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Axial vector current and coupling of the quark in the instanton model
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We compute the axial vector current, form factor, and coupling for quarks in the instanton liquid model with
two light flavors. Non-local current corrections are derived, as required by the effective 't Hooft interaction. We
obtain a pion-mediated axial form factor and an axial vector coupling which, when simply applied in the
non-relativistic limit for constituent quarks, matches the experimental value to within a few percent, both in
and out of the chiral limit.
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I. INTRODUCTION in the axial vector coupling from instantons, with only slight
sensitivity to the chiral limit. This is in excellent agreement
The axial vector coupling constant of the nucleon, de-with experiment if corrections to Eql) are small.

duced from measurements of neutron beta decay, is known to To determine the axial vector coupling we will first care-
be [Ga/Gy|=1.2670-0.0035[1] in vacuum. Strict chiral fully analyze the axial vector current. Since instanton-
invariance would have this ratio be unity, and the substantighduced interactions between quarks are non-local, the cur-
difference suggests a deviation in excess of current quarents associated with conserved quantities are non-trivial.
mass effects. Thus it has long been argued that the increaggx, given the necessity of pions in axial vector phenom-
in Gy is a result of the spontaneous chiral symmetry breakana meson correlation functions are briefly reviewed. We

ing that characterizes the QCD vacuum. then derive the axial vector current and verify the importance
Although additional chiral-invariant meson-nucleon cou- ¢ the pion pole in the axial vector form factana(g?).

plings can remedy this problem in the linear sigma modelinq)ly, the leading corrections to the coupligg are com-
[2], a more fundamental explanation is warranted. The ISSUByted, taking into account multi-instanton effects and sub-
is complicated by the difficulties experienced by lattice QCDgantial non-local vertex corrections. In the chiral limit we
practitioners[3], in that such calculations tend to yield val- nq ga=0.77 and estimate that with a physical pion mass
ues significantly lower than experiment. Possible explanagAzo'go_ With the naive application of E(L), these corre-

tions have recently centered on finite-size effeleth al-  ghonqd to a nucleon axial vector couping of 1.28 and 1.34,
though the specific physics is unresol\é&d. respectively.

One might also try to deduce the nucleon’s axial vector
coupling by studying that of a constituent quark, denoted in

this paper ag), . In the non-relativistic limit, I NON-LOCALITY AND CONSERVED CURRENTS

G :§ 1) The effects of an instanton liquid background are most
A=3 9 economically encoded in an effective quark acfidB]. Tak-
ing the exact zero-mode solutions to the Dirac equation and
but incomplete knowledge of the quark wave function leavessolating them as the dominant low-energy effects leads to a
the relativistic corrections unknown. However, there has2N;-quark vertex function16] similar to the Nambu—Jona-
been considerable success in treating the nucleon as massivasinio model of QCD{17-19. A well-studied simplifica-
constituent quarkg6], and if the deviation 065, from unity  tion of this model, the chiral random matrix theory, has
is in fact due to chiral forces the constituent approach shouldhown that chiral symmetry breaking via random overlap
encompass the relevant physics. At the quark level chiraihtegrals reproduces Dirac eigenvalue correlations as com-
symmetry also demands an axial vector coupling of unityputed on the lattic¢20]. Thus such an approach seems to
which generates an excess of nucleon axial vector chargadeed contain the essence of non-perturbative QCD. Fur-
when Eq.(1) is directly applied. Studies addressing this pre-thermore, the ILM relies on only two parameters: the instan-
dict negative corrections aP(1) to g, using the MIT bag ton density and the average instanton size. Both of these
model[7] in the largeN, limit [8,9] or via perturbative cor- were phenomenologically fixed long ago with the vacuum
rections[10]. energy density and chiral condens§2d,15 and measured
In this paper we consider correctionsdq from instan-  on the latticd 22]. These parameters determine the diluteness
tons. The instanton liquid modé€ILM ), in which the QCD of the instanton liquid, the ratio of the average size to inter-
vacuum is populated by classical gauge configurationgnstanton spacing, to be about 1/3, a somewhat small param-
[11,17], dynamically generates the constituent quark masegter which allows for perturbative treatment of the instanton-
and has consistently led to phenomenological success whénduced vertex.
applied to problems related to spontaneous chiral symmetry The Eulcidean effective action fod; flavors in the chiral
breaking[13,14. As detailed below, we find a 25% reduction limit is written [14]
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with the operatof23]
s=—J d*x W(x)iﬂzp(x)—l—i)\J du d*z
y
Ny W(x,y)=7>ex;{ =i L ds,ajT?
XTI 1= dys g (x)i0®(x;—=2,U)

As has been pointed out in the cited works, the operators

~ . W(x,y) must be path ordered and the choice of path inte-
_ f

XOyi=z,U)iogi(ynl, ) grated over is not unique. However, we are primarily con-

whereU is the instanton’s X N, color/spin orientation ma- cerned with the longitudinal currents, for which results are

trix and z s its position. Thab(x) is the zero mode solution independent of any particular choice of pa#7].

for fermions in the field of one instanton, and its Fourier ~1NUS we write the modified action as

transform is the form factor

sz—f dx w(x)mw(x)ﬂ)\f du d*z

1
F(P)=2x 11()Ko(X) = o) K1 (X) + 2 11 (X)K1(X) , N,

X=ppl2

3 X I [=d*d%s g (x) YoW(xs ,2) yol 0 (%~ 2)
which provides a natural momentum cutoff of scale’. We fro o f
have left out additionalquarklesg \ terms which relate this X Oy =2)i0W(zZy) ¥ (yp)]. )
coupling constant, which is in fact a Lagrange multiplier, to\\e now concentrate on the case of two light quarks,
the instanton density/V. =92
Because of non-locality Eq2) is not invariant under The Noether currents can be evaluated directly from the

symmetry transformations. Since bulk observables are oftegction. In momentum space,
insensitive to this problem it is usually ignored; however,

when addressing currents the dependence is crucial. Litera- . 5S
ture exists in which non-local interactions are modified to be jp(a)=- P :
invariant[23-29 and we follow the same procedure here. a,,(q) a2=0

Taking the non-local four-fermion interaction as the starting _ ) ]

point, it then becomes a matter of multiplying each quarkWe thus have, after Fourier transforming the fields and aver-
operator by a path-ordered exponential in the background ¢iging over colors,

a source gauge field, , replacing the Euclidean quark fields

. d’p . .
as J,L<q>=f (277)4¢T(IO)7MT¢(P+Q)+Jh(Q)+15(Q),
P(X)—W(Z,X) (X), (5)
JT(X)— (%) yoW(X,2) 70, where the left-handed non-local term is
|
L N2mp)* 11, ( id, Lo i2>f 4 d*py d'p, d'k, d', d'p’
Il O=" 7€ o, %0 N %% ) X i @m 2’ 2 (2m)?

z . ) o , .
X f ds,e'9S{e X (PP O ke Tk Yl (p )y Tyl i g (k) F(P') Fky)
X

—ehelamp iz Rkl (p)[ Ty (k) 1993 (p) F(P)}o i (P2 WP 2(Ko) F(p2) F(Ke),  (6)

and the right-handeds(q) is similarly defined. Group indices have been suppressed; note that these are carried by the
operatorsT. The instanton or anti-instanton at the core of each vertex naturally splits the quark fields into right- or left-handed
spinors, g = (1= vs) . Since we are only concerned here with spin structures of the identity matni, dhe decom-
position is trivial. Carrying out the spatial integrations, we have

d*p, d%p, d%, d%,

q, iN(2mp)?
e 20(P1+pa—ki—kp+q)

PR 17 i1dp T dpdo
@ @ N1 “Cansa| %1,%,7 N, %2 il” (2m)* (2m)* (2m)* (2m)
X{[l/fz(pl)VOT?’o]flill//Eljl(kl)[f(pl)_f(p1+Q)]f(k1)_l/fIflil(pl)[T'J/L(kl)]gljl

X f(pl)[f(kl)_f(kl_Q)]}szziz(pz)wgzjz(kz)f(pz)f(kz)- (7)
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In the event of spontaneous symmetry breaking, quark operators which overlap with the condensate can be paired into loops
[26,30. When chiral symmetry is broken an effective quark mass is generated, dependent on four-momen/f_p);rp as

o
M(p)=Mf(p)>.
The constanM is the solution to a gap equation obtained by minimization with respect to the coupligd],

N d¢'p  M(p)?
| (2m)* pP+M(p)?’ ®

and the constanfN/V=(200 MeV)* is the instanton density. With the phenomenologigat 1/3 fm, one findsM
=345 MeV. In this case the current, E{), reduces to

. q, [ d'p \(2mp)*
@ =125 ] e M@ Ty MEIT+ g (P e
d*k M (k) 1— s 1-s
><f (277)4f(k)k2+M(k)2Tr{f(k+q) 5 yon—f(k—q)TTHwL(erq), (©)
|
where the trace is over spin only. q,B,(q)=0. (12

Further reduction of this still-unwieldy expression re-
quires specifying a particular current and associated grougy,s is the simplest illustration of the more general rule,

eIemgntsT. r']rhe_?[nflest example is the quark number cur-pich hecomes more complicated when the axial isovector
rent,B,,, whereT=1: current is considered. But before analyzing this, we review
the pion’s derivation in the ILM.

d'p d,
B.(q)= 5 20 (P)) v~ i 5 [M(p+a)=M(p)]
(2) g lll. MESON CORRELATION FUNCTIONS
XP(pra). (10 The pion’s role in axial vector charge currents has been
As q—0, this become§28,37 long established. To be made explicit in the ILM, one must

sum all ladder diagrams using the 't Hooft vertex, a series
shown in Fig. 1. This was originally done in R¢B3], al-

d* dMm
BM(0)=J p4 dﬁ(p)( Yul d (p)) (p). though the advent of the effective actioh) has since made
(2m) Py this procedure simpler.

In the chiral limit, one finds the expected pole in the pion
rpropagator ag’—0. Furthermore, the use of non-local cor-
rections to the axial currents has been shown to produce the
required transversality in the mesonic current and properly

It is easy now to see that tliedependent term in Eq10), a
result of the non-locality of the interaction, is necessary fo
current conservation. With E¢10) and the Dirac equation,

[p—iM(p)]e(p)=0, (11) relate the pion decay and renormalization constd@.
Following the results of these cited works, we have the pion
we see the standard cancellation ensues and correlation function of Fig. 1:
AB/ 42 d4p T T B
7°(q%) = (277)4<[¢ (p) P ysg(p+a) 1[4 (p+A) T2 yse(p)])
(1 2 f d*p M(pM(p+a)[p:(p+@)+M(PM(p+a)]| 3
ANZVIN NM2S 2m)* [pP+M(P)ZI[(p+ )+ M (p+a)?]
The gap equatiof8) can be writter{32]
12 f d*p  M(p)? 14
N N2 (2m)* pP+M(p)?
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and one finds, upon expanding in smad|

-1

2 1 ’ 1 2\ 7 2
M(p)*=5PM(P)M'(p)+ 7 p°M’(p) 7
— _ 2749 AB
=——=0" (15

5B 1J d*p
(2m* [p*+M(p)?)? q°

MAB(g2) = — -
T

iteness conditiorj34] and, with the standard instanton pa- A

The coupling constant is determined thusly by the compos-
(924 f P WP 7M75¢(p+q)

rameters listed above, we fingl,,,=3.78. The pion and (2m)*
other channels were analyzed in a Nambu-Jona-Lasinio 4
(NJL) model with alternative form faptors by PIanF and +iq—’2‘J 4¢,T(p)_75 M(p+q)+M(p)
Birse, who foundg,qq=3.44 for the pion and the sigma q°/) (2m)
parametersg,qq=3.51 andm,=443 MeV [27]. This re- .
quired extracting the sigma pole, and instead of repeating 2'7‘(2 p)
this procedure or fitting the sigma correlation functi@b]
we will simply scale our pion-quark coupling in a similar
manner to obtairy,q,=3.86. These two channels will be M (k)
sufficient in the following analysis of the axial vector prop- x[f(k+a)+ik=a)] 2 2 Y(pta).
; ke+M(k)
erties of the quark.
17

IV. AXIAL VECTOR CURRENT AND FORM FACTOR . -
Graphically, this is Fig. @&).

Clearly, no amount of labor will reveal this to be a con-

We now address the axial isovector current. Akey experigaraq current; as the appearance of the chiral Goldstone
mental quantity is the matrix element of the currei}(p,  Koson is a multi-instanton effect, so too is axial vector cur-
—Pp4), taken with initial and final state nucleons of momentarent conservation. Pion tadpoles, as rendered in Figs. 2
p; and p,. Here we compute the analogous quantity withand Zc), are necessary to remove the finite divergence of
quark fields: A% . The first is a bare current insertion, the second the non-
local piece. Their sum is

((p2) |AS ()| h(pr)) = ut(py) = [y,msgA(q) N (2mp)

q d*p
Al S f f(p)f(p+
w(@)2b+2¢ o N. (277)4 (p)f(p+a)

+d,75ha(9*)u(py), (16)

Xl p)

where theu'(p,) andu(p,) are the Euclidean spinor solu-
tions of the Dirac equation for free quarks, ame p,—p;. M)
We are ultimately interested in the limit gf,=p,=0, or .
on-shell quarks at zero momentum transfer, with the constant X[f(k+a)+f(k q)]—M(k)z' (18)
ga=0a(0) the axial vector coupling. First we consider
ha(g?), the axial vector form factor. With a nonzegga and
current conservation, it is clear in the chiral limit thag(g?) This cancels the final term in E¢L7) and the full current is
has a pole atj?=0, identified as the pion. Through explicit
construction, we will show this pole is manifest in the ILM.

InsertingT = y57/2 into EQ.(9), we have bare and single
instanton(and anti-instantoncontributions in

1 1
1 1
Iy é

FIG. 2. Diagrams contributing to the axial vector form factor,
FIG. 1. The series of instanton ladder diagrams summed to obk,(g?). Circled crosses are current insertions and the dashed line
tain meson correlation functions. denotes a pion.
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VRN FOEERRN After evaluation, the identical sigma contribution differs only
/ © Y ;/ ¥ by the coupling constant and massive propagator in the inte-
@ ®) grand,

FIG. 3. Diagrams contributing to the axial vector coupling con-
stant,g, . Circled crosses are current insertions and dashed lines

93a,a__g<2rqqf d*p  M(p) —p?+2M(p)?
Jar=

denote either a pion or sigma meson propagator. 2M (2m)% p?+ mi [p?+M(p)?]? '
(24)
. d'p . Qu . .
AM(Q):J (277)4‘/’ (P)} Yt g['M(pH'M (p+q)] These expressions evaluate t0>X@10* and 0.019, respec-
tively, when we take the parameters described in Sec. lll.
T The non-local contributions couple the axial current di-
Xy ¢(p+a). (19 rectly to the four-quark vertex, as shown in Figc)3 With an

internal pion, we find
The first term is the bare axial vector coupling, unity with the

definition of Eq.(16), and the second is the pion pole carried 3g2 d*p M’ (p)
by the axial vector form factor, gebm=—T1 J , (25)
2M ] (2m)* p[p*+M(p)?]
_M(p+q)+M(p)
2y— _
ha(q) =i o : 20 and for the sigma,
Note that at long wavelength the leading divergent part of the 9 d*p pM’(p)
form factor is the non-local, quark level version of the classic gabo= "qqf . (26)
N_ o 2 . 2M 27)% (p2+m2)[ p2+M(p)?
nucleon resultH (g% = —2iM /g2 The pion pole simi (2m)" (p+mjy)[p (P)°]
larly couples separately to each constituent quark.
It is now clear, with the Dirac equatiofil), that Numerically, we obtain-0.20 and—0.047 for these correc-
AR(Q)=0 21 tions. Note that both numbers are significantly larger than
9.A.(9)=0. 2D those of Fig. &), i.e. the non-local corrections are not sup-
. . pressed in any systematic way.
Equivalently, with the propagator, In the chiral limit, we therefore find
S(p)=w 1+9.1x10 *+0.019-0.20-0.047=0.77
p2+ M ( p)2 ) gA— . . . . — V. y
the Ward-Takahashi identity is satisfied: in excellent agreement with the nonrelativistically deduced
value.
a ™ 71 1 The vector current, to which the axial vector coupling is
Aul ws=— E[VSS(DJF q) "+S(p) sl (22) compared experimentally, receives no contributions from the

non-local vertices. Furthermore, a critical sign difference in
the numerator as compared to E¢&3) and (24) leads to a
finite but very small contribution from each diagram, sum-
The axial vector form factor involved the effects of mul- ming to only 2% of the bare coupling. Thus we can ignore
tiple instantons, with pions transferrinigchannel momen- such instanton effects in the couplimg and take it to be
tum. Similar propagation in the-channel contributes to the unity.
axial vector coupling constant. While still dominant, the pion In order to estimate the correction from finite current
is not the only relevant resonance in this channel. Since thguark masses, we assume larger masses for the internal me-
sigma’s coupling constant is of comparable size, and its mas¥on propagators. With the physical pion mass,,
is only slightly greater than that of a constituent quark, its=138 MeV, the instanton calculations of Hut{@&5] gener-
effects will also be taken into account. Higher resonancesite a sigma mass of, =540 MeV. Reevaluating, we natu-
such as the andA, vectors, are both substantially heavier rally find a deduction in these subtractions,
and have quark-meson couplings a mere third of the scalar
and pseudoscald®7,35. With the leading contributions of ga=1+0.014+0.017-0.19-0.042=0.80.
ordergizqq, these are safely ignored.
In Eqg. (19) we have seen that the bagg is unity. To this
we first add the pion contribution of Fig(&, which is

V. AXIAL VECTOR COUPLING CONSTANT

However, this is a mere 5% increase compared to the chiral
limit, and the result remains close to the pseudo-

2 a 2 2 experimental value.
g T=— g"qqf d’p M(p) —p"+2M(p) . (23 We are ultimately interested in the nucleon axial vector
2M ) (2m)* p? [pP+M(p)3? coupling, and in the nonrelativistic limit we find
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5 1.28 for m,=0, applied withs-channel chiral mesons, lead to an axial vector
G == = 2 i = -
A=39%)134 for m_—140 MeV. (27)  coupling constant of the quark gf,=0.77. In the nonrela

tivistic limit this corresponds to a nucleon coupling G
=1.28, within 2% of the experimental value. Away from the
chiral limit, when the pion is set to its physical mass, agree-
ment is within 5%. These numbers are obtained with the two
standard inputs of the instanton vacuum, the number density
Through an analysis of current conservation in the instanand average size, and no additional parameters. The non-
ton liquid model, we found that terms arising from the non-local current terms lead to the dominant contributions and
locality of the 't Hooft vertex were central to maintaining the cannot be disregarded. While there are additional corrections
symmetries of the theory. This can be thought of as a corredrom vector mesons, the significantly lower coupling con-
tion for the truncation of quark basis states, for we havestants and higher masses render them negligible.
isolated the zero modes and removed them from the dynam- Our results suggest that the ILM contains the primary
ics. Reintroducing the symmetries to the volume of this ex-effects which lead to the observed vacuum axial vector cou-
tended interaction vertex via path-ordered exponentials repling of 1.267. Given that this variance from unity is a likely
covers the symmetries, as has been noted by other autha#ssult of spontaneous chiral symmetry breaking, a central
some time ag$24,295. A general form of current corrections result of the ILM, it is not surprising that instantons contrib-
has been computed here, followed by specialization to th@te favorably. It is, however, noteworthy in its implication

axial isovector case. _ that relativistic wave function corrections to the constituent
After these modifications the pion pole appears as @uark are nearly negligible.

t-channel quark-antiquark correlation, governing each con-
stituent quark’s axial vector form factor and maintaining cur-
rent conservation. Similar multi-instanton corrections, when

The physical valueG,=1.2670[1],! lies a few percent be-
low.

VI. CONCLUSIONS
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