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Nucleon’s strange electromagnetic and scalar matrix elements
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Quenched lattice QCD simulations and quenched chiral perturbation theory are used together for this study
of strangeness in the nucleon. Dependences of the matrix elements on strange quark mass, valence quark mass
and momentum transfer are discussed in both the lattice and chiral frameworks. The combined results of this
study are in good agreement with existing experimental data and predictions are made for upcoming experi-
ments. Possible future refinements of the theoretical method are suggested.
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I. INTRODUCTION

The effects of virtual strange quarks on the properties o
single nucleon represent basic information about QCD
the strong interaction. Hence, there is presently a great
of enthusiasm for studies of the nucleon’s strangeness e
tric and magnetic form factors. Recent experiments have
duced two measurements@1,2# and ongoing efforts are ex
pected to provide more results soon@3#.

First principles calculation from QCD requires the use
lattice field theory techniques, and a number of explorati
have been carried out by various authors@4–8#. The pres-
ence of the disconnected strange quark loop and the sm
ness of the resulting strangeness form factors cause la
simulations to be expensive and the extraction of meanin
results to be difficult@7#.

Chiral perturbation theory~ChPT! can play a valuable
complementary role alongside lattice QCD. ChPT is QCD
low-energy effective theory written in terms of the physic
hadrons rather than quarks and gluons, and it contains
energy constants~LEC’s! whose numerical values should b
determined from lattice QCD or directly from experimen
Quenched SU~3! ChPT@9,10# corresponds to quenched QC
with three active quark flavors—up, down and strange—a
it produces analytic expressions for the strangeness form
tors that explicitly display their dependences on the stra
quark mass, valence quark mass and momentum transf
is clearly advantageous to relegate as much of the calcula
as possible to ChPT so that valuable computer time can
spent on the physics that ChPT cannot predict. In ot
words, one need only extract the required LEC’s from latt
QCD simulations, and then the strangeness form factors
be studied directly in quenched SU~3! ChPT.

On the other hand, the strangeness form factors ca
principle be measured in lattice QCD simulations with mi
mal recourse to ChPT: the strange quark mass and the
mentum transfer can be fixed to their physical values i
lattice simulation and then ChPT is only needed for extra
lation of the valence quark mass. This extrapolation can
0556-2821/2003/67~1!/013003~9!/$20.00 67 0130
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performed with quenched SU~2! ChPT rather than SU~3!,
thereby providing the benefit of a more rapid convergen
for the chiral expansion since it no longer requires expans
in powers of the strange quark mass@11#.

In the present work, we report the results of high-statist
lattice QCD simulations for the strangeness electric a
magnetic form factors together with the strangeness sc
density. A number of different analysis methods are e
ployed and found to give consistent results. Two stran
quark masses, three valence quark masses and five mo
tum transfer values are studied. We also present the ana
quenched SU~3! ChPT formulas for the three strangene
matrix elements of interest and apply them to our latt
QCD data. The alternative of using quenched SU~2! ChPT is
briefly discussed as well. Finally, we compare our results
the existing experimental measurements, make predict
relevant to upcoming experiments, and suggest directions
future theoretical work.

Our main conclusions are that the raw lattice results
the strangeness electric and magnetic form factors~before
any use of ChPT! are very small, that ChPT-based extrap
lation to the physical up and down quark mass region d
not substantially change this, and that the lattice QCD p
dictions are therefore consistent with existing experimen
results.

II. NUMERICAL SIMULATIONS

The gauge field configurations used in this study w
generated from the Wilson gauge action atb56 on 203

332 lattices, corresponding to a lattice spacing of

a50.1011~7! fm ~1!

as obtained by the authors of Ref.@12# from a physical string
tension ofAK5427 MeV. Actually the lattice spacing is no
uniquely determined in the quenched approximation, and
authors of Ref.@5# used the physical nucleon mass to arri
at a50.115(6) fm. Our full ensemble of 2000 configur
©2003 The American Physical Society03-1
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tions was produced from various independently thermali
Markov chains. Within each chain, either 2000 or 50
triple-step heatbath updates@i.e. applied to three SU~2! sub-
groups# were executed between saved configurations.

The Wilson fermion action was used to obtain three
lence quark propagators per configuration, havingkv
50.152, 0.153 and 0.154. These correspond to pion ma
of

amp50.4772~9!22
19 @13#, 0.4237~8! @12#

and

0.364~1!@14# ~2!

respectively. The valence quarks in our simulations have
richlet time boundaries; the source is four timesteps aw
from the boundary. On our 203332 lattices, the five smalles
momentum squared values are

a2qW 25n~p/10!2, n50,1,2,3,4. ~3!

In physical units, the momenta are approximatelyuqW u50,
0.61 GeV/c, 0.87 GeV/c, 1.1 GeV/c and 1.2 GeV/c. Tabu-
lated in Table I are the energies of a nucleon having deg
erate quarks and each of these momentum squared valu

Strangeness matrix elements are calculated using stan
methods. This involves a three-point function in which
strange-quark loop is correlated with the nucleon propaga
It is prohibitively expensive to compute the strange qu
loop exactly at every lattice site, so we employ a stocha
estimator with realZ2 noise@15#. To reduce the variance, th
first four terms in thek l expansion (k l denoting the loop
quark’s hopping parameter! of the quark matrix were sub
tracted for the strangeness electric and magnetic form
tors, and the first five terms were subtracted for the sc
density @16#. This stochastic estimation method is unbias
with any number of noises, and the statistical uncertain
associated with this noisy estimator decrease as one incre
the number of noises and/or the number of gauge field c
figurations.

For k l50.152 we have computed a 60-noise estimate
each of our 2000 configurations, and fork l50.154 we have
computed a 200-noise estimate for 250 configurations.
vector meson masses for thesek l values are 912~8! MeV and

TABLE I. Dimensionless energies of the nucleon,aEn , with

momentum squareda2qW 25n(p/10)2. All fits begin 16 time steps
from the source, 2000 configurations are used, and statistical un
tainties are from a bootstrap analysis with 3000 bootstrap
sembles.

n k50.152 k50.153 k50.154

0 0.869~2! 0.799~2! 0.728~3!

1 0.927~3! 0.862~3! 0.795~4!

2 0.986~4! 0.924~5! 0.865~7!

3 1.034~7! 0.977~10! 0.922~15!

4 1.070~12! 1.013~18! 0.945~30!
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1066~4! MeV respectively~see Table VI of Ref.@12#! which
surroundmf51019 MeV so that our data will allow inter
polation to a strange quark loop. From the lattice simu
tions, three ratios are constructed,

RX~ t,t8,qW !5
GX

(3)~ t,t8,qW !G(2)~ t8,0W !

G(2)~ t,0W !G(2)~ t8,qW !
, ~4!

whereRS , RM andRE correspond to the scalar, magnetic a
electric cases respectively,t is the sink time step andt8 the
current insertion time step. The two-point and three-po
correlators are shown diagramatically in Fig. 1. For thre
point correlators, the vector current has incoming moment
qW and the nucleon sink has zero momentum; the nucl
source therefore has outgoing momentumqW . All nucleon op-
erators are local.

Strangeness matrix elements are extracted from the ra
of Eq. ~4!. Denoting the matrix elements byM with an ob-
vious subscript, these are related to form factors by

er-
n-

FIG. 1. Two-point and three-point correlators that appear inRX

of Eq. ~4!. Each solid line represents a quark propagator, and
shaded box denotes a current insertion.

FIG. 2. Lattice data for the strangeness scalar density as
tained from Eq.~7! with kv50.154 andk l50.152. Panels~a!

through ~e! correspond to momentaa2qW 25n(p/10)2 with n50
through 4 respectively. Uncertainties are calculated from 3000 b
strap ensembles.
3-2
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M $S,M ,E%~ t,qW !5H GS
(s) ,

e i jkqkGM
(s)

Eq1m
,GE

(s)J . ~5!

In the magnetic case,i, j and k run over spatial directions
and the corresponding indices onM M are suppressed fo
notational simplicity.

There are various ways in which the matrix element c
be extracted from the ratio. For example, one can sum
contributions for the strange quark inserted at different tim
t8. One way@17# to do this is

FIG. 3. Lattice data for the strangeness magnetic form facto
obtained from Eq.~7! with kv50.154 andk l50.152. Panels~a!

through ~d! correspond to momentaa2qW 25n(p/10)2 with n51
through 4 respectively. Uncertainties are calculated from 3000 b
strap ensembles.
01300
n
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t

RX~ t,t8,qW !→const1tMX~ t,qW !. ~6!

A disadvantage of this kind of method is that the mat
element does not emerge directly. A fit to the time dep

s

t-

FIG. 4. Lattice data for the strangeness electric form factor
obtained from Eq.~7! with kv50.154 andk l50.152. Panels~a!

through ~e! correspond to momentaa2qW 25n(p/10)2 with n50
through 4 respectively. Uncertainties are calculated from 3000 b
strap ensembles.
um

p en-
TABLE II. Fits to the matrix elements of Eq.~7! beginning 10 time steps from the source. The moment

squared isa2qW 25n(p/10)2. Statistical uncertainties are from a bootstrap analysis with 3000 bootstra
sembles.

kv n k l50.152 k l50.154
GS

(s) GM
(s) GE

(s) GS
(s) GM

(s) GE
(s)

0.152 0 2.6~4! 20.009(13) 3.7~13! 0.003~5!

1 1.7~2! 0.007~16! 20.008(8) 2.1~6! 20.007(15) 20.027(33)
2 1.2~2! 20.018(14) 0.012(10) 1.1~6! 0.008~13! 0.014~23!

3 1.1~5! 20.014(23) 0.008~17! 1.2~9! 0.047~41! 0.017~61!

4 0.7~6! 0.004~31! 0.026~40! 3.3~18! 0.033~59! 20.046(71)
0.153 0 2.7~5! 20.010(15) 4.0~14! 0.002~7!

1 1.8~3! 0.012~22! 20.011(10) 2.2~7! 20.010(17) 20.034(44)
2 1.3~2! 20.021(20) 0.015~14! 1.2~7! 0.014~16! 0.021~32!

3 1.2~6! 20.018(32) 0.008~22! 1.3~11! 0.071~56! 0.024~89!

4 0.7~8! 0.005~48! 0.029~56! 3.8~22! 0.049~80! 20.066(112)
0.154 0 2.9~5! 20.013(19) 4.2~15! 0.002~9!

1 1.8~3! 0.019~33! 20.014(15) 2.3~8! 20.016(22) 20.043(63)
2 1.3~3! 20.022(31) 0.019~21! 1.3~8! 0.023~23! 0.032~48!

3 1.5~9! 20.029(53) 0.008~32! 1.4~14! 0.118~90! 0.027~149!
4 0.8~11! 0.010~82! 0.021~81! 4.5~29! 0.084~116! 20.105(191)
3-3
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LEWIS, WILCOX, AND WOLOSHYN PHYSICAL REVIEW D67, 013003 ~2003!
dence, which in practice may be linear only over a limit
range, is required to determineMX . For this reason we pre
fer a differential method@6#:

(
t851

t11

@RX~ t,t8,qW !2RX~ t21,t8,qW !#→MX~ t,qW ! ~7!

which givesMX directly. For completeness we also consid
the relation

(
t851

t f ixed

RX~ t,t8,qW !→const1tMX~ t,qW !, with t f ixed.t

~8!

used in Ref.@5#.
Finally one has to relate the lattice matrix element to

continuum one. The physical scalar density requires w
function renormalization and we use the tadpole-improv
factor @18#

^Nus̄suN&5S 12
3k l

4kc
DGS

(s) , ~9!

with kc50.157096(28)29
133 @13#. The conserved vector cur

rent was used forGM
(s) and GE

(s) , and its normalization is
such that no wave function renormalization factor is
quired.

Figure 2 shows our lattice data for the scalar density v
sus time step, withkv50.154 andk l50.152, analyzed using
Eq. ~7!. In this case there is a very clear signal and, for e
value of the momentum transfer, the plateau begins abou
time steps from the source, although uncertainties grow w
qW 2. Figures 3 and 4 show the magnetic and electric data f
Eq. ~7! with the samekv ,k l values. In contrast to the scala
density, there is no apparent nonzero signal. However, u
the scalar density results, which suggest that the plateau
gion begins about ten time steps from the source, as a gu
one concludes that the form factors are consistent with z
within uncertainties less than 0.1 for allqW 2 values studied.
We have verified that Eqs.~6! and ~8! produce compatible
results for all three matrix elements.

The results of fitting each of our lattice measurements
Eq. ~7! over four consecutive time steps, beginning ten ti
steps from the source in every case, are tabulated in Tab
with statistical uncertainties obtained from a bootstrap an
sis employing 3000 bootstrap ensembles. If the uncertain
simply scaled with the square root of the number of confi
rations then the ratio of uncertainties betweenk l50.154 and
0.152 should be near 2.8, but the increased number of no
per configuration fork l50.154 could reduce this ratio. Ac
cording to Table II, onlyGM

(s) shows a noticeable dependen
on the number of noises.

These results forGM
(s) can be compared to the findings

Ref. @5#, since those authors also work with the Wilson a
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tion with the sameb and k values, although their lattice
volume is smaller. From 100 configurations with 300 co
plex Z2 noises analyzed using the method of Eq.~8! only,
those authors interpreted their results to imply a nonz
value forGM

(s) . Recently, Mathur and Dong have used on
60 configurations and the same analysis method to dis
correlations between the number of noises employed and
sizes of resulting uncertainties@19#. Recalling that the sto-
chastic technique is unbiased with any number of noises,
that uncertainties decrease as the number of gauge con
rations is increased, our studies~see Ref.@7# for a specific
discussion! suggest that a clearer picture is attained with
larger sample of gauge configurations. According to Table
even the small statistical uncertainties of the present work
not permit a definitive nonzero determination ofGM

(s) . The
same is true forGE

(s) .

III. CHIRAL EXTRAPOLATIONS

Consider quenched SU~3! ChPT with explicit fields for
the pseudoscalar meson octet (M ), spin-1/2 baryon octet
(B), spin-3/2 baryon decuplet~T! and external electromag
netic and scalar fields. The ChPT Lagrangian is

L5L M
(2)1L MB

(0) 1L MB
(1) 1L MB

(2) 1L MB
(3) 1L MT

(1) 1L MBT
(1) 1•••,

~10!

where a superscript ‘‘(n)’’ denotes annth order contribution
from the expansion in the smaller scales—momentum tra
fer, meson masses and theT-B mass splittingD—relative to
the larger scalesLx'4pFp and baryon masses. The leadin
loop diagrams for our three strangeness form factors beg
third order and are displayed in Fig. 5. Each diagram
ceives contributions from various quark flows which ha
been calculated using the approach of Labrenz and Sh
@10#. Besides these loop contributions, there are also con
terms in the Lagrangian which contribute low energy co
stants~LEC’s! to the strangeness matrix elements. Here
the explicit formulas:

FIG. 5. Leading loop diagrams for the strangeness matrix
ments from quenched chiral perturbation theory. Dashed, solid
double lines denote octet mesons, octet baryons and decuplet
ons respectively. A shaded box denotes a current insertion.
3-4
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^Nus̄suN&5C1m1C2~l!mD2
4~4pFp!2

F 4mK1E
0

dx
AmK

2 2x~12x!q2
G2

2~4pFp!2

3F 4ms̄s1E
0

1

dx
~2ms̄s

2
2q2!

Ams̄s
2

2x~12x!q2
G2

mDCT

2~4pFp!2
F2 lnS mK

2

l2 D 2E
0

1

dxlnS 12x~12x!
q2

mK
2 D

1
2

D
E

0

1

dxS D22mK
2 1~4.3!x~12x!q2

D22mK
2 1x~12x!q2 D A~x!G , ~11!

GM
(s)~q2!5C31C4

r ~l!D1
2pmNCB

~4pFp!2E0

1

dxAmK
2 2x~12x!q21

mNDCT

3~4pFp!2 F lnS mK
2

l2 D 2
11

3
2

2

DE0

1

dx A~x!

2E
0

1

dx
2mK

2 2q2/2

mK
2 2x~12x!q2G , ~12!

GE
(s)~q2!5C5

r ~l!q21C6

q2

mN
1

2q2CB

3~4pFp!2 F5

8
lnS mK

2

l2 D 1
17

24
2S mK

2

q2
2

5

8D E0

1

dx lnS 12x~12x!
q2

mK
2 D G

1
q2

4~4pFp!2 F lnS mK
2

l2 D 1
1

3
1S 12

4mK
2

q2 D E
0

1

dx lnS 12x~12x!
q2

mK
2 D G1

CTq2

~4pFp!2 F 5

36
lnS mK

2

l2 D 1
mK

2

9q2

2
2D2

q2
2

7

54
1

2D

q2
A~0!2S mK

4

9q2
2

2mK
2 D2

q2
2

7mK
2

18
1

D2

2
1

5q2

72 D E
0

1 dx

mK
2 2x~12x!q2

2
2D

q2 E0

1

dxS D22mK
2 1~4/3!x~12x!q2

D22mK
2 1x~12x!q2 D A~x!G , ~13!

whereD.0 and

A~x!55 Az2D2arccosS D

Az
D for D,Az,

2AD22zlnS D

Az
1AD2

z
21D for D.Az,

~14!
con-
with

z[mK
2 2x~12x!q2. ~15!

Our interest is in spacelikeq2, so z is positive definite
throughout the range 0,x,1. The q2 of each lattice data
point is obtained from

q25~En2E0!22nS p

10aD 2

~16!

wheren50, 1, 2, 3 or 4 and theEn are taken from Table I.
CB contains the familiar axial couplings (D and F) and

CT contains the octet-decuplet couplingC ~defined, for ex-
ample, in Ref.@10#!:
01300
CB5
5

3
D222DF13F2, ~17!

CT5C 2. ~18!

The parametersC1 , C2 , . . .C6 are LEC’s, some of which
depend on the dimensional regularization scalel such that
the full matrix elements are independent ofl. g is the ChPT
parameter for the quenchedh8 @10# andms̄s is the mass of a
doubly-strange pseudoscalar meson. The normalization
vention corresponds toFp'93 MeV andm is the ChPT pa-
rameter defined by

mK
2 5m~m̂1ms! ~19!
3-5
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TABLE III. Predictions of quenched SU~3! ChPT, after a least squares fit to 39 lattice data. The estim
uncertainties include the range between the two extreme cases of maximizing or minimizing the quench8
contribution in ChPT loop diagrams relative to non-h8 physics, as discussed in the text, as well as
statistical uncertainties from a bootstrap analysis.

kv n k l50.152 k l50.154
GS

(s) GM
(s) GE

(s) GS
(s) GM

(s) GE
(s)

0.152 0 2.1~5! 0.0 4.0~18! 0.0
1 1.7~3! 20.006(6) 0.002~3! 3.4~15! 0.012~12! 0.011~5!

2 1.3~2! 20.006(6) 0.001~7! 2.8~12! 0.011~11! 0.017~9!

3 0.9~3! 20.007(7) 20.003(11) 2.2~8! 0.010~10! 0.021~12!

4 0.6~4! 20.008(8) 20.008(15) 1.9~8! 0.010~10! 0.021~14!

0.153 0 2.3~4! 0.0 4.1~17! 0.0
1 1.8~2! 0.008~8! 0.007~4! 3.5~14! 0.020~20! 0.017~7!

2 1.4~2! 0.007~7! 0.010~7! 3.0~11! 0.018~18! 0.028~12!

3 1.0~4! 0.006~6! 0.010~9! 2.5~8! 0.017~17! 0.036~16!

4 0.7~5! 0.005~8! 0.008~11! 2.0~7! 0.016~16! 0.041~20!

0.154 0 2.4~3! 0.0 4.2~16! 0.0
1 2.0~3! 0.014~14! 0.012~5! 3.6~13! 0.027~27! 0.023~9!

2 1.5~3! 0.013~13! 0.019~9! 3.1~10! 0.025~25! 0.041~15!

3 1.1~5! 0.012~12! 0.024~13! 2.8~9! 0.023~23! 0.054~21!

4 0.8~6! 0.011~11! 0.025~15! 2.2~5! 0.022~22! 0.063~25!
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with m̂[mu5md . In order to verify various aspects of thes
ChPT expressions for̂Nus̄suN&(q2), GM

(s)(q2) andGE
(s)(q2),

comparisons were made to the collection of papers in R
@20#.

The values foramN , amK , aD andaFp have been com-
puted fork50.152 in quenched lattice QCD by the autho
of Ref. @13#, and we take these results as given. Using dat
k50.153 or 0.154 instead would lead to small numeri
differences that are formally of higher order in the ChP
expansion. The parameterm is obtained from Eqs.~2! and
~19!. With these quantities determined, notice that the th
strangeness matrix elements contain a total of
parameters—mC11mDC2

r (m), C31DC4
r (m), C5

1C6
r (m)/mN , CB , CT and g2—and the dependences o

each of these parameters are linear. BecauseD, F, C and g
are real parameters it follows thatCB , CT and g2 must be
positive definite, and Eq.~11! therefore requires tha

^Nus̄suN&(q2) decreases asm̂, ms or 2q2 is increased. This
is consistent with the lattice QCD data of Table II.

It should be noted that the range ofqW used in our lattice
simulations extends far beyond the range of applicability
ChPT, and there is therefore no reason to expect that
form of ChPT will look anything like the lattice data fo
these larger momentum values. As would be hoped, us
only the lattice data at smaller momentum values leads
good ChPT fit. As it happens, the ChPT expressions fit
three matrix elements surprisingly well over the entire m
mentum range studied. Although this is surely accidenta
means that the ChPT expressions can be used as a conve
method of smoothly interpolating the momentum dep
dences of these matrix elements.

To determine numerical values for the six parameters
pearing in the ChPT expressions, we perform a least squ
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fit to the data of Table II. In particular, we will fit the 39 dat
points havingk l50.152@data forGE

(s)(0) are omitted since
gauge invariance requires a zero result# and verify that pre-
dictions fork l50.154 are consistent with our lattice simul
tions. We will also perform an independent fit using only

of the 39 data points: those havinga2qW 250 or a2qW 2

5(p/10)2. These smallest momenta are the ones most
propriate to ChPT and, as will be demonstrated, the fi
predictions for strangeness matrix elements are rather in
sitive to whether or not the higher momentum data are u
as input for the ChPT fit. The statistical uncertainties of t
fit parameters are determined from a bootstrap analysis.

In addition to the statistical error there is a systema
uncertainty due to the choice of chiral model. The dynam
of the ChPT expressions reside in the loop diagrams,
they contain the quenchedh8 parameterg2 as well as the
non-h8 parametersCB and CT . It is possible to obtain a
good fit to thek l50.152 data in the extreme limit of noh8
(g250) or in the opposite extreme of ‘‘maximalh8’’ where
CB5CT50. @In the maximalh8 case, we also chooseC3

1C4
r (l)D50 since it is clear from Eq.~12! that this param-

eter would simply be an additive constant forGM
(s)(q2) and

would be consistent with zero when fitted to our lattice QC
data.# These separate possibilities indicate that our latt
data are not precise enough to determine the fraction ofh8
physics in the strangeness form factors. One might exp
the physical values for these parameters to lie somewh
between the two extremes, and we will use this range
define a theoretical error bar. The results of our fits to
k l50.152 data, and the resulting predictions fork l50.154,
are recorded in Table III. The fits are consistent with t
direct lattice QCD simulations of Table II. The correspon
ing ChPT parameter values are listed in Table IV, along w
3-6
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TABLE IV. The parameter values obtained for the two extreme fits to our quenched lattice QCD d
k l50.152, as discussed in the text, using~i! lattice data from all available momenta and~ii ! lattice data with

a2qW 250 anda2qW 25(p/10)2 only. Statistical uncertainties are from a bootstrap analysis with 3000 boot
ensembles.

~i! fit to all qW ~ii ! fit to small qW

maximalh8 no h8 maximalh8 no h8

mC11mDC2
r (1 GeV) 3.2~7! 1.7~3! 5~2! 1.6~5!

C31DC4
r (1 GeV) 0.31~7! 0.09~4!

CB 0.11~3! 0.12~6!

g2 0.45~11! 0.7~3!

CT 1.0~2! 0.8~3!

@C51C6
r (1 GeV)/mN#/a2 0.12~3! 0.03~4! 0.27~7! 0.21~8!

degrees of freedom 3923536 3925534 122359 122557
x2/DOF 0.4 0.8 0.1 1.1
t

m

h

w
f the
-

mi

ed
an
nt

iz-

ed

ss
oot-
the parameter values obtained from fits to the data having
two smallest momenta:a2qW 250 anda2qW 25(p/10)2. In the
unquenched theoryg2 does not appear and standard pheno
enology leads toCB;0.9 and 1.4&CT&2. Not surprisingly,
the quenched parameter values in Table IV are somew
different.

For physical meson masses,

m̂

ms
5

mp
2

2mK
2 2mp

2
5

1

25
~20!

FIG. 6. Strangeness matrix elements at2q250 as functions of
mK . The two solid curves represent the extreme cases of maxi
ing or minimizing the quenchedh8 contributions in ChPT loop
diagrams relative to non-h8 physics. ChPT parameters are obtain
from a fit to 39 lattice QCD data points as discussed in the text,
the thickness of a hatched band denotes statistical uncertai
from 3000 bootstrap ensembles.
01300
he

-

at

which leads to

ms̄s5mKA 2

11m̂/ms

51.39mK . ~21!

At 2q250, GE
(s) vanishes identically. Figures 6 and 7 sho

the other two strangeness matrix elements as functions o
kaon mass. FixingmK to its physical value leads to the mo

z-

d
ies

FIG. 7. Strangeness matrix elements at2q250 as functions of
mK . The two solid curves represent the extreme cases of maxim
ing or minimizing the quenchedh8 contributions in ChPT loop
diagrams relative to non-h8 physics. ChPT parameters are obtain

from a fit to 12 small-momentum lattice QCD data points@a2qW 2

50 anda2qW 25(p/10)2] as discussed in the text, and the thickne
of a hatched band denotes statistical uncertainties from 3000 b
strap ensembles.
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mentum dependent strangeness matrix elements of Fig
and 9, which are our final results. Comparison to experim
along with disclaimers about such a comparison, are c
tained in Sec. IV.

To conclude this section we return to the suggestion fr
Ref. @11# of using SU~2! ChPT instead of SU~3!. This is an
appealing idea because SU~2! ChPT typically converges
more rapidly. In effect, the kaon loop diagrams of Fig. 5 g
replaced by SU~2! LEC’s. Although SU~3! ChPT uses a com
mon set of parameters (CB , CT and g2) for the kaon loop
effects in all three strangeness matrix elements, SU~2! ChPT
has separate LEC’s for each matrix element. Since the
lattice QCD data of Table II only reveal a nonzero signal
the strangeness scalar density, it is difficult to discuss SU~2!
ChPT extrapolations of the strangeness electromagnetic
factors in any detail. Perhaps future lattice QCD data
these form factors will be precise enough to benefit fr
SU~2! ChPT.

IV. DISCUSSION

The results of this work~Figs. 8 and 9! compare favorably
to the available experimental data:

FIG. 8. Strangeness matrix elements as functions of2q2. The
two solid curves represent the extreme cases of maximizing
minimizing the quenchedh8 contributions in ChPT loop diagram
relative to non-h8 physics. ChPT parameters are obtained from a
to 39 lattice QCD data points as discussed in the text, and
thickness of a hatched band denotes statistical uncertainties
3000 bootstrap ensembles.
01300
. 8
t,
n-

t

w
r

rm
r

GM
(s)~q1

2!5H 0.1460.2960.31, Ref.@1#,

0.0560.06, this work,
~22!

GE
(s)~q2

2!10.39GM
(s)~q2

2!

5H 0.02560.02060.014, Ref.@2#,

0.0760.05, this work,
~23!

where 2q1
250.1 GeV2 and 2q2

250.477 GeV2. Here, the
uncertainties~incorporating both statistical and theoretic
modeling errors! in our results have been estimated by t
requirement that all curves from Figs. 8 and 9, represen
fits to all momenta, fits to only small momenta, ‘‘maxim
h8’’ fits and ‘‘no h8’’ fits are within one standard deviation
of the quoted central value. The lack of a fundamental sc
probe makes the strangeness scalar density harder to ex
from experiment, but Figs. 8 and 9 can be compared to o
quenched lattice QCD simulations. The renormalizat
group invariant quantity representing the fractional stran
quark contribution to the nucleon mass is

or

t
e
m

FIG. 9. Strangeness matrix elements as functions of2q2. The
two solid curves represent the extreme cases of maximizing
minimizing the quenchedh8 contributions in ChPT loop diagram
relative to non-h8 physics. ChPT parameters are obtained from a

to 12 small-momentum lattice QCD data points@a2qW 250 and

a2qW 25(p/10)2] as discussed in the text, and the thickness o
hatched band denotes statistical uncertainties from 3000 boot
ensembles.
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ms^Nus̄suN&~0!

mN
5H 0.302~48! at b55.7, Ref.@21#,

0.195~9! at b56.0, Ref.@22#,

0.21~11! at b56.0, this work.
~24!

If the curves of Fig. 9 are not included in the predictions
these strangeness matrix elements and if the statistical e
of Fig. 8 are ignored relative to the theoretical errors~reflect-
ing the difference between ‘‘maximalh8’’ and ‘‘no h8’’ fits !,
then one arrives at the earlier results reported in Ref.@8#:
GM

(s)(q1
2)50.0360.03, GE

(s)(q2
2)10.39GM

(s)(q2
2)50.027

60.016 and (ms /mN)^Nus̄suN&(0)50.15(2).
There are a number of ways that future theoretical stud

could improve upon the results obtained in this work. Fro
the outset we have restricted ourselves to the quenched
proximation, and this introduces a systematic error tha
perhaps 10–20 %@23#. It is also not obvious that higher or
ders in the ChPT expansion are small for the case at h
i.e. SU~3! ChPT for baryons with quark masses in the stran
region. It would be interesting to see the results of partia
quenched simulations and lighter valence quarks for th
strangeness matrix elements. Refinements of the dis
nected loop techniques could also be advantageous, su
perturbative subtraction beyondO(k4,k5) and heatbath
nd

.

.

cl.

01300
r
ors

s

p-
is

d,
e
y
se
n-
as

noise methods@24#. Finally, we recall that the so-calle
strangeness electric and magnetic form factors would no
exactly zero even in a world without any strange quark, d
to isospin violation@25,26#. Based on Ref.@26#, the isospin
violation effects are not so different in magnitude from t
tiny strange quark effects discussed in the present work.

Although there are certainly further steps that can
taken toward a more detailed understanding of these stra
ness matrix elements, the present study has established
GE

(s)(q2) andGM
(s)(q2) are small over the range of momen

and quark masses used in these lattice QCD simulations,
that they remain small when extrapolated with quench
SU~3! ChPT in combination with lattice QCD data fo

^Nus̄suN&(q2).
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