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Nucleon’s strange electromagnetic and scalar matrix elements
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Quenched lattice QCD simulations and quenched chiral perturbation theory are used together for this study
of strangeness in the nucleon. Dependences of the matrix elements on strange quark mass, valence quark mass
and momentum transfer are discussed in both the lattice and chiral frameworks. The combined results of this
study are in good agreement with existing experimental data and predictions are made for upcoming experi-
ments. Possible future refinements of the theoretical method are suggested.
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I. INTRODUCTION performed with quenched $B) ChPT rather than S@),
thereby providing the benefit of a more rapid convergence
The effects of virtual strange quarks on the properties of dor the chiral expansion since it no longer requires expansion
single nucleon represent basic information about QCD andn powers of the strange quark mgdd].
the strong interaction. Hence, there is presently a great deal In the present work, we report the results of high-statistics
of enthusiasm for studies of the nucleon’s strangeness eletattice QCD simulations for the strangeness electric and
tric and magnetic form factors. Recent experiments have prghagnetic form factors together with the strangeness scalar

duced two measuremeni$,2] and ongoing efforts are ex- density. A number of d_ifferent enalysis methods are em-
pected to provide more results sofs. ployed and found to give consistent results. Two strange

First principles calculation from QCD requires the use ofduark masses, three valence quark masses and five momen-
lattice field theory techniques, and a number of explorationé“m transfer values are studied. We also present the analytic
have been carried out by various authpés-8|. The pres- quen_ched S(B) ChP_T formulas for the three strangeness
ence of the disconnected strange quark loop and the smafPatrix elements of interest and apply them to our lattice
ness of the resulting strangeness form factors cause latti@CD data. The alternative of using quenched BChPT is
simulations to be expensive and the extraction of meaningfuptiefly discussed as well. Finally, we compare our results to
results to be difficul{7]. the existing expe_rlmental measurements, makepregjlctlons

Chiral perturbation theorfChPT) can play a valuable relevant to upcoming experiments, and suggest directions for
complementary role alongside lattice QCD. ChPT is QCDsfuture theoretical work. _
low-energy effective theory written in terms of the physical Our main conclusmns are that the.raw lattice results for
hadrons rather than quarks and gluons, and it contains loffl® Strangeness electric and magnetic form factbesore
energy constantd_EC’s) whose numerical values should be &Ny use of ChPJrare very small, that ChPT-based extrapo-
determined from lattice QCD or directly from experiment. lation to the physical up and down quark mass region does
Quenched S(8) ChPT[9,10] corresponds to quenched QCD n_ot _substantlally change thl_s, and t_hat the _Iatt|ce Q(_:D pre-
with three active quark flavors—up, down and strange—an&“cuons are therefore consistent with existing experimental
it produces analytic expressions for the strangeness form fagesults.
tors that explicitly display their dependences on the strange
qguark mass, valence quark mass and momentum transfer. It II. NUMERICAL SIMULATIONS
is clearly advantageous to relegate as much of the calculation ) ) ) ) )
as possible to ChPT so that valuable computer time can be The gauge field configurations used in this study were
spent on the physics that ChPT cannot predict. In othefenerated from the Wilson gauge action @t-6 on 20
words, one need only extract the required LEC’s from lattice 32 lattices, corresponding to a lattice spacing of
QCD simulations, and then the strangeness form factors can
be studied directly in quenched &Y ChPT. a=0.10117) fm 1)

On the other hand, the strangeness form factors can in
principle be measured in lattice QCD simulations with mini- as obtained by the authors of REE2] from a physical string
mal recourse to ChPT: the strange quark mass and the mtension of K =427 MeV. Actually the lattice spacing is not
mentum transfer can be fixed to their physical values in ainiquely determined in the quenched approximation, and the
lattice simulation and then ChPT is only needed for extrapoauthors of Ref[5] used the physical nucleon mass to arrive
lation of the valence quark mass. This extrapolation can bat a=0.115(6) fm. Our full ensemble of 2000 configura-
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TABLE |. Dimensionless energies of the nucleat;,,, with t

momentum squared?q?=n(=/10). All fits begin 16 time steps
from the source, 2000 configurations are used, and statistical uncel

tainties are from a bootstrap analysis with 3000 bootstrap en-G(z)(t,a)= , G(S)(t,t’,a)=
sembles. 0 t 0 t

k=0.152 x=0.153 xk=0.154 FIG. 1. Two-point and three-point correlators that appedR,in
of Eq. (4). Each solid line represents a quark propagator, and the

>

0 0.8692) 0.7992) 0.7243) shaded box denotes a current insertion.

1 0.9273) 0.8623) 0.7954)

2 0.9864) 0.9245) 0.8657) 10664) MeV respectively(see Table VI of Ref[12]) which

3 1.0347) 0.97110) 0.92219) surroundm,=1019 MeV so that our data will allow inter-

4 1.07G12 1.01318 0.94530) polation to a strange quark loop. From the lattice simula-

tions, three ratios are constructed,

tions was produced from various independently thermalized
Markov chains. Within each chain, either 2000 or 5000
triple-step heatbath updatfise. applied to three S@) sub-
groupd were executed between saved configurations.

The Wilson fermion action was used to obtain three vayyhereRg, Ry, andRg correspond to the scalar, magnetic and
lence quark propagators per configuration, haviRg  glectric cases respectivelyjs the sink time step antd the
=0.152, 0.153 and 0.154. These correspond to pion mass@gyrent insertion time step. The two-point and three-point
of correlators are shown diagramatically in Fig. 1. For three-

oint correlators, the vector current has incoming momentum
am,=0.47729)*$[13], 0.42378) [12] i g

g and the nucleon sink has zero momentum; the nucleon

and source therefore has outgoing momemﬁlmAII nucleon op-

erators are local.
0.3641)[14] (2 Strangeness matrix elements are extracted from the ratios

of Eq. (4). Denoting the matrix elements by with an ob-

respectively. The valence quarks in our simulations have Divious subscript, these are related to form factors by

richlet time boundaries; the source is four timesteps away

from the boundary. On our & 32 lattices, the five smallest

momentum squared values are

G(t.t",q)G3t’,0)
G@(t,0063t’,q)

Rx(t,t’,q) = (4)

T I T l T
- . 2k iy y g X] B
- IH_ T

Al

a’q?=n(m/10%, n=0,1,2,34. 3 i - ' - '
0 10 20 30

|
B Tv*-,gtt"’II:IIIIIIIIIIi: ]

6
3
0
3
In physical units, the momenta are approximatgfy=0, :
0.61 GeVE, 0.87 GeVE, 1.1 GeVk and 1.2 GeW¢. Tabu-
lated in Table | are the energies of a nucleon having degen- 0
erate quarks and each of these momentum squared values. 3¢ 10 20 30
Strangeness matrix elements are calculated using standard ¢ - T - T -
methods. This involves a three-point function in which a 3 .
0
3
6
3
0
3
6
3
0
3

strange-quark loop is correlated with the nucleon propagator. vA****‘tIIIIITT?}TT T
It is prohibitively expensive to compute the strange quark
loop exactly at every lattice site, so we employ a stochastic

! | 1 h !

~o 10 20 30

estimator with reaZ, noise[15]. To reduce the variance, the | @ III T N
first four terms in thex, expansion k; denoting the loop ,*.,II:II TTT

quark’s hopping parameteof the quark matrix were sub- . | . I1] .

tracted for the strangeness electric and magnetic form fac- ~o 10 20 30
tors, and the first five terms were subtracted for the scalar © T T T
density[16]. This stochastic estimation method is unbiased — II-{ ' p -
with any number of noises, and the statistical uncertainties S iy

associated with this noisy estimator decrease as one increases . 5 : 1|o . 0 - 2

the number of noises and/or the number of gauge field con-
figurations. FIG. 2. Lattice data for the strangeness scalar density as ob-

For k;=0.152 we have computed a 60-noise estimate fotained from Eq.(7) with «,=0.154 andx,=0.152. Panelsa)
each of our 2000 configurations, and fgr=0.154 we have through (e) correspond to momenta?q?=n(=/10)? with n=0
computed a 200-noise estimate for 250 configurations. Thehrough 4 respectively. Uncertainties are calculated from 3000 boot-
vector meson masses for thegevalues are 91@8) MeV and  strap ensembles.
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FIG. 3. Lattice data for the strangeness magnetic form factor as - @ T-'FI---- 1
obtained from Eq(7) with «,=0.154 andk,=0.152. Panelda) 0 gl T
through (d) correspond to momenta2g?=n(w/10)> with n=1 02 . ! ! .

through 4 respectively. Uncertainties are calculated from 3000 boot- 0 30

strap ensembles. FIG. 4. Lattice data for the strangeness electric form factor as

obtained from Eq(7) with k,=0.154 andk,;=0.152. Panelda)
through (e) correspond to momenta?q?=n(/10)? with n=0
through 4 respectively. Uncertainties are calculated from 3000 boot-
strap ensembles.

(s)
> €ikdkGy
Msm g (t,Q)= GY

SiAEM. ~(s)
ST Egtm e[

(5)

In the magnetic case, j andk run over spatial directions
and the corresponding indices o, are suppressed for
notational simplicity.

There are various ways in which the matrix element can
be extracted from the ratio. For example, one can sum the
contributions for the strange quark inserted at different time#\ disadvantage of this kind of method is that the matrix
t’. One way[17] to do this is element does not emerge directly. A fit to the time depen-

t

> Ry(t,t’,q)—const-tMy(t,q).
t'=1

(6)

TABLE II. Fits to the matrix elements of E¢7) beginning 10 time steps from the source. The momentum
squared isa26|2:n(w/10)2. Statistical uncertainties are from a bootstrap analysis with 3000 bootstrap en-

sembles.
Ky n k;=0.152 x=0.154
6  off - 6
0.152 0 2.64) —0.009(13) 3.7 0.0035)
1 1.712) 0.00716) —0.008(8) 2.16) —0.007(15) —0.027(33)
2 1.22) —0.018(14) 0.012(10) 1(6) 0.00813) 0.01423)
3 1.1(5) —0.014(23) 0.008L7) 1.209) 0.04741) 0.01761)
4 0.76) 0.00431) 0.02640) 3.319) 0.03359) —0.046(71)
0.153 0 2.75) —0.010(15) 4.014) 0.0027)
1 1.83) 0.01222) —0.011(10) 2.27) —0.010(17) —0.034(44)
2 1.32) —0.021(20) 0.018149) 1.27) 0.01416) 0.02132)
3 1.26) —0.018(32) 0.00&2) 1.31) 0.07156) 0.02489)
4 0.718) 0.00548) 0.02956) 3.822) 0.04980) —0.066(112)
0.154 0 2.95) —0.013(19) 4.215) 0.0029)
1 1.83) 0.01933 —0.014(15) 2.8) —0.016(22) —0.043(63)
2 1.33) —0.022(31) 0.01@1) 1.38) 0.02323) 0.03249)
3 1.59) —0.029(53) 0.0082) 1.4(14) 0.11890) 0.027149
4 0.911) 0.01082 0.02181) 4,529 0.084116) —0.105(191)
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dence, which in practice may be linear only over a limited @ N © ©
range, is required to determiéy . For this reason we pre- ! ) RN et N
fer a differential method6]: £ 4 L e
®) @ 4]
N v — =
t+1 ' \l \\ ﬁ, \\ f,

> [Ru(tt,a) = Re(t=1t,a)]=Mx(t,a) (7
t'=1 FIG. 5. Leading loop diagrams for the strangeness matrix ele-

ments from quenched chiral perturbation theory. Dashed, solid and
double lines denote octet mesons, octet baryons and decuplet bary-

which givesMy directly. For completeness we also ConSIderons respectively. A shaded box denotes a current insertion.

the relation
ttixed . .
E Ry(t,t’,q)—constttMy(t,q), with tfiyeg>t tion with the sameB and « values, although their lattice
t'=1 ®) volume is smaller. From 100 configurations with 300 com-
plex Z, noises analyzed using the method of E8). only,
used in Ref[5]. those authors interpreted their results to imply a nonzero

Finally one has to relate the lattice matrix element to thevalue forG{y . Recently, Mathur and Dong have used only
continuum one. The physical scalar density requires wavé0 configurations and the same analysis method to discuss
function renormalization and we use the tadpole-improvedtorrelations between the number of noises employed and the
factor[18] sizes of resulting uncertainti¢49]. Recalling that the sto-

chastic technique is unbiased with any number of noises, and
that uncertainties decrease as the number of gauge configu-
(N|§5|N>=(1— E)G(s) 9) rations is increased, our studiesee Ref[7] for a specific
dxe ’ discussion suggest that a clearer picture is attained with a
larger sample of gauge configurations. According to Table I,
with «,=0.157096(28)5° [13]. The conserved vector cur- eyen the small statistical uncertainties of the present work do

rent was used foG{J and G, and its normalization is not permit a definitive nonzero determination @Y. The
such that no wave function renormalization factor is re-game is true foG(ES).

quired.
Figure 2 shows our lattice data for the scalar density ver-
sus time step, withx,=0.154 andk,;=0.152, analyzed using
Eq. (7). In this case there is a very clear signal and, for each
value of the momentum transfer, the plateau begins about ten ) ) o
time steps from the source, although uncertainties grow with Consider quenched S8) ChPT with explicit fields for
§2. Figures 3 and 4 show the magnetic and electric data frorl€ Pseudoscalar meson octédl), spin-1/2 baryon octet
Eq. (7) with the samex, , x, values. In contrast to the scalar (B), Spin-3/2 baryon decupléf) and external electromag-
density, there is no apparent nonzero signal. However, usingetic and scalar fields. The ChPT Lagrangian is
the scalar density results, which suggest that the plateau re-
gion begins about ten time steps from the source, as a guide,
one concludes that the form factors are consistent with zero @) © " @ @) " o
within uncertainties less than 0.1 for a@f values studied. £=£m TLust Lyt Lyt Lugt LurtLusrt -
We have verified that Eqg6) and (8) produce compatible (10
results for all three matrix elements.
The results of fitting each of our lattice measurements to ) o
Eq. (7) over four consecutive time steps, beginning ten timeWhere a superscript f{)" denotes amth order contribution
steps from the source in every case, are tabulated in Table ffom the expansion in the smaller scales—momentum trans-
with statistical uncertainties obtained from a bootstrap analyfer, meson masses and theB mass splittingA —relative to
sis employing 3000 bootstrap ensembles. If the uncertaintiee larger scaled, ~4xF ;. and baryon masses. The leading
simply scaled with the square root of the number of configudoop diagrams for our three strangeness form factors begin at
rations then the ratio of uncertainties betwegr0.154 and  third order and are displayed in Fig. 5. Each diagram re-
0.152 should be near 2.8, but the increased number of noisegives contributions from various quark flows which have
per configuration fork,=0.154 could reduce this ratio. Ac- been calculated using the approach of Labrenz and Sharpe
cording to Table 11, onI;G‘,\j) shows a noticeable dependence[10]. Besides these loop contributions, there are also contact
on the number of noises. terms in the Lagrangian which contribute low energy con-
These results foG(,\;T') can be compared to the findings of stants(LEC's) to the strangeness matrix elements. Here are
Ref. [5], since those authors also work with the Wilson ac-the explicit formulas:

IIl. CHIRAL EXTRAPOLATIONS
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_ pCg 1 (2mg—q?) py?
(N|ss|NY=Cyu+C5(\) uA — 4mK+f dx —
4(47F )2 0 Jmi-x(1-x)q?| 2(4wF,)?

2

(mi) 1 q
—In Z —fo dxln(l—x(l—x)ﬁ)

K

(2mi-q?) wACH
Vmi—x(1-x)g?|  2(4nF,)?

21 [AP—mi+(4.3)x(1-x)g?
+—j dx > A(X)
Alo AZ—mg+x(1—x)g?

1
X 4rrgs+f dx
0

, 11

2’7TmNCB 1 mNACT
GP(g?)=C3+CH(\ A+—f dxymz—x(1-x)gq°+ ———
m (47)=C3+Cy(N) (anF2)o Kk~ X( )q 3(4nF )2
1 2miz—q?/2
—f dX—— 5
0 mg—x(1-x)q

3 A

mz| 11 2 1d A)
— | 3% X A(X
A2 0

: (12

5I mz\ 17 [mZ 5fld| N q?
gn F +ﬂ_ ?—g . xIn| 1—x( _X)m_i

2 2
q 2q°Cp
G¥(gY)=CEN)q*+Co—+ ————
£ (q9)=Cs(N\)q 5y 3(4nF_)?

m2| 1 amz\ (1 2 C?> |5 [m2) m
A 5 In(—g + =+ 1——2K fdxln 1—x(1—x)q—2 +T—q2 =zIn —ZK +—K2
A(AmF ) A 3 q 0 mg (47F )% 36 | A 9q
202 7 2A (m‘,i 2m2A2  TmZ A2 5q2> 1 dx
-+ —A0)-| —————+ —+ = f S B —
@ 54 g 92  ¢? 18 2 72]Jo mi—x(1-x)q
e A?—mZ+(413x(1—x)q? 0 13
g2 Jo A2—m2+x(1-x)g? ’
whereA>0 and
A
\/Z—Azarcco% T) for A<\z,
z
A(x)= L (14)
—JAZ=zIn| —=+\/— -1 for A>\/z,
Jz z
|
with 5
CB=§D2—2DF+3F2, (17
z=mz—x(1-x)q> (15)
C=C2 (18)

Our interest is in spacelikg?, so z is positive definite

throughout the range<0x<1. Theq? of each lattice data
point is obtained from The parameter€,, C,, ...Cg are LEC’s, some of which

depend on the dimensional regularization sealsuch that

|2 the full matrix elements are independentofy is the ChPT

q°=(E,—Eq)%— ”(ﬁ) (16)  parameter for the quencheg [10] andmg is the mass of a
doubly-strange pseudoscalar meson. The normalization con-

vention corresponds t6 ,~93 MeV andu is the ChPT pa-
wheren=0, 1, 2, 3 or 4 and th&, are taken from Table I.  3meter defined by

Cg contains the familiar axial couplingD(andF) and
C+ contains the octet-decuplet couplidg(defined, for ex- ) .
ample, in Ref[10)): Mi = u(M+m) (19
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TABLE lIl. Predictions of quenched SB) ChPT, after a least squares fit to 39 lattice data. The estimated
uncertainties include the range between the two extreme cases of maximizing or minimizing the qugnched
contribution in ChPT loop diagrams relative to ngh-physics, as discussed in the text, as well as the
statistical uncertainties from a bootstrap analysis.

K, n x=0.152 x=0.154
o o o o off o
0.152 0 2.15) 0.0 4.q198) 0.0
1 1.713) —0.006(6) 0.00®) 3.4(15) 0.01212) 0.0115)
2 1.32) —0.006(6) 0.0017) 2.812 0.011112) 0.0179)
3 0.93) —0.007(7) —0.003(11) 2.18) 0.01010) 0.02112)
4 0.64) —0.008(8) —0.008(15) 1.8) 0.01010 0.021(14)
0.153 0 2.8 0.0 4.417) 0.0
1 1.82) 0.0088) 0.0074) 3.5(14) 0.02020) 0.0177)
2 1.42) 0.0077) 0.0147) 3.011 0.01818) 0.02812)
3 1.04) 0.0066) 0.0109) 2.58) 0.017117) 0.03616)
4 0.715) 0.0058) 0.00811) 2.007) 0.01616) 0.04120)
0.154 0 2.43) 0.0 4.216) 0.0
1 2.03) 0.01414) 0.0125) 3.6(13 0.02727) 0.0239)
2 1.53) 0.01313) 0.0199) 3.1(10) 0.02525) 0.04115)
3 1.15) 0.01212) 0.02413 2.809) 0.02323) 0.05421)
4 0.96) 0.01111) 0.02515) 2.25) 0.02222) 0.06325)

with m=m,=mj. In order to verify various aspects of these fit to the data of Table II. In particular, we will fit the 39 data
ChPT expressions faN[ss|N)(q?), GE(q?) andGE(q?),  Points havingi =0.152[data forG®(0) are omitted since
comparisons were made to the collection of papers in RefJauge invariance requires a zero reafd verify that pre-
[20]. dictions for k;=0.154 are consistent with our lattice simula-
The values fommy, amy, aA andaF,. have been com- tions. We will also perform an independent fit using only 12
puted fork=0.152 in quenched lattice QCD by the authorsof the 39 data points: those having?q2=0 or a2g?
of Ref.[13], and we take these results as given. Using data at (77/10)?>. These smallest momenta are the ones most ap-
xk=0.153 or 0.154 instead would lead to small numericalpropriate to ChPT and, as will be demonstrated, the final
differences that are formally of higher order in the ChPTpredictions for strangeness matrix elements are rather insen-
expansion. The parametgr is obtained from Egs(2) and  sitive to whether or not the higher momentum data are used
(19). With these quantities determined, notice that the thregys jnput for the ChPT fit. The statistical uncertainties of the
strangeness matrix erlements contain @ total  of siXjt parameters are determined from a bootstrap analysis.
parameters—C,+ uACH(u), C3+AC, (1), Cs In addition to the statistical error there is a systematic
+Cg(n)/my, Cg, Cr and y*—and the dependences on yncertainty due to the choice of chiral model. The dynamics
each of these parameters are linear. Bec&yse, C andy  of the ChPT expressions reside in the loop diagrams, and
are real parameters it follows th@, Cy and y* must be  they contain the quencheg’ parametery? as well as the
positive definite, and Eq.(11) therefore requires that non-;’' parametersCy and Cr. It is possible to obtain a
(N|ss|N)(g?) decreases a®m, mg or —q? is increased. This good fit to thex;=0.152 data in the extreme limit of ng’
is consistent with the lattice QCD data of Table II. (¥*=0) or in the opposite extreme of “maximaj’” where

It should be noted that the range @fused in our lattice Cs=Cr=0. [In the maximalz’ case, we also choosg;
simulations extends far beyond the range of applicability oft C4(\)A=0 since it is clear from Eq12) that this param-
ChPT, and there is therefore no reason to expect that theter would simply be an additive constant @ﬁ)(qz) and
form of ChPT will look anything like the lattice data for would be consistent with zero when fitted to our lattice QCD
these larger momentum values. As would be hoped, use afata] These separate possibilities indicate that our lattice
only the lattice data at smaller momentum values leads to data are not precise enough to determine the fraction’of
good ChPT fit. As it happens, the ChPT expressions fit alphysics in the strangeness form factors. One might expect
three matrix elements surprisingly well over the entire mo-the physical values for these parameters to lie somewhere
mentum range studied. Although this is surely accidental, ibetween the two extremes, and we will use this range to
means that the ChPT expressions can be used as a convenidgafine a theoretical error bar. The results of our fits to the
method of smoothly interpolating the momentum depen-«,=0.152 data, and the resulting predictions fgr 0.154,
dences of these matrix elements. are recorded in Table Ill. The fits are consistent with the

To determine numerical values for the six parameters apdirect lattice QCD simulations of Table Il. The correspond-
pearing in the ChPT expressions, we perform a least squaré@sg ChPT parameter values are listed in Table 1V, along with
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TABLE IV. The parameter values obtained for the two extreme fits to our quenched lattice QCD data at
x;=0.152, as discussed in the text, usingattice data from all available momenta afiid lattice data with
a2g%=0 anda?q?= (w/10)? only. Statistical uncertainties are from a bootstrap analysis with 3000 bootstrap

ensembles.
(i) fit to all q (i) fit to smallq

maximal ' no n’ maximal »’ no n’

uCi+uACH(1 GeV) 3.27) 1.7(3) 5(2) 1.6(5)

C3;+AC)(1 GeV) 0.317) 0.094)

Cs 0.113) 0.126)

e 0.4511) 0.7(3)

Cr 1.02) 0.813)

[Cs+CL(1 GeV)imyl/a? 0.123) 0.034) 0.277) 0.21(8)
degrees of freedom 393=36 39-5=34 12-3=9 12-5=7

X?/DOF 0.4 0.8 0.1 1.1

the parameter values obtained from fits to the data having thehich leads to

two smallest momenta?g?=0 anda2q?=(m/10)%. In the

unquenched theory? does not appear and standard phenom- 2
enology leads t€z~0.9 and 1.4 C=<2. Not surprisingly, Mgs= M \/A_ 1.39m . (21)
the quenched parameter values in Table IV are somewhat 1+m/ms

different.
For physica| meson masses, At —qZZO, G(ES) vanishes |dent|ca"y Figures 6 and 7 show
the other two strangeness matrix elements as functions of the

m m2 1 0 kaon mass. Fixingn to its physical value leads to the mo-
ms 2m2—-m2 25
4
(@
4 . , . , .
i g s 2
S ? ¢
2 2o
2 0 v
% - maximal 1’ E -2
2r | . } 02
0.2 0.3 04 0.5
am )
K 0.1 : , : , .
(b - 1
0.15 T T T T y i ]
] 05F .
0.1 i ; non’ - g r 1
s . i’?z - (maximal 1’ gives exactly zero) 1
205 - 0 g. .................................................. ]
&} 3 ] i i
0 i Ly B non’ b
maximal 1’ 0.0 L L ] L 1 1 -
| | | ’ 6.2 0.3 04 0.5
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K FIG. 7. Strangeness matrix elements&a4?>=0 as functions of

FIG. 6. Strangeness matrix elements-aj?=0 as functions of Mk - The two solid curves represent the extreme cases of maximiz-

mk . The two solid curves represent the extreme cases of maximizZl'd OF minimizing the q‘fenCh‘?d’, contributions in ChPT loop
ing or minimizing the quenched;’ contributions in ChPT loop diagrams relative to now’ physics. ChPT parameters are obtained

diagrams relative to nom’ physics. ChPT parameters are obtained from a fit to 12 small-momentum lattice QCD data poifiggq?
from a fit to 39 lattice QCD data points as discussed in the text, ane=0 anda?q?=(#/10)?] as discussed in the text, and the thickness
the thickness of a hatched band denotes statistical uncertaintie$ a hatched band denotes statistical uncertainties from 3000 boot-

from 3000 bootstrap ensembles. strap ensembles.
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FIG. 8. Strangeness matrix elements as functions qf. The FIG. 9. Strangeness matrix elements as functions qf. The

two solid curves represent the extreme cases of maximizing otwo solid curves represent the extreme cases of maximizing or
minimizing the quenched;’ contributions in ChPT loop diagrams minimizing the quenched;’ contributions in ChPT loop diagrams
relative to nony’ physics. ChPT parameters are obtained from a fitrelative to nons’ physics. ChPT parameters are obtained from a fit
to 39 lattice QCD data points as discussed in the text, and thgy 12 small-momentum lattice QCD data poir{tazﬁzzo and
thickness of a hatched band denotes statistical uncertainties frognazz(ﬁllo)zl as discussed in the text, and the thickness of a
3000 bootstrap ensembles. hatched band denotes statistical uncertainties from 3000 bootstrap

] ~ ensembles.
mentum dependent strangeness matrix elements of Figs. 8

and 9, which are our final results. Comparison to experiment,

along with disclaimers about such a comparison, are con- G(I\AS)(Qi)={O'14i 0.29+0.31, Ref[1], 22
tained in Sec. IV. 0.05+0.06, this work,

To conclude this section we return to the suggestion from
Ref.[11] of using SUW2) ChPT instead of S(B). This is an (S)/ 2 () 2
appealing idea because &Y ChPT typically converges Ge'(az) +0.3%y (d)
more rapidly. In effect, the kaon loop diagrams of Fig. 5 get 0.025-0.020+0.014, Ref[2],
replaced by S(2) LEC’s. Although SU3) ChPT uses a com- = [ 0.07-0.05 this work (23

mon set of parameter<Cg, Cr and %) for the kaon loop
effects in all three strangeness matrix elementg28GhPT
has separate LEC’s for each matrix element. Since the rawhere —qi=0.1 Ge\? and —q5=0.477 Ge\.. Here, the
lattice QCD data of Table Il only reveal a nonzero signal foruncertainties(incorporating both statistical and theoretical
the strangeness scalar density, it is difficult to discus€28U modeling errorsin our results have been estimated by the
ChPT extrapolations of the strangeness electromagnetic forfigquirement that all curves from Figs. 8 and 9, representing
factors in any detail. Perhaps future lattice QCD data foffits to all momenta, fits to only small momenta, “maximal

these form factors will be precise enough to benefit from#’” fits and “no »'” fits are within one standard deviation
SU(2) ChPT. of the quoted central value. The lack of a fundamental scalar

probe makes the strangeness scalar density harder to extract
from experiment, but Figs. 8 and 9 can be compared to other
quenched lattice QCD simulations. The renormalization

The results of this workFigs. 8 and §compare favorably group invariant quantity representing the fractional strange
to the available experimental data: quark contribution to the nucleon mass is

IV. DISCUSSION

013003-8
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noise methodq24]. Finally, we recall that the so-called

0.30248) at B=5.7, Ref.[21],
strangeness electric and magnetic form factors would not be

mg(N[ss|N)(0)

my =1 019%9) at f=6.0, Ref.[22], exactly zero even in a world without any strange quark, due
0.21(11) at B=6.0, thiswork. to isospin violation[25,26. Based on Ref[26], the isospin
(24)  violation effects are not so different in magnitude from the

. : . - i t k effects di din th t k.
If the curves of Fig. 9 are not included in the predictions for Ny strange quark etiects discussed In e present wor

. . e Although there are certainly further steps that can be
these strangeness matrix elements and if the statistical errofSken toward a more detailed understanding of these strange-
of Fig. 8 are ignored relative to the theoretical errgeslect-

) : . X ness matrix elements, the present study has established that
ing the difference between “maximal’” and “no »'” fits), P y

; . . G®(g?) andG{Y(g?) are small over the range of momenta
then one arrives at the earlier results reported in R&f. e (d°) w (0°) 9

(9( 2\ — (S) {2 (9( 2\ and quark masses used in these lattice QCD simulations, and
Giy' (1) =0.03£0.03, _ Ge’(02) +0.395)(a3) =0.027 that they remain small when extrapolated with quenched
+0.016 and fng/my)(N|ss|N)(0)=0.152).

_ - SU(3) ChPT in combination with lattice QCD data for
There are a number of ways that future theoretical studlegN |§s| N)(g?).

could improve upon the results obtained in this work. From
the outset we have restricted ourselves to the quenched ap-
proximation, and this introduces a systematic error that is
perhaps 10—20 9%23]. It is also not obvious that higher or-
ders in the ChPT expansion are small for the case at hand, This work was supported in part by the National Science
i.e. SU3) ChPT for baryons with quark masses in the strangeFoundation under grant 0070836, the Baylor Sabbatical Pro-
region. It would be interesting to see the results of partiallygram, and the Natural Sciences and Engineering Research
qguenched simulations and lighter valence quarks for thes€ouncil of Canada. Some of the computing was done on
strangeness matrix elements. Refinements of the discomardware funded by the Canada Foundation for Innovation
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