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Prompt multigluon production in high-energy collisions from singular Yang-Mills solutions
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Nonperturbative parton-parton scattering is studied using the Landau method. Specific sin@uar O
symmetric solutions to the Euclidean Yang-Mills equations are discussed, with instanton dynamics incorpo-
rated in the overlap between incoming and vacuum fields. We derive a high-energy solution at small times, and
assess the gluonic state produced at the turning pestape point to Minkowski space-tim&Ve follow the
solution as it escapes to Minkowski space and assesaiitpinggluon spectrum. The solution is found to
follow from the Yang-Mills sphaleron problem studied recently through a simple rescaling. We also argue, by
evaluating the number dhcominggluons for the same singular solution, that this scaling is in fact more
general and presumably describes the energy dependence of the spectra and multiplalitieseagies.
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[. INTRODUCTION cally large valueN~ 1/a(p). The physical reason for this is
that particularcoherent cluster®f the gauge field are actu-

Tunneling phenomena related to the topology of Yang-ally produced, instead of independent gluons. In a recent
Mills fields are described semiclassically by instantfh&].  paper[10] properties of minimal clusters of this kind were
Some manifestations of these effects related to explicitliscussed: the clusters themselves were identified via con-
breaking of U1) and spontaneous breaking of SUj chiral  strained minimization of the Yang-Mills energy, with fixed
symmetries are by now understood in significant detail dugize and Chern-Simons number, and their subsequent real
to strong ties to hadronic phenomenology and lattice studieme evolution has been studied both numerically and ana-
(see, e.g.[3] for a review. lytically.

We know much less about their role in the cross section of However, in real collisions the Yang-Mills energy or ac-
various high-energy reactions. Such studies got a big boost ifion of the final state is only one of the contributing factors.
the early 1990s, whebaryon-number violatingnstanton-  Another crucial factor is theverlapbetween the initial sys-
induced processes of the electroweak theory were activelyem of colliding gluons and the instanton, or whatever the
discussed4-6]. These developments were generalized tawunneling path is. One wajl1] to include both factors to-
hard processes in QCD through small size instantons, angether from first principles, and also enforce the unitarity
there are current attempts to see their contribution to multijetonstraints, is to use a semiclassical approximation to the
production at the DES¢p collider HERA (for a recent re-  partial cross section based on an adaptation of the Landau
view see[7]). formula for overlapping matrix elements in terms of singular

Recently[8,9] it was suggested that nonperturbative con-field configurations. The occurrence of a singularity is an
figurations composed of an instanton or anti-instanton plagssential feature of the Euclidean field configuration that in-
an important role in parton-parton scattering amplitudes aterpolates between the vacuumtat—o with zero energy,
high energy, and may account for most of the soft Pomeroand the escape point &0 with finite energy.
slope and intercept. The logarithmic rise of the inelastic cross By following this “Landau method,” as it was called by
section was shown to follow from coherent multiple gluon Diakonov and Petroy12], these authors were able not only
production as described by the semiclassical field followingo get the known low-energy limit of the amplitude, but also
from an interacting instanton—anti-instanton configurationto assess the high-energy one. Although they did not solve
This mechanism was shown to be the samepfprandpp  for the field configuration at small times explicitly, they were
[8]: so no odderon appears in the classical limit. still able to obtain the corresponding action and other quan-

At low energy transfer in the center of mass, the interaciities and thus were able to predict the behavior of the cross
tion is dipolar, and accounts for the rise in the partial crosssection at high energies. Comparing both limits has con-
section from first principles. At intermediate and large energyfirmed that the cross section has a maximum near the sphale-
transfer, the dipole approximation is not reliable as strongon energy, and that its value is close to the square root of the
instanton—anti-instanton interactions set in together with unioriginal low-energy tunneling amplitude.
tarity constraints[5,8]. Unlike perturbative processes, for ~ The aim of our paper is to analyze further the singular
which the production of each subsequent gluon is associateghuge configurations at thescape time+0. We start with
with a power of the small coupling constant, in instanton-the high-energy limit followind12] and show how one can
induced processes the cross section rises with the number fifid the turning(or escapepoint field configuration, describ-
gluons produced, reaching a maximum at some parametring the cluster produced &t 0. It turns out that this con-
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figuration can be related to the minimal QCD sphal€rbdy <./s. In the center of mass it is reasonable to consider the
by a particulaiscaling law containing a power o®/Ms. We  gluonic configurations that maximize(Q) to possess higher
then show that the subsequent evolutiemplosion in real  symmetries than completely arbitrary fiefdsiere we take
time of these clusters can also be obtained by our rescalinghem to have spherical @ symmetry of the sphaleron
generalizing recent worKLO]. The resulting spectrum of glu-
ons and their multiplicity can then be obtained. We then ar- ass o
gue that the preschi)bedyscaIing law is valid not only at high ATGD =+ €[ 1= A DX
e_nergies, above the sphaleron mass, but in faetlatner- + (85— NN B(X, D)/ x+nnC(x,t)/x (3
gies.

In Sec. Il we recall standard notation for the spherically - . > .
symmetric gauge configurations used. In Sec. lll, we recallVheren;=Xx;/x is a unit three-vector, an|=x=0 a radial
the main approaches to evaluating the inelastic parton-partoffiable. Since we are interested in singular gauge fields, we
scattering in the eikonal approximation. In Sec. IV, we show2SSume the three two-dimensional independent functions
that the singular gauge configurations at the escape poinfsB:C 10 be continuous and differentiable everywhere in
follow from the sphaleron point for all energies through aEuclidean space, exceptxat0 where a singularity will be
pertinent rescaling, which is our main result. In Sec. V, welocated for fixed times=T/2. In terms of Eq(3) the Euclid-
assess the number of incoming and outgoing gluons pefan action
sphaleron for fixed center of mass energy in the semiclassical
approximation. The Appendices contain a number of useful
results including a stability analysis of the escaping configu-
rations under perturbative light pair decay.

S=f dt(K+V) 4

reads
II. O (3)-SYMMETRIC YANG-MILLS

We consider the QCD Yang-MillsYM) theory wherein 1 q “d
all dimensions are rescaled away by the sphaldiamti- S_; t 0 X
sphaleron massM g,

o, 1
A?+B?+ SC2+A2+B'2

(A°+B%-1)2 C?A?+B? 2C(A’'B—AB’)
+ + +
(1) 2x2 x2 X

1 (> 96p* 3
MS:E,[O dXXZ—2 24=E,
(X“+p%) P ©)
unless specified otherwise. In the vacuum~0.7, p
~1/3 fm,! with typically Ms~2 GeV. In the scattering pro- Where the time variable has been rescaled thratg—t in
cess, the sphalerofantisphaleronsize p may change. We Ed. (5). The integration interval is to be specified below in
work mainly in the temporal gauge. The YM potentld]  the presence of a time singularity. Note that the energy
kinetic energyK, and Chern-Simons numbagt are
—Q=K-V (6)
vzﬁj diE(F?—)z, _ _ _
dma 4% where in Euclidean spaceV plays the role of the potential.
For self-dual configuration®=0. The Chern-Simons num-

Ms -1 . ber is
K= dxz (A%?,
47Taf 2( )
1 (= C
N=-—| dx{A'B—B’A+ —(A?+B?-1)|. (7
_ 1 > a a 1 apbpc 27 Jo X
N=—— | dxeij| ATdjAT 5 €ancATAA ), 2
167

The dual to the @8) ansatz used here that maps on the an-
where we have ignored quarks for simplicity. tisphaleron follows similar reasoning and results as shown in
In parton-parton scattering with largés, the incoming Appendix A. The difference is a negativ
kinematics boils down to an eikonalized cross section as in
Eqg. (8) with a partial cross sectionr(Q) with Q~Mg
2We expect that the sudden deposition of energy from the parton
collision does not allow time for a change in the topological coor-
1As discussed, e.g., in the revid®|, lattice studies indicate that dinates. That is, if in the vacuum there was a virtual configuration
the instanton size distribution has a sharp peak around this value. Ainder the barrier with some Chern-Simons number, the one pro-
small p it happens because the semiclassical barrier becomesduced would b@nthe barrier with the same coordinate. We assume
higher, while suppression at largeis not well understood. In this it to be spherical becauge such clusters are relatively small ob-
work we found that the effective size is reduced with increasingjects, and(ii) spherical turning points are the only ones analytically
energy, making the suppression mechanism irrelevant. tractable.
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lll. THE EVOLVING VIEWS ON NONPERTURBATIVE
HIGH-ENERGY PROCESSES

T

In this work we discuss the so called semihard parton- E
parton processes, at fixgd-t~1 GeV<\/s, which involve !
certain nonperturbative QCD gauge configurations related to &

]
]
]
]
]

topological tunneling. T2
The original approaci4—6] we followed in [8] was

based on the semiclassical instanton solution in the ampli-

tude. To leading order in a small tunneling diluteness factor

containing the instanton density and their typical size

=N ep?~10 2 (see, e.g.[3] for detail§ the inelastic cross

section was written as
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FIG. 1. The space distance—time t plane. Small circles show
the positions of the singularities; the vertical dashed lines indicate
lines at which two solutions with different energies are joined to-

on(s,)=Cmp? In Sf day, ddp, Ky, 102, 1) gether.
w separated instanton—anti-instanton pair, but rather to a differ-
X f L,4Q%«*B(Q) (8)  ent field configuration, a close pair wiffr-p with half the
(A1, +G21) action annihilated. Detailed studies of close instanton—anti-

instanton configurations have been made recently10i,
with the t=0 point describing the escape poifturning
point) in Minkowski space of the gauge field configuration.
Although this paper does not deal with the cross section

whereK is the pertinent instanton form factor at fixeeit

<s, containing through-going partons in the form of Wilson

lines. The square ok appears because the amplitude is

squared.B(Q) is the partial multigluon cross section for . X L >

fixed Q?<s and C an overall constant which accounts for calculation, one could in prl_nC|pIe_do SO by ”T‘Od'fy'”g the
form factor K in Eq. (1) using Wilson lines in half the

both the instanton and anti-instanton contributions to the im_instanton—anti-instanton field as described. o by the Yun
tial state. To exponential accuracy » €.9., by 9

ansatz.
However, even this solution of the problem is not yet
KZB(Q)~Imf dTeRT-SM (9) ideal, as it still treats two small semiclassical factors in-

volved, the instanton—anti-instanton interacti@in the
vacuum and the form factdf independently. The idea be-
hind the Landau method is to combine both in one common
semiclassical treatment. We do not repeat all the explanations
and technical details the reader can find[12], but just
recall the main idea. Considering the quantum-mechanical
overlap between the ground and highly excited states with
energyQ, Landau wrote it as the difference of the shortened
action for both paths, with energy 0 ar@, respectively.
Naturally, the integral goes from the turning points to infin-

constraints on the partial cross section req8if®) to fall at ity. The singularity of the gauge configuration plays the role
large Q. Shifman and Maggiorg6] argued that the unitari- of such an infinity for the quantum coordinates. Specific Eu-

zation could be qualitatively enforced by resumming chains’. . ) DA
of instantons and anti-instantons.[B] we followed this idea clidean paths, used followinflL1,13, have singularities in

and indeed found that the dominant contribution to B). getpfé fiter:d 'OC?‘ted atrk=§ ban'?h tirge ?;]Tézl_(seeﬂlfig. JI- i
occurs at the sphaleron point for whiBliM ) =~ 1/x. Hence, utside the region marked by the dashed lines the solutions
are the universal singular instantons describing the ground

state. Between the dashed lines it is supposed to bésthe
on(st)=Cmp2kin sf dg, das, K(gq, .09z, »t). far missing energyQ solution: the two join smoothly at the
(10) dashed lines. Our aim is to find the solution, at least approxi-
mately, and look at thé=0 plane, describing the turning
The rise in the partial inelastic cross section due to the prostates. This analysis will eventually lead to predictions of
duction of the QCD sphalerdmesults in an increase of the What is actually produced in the collision.
inelastic cross section by one power of the diluteness factor
k, or about a 100-fold increagé]. IV. MORE DETAILS OF SINGULAR YANG-MILLS
This qualitative solution of the problem implies, however, SOLUTIONS
that the maximal cross section does not correspond to a well-

whereS(T) is the effective action describing the instanton—
anti-instanton interaction for a time separatibnwhich is
defined at largd to become twice the free instanton action.
This effective action, also known as the “holy grail func-
tion,” is supposed to sum up contributions afiy number of
produced gluons. For smaQ or largeT, the dipole approxi-
mation is valid and Eq(9) rises exponentially witiQ [4].
However, as emphasized first by Zakha{®y the unitarity

A. Singular fields: |t|>T/2

The branch of the field that interpolates between the
30f course, there is also production of the QCD antisphaleronyacuum att= —o and the singularity at=—T/2 with zero
which carries the opposite Chern-Simons number. energy and minimizes Ed@4) is an instanton. The conjugate
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branch is an anti-instanton and interpolates between the sin D
gularity att=+T/2 and the vacuum dt= +. In covariant |
gauge, both branches are given by

AL (X)) =27,,(£)X,(£) P (K*(*)) 6l

275, (£)%,(*)p?
= (11 I
[p2—x2(+)Ix3(*) )

where the— field refers to thé< —T/2 time branch, and the »
+ field refers to the>T/2 time branch, with

X(£),=(X,t2),= (X, tFT/2%p),. (12) n 0 30 20

The 't Hooft symbols are identified as»n(+) FIG. 2. D(r,0) for p/T=10. See text.
= p(anti-instanton) andy(—) = n(instanton). Forlt|>T/2 _

Egs.(11) are singular self-dual solutions to the QCD Yang- the energy is

Mills equations with zero energy. Note that the singularity in

Eq. (11) stems from the change—ip in the self-dual @©4) Q 3 (= 1., 1 .,
instanton. A(+) is the time conjugate oA(—). - M_s% + 4al, dx §D - @D ' (16)
The axial gaugeA,=0 is commensurate with the(8)
symmetry, and the results for the branches follow by using and the Chern-Simons number is
the hedgehog gauge transformation
t N ! ocd b° 1
U(>Z,t)=exp(i>2. ?—f dt’qn(>22+t'2)), (13 ~on)o Pex (17)

modulo static gauge transformations. Under the action of EqVith the boundary conditio®d(r, +T/2)=—4p/r. The ac-
(13) the A, part in the Lorentz gaugéll) is gauged to zero. tion (15) is extremal for
The residual static gauge transformations are fixed by fixing

the positions of the singularities in the axial gauge to coin- D(r,—T/2) (P.b/Dr=T2) dx 18
cide with those in the Lorentz gaugetat = T/2. In particu- 2r/(t+T2) )1 =1 (18)
lar,
. . The transcendental equati¢b8) can be solved numerically.
A (X, = TI2)=Ai(X, +T/2) The solution is shown in Fig. hick line) for p/T=10.
22 A good approximation at the escape point is
p
=—(€aij Xj+ Saip) ———. (14
( aij Xj aiP) X2(X2+p2) (14 apr
D(r,0)~ (19

r2+(\2/K)pT
B. Singular fields: |t|<T/2

which interpolates exactly between the asymptotics of the
transcendental solution witk= 1.854. Equatior{18) is also
f.shown in Fig. 2(thin line). Its corresponding initial radial
density is

The gauge configuration in the time interygli<T/2 fol-
lows from the YM equations using E¢l4) as the singular
boundary conditions. They are no longer constrained by sel
duality, and hence carry finite ener@y. Fixed Q relates to
fixed T throughQ=dSdT whereSis the Yang-Mills action

i ime i A 24p%r?
in the time intervalt|<T/2. Ot 0)~ o7 4p 20

g* [r?+(Ms/Q)*%]*

1. Above the sphaleron

For small Euclidean time3/p<1 or large energy, the which integrates taQ. Note that the tunneling duratiom
singular boundary conditiond.3) common to both the Lor- relates to the energ® through
entz and axial gauge, imply for the axial gauge decomposi-
tion (3) that B~C~D/2>A throughout[12]. In this limit, T K (Ms> 2/5
Q

i =— 21
the action(5) reduces to P \/§ (21)

' (15) The Chern-Simons number at the turning point for Ep)
is

S 3 dtrd 1D2+ ! D*
_~ — X| = _—
da i<tz Jo 2 8x2
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1/ Q\? with
N= —(—) . (22
2\Msg 2
o(+,k)= ZLPZei k(T/2—p) (27)
At the sphaleron point witlQ= Mg the configuration(19) -’ g
carries Chern-Simons numbhki=1/2: it is a sphaleron.
For Q>Mg the initial configuration follows from the and
sphaleron by a simple rescaling of the sizand the energy -
density, 4mp ) P
p_)p/)\ fg](i,k): g \/ﬂ(—)\?—l—leabj)\?k]—)e*k(m p)_
’ (28)
O 00— N0 (23

The transverse polarizations are denoted\By In terms of
the Fourier component®8) the density of incoming trans-

verse gluons is proportional to the occupation numaar

with A=(Q/Mg)*®. In Sec. VB we will evolve the gauge
field configuration into Minkowski space using Luscher-
SchechtekLS) solutions[14]. These solutions have a purely

magnetic field configuration @=0 and the(radia) energy with
fil
protiie al(8,k) =1l(+ ke KT-972, (29
. 4w 48eply? _ . iy
Ooo(r,0)=47r20yy(x,0) = — 52 (29 where# is a parameter fixed by requiring the total energy of
g° (re+ps) the incoming gluons to match the enei@y11,13. We note

) ) ) that T drops in the combinatiof29). Hence, the density of
Comparing with the rescaling23) we see that we have t0 {3nsverse gluons per unit wave number is

use the LS solutions with the parameters

16
_P n(k)=—p(kp)%e *rMs2", (30
PLs= N’ @
X and the corresponding energy density per wave number is
€= ? (25)

167
w(k)=kn(k)= T(kp)4e_4kp(MS/2Q)1/5. (31)
2. Below the sphaleron

Below the sphaleron the analytical analysis is more in-Under the rescaling23) the energy density31) of the in-
volved in general. For small enerdy or large timesT, a  coming transverse gluons follows from the sphaleron point
perturbative expansion around the singular instanton—antiand integrates t@. The virtual number of gluons stripped by
instanton configuration has been carried oufi@]. As we  a sphaleron is
will argue below, the multiplicities below the sphaleron fol-
low from the same rescalin@3) with Q<Mgs. 37 [2Q\%

Nm<Q)=@( ) :

e 32

V. GLUONS IN/OUT
In this section we estimate the number of incomiw- and similarly for the antisphaleron. Each virtual gluon carries
i A~ — 1/5
tual) and outgoingrea) gluons present in the semiclassical in Q/Nip~\ where as befora.=(Q/Mg)™. We repall that
these gluons are absorbed from the two eikonalized partons

singular gauge configurations for arbitrar arton-parton . . X .
cer?ter of ?nasgs energyg yp P Involved in the inelastic cross sectid).

A. Incoming gluons B. Outgoing gluons

The number of incoming gluons follows from the exact 10 @ssess the number of outgoing transverse gluons pro-
Euclidean solutions at large Euclidean times by expanding ifuced by the singular gauge configurations in the semiclas-

powers of the space Fourier transform of the large Euclideafic@l @pproximation, we need to know the gauge configura-
asymptotics of the singular field41) as in[11,13. In the tons at the escape point and their further Minkowski time

Lorentz gauge, evolution, much like the decay of the sphaleron in the stan-
dard model[15]. The escaping sphaleron in Minkowski
Aj(tk)=2ik,Q(= ke ™, space is related to an analytical solution discovered by Lus-
cher and Schechtdrl4] as discussed i110,16. What is
N remarkable in our case is that through the scaling |28
A3(t,K) = — 2kk O( = ke K4+ —— fM(+ k)e Kt we have tied features of this solutigenergy density and

multiplicity) to those of the escaping singular Yang-Mills
(26) fields above the sphaleron point.
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1. At the sphaleron point Abelianizes, thereby allowing for a free wave interpre-
tation. It is easier to carry the analysis into the covariant
auge?
The large time transverse asymptotic of E8B) admits a
normal mode decomposition in the form

The LS solution in Minkowski space at the sphaleron
point is amenable to elementary functidd§] (some helpful
relations can be found in the Appendite# is strongly
peaked around the light cone-r as it travels luminally, and

for large timest~r>p in covariant gauge it simplifies . (2m)%2 . .
’ g Jerue e A2 R= ET ARy Ry e
Er V2k

at' ~——ny, > " i
o(tw)==-n +AN(—k)ba™ (—k)e "] (37)

a with the \’s as the two real polarizations,
Al (tv)~+ g NaMi

» )\{“(IZ)bam(E)=\/p;—k[_iEainjJ(kP)
+ a(v(éai_nani)"'Peiaj n;) (33 A
_ + (81— kaki) 3’ (kp)], (39)
with v=r—t and
and
2pf
= =—, 72 . 2
) p>+uv? J(kp)=2 Ref dygke coany 1—L . (39
0 costi+/2y)
f(v):E 1— V2 (34) The transcendental functio39) cannot be obtained in
2 coshi\2¢)/' closed form, but is well behaved fép<1,
and &=tan Y(p/v). Note that f(*w)=1/2—1/{2~ o o
—0.207, withf(0)>f(«). ChoosingF(0)=0 we see that J(kp)~m—4 arctantan 22/ |’ (40
F(v) is an odd function with asymptoticd(*x)=
+0.216. We discuss some more details of the solution in J (kp)~m(\2—1). (41
Appendix A, and show that the behavior of the gauge invari- .
ants is the same as found [ih0]. In terms of the normal mode decompositi¢d7), the

Consideration of the gluon number of spectra is a mor@symptqtic density of trzgnsverse gluons is proportional to the
subtle issue, and should be performed in “physical” gaugesccupation numbefix - b|“ of the transverse modes,
The large time asymptotics of the temporal and longitudinal 802k
gauge fields are constant at latgend proportional td-'(v) n(k)=4mk?|\-b|?= p
with support only on the light cone. This is a gauge artifact g?
in the covariant gauge, and can be removed by transferring to

the temporal gauge by using the hedgehog gauge transformih® number of gluons with small energy growslfazi while
tion the number of gluons with high energy fallslgse™ “**. The

total number of prompt gluons emitted by a sphaleron is

[J2(kp)+3"2(kp)]. (42

w(v):eir-nF(v) (35

8 (= 2 12 1
which yieldsA§=0. The temporal gauge is canonical in the Nou(Ms) = ;fo XA IZ(x) +J (X)]_X (43
sense that Gauss law is easily implemented by restricting
consideration to the transverse gluons, and the vacuum statéhere the last integration has been performed numeritally.
is normalizable. In this gauge the large time asymptotics offhe same number of gluons is produced through the anti-
the field is purely transverse and falls as~11/r, sphaleron. Each mode in the transverse asympf8ig is
normal, so that the energy density carried by these modes is

2 F’
Aia(t,v)~a Sin’F + 7[p COY 2F) +vSin(2F)] | €N,

“In the temporal gauge there is a subtlety related to the constant
modes that do not admit a spectral representation. Indeed, we have
checked that the space Fourier component of B6) exhibits a
nonspectral tern5(k).

X(6ai—NaN;). (36) %It is very similar to the spectrum obtained in the numerical analy-
. n sis of [10], but different from the one discussed analytically there
Note that the gauge transformati@8b) modifies the Chern-  gipeit in a different gauge, where this number was found to diverge
Simons numbe(7). The transverse fields in both covariant |pgarithmically at smalk. The occupation number is also found to
and axial gauges weaken asymptotically as Asymptoti-  diverge in the axial gauge in relation to tke0 modes(see foot-
cally the Yang-Mills solution originating from the sphaleron note 1. The gauge we use now is free from gauge artifacts.

+ é(—sin(ZF)nL F'[p sin(2F)—v cog 2F)])
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w(k)=kn(k), which integrates to give back the sphaleron &
mass by energy conservation,

_i ” 2 12 _2_'2
MS_gZ,Jo dx X[ J3(x)+J (x)]—ap. (44) 1

The numerical result44) is off by 7% in comparison to the
exact sphaleron mag&) which is a measure of the onset of g ¢l
the asymptotic normal mode expansi@?Y). In Appendix C
we show that the expanding sphaleron configuration is stableo . 4}
under pair production of light quarks and gluons.

1Y

0.2¢

2. Away from the sphaleron by rescaling

2 4 6 8 10
FIG. 3. Density of emitted gluons per sphaler@nultiplied by
alp) for A=0.5,1,2 versugkp.

The escape configurations above the sphaleron follow
from the gauge configuratiofi8), (19). The latter yields the
energy density of the sphaleron after the rescal8) and a
Chern-Simons number of 1/2 at the sphaleron point. Since . .
the electric field vanishes at the escape point, we conclud@ith unit Chern-Simons numbéd=1. The two gauge con-
that it is very plausible that this gauge configuration is gaugdigurations and thereby multiplicities are related by the gauge
equivalent to the LS gauge configuration with the parametergansformat|on(13). The remarkable similarity between the

(25). scaling law(49) for the outgoing gluons above the sphaleron
The analysis of the preceding section may be performe®0int and the scaling laB2) for the incoming gluons both
just with the substitution of (v) by above and below the sphaleron point leads usdijecture

that Eq. (49 holds for the outgoing gluons below the sphale-

1 ron point as well.
E[l_ Vi+42e dn(V1i+ \/Zf,m)] (45 The total number of prompt gluons emitted by the escap-

ing singular Yang-Mills configurations below the sphaleron
for e<1/2, and by follows the scaling law(49), which is seen to vanish at the
' instanton point. This result follows from a saturation of the
1 partial cross section via classical and singular solutions to the
—(1-V1+ \/Z-cr[(ZE)l"‘g,m]) (46)  Yang-Mills equations, and is different from the one derived
2 recently using a minimization of the energy at the escape
point by constraining the size and Chern-Simons number at

for e>1/2, where the escape poiritl0]. The latter is likely to provide a lower

1+2¢ bound on the partial cross section, while the former saturates
m= . @n it
2\2¢

In Fig. 3 we show the multiplicity distributions for vari- C. Averaging gluons

ous values ofA. Numerically there is not much difference  So far, we have considered the production of prompt glu-
between the solutions obtained from the elliptic LS profilesons for fixedQ in the inelastic production cross section given
and an appropriate rescalifig3) of the sphaleron results. In by Eq.(8). For the singular Yang-Mills solutions considered

particular, here, the partial cross sectian(Q) has been derived for
small and largeQ in [12]. In units of scaled energy
n(k)~)\48kp2[J2 k_p) +J,2(k_p” 48 =Q/My, their result with exponential accuracy is
2y 2
g?\?L LA A e(X)=0, () 0x—D+o_ ()0(1—x) (50

with A=(Q/Mg)*5. The total number of prompt gluons
emitted above the sphaleron(is this approximation

Nou Q) _( Q )4’5
NoulMs) | Mg/ -

The ratio of in(virtual) to out(real) gluons per sphaleron is

a number independent @: Ni,/Noy~2. Prompt inelastic  érpe scaling laws derived above are specific to the energy density
scattering in QCD is from few-to-feusmall Q) or large-to-  and the gluon multiplicities. They do not carry to the action density
large gluonglargeQ). needed to assess the partial cross sedfOh semiclassically. For

Below the sphaleron barrier, there are two turning pointsthat we need explicitly the escaping classical fields starting from
t=—T,/2 with zero Chern-Simons numb&r=0, andt=0 Eqgs.(18), (19 for instance.

with
o+ (x)= el aF09, (51)

49
49 The (known part of th¢ holy grail function reads
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F.(x)=—0.482%",

F_(x)=—1+0.618%*5-0.071%" 1.26-05 1

+0.012%85(—In x+ cons). (52

The first contributions irF.. are from the semiclassical sin-  1e—05 1
gular gauge configurations alone, while the last two contri-
butions inF_ are from the one-loop and two-loop contribu-
tions, respectively{12]. The initial increase in the partial
cross section in Eq50) follows from the rapid increase in
the tunneling rate at the expense of the decrease in th
matrix-element overlap. At the sphaleron point

=1, F,(1)~F_(0)/2, which is about half the instanton
suppression factor,

e—06

6e—06

k=0, (1)~o_(0)~ e ", (53

in agreement with the unitarization argumentq%;8]. The 4e-06 7
final and rapid decrease in the cross section past the sphalt
ron point is caused by the decrease in the overlap betwee
the initial and final states of the inelastic collision process.

In this subsection we would like to show that in time
clusive gluon productioa sharp peak remains, even after we
included the gluon multiplicity factor. In Fig. 4 we plot
x*°¢(x), with the typical instanton action in the QCD
vacuum, Zr/ ag(p)=12.

Using Eg.(50) we can assess the averaged number of(®
prompt gluons produced in a parton-parton scattering proces, 5.

at large\/s,

2e—06 1

N; - 2}
Lu{(t)zf LA (x,t)x*° (54)

Nin,out —t/Mg

as a function of the invariant mass transfer in tl@hannel,
with the measure.(x,t) fixed by the partial cross section

0

w(x,t)= U(X)/J / L,dxX2o(x). (55)

_tMS 0.5¢

Ninout are the number of gluons at the sphaleron mass. The
results for the ratio(54) are displayed in Fig. 4 versus 2 4 6 8
—t/Mé. The undetermined constant in E§2) was adjusted

to 2.418 to ensure a smooth transitionxat1. For /—t FIG. 4. (a) The inclusive gluon multiplicityc*o(x) versus en-
within Mg, the averaged multiplicity is increased by only a €rgy in units of the sphaleron mass Q/M;. (b) The ratio(54) of
factor of about 1.1 compared to the multiplicity at the sphalePrompt gluons emitted as a function eft/M3.

ron mass.

Luscher-Schechter solution discussed[10]. By going to
the physical gauge, we found the spectrum of the resulting
gluons.

The cross sections of multigluon production by instanton- Using an analytical continuation of the singular tails into
induced parton-parton scattering are calculated semiclasstuclidean time, we have found that the same rescaling al-
cally, using singular classical solutions of the Euclideanlows for the determination of the virtual in-gluon multiplici-
Yang-Mills equations. For energieQ much above the ties both above and below the sphaler@mtisphaleron
sphaleron mass we found an approximate solution which alpoint. Thus, the in-out multiplicities at the sphaleron and
lowed us to obtain the field configuration at the turnieg-  antisphaleron points imply the in-out multiplicities away
cape time t=0. This turned out to be just a rescaled Yang-from this point for semiclassical parton-parton scattering.
Mills sphaleron solutiorf10]. We also solved the Yang-Mills The scattering liberates about kl(p) prompt gluons per
equations describing its Minkowski explosion at later time,sphaleron(antisphaleron produced. We recall that all the
which again happen to be just a rescaled version of thealculations are semiclassical, assumingp)<<1 or a large

VI. CONCLUSIONS
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produced multiplicity. The larger the longitudin@ trans- X
ferred in the c.m. frame, the smaller the size of the escaping —eA?‘zsian—;(1+ b5)
sphaleron or antisphaleron, and vice versa. The semiclassical r
production through singular QCD solutions in the semihard
regime may even extend to the hard regime through smaller +
size sphalerons. However, in this case the cross section is
small. On the other hand, for typical instantons in the instan-
ton vacuum relevant to the “semihard” scale and possinyThe _coefficient functions for the LS solutions continued to
the QCD Pomeron problem, this number would be about d=uclidean space are
gluons per cluster: thus the semiclassical analysis is not ex-
pected to be very precise. Ao=—4asy’rt, (A3)
This mechanism of gluon production is in addition to per-
turbative BalitskitFadin-Kuraev-Lipatov (BFKL) ladders A= —4q, 57> ,
and/or virtual gluon materialization in the color-glass ap- 2
proach[18]. The difference between this mechanism and oth- .
ers is seen, e.g., in the fact that the released semiclassical -4 zrl—r —t (A5)
gluons form thin shells of a strong coherent field, which have 1 AisY 2 '
some topological features inherited from the topological tun-
neling. The difference between them may be important for dr=—40q, 5y’r’—1, (AB)
many applications, and is quite striking for quark production
(which we address elsewhére 1
We have found that the invariant mass of the gluonic clus- Y= RN L (A7)
ter is sharply peaked at som@veakly energy dependent (I=ro=t5)"+4r

value; one may thus ask if such phenomena have been segﬂquS is a function of arctarffRt/(1+r2+t2)].

experimentally. It is known from correlation measurements In terms of these quantities the electric and magnetic
that multiparticle production irpp collisions is dominated fields are given by formufa(7.27) in [17]. We perform the

by some clusters or clans: for a recent discussion see, €.¢.5|cy|ations for the sphaleron point which corresponds to
[20]. The multiplicity per cluster is slowly growing with en-

ergy. The invariant mass is unknown since neutrals are not V2

seen, but happens to be in the pertinent range of a few MeV. OQus=—1+ IS, (A8)
In a calorimeter study of double diffractive events by the cos{ V2 arctanh2t/(1+r%+1?)]}

UA8 Collaboration[19], a single cluster was produced and

Its invariant mass was measured and found to be peake[(Lit_ The solutions are again concentrated on the light cone.

around 3 GeV, with a strongly decreasing tail at larger mass;. s .
Moreover, the clusters with mass less than 5 GeV show rz\—Ne perform then the limit— keepingu =r —t fixed. The

markable spherical decayim their rest framg We are cur- results for the “electric” coefficients of formuld7.27) in
X - o . [17] are

rently investigating specific decay modes and evaluatin

their relevant cross sections to see whether the qualitative

XaXi d’l
Eai_r_z)T' (A2)

XaXi

> At

1+r2—12
(A4)

We rotate these formulas back to Minkowski space using

v+2 secRu(sinhu—v)

agreement with the present work can be made more quanti- Doy /1 — (A9)
tative. 0%72 t(1+1)2)2 !
1
ACKNOWLEDGMENTS For— 10, (A10)
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DE-FG-88ER40388. R.J. was supported in part by KBN 1—2 secRu(v sinhu+1)
grants 2P03B01917 and 2P03B09622. Doy /r— (11022 ;
(A11)
APPENDIX A: LS SOLUTION whereu= 2 arctanh(1/). The “magnetic” coefficients are
In this section we give a brief characterization of the LS _
gauge configuration. The reader is also referre1fd for CDud it 1-2 secRu(v sinhu+1) (A12)
more details. For the Euclidean Witten ansatz 1¢1/T—1 t(1+02)2 '
—eA= EAO’ (A1) In the 02riginal formula(7.27) the coefficient ofF, is off by a
r factor ofr<.
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s o, 1 The residues are calculated at the poles of(Bd) inside the
(1=¢1=¢2)/1"— 10, (A13)  contour. One can show thatis just equal to ¢°—1)%>—«.
We will now use the Laurent expansion of the elliptic sine

v+2 secRu(sinhu—v)
t(1+0v?)? ' sniu)~ -
(A14)

For large timeg, the electric and magnetic fields are equal, YSing t2h82 differential equation f(;r sa( we obtain the rela-
tions a*k“=1 andB=(«a/6)(1+k?). We thus have to com-

Di¢plr——

a
—o-+Bu=up). (B6)
0

20 20 2 1 pute
E“(t,v)~B4(t,v)~—-——=, Al5
(to) =B (o)~ 5 s (A15) )
Regcodwé) = a*k* Re _CoSW
and sum up tdM . The same result was obtained[it0]. (p— do)*

The “antisphaleron” follows from the sphaleron by sub-

stitutin codw
J +(4a®Bk*q? —2a°k?) Res( —2) .
Ag— — Ay, (A16) (= o)
(B7)
Aj——Ay, (A17)
The coefficients of the residues are energy independent and

1=~ ¢1, (A18) equal to 1 and-2/3, respectively. Once we use
h2— P2 (AL19) 412

. . . . coSw= (B8)

in the Witten ansatz above, and yields a solution of the YM (1+r?)2+272(r2-1)+7*

equation of motion. The same transformation makes a switch

between the instanton and anti-instanton in the Witten ansatgnq ther dependence of the poles(r)=q+ gq?—1—r2

whereq is ane dependent constant, we obtain
APPENDIX B: Im S FOR LS SOLUTION

In this appendix we will show that the imaginary part of J“ ﬂ e cos'w _ '_ 1+q° (B9)
the classical action along the deformed con{dii] does not 0o r? (p—do)* 31-¢g?’
depend on the energy of the LS solution. In other words, the
instanton—anti-instanton suppression factor persits all the . d & 1
way to the sphaleron point in the deformed contour approach f ar Re cosw =i )
suggested ifi16]. Indeed, fore <1/2 the solution is given by o r? (p—bo)?) 1—07
the function (B10)
d=g-snqg; ¢+K,k) (B1)  Finally, we get
where we use the same notation a$16], 872
) ImS=—-. (B11)
q- g
q-= 11\/5, k2:—2, (B2)
a+ Note that the whole energy dependence throadhas can-
and celed out.

1+r24+72

— arccot APPENDIX C: STABILITY UNDER PAIR DECAY
¢= 27

(B3)

Are the escaping Yang-Mills fields stable under pair de-
cay? In this appendix, we answer this question by assessing
the gluon or quark pair emission rate in a general time de-

codw } pendent background to first order . Let 7(A) be the

The suppression factor is given by

drlmz Res{

2

24
Im S=—
9

(B4)  on-shell matrix element between a particle and an antipar-
ticle in the external gauge field. Typically, the number of
pairs per unit four-volume is

r2

where

1., 1 , dNgg _ i T
=50+ 5(a°~1)% (B5) ™ =Tr(x|In[1= TTA)P(+)TTA)P(—)]|x) (CI)
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whereP(*) are the on-shell projectors on particles and an-  Sjnce theuu anddd pairs are light, we may set-~0 in
tiparticles, and the trace is over color and spin. In the mo£q. (C4). The total number of light quark pairs emitted by
mentum representation the classical field is

P(+)=2m(P+mg)6(+ Py) 5(P?—m2) (C2

uu+dd ™

—f d*q0(9?) (|EX(a)|*>—[BX(@)|?).

for a flavor of massng . Since the pair creation follows from 3(2m)*
large times(weak field$, we may approximatd(A) by its (C7)
leading order The present arguments can also be used to derive a similar
) expression for the number of gluon pairs emitted by the clas-
T(A)~igA. (€3 sical field in the weak field limit. FON.=3, the gluons can

Inserting Eq.(C3) into Eq. (C1), expanding the logarithm, be+ cirgan|+ze(i |n0 (t)hree conjugalte pairs, such  as
integrating over all space-time, and insisting on gauge invariV- W™, K7"K~, K"K, by analogy with the charged octet

ance yield the pair rate mesons. Say we choose the external field t&BethenK°
may decay into the two charged mod&8' W~ andK K ™.
dN= Using the background field method, the result for the two-
a9 _ a 2_|pa inlicity i
—_— E B gluon multiplicity is
Fq  122m )4(| (@)|?=1B{(a)]?)

X 0(q°—4mg)(1—4mg/g*) Y41+ 2m¢/g?), Nos=Tar2m)? f d*q8(a?)([Ef(@) >~ [Bi(a)]?).
(CH (C8)

where E,B) are the Fourier transforms of the chromoelec-We have highlighted,
tric and -magnetic fields in Minkowski space,

3
‘ 3= 2 X2X2, (C9
(E,B)(q)=f d*xe9(E,B)(x). (CH)
for gy/3/2 charge, two decay modes, and two physical helici-
We have highlighted! in Eq. (C4) to show ties, respectively. Combining E¢C7) with Eq. (C8) we find
that the light quark and gluon multiplicities are related by

1
4:§><2><2><2 (C6) 2Ng
uu+dd ™ 3 Ngg . (ClO)

for g/\/2 fundamental quark charge, two flavors, two spins,
and two particle-antiparticles, respectively. Notice that the
production in Eq(C4) is timelike, for whichq= (w,0) is an
allowed frame. Such frames support zero magnetic fields, f d*qo(g?)(|EXa)|>—|B(q)|>)=0.  (C1D
indicating that the pair production mechanism is electric in

nature. It is of order? in the strong coupling constant. In The expanding sphaleron starts magnetic and remains mag-
deriving Eq.(C5) we have ignored the back reaction of the neticlike throughout. It is stable under light-pair quantum
quarks on the YM fields. emission.

Using the results of Appendix B, we find
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