajectory .Of the scat'tering' amplitude.beginning
given an amplitude which has been derived by an asymptotigl?n;] a zero of_thet-e_lkona;l fr:mctlon will ﬂOW fa?_t 'gtg one
expansion by utilizing the impact parameter approach and i the zero trajectories of the asymptotic amp it .) as
directly related to the eikonal modgd7]. The amplitude has the total cross section increases. In this respect it will be

also a close correspondence with the Regge-cut amplitude éﬁteresting to compare the zero trajectories of the asymptotic
Gauron, Nicolescu, and Leadgis]. It is given by amplitude with the model eikonal functigd). This is given
' ' ' in Fig. 8 where the zero trajectories of the asymptotic ampli-

3.(RQ) Jo(RQ) tude (10) is compared with those of the CY model which is
Im F~R2{1—qReF( 1+i ﬂ) _—oiRd ImT| 1+i q ] , taken as a representative of the eikonal funct®nHere we
Rq M Rq M treatu as a free parameter rather than taking its asymptotic

(100  valueu=«. If we takeu=0.6 GeV, there is a good conflu-

. . ) ) ence of the CY zero trajectories with the asymptotic ones.
whereJ; is the Bessel function of ordér I' is the gamma

function,qis —t, u is the mass parameter characterizing
the most peripheral part of the diffraction interaction, dd VI. REMARKS
is a length parameter giving the black-disk interaction radius
asymptotically. In deriving formul&10) we assume that the
eikonal function behaves as

We have discussed how the zeros of the scattering ampli-
tude emerge in the hadron-hadron scattering amplitude in
terms of the eikonal picture. The behavior of the zero trajec-
tories closely reflects the underlying structure of the diffrac-
Q(s,b)p=ec(s)(ub)" exd — (ub)], (11)  tion interaction of which we know little theoretically, espe-
cially about its short range part. The phenomenological
wherec(s) is a monotone increasing function of the energyanalysis of the currently available experimental data indi-
s. The paramete is a mass parameter representing thecates that the-eikonal function has one zero arounelt
hadronic continuum states responsible for the most periph=7 (GeVic)? and there will be probably no further zero in
eral part of the diffraction interaction and its value is the range-t=<20 (GeVk)?. This suggests that there may be
bounded from below by twice the pion mass. It is noted tha@t least two components in the diffraction interaction, one
the powern does not appear in these leading terfh8 of  with long range and the other with short range. The long
the asymptotic expansidri9]. range one comes from the inelastic processes realized by the
In the amplitude(10) the Bessel functions represent the peripheral interactions, but the origin of the short range one
black-disk structure growing in a central region through theis not clear except that it is not produced by the multiple
unitarity saturation of the interaction and developing out-rescattering effects of the former one as far as the eikonal
wards as the energy goes higher, while the gamma functior@icture is concerned.
signify the peripheral departure from the black-disk struc- For the foreseeable future the possibilities of the experi-
ture. The similarity of any scattering amplitude to the expresimental investigation of the present problem are pipeex-
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periment at the BNL Relativistic Heavy lon CollidéRHIC),
the pp experiment at the FNAL Tevatron, and the experi-
ment at the CERN Large Hadron CollidgHC). The PP2PP
experiment at RHIG20] will produce valuable information
for the detailed structure of the diffraction interaction includ-

PHYSICAL REVIEW D 67, 014013(2003

>1.3 (GeVk)?. If the behavior of the formation of the sec-
ond dip in the energy region from RHIC to LHC is clarified,
it affords important information to our understanding of the
elastic diffraction interaction of hadrons, though it requires
difficult experimental works. Such experiments will give

ing its spin structure. It is very preferable to extend themuch more valuable information for the diffraction interac-

project to cover the larger momentum tansfer regien

tion rather than to go to higher energies.
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