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Prompt multigluon production in high-energy collisions from singular Yang-Mills solutions
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Nonperturbative parton-parton scattering is studied using the Landau method. Specific singular O~3!-
symmetric solutions to the Euclidean Yang-Mills equations are discussed, with instanton dynamics incorpo-
rated in the overlap between incoming and vacuum fields. We derive a high-energy solution at small times, and
assess the gluonic state produced at the turning point~escape point to Minkowski space-time!. We follow the
solution as it escapes to Minkowski space and assess itsoutgoinggluon spectrum. The solution is found to
follow from the Yang-Mills sphaleron problem studied recently through a simple rescaling. We also argue, by
evaluating the number ofincominggluons for the same singular solution, that this scaling is in fact more
general and presumably describes the energy dependence of the spectra and multiplicities atall energies.

DOI: 10.1103/PhysRevD.67.014005 PACS number~s!: 12.38.Mh
g

lic

u
die

o
st

ve
t

a
tije

n
la
a

ro
os
on
in
on

ac
s

rg
n
n
r

at
n
er
et

s
-
ent
e
on-
d
real
na-

c-
rs.

he

ity
the
dau

lar
an
in-

ly
so
lve

re
an-
oss
on-
ale-
the

lar

-

I. INTRODUCTION

Tunneling phenomena related to the topology of Yan
Mills fields are described semiclassically by instantons@1,2#.
Some manifestations of these effects related to exp
breaking of U~1! and spontaneous breaking of SU(Nf) chiral
symmetries are by now understood in significant detail d
to strong ties to hadronic phenomenology and lattice stu
~see, e.g.,@3# for a review!.

We know much less about their role in the cross section
various high-energy reactions. Such studies got a big boo
the early 1990s, whenbaryon-number violatinginstanton-
induced processes of the electroweak theory were acti
discussed@4–6#. These developments were generalized
hard processes in QCD through small size instantons,
there are current attempts to see their contribution to mul
production at the DESYep collider HERA ~for a recent re-
view see@7#!.

Recently@8,9# it was suggested that nonperturbative co
figurations composed of an instanton or anti-instanton p
an important role in parton-parton scattering amplitudes
high energy, and may account for most of the soft Pome
slope and intercept. The logarithmic rise of the inelastic cr
section was shown to follow from coherent multiple glu
production as described by the semiclassical field follow
from an interacting instanton–anti-instanton configurati
This mechanism was shown to be the same forpp and p̄p
@8#: so no odderon appears in the classical limit.

At low energy transfer in the center of mass, the inter
tion is dipolar, and accounts for the rise in the partial cro
section from first principles. At intermediate and large ene
transfer, the dipole approximation is not reliable as stro
instanton–anti-instanton interactions set in together with u
tarity constraints@5,8#. Unlike perturbative processes, fo
which the production of each subsequent gluon is associ
with a power of the small coupling constant, in instanto
induced processes the cross section rises with the numb
gluons produced, reaching a maximum at some param
0556-2821/2003/67~1!/014005~12!/$20.00 67 0140
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cally large valueN;1/a(r). The physical reason for this i
that particularcoherent clustersof the gauge field are actu
ally produced, instead of independent gluons. In a rec
paper@10# properties of minimal clusters of this kind wer
discussed: the clusters themselves were identified via c
strained minimization of the Yang-Mills energy, with fixe
size and Chern-Simons number, and their subsequent
time evolution has been studied both numerically and a
lytically.

However, in real collisions the Yang-Mills energy or a
tion of the final state is only one of the contributing facto
Another crucial factor is theoverlapbetween the initial sys-
tem of colliding gluons and the instanton, or whatever t
tunneling path is. One way@11# to include both factors to-
gether from first principles, and also enforce the unitar
constraints, is to use a semiclassical approximation to
partial cross section based on an adaptation of the Lan
formula for overlapping matrix elements in terms of singu
field configurations. The occurrence of a singularity is
essential feature of the Euclidean field configuration that
terpolates between the vacuum att52` with zero energy,
and the escape point att50 with finite energy.

By following this ‘‘Landau method,’’ as it was called by
Diakonov and Petrov@12#, these authors were able not on
to get the known low-energy limit of the amplitude, but al
to assess the high-energy one. Although they did not so
for the field configuration at small times explicitly, they we
still able to obtain the corresponding action and other qu
tities and thus were able to predict the behavior of the cr
section at high energies. Comparing both limits has c
firmed that the cross section has a maximum near the sph
ron energy, and that its value is close to the square root of
original low-energy tunneling amplitude.

The aim of our paper is to analyze further the singu
gauge configurations at theescape time t50. We start with
the high-energy limit following@12# and show how one can
find the turning~or escape! point field configuration, describ
ing the cluster produced att50. It turns out that this con-
©2003 The American Physical Society05-1



lin
-
a
ig

lly
ca
rt
ow
in
a

we
p
ic
f

gu

-

s

the
r

, we
ions
in

in

.
-

an-
n in

t
e.
m

in

rton
or-
ion
pro-
me
-
lly

JANIK, SHURYAK, AND ZAHED PHYSICAL REVIEW D 67, 014005 ~2003!
figuration can be related to the minimal QCD sphaleron@10#
by a particularscaling law, containing a power ofQ/Ms . We
then show that the subsequent evolution~explosion! in real
time of these clusters can also be obtained by our resca
generalizing recent work@10#. The resulting spectrum of glu
ons and their multiplicity can then be obtained. We then
gue that the prescribed scaling law is valid not only at h
energies, above the sphaleron mass, but in fact atall ener-
gies.

In Sec. II we recall standard notation for the spherica
symmetric gauge configurations used. In Sec. III, we re
the main approaches to evaluating the inelastic parton-pa
scattering in the eikonal approximation. In Sec. IV, we sh
that the singular gauge configurations at the escape po
follow from the sphaleron point for all energies through
pertinent rescaling, which is our main result. In Sec. V,
assess the number of incoming and outgoing gluons
sphaleron for fixed center of mass energy in the semiclass
approximation. The Appendices contain a number of use
results including a stability analysis of the escaping confi
rations under perturbative light pair decay.

II. O „3…-SYMMETRIC YANG-MILLS

We consider the QCD Yang-Mills~YM ! theory wherein
all dimensions are rescaled away by the sphaleron~anti-
sphaleron! massMS ,

MS5
1

4aE0

`

dxx2
96r4

~x21r2!4
5

3p

4ar
, ~1!

unless specified otherwise. In the vacuuma'0.7, r
'1/3 fm,1 with typically MS'2 GeV. In the scattering pro
cess, the sphaleron~antisphaleron! size r may change. We
work mainly in the temporal gauge. The YM potentialV,
kinetic energyK , and Chern-Simons numberN are

V5
MS

4paE dxW
1

4
~Fi j

a !2,

K5
MS

4paE dxW
1

2
~Ȧi

a!2,

N5
1

16p2E dxWe i jk S Ai
a] jAk

a1
1

3
eabcAi

aAj
bAk

cD , ~2!

where we have ignored quarks for simplicity.
In parton-parton scattering with largeAs, the incoming

kinematics boils down to an eikonalized cross section a
Eq. ~8! with a partial cross sections(Q) with Q'MS

1As discussed, e.g., in the review@3#, lattice studies indicate tha
the instanton size distribution has a sharp peak around this valu
small r it happens because the semiclassical barrier beco
higher, while suppression at larger is not well understood. In this
work we found that the effective size is reduced with increas
energy, making the suppression mechanism irrelevant.
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!As. In the center of mass it is reasonable to consider
gluonic configurations that maximizes(Q) to possess highe
symmetries than completely arbitrary fields.2 Here we take
them to have spherical O~3! symmetry of the sphaleron

Ai
a~xW ,t !51eai jni@12A~x,t !#/x

1~dai2nani !B~x,t !/x1naniC~x,t !/x ~3!

whereni5xW i /x is a unit three-vector, anduxW u5x>0 a radial
variable. Since we are interested in singular gauge fields
assume the three two-dimensional independent funct
A,B,C to be continuous and differentiable everywhere
Euclidean space, except atx50 where a singularity will be
located for fixed times6T/2. In terms of Eq.~3! the Euclid-
ean action

S5E dt~K1V! ~4!

reads

S5
1

aE dtE
0

`

dxS Ȧ21Ḃ21
1

2
Ċ21A821B82

1
~A21B221!2

2x2
1

C2~A21B2!

x2
1

2C~A8B2AB8!

x D
~5!

where the time variable has been rescaled throughtMS→t in
Eq. ~5!. The integration interval is to be specified below
the presence of a time singularity. Note that the energy

2Q5K2V ~6!

where in Euclidean space2V plays the role of the potential
For self-dual configurationsQ50. The Chern-Simons num
ber is

N5
1

2pE0

`

dxS A8B2B8A1
C

x
~A21B221! D . ~7!

The dual to the O~3! ansatz used here that maps on the
tisphaleron follows similar reasoning and results as show
Appendix A. The difference is a negativeN.

At
es

g

2We expect that the sudden deposition of energy from the pa
collision does not allow time for a change in the topological co
dinates. That is, if in the vacuum there was a virtual configurat
under the barrier with some Chern-Simons number, the one
duced would beon the barrier with the same coordinate. We assu
it to be spherical because~i! such clusters are relatively small ob
jects, and~ii ! spherical turning points are the only ones analytica
tractable.
5-2
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III. THE EVOLVING VIEWS ON NONPERTURBATIVE
HIGH-ENERGY PROCESSES

In this work we discuss the so called semihard part
parton processes, at fixedA2t;1 GeV!As, which involve
certain nonperturbative QCD gauge configurations relate
topological tunneling.

The original approach@4–6# we followed in @8# was
based on the semiclassical instanton solution in the am
tude. To leading order in a small tunneling diluteness fac
containing the instanton density and their typical sizek
5ninstr

4;1022 ~see, e.g.,@3# for details! the inelastic cross
section was written as

s IN~s,t !'Cpr2 ln sE dq1'dq2'K ~q1' ,q2' ,t !

3E
(q1'1q2')2

`

dQ2k2B~Q! ~8!

whereK is the pertinent instanton form factor at fixed2t
!s, containing through-going partons in the form of Wilso
lines. The square ofk appears because the amplitude
squared.B(Q) is the partial multigluon cross section fo
fixed Q2!s and C an overall constant which accounts f
both the instanton and anti-instanton contributions to the
tial state. To exponential accuracy

k2B~Q!'ImE dTeQT2S(T) ~9!

whereS(T) is the effective action describing the instanton
anti-instanton interaction for a time separationT, which is
defined at largeT to become twice the free instanton actio
This effective action, also known as the ‘‘holy grail fun
tion,’’ is supposed to sum up contributions ofanynumber of
produced gluons. For smallQ or largeT, the dipole approxi-
mation is valid and Eq.~9! rises exponentially withQ @4#.
However, as emphasized first by Zakharov@5# the unitarity
constraints on the partial cross section requireB(Q) to fall at
large Q. Shifman and Maggiore@6# argued that the unitari
zation could be qualitatively enforced by resumming cha
of instantons and anti-instantons. In@8# we followed this idea
and indeed found that the dominant contribution to Eq.~9!
occurs at the sphaleron point for whichB(MS)'1/k. Hence,

s IN~s,t !'Cpr2k ln sE dq1'dq2'K ~q1' ,q2' ,t !.

~10!

The rise in the partial inelastic cross section due to the p
duction of the QCD sphaleron3 results in an increase of th
inelastic cross section by one power of the diluteness fa
k, or about a 100-fold increase@8#.

This qualitative solution of the problem implies, howeve
that the maximal cross section does not correspond to a w

3Of course, there is also production of the QCD antisphaler
which carries the opposite Chern-Simons number.
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separated instanton–anti-instanton pair, but rather to a di
ent field configuration, a close pair withT;r with half the
action annihilated. Detailed studies of close instanton–a
instanton configurations have been made recently in@10#,
with the t50 point describing the escape point~turning
point! in Minkowski space of the gauge field configuratio
Although this paper does not deal with the cross sect
calculation, one could in principle do so by modifying th
form factor K in Eq. ~1! using Wilson lines in half the
instanton–anti-instanton field as described, e.g., by the Y
ansatz.

However, even this solution of the problem is not y
ideal, as it still treats two small semiclassical factors
volved, the instanton–anti-instanton interactionS in the
vacuum and the form factorK independently. The idea be
hind the Landau method is to combine both in one comm
semiclassical treatment. We do not repeat all the explanat
and technical details the reader can find in@12#, but just
recall the main idea. Considering the quantum-mechan
overlap between the ground and highly excited states w
energyQ, Landau wrote it as the difference of the shorten
action for both paths, with energy 0 andQ, respectively.
Naturally, the integral goes from the turning points to infi
ity. The singularity of the gauge configuration plays the ro
of such an infinity for the quantum coordinates. Specific E
clidean paths, used following@11,12#, have singularities in
the Am field located atr 50 and time7T/2 ~see Fig. 1!.
Outside the region marked by the dashed lines the solut
are the universal singular instantons describing the gro
state. Between the dashed lines it is supposed to be the~so
far missing! energy-Q solution: the two join smoothly at the
dashed lines. Our aim is to find the solution, at least appro
mately, and look at thet50 plane, describing the turning
states. This analysis will eventually lead to predictions
what is actually produced in the collision.

IV. MORE DETAILS OF SINGULAR YANG-MILLS
SOLUTIONS

A. Singular fields: ztzÌTÕ2

The branch of the field that interpolates between
vacuum att52` and the singularity att52T/2 with zero
energy and minimizes Eq.~4! is an instanton. The conjugat
,

FIG. 1. The space distance–timer 2t plane. Small circles show
the positions of the singularities; the vertical dashed lines indic
lines at which two solutions with different energies are joined
gether.
5-3
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branch is an anti-instanton and interpolates between the
gularity at t51T/2 and the vacuum att51`. In covariant
gauge, both branches are given by

Am
a
„x~6 !…52hmn~6 !xn~6 !F„x2~6 !…

5
2hmn

a ~6 !xn~6 !r2

@r22x2~6 !#x2~6 !
~11!

where the2 field refers to thet,2T/2 time branch, and the
1 field refers to thet.T/2 time branch, with

x~6 !n5~xW ,t6!n5~xW ,t7T/26r!n . ~12!

The ’t Hooft symbols are identified ash(1)
5h(anti-instanton) andh(2)5h̄(instanton). Forutu.T/2
Eqs. ~11! are singular self-dual solutions to the QCD Yan
Mills equations with zero energy. Note that the singularity
Eq. ~11! stems from the changer→ ir in the self-dual O~4!
instanton.A(1) is the time conjugate ofA(2).

The axial gaugeA450 is commensurate with the O~3!
symmetry, and the results for the6 branches follow by using
the hedgehog gauge transformation

U~xW ,t !5expS ixW•tWE t

dt8F~xW21t82! D , ~13!

modulo static gauge transformations. Under the action of
~13! theA4 part in the Lorentz gauge~11! is gauged to zero
The residual static gauge transformations are fixed by fix
the positions of the singularities in the axial gauge to co
cide with those in the Lorentz gauge att57T/2. In particu-
lar,

Ai
a~xW ,2T/2!5Ai

a~xW ,1T/2!

52~eai j xj1dair!
2r2

x2~x21r2!
. ~14!

B. Singular fields: ztzËTÕ2

The gauge configuration in the time intervalutu,T/2 fol-
lows from the YM equations using Eq.~14! as the singular
boundary conditions. They are no longer constrained by s
duality, and hence carry finite energyQ. Fixed Q relates to
fixed T throughQ5dS/dT whereS is the Yang-Mills action
in the time intervalutu<T/2.

1. Above the sphaleron

For small Euclidean timesT/r!1 or large energy, the
singular boundary conditions~13! common to both the Lor-
entz and axial gauge, imply for the axial gauge decomp
tion ~3! that B;C;D/2@A throughout@12#. In this limit,
the action~5! reduces to

S'
3

4aEutu,T/2
dtE

0

`

dxS 1

2
Ḋ21

1

8x2
D4D , ~15!
01400
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2
Q

MS
'1

3

4aE0

`

dxS 1

2
Ḋ22

1

8x2
D4D , ~16!

and the Chern-Simons number is

N'
1

2pE0

`

dx
D3

8x
, ~17!

with the boundary conditionD(r ,6T/2)524r/r . The ac-
tion ~15! is extremal for

D~r ,2T/2!

2r /~ t1T/2!
5E

1

D(r ,t)/D(r ,2T/2) dx

Ax421
. ~18!

The transcendental equation~18! can be solved numerically
The solution is shown in Fig. 2~thick line! for r/T510.

A good approximation at the escape point is

D~r ,0!'
4rr

r 21~A2/K !rT
~19!

which interpolates exactly between the asymptotics of
transcendental solution withK51.854. Equation~18! is also
shown in Fig. 2~thin line!. Its corresponding initial radia
density is

Q00~r ,0!'
4p

g2

24r4r 2

@r 21~MS /Q!2/5r2#4
, ~20!

which integrates toQ. Note that the tunneling durationT
relates to the energyQ through

T

r
5

K

A2
S MS

Q D 2/5

. ~21!

The Chern-Simons number at the turning point for Eq.~19!
is

FIG. 2. D(r ,0) for r/T510. See text.
5-4
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N5
1

2 S Q

MS
D 2/5

. ~22!

At the sphaleron point withQ5MS the configuration~19!
carries Chern-Simons numberN51/2: it is a sphaleron.

For Q.MS the initial configuration follows from the
sphaleron by a simple rescaling of the sizer and the energy
density,

r→r/l,

Q00→l4Q00 ~23!

with l5(Q/MS)1/5. In Sec. V B we will evolve the gauge
field configuration into Minkowski space using Lusche
Schechter~LS! solutions@14#. These solutions have a pure
magnetic field configuration att50 and the~radial! energy
profile

Q00~r ,0!54pr 2Q00~xW ,0!5
4p

g2

48erLS
4 r 2

~r 21rLS
2 !4

. ~24!

Comparing with the rescalings~23! we see that we have t
use the LS solutions with the parameters

rLS5
r

l
,

e5
l4

2
. ~25!

2. Below the sphaleron

Below the sphaleron the analytical analysis is more
volved in general. For small energyQ or large timesT, a
perturbative expansion around the singular instanton–a
instanton configuration has been carried out in@12#. As we
will argue below, the multiplicities below the sphaleron fo
low from the same rescaling~23! with Q,MS .

V. GLUONS IN ÕOUT

In this section we estimate the number of incoming~vir-
tual! and outgoing~real! gluons present in the semiclassic
singular gauge configurations for arbitrary parton-par
center of mass energyQ.

A. Incoming gluons

The number of incoming gluons follows from the exa
Euclidean solutions at large Euclidean times by expandin
powers of the space Fourier transform of the large Euclid
asymptotics of the singular fields~11! as in @11,13#. In the
Lorentz gauge,

A 0
a~ t,kW !52i k̂aQ~6,k!e2kt,

A i
a~ t,kW !522k̂ak̂iQ~6,k!e2kt1

l i
m

A2k
f a

m~6,k!e2kt

~26!
01400
-
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n

with

Q~6,k!5
2p2

g
r2e6k(T/22r) ~27!

and

f a
m~6,k!5

4p2r2

g
A2k~2la

m1 i eab jlb
mk̂j !e

6k(T/22r).

~28!

The transverse polarizations are denoted byla
m . In terms of

the Fourier components~28! the density of incoming trans
verse gluons is proportional to the occupation numberāa
with

ai
m~u,k!5 f i

m~1,k!e2k(T2u)/2, ~29!

whereu is a parameter fixed by requiring the total energy
the incoming gluons to match the energyQ @11,13#. We note
that T drops in the combination~29!. Hence, the density o
transverse gluons per unit wave number is

n~k!5
16p

a
r~kr!3e24kr(MS/2Q)1/5

, ~30!

and the corresponding energy density per wave number

v~k!5kn~k!5
16p

a
~kr!4e24kr(MS/2Q)1/5

. ~31!

Under the rescaling~23! the energy density~31! of the in-
coming transverse gluons follows from the sphaleron po
and integrates toQ. The virtual number of gluons stripped b
a sphaleron is

Nin~Q!5
3p

8a S 2Q

MS
D 4/5

, ~32!

and similarly for the antisphaleron. Each virtual gluon carr
in Q/Nin'l where as beforel5(Q/MS)1/5. We recall that
these gluons are absorbed from the two eikonalized par
involved in the inelastic cross section~8!.

B. Outgoing gluons

To assess the number of outgoing transverse gluons
duced by the singular gauge configurations in the semic
sical approximation, we need to know the gauge configu
tions at the escape point and their further Minkowski tim
evolution, much like the decay of the sphaleron in the st
dard model @15#. The escaping sphaleron in Minkowsk
space is related to an analytical solution discovered by L
cher and Schechter@14# as discussed in@10,16#. What is
remarkable in our case is that through the scaling laws~23!
we have tied features of this solution~energy density and
multiplicity! to those of the escaping singular Yang-Mil
fields above the sphaleron point.
5-5
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1. At the sphaleron

The LS solution in Minkowski space at the sphaler
point is amenable to elementary functions@17# ~some helpful
relations can be found in the Appendices!. It is strongly
peaked around the light conet;r as it travels luminally, and
for large timest;r @r in covariant gauge it simplifies

A0
a~ t,v !;2

F8

g
na ,

Ai
a~ t,v !;1

F8

g
nani

1
F8

gt
~v~dai2nani !1re ia j nj ! ~33!

with v5r 2t and

F8~v !5
2r f

r21v2
,

f ~v !5
1

2 S 12
A2

cosh~A2 j!
D , ~34!

and j5tan21(r/v). Note that f (6`)51/221/A2;
20.207, with f (0). f (`). ChoosingF(0)50 we see that
F(v) is an odd function with asymptoticsF(6`)5
60.216. We discuss some more details of the solution
Appendix A, and show that the behavior of the gauge inva
ants is the same as found in@10#.

Consideration of the gluon number of spectra is a m
subtle issue, and should be performed in ‘‘physical’’ gaug
The large time asymptotics of the temporal and longitudi
gauge fields are constant at larget and proportional toF8(v)
with support only on the light cone. This is a gauge artifa
in the covariant gauge, and can be removed by transferrin
the temporal gauge by using the hedgehog gauge transfo
tion

v~v !5ei t•nF(v) ~35!

which yieldsA0
a50. The temporal gauge is canonical in th

sense that Gauss law is easily implemented by restric
consideration to the transverse gluons, and the vacuum
is normalizable. In this gauge the large time asymptotics
the field is purely transverse and falls as 1/t;1/r ,

Ai
a~ t,v !;

2

gt S sin2F1
F8

2
@r cos~2F !1vsin~2F !# D eai jnj

1
1

gt
~2sin~2F !1F8@r sin~2F !2v cos~2F !# !

3~dai2nani !. ~36!

Note that the gauge transformation~35! modifies the Chern-
Simons number~7!. The transverse fields in both covaria
and axial gauges weaken asymptotically as 1/t. Asymptoti-
cally the Yang-Mills solution originating from the sphalero
01400
n
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e
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point Abelianizes, thereby allowing for a free wave interpr
tation. It is easier to carry the analysis into the covaria
gauge.4

The large time transverse asymptotic of Eq.~33! admits a
normal mode decomposition in the form

A i
a~ t,kW !5

~2p!3/2

A2k
@l i

m~kW !bam~kW !e2 ikt

1l i
m~2kW !bam* ~2kW !e1 ikt# ~37!

with the l ’s as the two real polarizations,

l i
m~kW !bam~kW !5

r

gApk
@2 i eai j k̂ jJ~kr!

1~dai2 k̂ak̂i !J8~kr!#, ~38!

and

J~kr!52 ReE
0

p/2

dyeikr cotanyS 12
A2

cosh~A2y!
D . ~39!

The transcendental function~39! cannot be obtained in
closed form, but is well behaved forkr!1,

J~kr!;p24 arctanF tanhS p

2A2
D G , ~40!

J8~kr!;p~A221!. ~41!

In terms of the normal mode decomposition~37!, the
asymptotic density of transverse gluons is proportional to
occupation numberul•bu2 of the transverse modes,

n~k!54pk2ul•bu25
8r2k

g2
@J2~kr!1J82~kr!#. ~42!

The number of gluons with small energy grows askr, while
the number of gluons with high energy falls askre22kr. The
total number of prompt gluons emitted by a sphaleron is

Nout~MS!5
8

g2E0

`

xdx@J2~x!1J82~x!#5
1.1

a
~43!

where the last integration has been performed numerica5

The same number of gluons is produced through the a
sphaleron. Each mode in the transverse asymptotic~37! is
normal, so that the energy density carried by these mode

4In the temporal gauge there is a subtlety related to the cons
modes that do not admit a spectral representation. Indeed, we
checked that the space Fourier component of Eq.~36! exhibits a
nonspectral termtd(k).

5It is very similar to the spectrum obtained in the numerical ana
sis of @10#, but different from the one discussed analytically the
albeit in a different gauge, where this number was found to dive
logarithmically at smallk. The occupation number is also found
diverge in the axial gauge in relation to thek50 modes~see foot-
note 1!. The gauge we use now is free from gauge artifacts.
5-6
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v(k)5kn(k), which integrates to give back the sphaler
mass by energy conservation,

MS5
8

g2r
E

0

`

dxx2@J2~x!1J82~x!#5
2.2

ar
. ~44!

The numerical result~44! is off by 7% in comparison to the
exact sphaleron mass~1! which is a measure of the onset
the asymptotic normal mode expansion~37!. In Appendix C
we show that the expanding sphaleron configuration is st
under pair production of light quarks and gluons.

2. Away from the sphaleron by rescaling

The escape configurations above the sphaleron fol
from the gauge configuration~18!, ~19!. The latter yields the
energy density of the sphaleron after the rescaling~23! and a
Chern-Simons number of 1/2 at the sphaleron point. Si
the electric field vanishes at the escape point, we conc
that it is very plausible that this gauge configuration is gau
equivalent to the LS gauge configuration with the parame
~25!.

The analysis of the preceding section may be perform
just with the substitution off (v) by

1

2
@12A11A2e•dn~A11A2ej,m!# ~45!

for e,1/2, and by

1

2
~12A11A2e•cn@~2e!1/4j,m# ! ~46!

for e.1/2, where

m5
11A2e

2A2e
. ~47!

In Fig. 3 we show the multiplicity distributions for vari
ous values ofl. Numerically there is not much differenc
between the solutions obtained from the elliptic LS profi
and an appropriate rescaling~23! of the sphaleron results. In
particular,

n~k!;l4
8kr2

g2l2 FJ2S kr

l D1J82S kr

l D G ~48!

with l5(Q/MS)1/5. The total number of prompt gluon
emitted above the sphaleron is~in this approximation!

Nout~Q!

Nout~MS!
5S Q

MS
D 4/5

. ~49!

The ratio of in~virtual! to out ~real! gluons per sphaleron i
a number independent ofQ: Nin /Nout;2. Prompt inelastic
scattering in QCD is from few-to-few~small Q) or large-to-
large gluons~largeQ).

Below the sphaleron barrier, there are two turning poin
t52T1/2 with zero Chern-Simons numberN50, and t50
01400
le

w

e
de
e
rs

d

s

:

with unit Chern-Simons numberN51. The two gauge con-
figurations and thereby multiplicities are related by the gau
transformation~13!. The remarkable similarity between th
scaling law~49! for the outgoing gluons above the sphaler
point and the scaling law~32! for the incoming gluons both
above and below the sphaleron point leads us toconjecture
that Eq. (49! holds for the outgoing gluons below the spha
ron point as well.

The total number of prompt gluons emitted by the esc
ing singular Yang-Mills configurations below the sphaler
follows the scaling law~49!, which is seen to vanish at th
instanton point. This result follows from a saturation of t
partial cross section via classical and singular solutions to
Yang-Mills equations, and is different from the one deriv
recently using a minimization of the energy at the esca
point by constraining the size and Chern-Simons numbe
the escape point@10#. The latter is likely to provide a lower
bound on the partial cross section, while the former satura
it.

C. Averaging gluons

So far, we have considered the production of prompt g
ons for fixedQ in the inelastic production cross section give
by Eq. ~8!. For the singular Yang-Mills solutions considere
here, the partial cross sections(Q) has been derived fo
small and largeQ in @12#. In units of scaled energyx
5Q/Ms , their result with exponential accuracy is

s~x!5s1~x!u~x21!1s2~x!u~12x! ~50!

with

s6~x!5e(4p/a)F6(x). ~51!

The ~known part of the! holy grail function reads6

6The scaling laws derived above are specific to the energy den
and the gluon multiplicities. They do not carry to the action dens
needed to assess the partial cross section~50! semiclassically. For
that we need explicitly the escaping classical fields starting fr
Eqs.~18!, ~19! for instance.

FIG. 3. Density of emitted gluons per sphaleron~multiplied by
a/r) for l50.5,1,2 versuskr.
5-7
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F1~x!520.482x3/5,

F2~x!52110.6185x4/520.0710x6/5

10.0122x8/5~2 ln x1const!. ~52!

The first contributions inF6 are from the semiclassical sin
gular gauge configurations alone, while the last two con
butions inF2 are from the one-loop and two-loop contrib
tions, respectively@12#. The initial increase in the partia
cross section in Eq.~50! follows from the rapid increase in
the tunneling rate at the expense of the decrease in
matrix-element overlap. At the sphaleron pointx
51, F1(1);F2(0)/2, which is about half the instanto
suppression factor,

k5s1~1!;As2~0!;Ae24p/a, ~53!

in agreement with the unitarization arguments in@5,8#. The
final and rapid decrease in the cross section past the sp
ron point is caused by the decrease in the overlap betw
the initial and final states of the inelastic collision proces

In this subsection we would like to show that in thein-
clusive gluon productiona sharp peak remains, even after w
included the gluon multiplicity factor. In Fig. 4 we plo
x4/5s(x), with the typical instanton action in the QCD
vacuum, 2p/as(r)512.

Using Eq. ~50! we can assess the averaged number
prompt gluons produced in a parton-parton scattering pro
at largeAs,

Nin,out~ t !

Nin,out
5E

2t/MS
2

`

dx2m~x,t !x4/5 ~54!

as a function of the invariant mass transfer in thet channel,
with the measurem(x,t) fixed by the partial cross section

m~x,t !5s~x!/E
2t/MS

2

`

dx2s~x!. ~55!

Nin,out are the number of gluons at the sphaleron mass.
results for the ratio~54! are displayed in Fig. 4 versu
2t/MS

2 . The undetermined constant in Eq.~52! was adjusted
to 2.418 to ensure a smooth transition atx51. For A2t
within MS , the averaged multiplicity is increased by only
factor of about 1.1 compared to the multiplicity at the spha
ron mass.

VI. CONCLUSIONS

The cross sections of multigluon production by instanto
induced parton-parton scattering are calculated semicla
cally, using singular classical solutions of the Euclide
Yang-Mills equations. For energiesQ much above the
sphaleron mass we found an approximate solution which
lowed us to obtain the field configuration at the turning~es-
cape! time t50. This turned out to be just a rescaled Yan
Mills sphaleron solution@10#. We also solved the Yang-Mills
equations describing its Minkowski explosion at later tim
which again happen to be just a rescaled version of
01400
i-

he

le-
en

f
ss

e

-

-
si-
n

l-

-

,
e

Luscher-Schechter solution discussed in@10#. By going to
the physical gauge, we found the spectrum of the resul
gluons.

Using an analytical continuation of the singular tails in
Euclidean time, we have found that the same rescaling
lows for the determination of the virtual in-gluon multiplic
ties both above and below the sphaleron~antisphaleron!
point. Thus, the in-out multiplicities at the sphaleron a
antisphaleron points imply the in-out multiplicities awa
from this point for semiclassical parton-parton scatterin
The scattering liberates about 1.1/as(r) prompt gluons per
sphaleron~antisphaleron! produced. We recall that all the
calculations are semiclassical, assumingas(r)!1 or a large

FIG. 4. ~a! The inclusive gluon multiplicityx4/5s(x) versus en-
ergy in units of the sphaleron massx5Q/Ms . ~b! The ratio~54! of
prompt gluons emitted as a function of2t/MS

2 .
5-8
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produced multiplicity. The larger the longitudinalQ trans-
ferred in the c.m. frame, the smaller the size of the escap
sphaleron or antisphaleron, and vice versa. The semiclas
production through singular QCD solutions in the semih
regime may even extend to the hard regime through sma
size sphalerons. However, in this case the cross sectio
small. On the other hand, for typical instantons in the inst
ton vacuum relevant to the ‘‘semihard’’ scale and possi
the QCD Pomeron problem, this number would be abou
gluons per cluster: thus the semiclassical analysis is not
pected to be very precise.

This mechanism of gluon production is in addition to pe
turbative Balitskiiˇ-Fadin-Kuraev-Lipatov ~BFKL! ladders
and/or virtual gluon materialization in the color-glass a
proach@18#. The difference between this mechanism and o
ers is seen, e.g., in the fact that the released semiclas
gluons form thin shells of a strong coherent field, which ha
some topological features inherited from the topological t
neling. The difference between them may be important
many applications, and is quite striking for quark producti
~which we address elsewhere!.

We have found that the invariant mass of the gluonic cl
ter is sharply peaked at some~weakly energy dependen!
value; one may thus ask if such phenomena have been
experimentally. It is known from correlation measureme
that multiparticle production inpp collisions is dominated
by some clusters or clans: for a recent discussion see,
@20#. The multiplicity per cluster is slowly growing with en
ergy. The invariant mass is unknown since neutrals are
seen, but happens to be in the pertinent range of a few M
In a calorimeter study of double diffractive events by t
UA8 Collaboration@19#, a single cluster was produced an
its invariant mass was measured and found to be pea
around 3 GeV, with a strongly decreasing tail at larger ma
Moreover, the clusters with mass less than 5 GeV show
markable spherical decays~in their rest frame!. We are cur-
rently investigating specific decay modes and evalua
their relevant cross sections to see whether the qualita
agreement with the present work can be made more qu
tative.
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APPENDIX A: LS SOLUTION

In this section we give a brief characterization of the
gauge configuration. The reader is also referred to@17# for
more details. For the Euclidean Witten ansatz

2eA0
a5

xa

r
A0 , ~A1!
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2eAi
a5« ian

xn

r 2
~11f2!

1
xaxi

r 2
A11S dai2

xaxi

r 2 D f1

r
. ~A2!

The coefficient functions for the LS solutions continued
Euclidean space are

A0524qLSg2rt , ~A3!

A1524qLSg2
11r 22t2

2
, ~A4!

f1524qLSg2r
12r 22t2

2
, ~A5!

f2524qLSg2r 221, ~A6!

g25
1

~12r 22t2!214r 2
, ~A7!

andqLS is a function of arctanh@2t/(11r 21t2)#.
In terms of these quantities the electric and magne

fields are given by formula7 ~7.27! in @17#. We perform the
calculations for the sphaleron point which corresponds to

qLS5211
A2

cos$A2 arctanh@2t/~11r 21t2!#%
. ~A8!

We rotate these formulas back to Minkowski space us
t→ i t . The solutions are again concentrated on the light co
We perform then the limitt→` keepingv5r 2t fixed. The
results for the ‘‘electric’’ coefficients of formula~7.27! in
@17# are

D0f2 /r→v12 sech2u~sinhu2v !

t~11v2!2
, ~A9!

F01→
1

t
•0, ~A10!

D0f1 /r→122 sech2u~v sinhu11!

t~11v2!2
,

~A11!

whereu[A2 arctanh(1/v). The ‘‘magnetic’’ coefficients are

2D1f1 /r→ i
122 sech2u~v sinhu11!

t~11v2!2
, ~A12!

7In the original formula~7.27! the coefficient ofF01 is off by a
factor of r 2.
5-9
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~12f1
22f2

2!/r 2→ 1

t
•0, ~A13!

D1f2 /r→2 i
v12 sech2u~sinhu2v !

t~11v2!2
.

~A14!

For large timest, the electric and magnetic fields are equ

EW 2~ t,v !;BW 2~ t,v !;
2

t2

1

~11v2!3
, ~A15!

and sum up toMS . The same result was obtained in@10#.
The ‘‘antisphaleron’’ follows from the sphaleron by su

stituting

A0→2A0 , ~A16!

A1→2A1 , ~A17!

f1→2f1 , ~A18!

f2→f2 ~A19!

in the Witten ansatz above, and yields a solution of the Y
equation of motion. The same transformation makes a sw
between the instanton and anti-instanton in the Witten ans

APPENDIX B: Im S FOR LS SOLUTION

In this appendix we will show that the imaginary part
the classical action along the deformed contour@16# does not
depend on the energy of the LS solution. In other words,
instanton–anti-instanton suppression factor persits all
way to the sphaleron point in the deformed contour appro
suggested in@16#. Indeed, for«,1/2 the solution is given by
the function

q5q2sn~q1f1K,k! ~B1!

where we use the same notation as in@16#,

q65A16A2«, k25
q2

2

q1
2

, ~B2!

and

f5arccothS 11r 21t2

2t D . ~B3!

The suppression factor is given by

Im S52
24p2

g2 E
0

`

dr Im (
nm

ResH cos4w

r 2
EJ ~B4!

where

E[
1

2
q̇21

1

2
~q221!2. ~B5!
01400
,

h
tz.

e
e
h

The residues are calculated at the poles of Eq.~B1! inside the
contour. One can show thatE is just equal to (q221)22«.
We will now use the Laurent expansion of the elliptic sin

sn~u!;
a

u2u0
1b~u2u0!. ~B6!

Using the differential equation for sn(u) we obtain the rela-
tions a2k251 andb5(a/6)(11k2). We thus have to com-
pute

Res~cos4wE!5a4k4 ResS cos4w

~f2f0!4D
1~4a3bk2q2

2 22a2k2! ResS cos4w

~f2f0!2D .

~B7!

The coefficients of the residues are energy independent
equal to 1 and22/3, respectively. Once we use

cos2w[
4r 2

~11r 2!212t2~r 221!1t4
~B8!

and the r dependence of the polest(r )5q1Aq2212r 2

whereq is an« dependent constant, we obtain

E
0

` dr

r 2
ResS cos4w

~f2f0!4D 5
i

3

11q2

12q2
, ~B9!

E
0

` dr

r 2
ResS cos4w

~f2f0!2D 5 i
1

12q2
.

~B10!

Finally, we get

Im S5
8p2

g2
. ~B11!

Note that the whole energy dependence through« has can-
celed out.

APPENDIX C: STABILITY UNDER PAIR DECAY

Are the escaping Yang-Mills fields stable under pair d
cay? In this appendix, we answer this question by asses
the gluon or quark pair emission rate in a general time
pendent background to first order ina. Let T(A) be the
on-shell matrix element between a particle and an antip
ticle in the external gauge field. Typically, the number
pairs per unit four-volume is

dNq̄q

d4x
5Tr^xu ln@12T~A!P~1 !T̄~A!P~2 !#ux& ~C1!
5-10
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whereP(6) are the on-shell projectors on particles and a
tiparticles, and the trace is over color and spin. In the m
mentum representation

P~6 !52p~P” 1mF!u~6P0!d~P22mF
2 ! ~C2!

for a flavor of massmF . Since the pair creation follows from
large times~weak fields!, we may approximateT(A) by its
leading order

T~A!' igA” . ~C3!

Inserting Eq.~C3! into Eq. ~C1!, expanding the logarithm
integrating over all space-time, and insisting on gauge inv
ance yield the pair rate

dNq̄q

d4q
5

4a

12~2p!4
~ uEi

a~q!u22uBi
a~q!u2!

3u~q224mF
2 !~124mF

2/q2!1/2~112mF
2/q2!,

~C4!

where (E,B) are the Fourier transforms of the chromoele
tric and -magnetic fields in Minkowski space,

~E,B!~q!5E d4xeiq•x~E,B!~x!. ~C5!

We have highlighted4 in Eq. ~C4! to show

45
1

2
323232 ~C6!

for g/A2 fundamental quark charge, two flavors, two spi
and two particle-antiparticles, respectively. Notice that
production in Eq.~C4! is timelike, for whichq5(v,0W ) is an
allowed frame. Such frames support zero magnetic fie
indicating that the pair production mechanism is electric
nature. It is of ordera0 in the strong coupling constant. I
deriving Eq.~C5! we have ignored the back reaction of th
quarks on the YM fields.
.

01400
-
-

i-

-

,
e

s,

Since theūu andd̄d pairs are light, we may setmF'0 in
Eq. ~C4!. The total number of light quark pairs emitted b
the classical field is

Nūu1d̄d5
a

3~2p!4E d4qu~q2!~ uEi
a~q!u22uBi

a~q!u2!.

~C7!

The present arguments can also be used to derive a sim
expression for the number of gluon pairs emitted by the c
sical field in the weak field limit. ForNc53, the gluons can
be organized in three conjugate pairs, such

W1W2, K1K2, K0K 0̄, by analogy with the charged octe
mesons. Say we choose the external field to beK0; thenK0

may decay into the two charged modesW1W2 andK1K2.
Using the background field method, the result for the tw
gluon multiplicity is

Ngg5
3a

12~2p!4E d4qu~q2!~ uEi
a~q!u22uBi

a~q!u2!.

~C8!

We have highlighted3,

35
3

4
3232, ~C9!

for gA3/2 charge, two decay modes, and two physical hel
ties, respectively. Combining Eq.~C7! with Eq. ~C8! we find
that the light quark and gluon multiplicities are related by

Nūu1d̄d5
2NF

3
Ngg . ~C10!

Using the results of Appendix B, we find

E d4qu~q2!~ uEi
a~q!u22uBi

a~q!u2!50. ~C11!

The expanding sphaleron starts magnetic and remains m
neticlike throughout. It is stable under light-pair quantu
emission.
s.
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