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Including systematic uncertainties in confidence interval construction for Poisson statistics
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One way to incorporate systematic uncertainties into the calculation of confidence intervals is by integrating
over probability density functions parametrizing the uncertainties. In this paper we present a development of
this method which takes into account uncertainties in the prediction of background processes and uncertainties
in the signal detection efficiency and background efficiency, and allows for a correlation between the signal and
background detection efficiencies. We implement this method with the likelihood(testi@lly denoted as the
Feldman-Cousinsapproach with and without conditioning. We present studies of coverage for the likelihood
ratio and Neyman ordering schemes. In particular, we present two different types of coverage tests for the case
where systematic uncertainties are included. To illustrate the method we show the relative effect of including
systematic uncertainties in the case of the dark matter search as performed by modern neutrino telescopes.
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I. INTRODUCTION [7], and Durhani8] for a review of the status of the field.
In this paper we extend the method of confidence belt
A limit on, or a measurement of, a physical quantity at aconstruction proposed i#] to include systematic uncertain-

given confidence level is usually set by comparing a numbeties in both the signal and background efficiencies as well as
of detected events),, with the number of expected events theoretical uncertainties in the background prediction. The
from the known background sources contributing to theProposed method also allows us to use newer ordering
physical process in question,. How “compatible” these schemes. A recent attempt to include systematic uncertainty
numbers are determines how much room there is for nedn the background prediction in a similar manner has been
processes, i.e., for a signal. How well the number of obresented ii9]. The paper is organized as follows. In Sec. I
served events and expected background compare Strong{yﬁ give a short review of the confidence belt construction
depends on the systematic uncertainties present in the me3chemes that we will use. In Sec. Ill we describe how to
surement. Systematic uncertainties must, therefore, be takéfclude the systematic uncertainties; in Sec. IV we discuss

into account in the limit or confidence belt calculation that ishow the confidence belt construction is performed and
finally published. present some selected results. We compare the results of this

Traditionally, confidence limits are set using a Neymanmethod with other methods to include systematics in Sec. V.
construction[1]. This is a purely frequentist method. Feld- We introduce the tests of coverage performed in Sec. VI and
man and Cousing2] have proposed an improved method to Present an example based on data from the Antarctic Muon
construct confidence intervals based on likelihood ratios, &nd Neutrino Detector ArrayAMANDA ) neutrino experi-
method already known in statistics and originally describednent in Sec. VII.
in [3]. Still, this method is based on the original Neyman
construction, and needs to be extended to incorporate sygt. THE CONSTRUCTION OF CONFIDENCE INTERVALS
tematic uncertainties in the measurement. Along this line, a : . , . .
modification of the Neyman method that incorporates sys- '_I'he fr_equent!st construction of conﬂdenc_e m_terv_als is de-
tematic uncertainties in the experimental signal efficiencyScrlbed in detail elsewhergl0]. Here we will give just a

. . short review.
has been proposed by Highland and Cou$#is These au- . . . - . .
thors use a “semi-Bayesian” approach where an averag Let us consider a Poissonian probability density function

over the probability distribution of the experimental sensitiv-?PDF) P(n)s+p, for a fixed but unl_<nown signalin the pres-
ity (and its uncertaintyis performed. By construction, the ence of a knpwn hackground with mehnFor every value
method is of limited accuracy in the limit of high relative of s we can find two values, andn; such that
systematic uncertainties. n,
Recently, an entire[y fre_quentist approach has beer_l pro- 2 PN )esp=1—a (1)
posed for the uncertainty in the background rate prediction n'=n;
[5]. That approach is based on a two-dimensional confidence
belt construction and likelihood ratio hypothesis testing andvhere 1- « denotes the confidence levelsually quoted as
treats the uncertainty in the background as a statistical ure 100(1—a)% confidence interval Since we assume a
certainty rather than as a systematic one. Poisson distribution, the equality will generally not be satis-
The interest aroused recently in the high energy physicéed exactly. A set of intervalfn;(s+b,a),n,(s+b,a)] is
community about the many open issues on setting limits andalled aconfidence beltGraphically, upon a measurement
quoting confidence levels is stressed by the organization dheconfidence intervdls,,s,] is determined by the intersec-
workshops devoted to the subject. We refer the reader to thigon of the vertical line drawn from the measured vatyg
proceedings of the recent workshops at CERIN Fermilab  and the boundary of the confidence belt. This is illustrated in
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£s+ b(n)

R(s,n)£=£ (4)

p(n) s+b

—

Spestt p(N)

is computed for each, and alln’s are consequently ranked
according to the value of this ratio. Valuesmfre included
in the confidence belt starting with thewith the highest
rank (largest R;) and then decreasing rank until

Ezzznlp(n)sﬂ,:l—a. After the confidence belt has been

constructed in this way, the confidence interys],s,] is
found as described in the previous section. Note that this
ordering principle is a standard method within the theory of
likelihood ratio testg3].

This approach has some undesired features as well. There
is a background dependence of the upper limit in the case of
fewer events observed than expected from background. This
can lead to situations where measurements with higher back-
ground give a better limit, a clearly undesirable effect. Roe
and Woodroofe[11] proposed a solution to this problem
which we briefly describe next.

-

No n

FIG. 1. lllustration of the confidence belt construction. Onxhe
axis are the possible experimental outcorfrasmber of evenjs on
they axis the parameter of the PDB)( In this case a Poisson PDF
was assumed.

Fig. 1. The probability that the confidence interval will con-
tain the true valuesis 1—«, since this is true for als per o ] ) .
construction. The choice of the, andn, to define the con- A variation of the classical method of constructing confi-
fidence belt is, however, not unique. An additional criteriondence belts is to use the fact that, given an observaiorit

has to be applied. The choices originally proposed by Ney!s known that the background cannot have been larger than

B. Conditioning

man[1] are n, itself. To incorporate this knowledge into the PDF, the
authors in[11] proposed the following modification:
nl 3]
1-«a
2 P(N)sip= 2 p(M)sip="0— (2 P(N)s: b
n'=0 n’'=ny e .
E , if n=<ng,
for central confidence intervals, and n=0 P(N")p
S o)1 - A2y (m=1{ (5)
n =l ’ ’
o P s > p(n')pp(n—n');
moo if n>n
for upper confidence limits. This method presents certain No ! o
drawbacks in the case of small samples and, in particular, Z p(n’)y
n'=0

can yield null resultgin the sense that the algorithm gives no
answey in the case when no events have been observed.

ground dependence of the upper limit: a limit set when no
events are observed stays constant at a value of 2.44 inde-
pendent of the expected backgrouehich agrees with the

To solve this problem, a modification of the Neyman result of the original likelihood ordering for no events ob-
method has been propos¢8,2] that is based on a more served and no expected backgrourtdowever, this method
rationalized ordering scheme of the elements in the sum idoes not satisfy all the requirements of proper covefage
Eq. (1), based on likelihood ratios. This approach automati-and has problems when applied to the case of a Gaussian
cally provides central confidence intervals when motivatediistribution with boundarie$13]. An extension based on a

and upper limits when necessary; therefore it is often deBayesian approach with tests of coverage can be found in
noted as the “unified approach.” Instead of using the choice$14].

given in the previous section, the following ordering scheme
is applied in solving Eq(1).

For eachn the sy is found which maximizes the likeli-
hood £(n)s.p. In the case of a simple Poissonian distribu-

A. Likelihood ratio ordering

IIl. THE INCLUSION OF SYSTEMATIC UNCERTAINTIES

The way of incorporating systematic uncertainties into the

tion with known backgroundsyes: is given by max((
—b). Then for a fixeds the ratio

confidence belt construction presented in this paper does not
affect the particular ordering scheme. Instead, it takes into

012002-2



INCLUDING SYSTEMATIC UNCERTAINTIES IN . .. PHYSICAL REVIEW D67, 012002 (2003

account the systematic uncertainties by assunimgf pos- o 25¢ 1 ¥ o7
sible determininga PDF which parametrizes our knowledge 225 F I .' .l 'i'
about the uncertainties and integrating over this PDF. It has ~E l ' .0 .3'
been noted that averaging over systematic uncertainties it 20 | i .I .ll
itself is a Bayesian approagdH]. Therefore the method pre- 175 E ' .‘ .. .|.
sented is refered to as “semi-Bayesian,” combining classical “E I ' .I .l'
and Bayesian elements. We return to this point in Sec. VI. 15| ' | ‘l .0'
Usually, uncertainties are assumed to be described by 125 £ ' '. .‘ l.
Gaussian distribution, which we will adopt for the remainder T | ¢ o
of this paper. The implementation, however, makes it easy tc 10 | l i A .|'
use other parametrizations for the uncertainties. 75 E " ..' 'o'

We will refer in the following to the parameters with sys- F i o®?
tematic uncertainties also asiisance parameters 5 ':..

Two examples of how the PDF is modified if systematic 25 ki l .“
uncertainties are present are the following. In the case tha E ".||||||||
the only uncertainty present is a theoretical uncertainty of the 6 5 10 15 20 25 30 35 40 45 50

background process the PDF is modified to n
w 2 2 FIG. 2. 90% confidence belts obtained withLe using the like-

f p(n)ss bre_(b_b Y 2opdh’. (6) lihood ratio ordering scheme and assuming different uncertainties in
0 the signal efficiency. The inner band has been constructed assuming

no uncertainty in the signal efficiency. The outer band represents the

Hereb is the estimated background level, amg is the un-  belt constructed with a signal efficiency uncertainty of 40%. The

certainty in the background estimation. If, in addition to thebackground expectation in this particular case Wa<2.

theoretical uncertainty for background, there is the need to

include the uncertainty in the signal detection efficiency th

expression foq(n)s,, might be extended to

1
Q(n)s+b=E
b

eGaussian, flat, and log-normal parametrization of the uncer-
tainties. After determining the PDF through evaluation of the
o integrals, different ordering schemes can be applied for the
Q(”)s+b=;f f P(Npy 4 o' final calculation of the confidence belt. The results presented
2mopoJo Jo here are mainly for the likelihood ratio ordering scheme with
o 2 o 2 and without conditioning. We restrict ourselves to presenting
xe (bmb)T2rhe= (1) 20 dh'de’  (7)  systematic uncertainties of signal and background efficien-
cies separately to give a clear idea of the effect of varying a
where o is the uncertainty in the detection efficiency ex- single variable at a time. Real applications usually combine
pressed inrelative terms with respect to the nominal effi- those uncertainties.
ciency. It is important to realize that the integration variables, The confidence belt constructions have been performed
heree’ andb’, are the possible “true(but unknown values  using steps of 0.05 in signal expectation and performing the
of the nuisance parameter. This indicates that this method isonstruction up to a maximal signal expectation of 50 and a
based on Bayesian statistics. maximal number of detected events of 100. Including sys-
tematic uncertainties generally leads to a widening of the
confidence belt. Figure 2 shows an example of a likelihood
ratio confidence belt construction with and without uncer-
tainty in the signal efficiency, where a background expecta-
The integrals(6) and (7) can be solved using different tion b=2 has been assumed.
methods. We note, however, that they are examples of sim- Examples for some resulting intervals are given in Tables
plified cases. The most general experimental situation int and Il. Different combinations of the number of observed
volves both an uncertainty in signal efficiency as well as ineventsn, and the expected backgroubdare given for dif-
the background detection efficiency, which are usually corferent uncertainties in the signal and background efficiency.
related, and possibly an additional theoretical uncertainty in  The width of the interval for two particular examples of
the background process prediction. We have developed asbserved events and expected background as a function of
algorithm that takes these effects into account with thesignal efficiency uncertainty and background uncertainty is
proper correlations between them. The algorithm performs ahown in Fig. 3. Note that for low background expectation
Monte Carlo integration over the systematic uncertainties. Ithe uncertainties in the background can be negle¢seg
has been implemented as@RTRAN program,POLE (Poisso-  also Table I). Figures 4 and 5 give more extended informa-
nian limit estimatoy [15]. In the examples used in this sec- tion on the resulting intervals.
tion a Gaussian distribution of uncertainties is assumed, but An interesting case arises when there are significantly
the algorithm makes it easy to implement PDFs other thafewer events observed than expected from background and
Gaussian(see the next section for an example of using athere is an uncertainty in the signal efficiency. In this case,
different distribution. For the moment the code supports athe width of the confidence interval does not increésse

IV. poLE: A GENERAL ALGORITHM FOR CONFIDENCE
BELT CONSTRUCTION
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TABLE |. Examples of likelihood ratio 90% confidence inter- TABLE Il. Examples of likelihood ratio 90% confidence inter-
vals including systematic uncertainty in the signal efficiency andvals including systematic uncertainty in the background expectation

assuming no uncertainty in the background prediction. and assuming no uncertainty in the signal efficiency.
ny b Signal efficiency Likelihood ratio Likelihood ratio interval n, b Background Likelihood ratio Likelihood ratio
uncertainty(%) interval with conditioning uncertainty interval interval with conditioning

2 2 0 0: 3.90 0: 4.00 2 2 0 0: 3.90 0: 4.00
0.2 0: 3.95 0:4.34 0.2 0: 3.95 0: 4.10
0.3 0: 4.10 0: 4.75 0.3 0: 3.95 0: 4.25
0.4 0: 4.65 0:5.35 0.4 0: 3.95 0:4.35

3 2 0 0: 5.40 0: 5.30 3 2 0 0: 5.40 0: 5.30
0.2 0: 5.70 0: 5.65 0.2 0: 5.45 0:5.35
0.3 0: 5.95 0: 6.20 0.3 0: 5.45 0: 5.45
0.4 0: 6.80 0:7.10 0.4 0: 5.50 0: 5.55

4 2 0 0: 6.60 0: 6.60 4 2 0 0: 6.60 0: 6.60
0.2 0:7.10 0: 7.30 0.2 0: 6.95 0: 6.65
0.3 0:7.75 0:7.85 0.3 0: 6.95 0: 6.80
0.4 0: 8.95 0:9.15 0.4 0: 6.95 0: 6.80

5 2 0 0.40: 7.95 0.50: 8.05 5 2 0 0.40: 7.95 0.50: 8.05
0.2 0.40: 8.60 0.50: 8.60 0.2 0.35: 7.95 0.50: 8.10
0.3 0.40: 9.55 0.50: 9.65 0.3 0.30: 8.00 0.50: 8.10
0.4 0.40:11.15 0.50:11.20 0.4 0.20: 8.20 0.45: 8.15

6 2 0 1.10: 9.45 1.10: 9.45 6 2 0. 1.10: 9.45 1.10: 9.45
0.2 1.05,10.05 1.05:10.10 0.2 1.05: 9.45 1.10: 9.50
0.3 1.05:11.50 1.05:11.50 0.3 1.00: 9.50 1.05: 9.50
0.4 1.05:13.35 1.05:13.35 0.4 0.95: 9.50 1.00: 9.50

Table IIl). Note that if we use conditioning the effect disap- deals with these cases by truncating the Gaussian distribution
pears. The same cannot be observed in the case where WRd renormalizing the part above zero.
consider only an increasing background uncertaifgge We examine the effect of truncating the Gauss distribution
Table IV). by calculating the confidence interval for different values of
the truncation point(see Fig. 8 Considering a Gaussian
distribution centered on 1 with=40%, a truncation at zero
removes only 0.7%. Figure 6 therefore indicates that effects
on the confidence interval due to the truncation are negligible
In experimental situations where the systematic uncertainfor all cases considered in this paper.
ties are high, a problem might arise due to the fact that sam- A PDF for the nuisance parameters extending to negative
pling from a Gaussian PDF allows negative valuesLE  values or which falls off to zero discontinuously is certainly

Negative values of the nuisance parameters:
Using a log-normal distribution

s 16 e 16
5 B —
H N H3 N
15 - —— Likelihood ratio 15 - —— Likelihood ratio ’
[ o= Likelihood ratio with conditioning [ - Likelihood ratio with conditioning
1ur 141 -
1BE 13}
12f 12f
nE "
10 - 10
P PRI I T IR P EE B C
0 005 01 015 02 025 03 035 04 0 005 01 015 02 025 03 035 04
signal efficiency uncertainty background uncertainty.

FIG. 3. Example of the dependence of the likelihood ratio confidence interval width on the systematic uncertainties, with and without
conditioning, as obtained withoLE The left plot shows the width as a function of the uncertainty in signal efficiency assuming no additional
uncertainty in background expectation. The right plot shows the width as a function of the background uncertainty. We hgyvelisadd
a background of 15 in constructing the plots.
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FIG. 4. Likelihood ratio upper limit as a function of signal efficiency uncertainty for expected backgrounds of 0, 2, 4, 6, 8, and 10. Cases
with number of observed events significantly fewer than expected background have been omitted.

undesired from a conceptual point of view. We therefore teshominal value of the nuisance parameter and use the Gauss-
the behavior of the confidence interval if we replace theian standard deviation as befo(the variance of the log-
Gaussian distribution with a log-normal distribution, which normal distribution will then be approximately the same
in the general form is given by The confidence intervals for Neyman and likelihood ratio
ordering under these assumptions are shown for one particu-
1 lar example of the number of observed events and expected
AX) 0= 2mxo background as a function of signal efficiency in Fig. 7. The
differences between using a Gaussian distribution and using
We require the mean of the log-normal distribution to be thea log-normal distribution are generally small, in our example

e (In x—#)z/zaz_ (8)
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FIG. 5. Likelihood ratio upper limit as a function of background efficiency uncertainty for expected backgrounds of 0, 2, 4, 6, 8, and 10.
Cases with number of observed events significantly fewer than expected background have been omitted.

less than~2%. The use of a log-normal distribution is L£(ny,s,€)

implemented as an option POLE. Ax?=-2xmn —————
P P € L(Ng ,Spests €pes?

V. COMPARISON WITH THE x? METHOD is often used; see, e.416].
Here for a given observatiam, the A 2 is calculated as a
Since the ratio of the likelihoods is asymptoticayly dis-  function of s and a cut onA x? is performed to obtain the
tributed the approximation confidence intervale.g.,A x?>=2.71 corresponds to the 90%
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TABLE |lIl. Likelihood ratio confidence intervals with system- - F
atic uncertainty in the signal efficiency and no uncertainty in the S o1
background expectation. Here two examples are shown where there § [
are fewer events observed than the expected background. The inter- § 12
val does not increase with increasing uncertainty if there are sig- & 10 E
nificantly fewer events observed than the expected background. E C
However, if the expected background and number of observed & g[
events are comparable, the interval becomes larger. When condi- 8
tioning is applied, it grows larger in all cases. '-qo', 6
> -
o L
ng b Signal efficiency Likelihood ratio Likelihood ratio interval 5 4 a
uncertainty interval with conditioning oL
2 6 0 0: 1.55 0:3.15 ol
0.2 0: 1.55 0: 3.35 0 2 4 6 8 10 12 14 16 18
0.4 0: 1.45 0: 4.00 change of interval width [ % ]
4 6 0 0:2.85 0: 4.30 FIG. 6. The relative change of the likelihood ratio interval width
0.2 0:3.20 0: 4.60 as a function of fraction of Gaussian removed. In this example,
0.4 0: 3.35 0:5.35 n,=4 andb=4 have been assumed.
obtained confidence interval does not contain the predefined
confidence level for one degree of freedom s. We define thecoverage ratio
Figure 8 illustrates the effect of including uncertainties on
the resulting confidence intervals for tyé approximation as R= Ntaise (10)
compared to the method proposed here. Generally,ythe Niot

approximation gives more conservative results tharpthe . . i
method. Since—as we will see in the following sections—Here, N, se denotes the number of simulated experiments in

using thePoLE method leads to some overcoverage, this iswhich the result of the algorithm does not contain the pre-
clearly undesirable. defineds, andn;,; denotes the number of simulated experi-

ments performed. If we choose-lo to be 0.9, perfect cov-

erage would meanR=0.1, independent of the signal
VI. TESTS OF COVERAGE expectation assumption. A value Rfsmaller than 0.1 means
that the method overcovers. Expected coverage has been
studied mostly in the context of Bayesian intervals, small
numbers of events, or including conditionifig8—2d and
Quithout taking into account systematic uncertainties. Very

Vldr?osl (r:]i)rr(fac;tk]anvsvl\/ersc;nﬁ f{actlct): T c\)/f trhe Ca?‘eti’ m?e— recently, a study was presented considering coverage includ-
pendent ot the value @. 10 test the coverage of the algo- ing systematic uncertainti¢47].

rithm proposed in this paper, we perform the construction In the next sections, in addition to presenting coverage

d_escrlbed In th? previous sections for a large nL_meer O{ests done for higher signal expectations without uncertain-
simulated experiments, where we predefine tifue signal

and background and then determimgby random sampling

From a frequentist point of view, an algorithm is said to
have the correctoverageif, given a confidence level 1 «
and a large number of repeated identical experiments, it pr

£ 6
from a Poisson distribution. We then calculate how often the g r
58 [— log-normal, mean = 1
TABLE V. Likelihood ratio confidence intervals with system- 56
atic uncertainty in the background expectation and no uncertainty in [e=e°" Gauss, mean = 1
the signal efficiency. Here two examples are shown where there are 54
fewer events observed than expected background. The confidence r
interval becomes larger with increasing uncertainty in the back- 52
ground expectation. s C
ng b Background Likelihood ratio Likelihood ratio interval 48:—
uncertainty(%) interval with conditioning C
46 -
2 6 0 0: 1.55 0: 3.15 A R PN U T FEETE FUTTE N PR T
0.2 0: 155 0: 3.50 0 005 0.1 0.5 02 0.25 0.3 0.35 0.4 0.45 05
ignal effici i
0.4 0: 2.64 0: 3.85 signal efficiency uncertainty
4 6 0 0:2.85 0: 4.30 FIG. 7. Likelihood ratio confidence interval width as a function
0.2 0: 3.25 0: 4.55 of signal efficiency uncertainty for a Gaussian and a log-normal
0.4 0: 4.60 0: 5.55 distribution with mean at 1. In this example,=4 andb=4 have

been assumed and the Gaussian was truncated at zero.
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signal efficiency uncertainty sianal efficiency uncertainty

FIG. 8. The likelihood ratio confidence interval as calculatedraoy E and using the¢? approximation. Number of observed events is 10
(left pane) and 1(right pane). The background was assumed to be zero in both cases.

ties, we will focus on the coverage of the methods if systemyield overcoverage. Figure 10 shows the mean coverage ratio
atic uncertainties are included. (mean here taken over six different signal expectation as-
sumption$ as a function of different systematic uncertain-
ties. The overcoverage will not only increase with increasing

) uncertainties but also be dependent on the signal expectation
We show an example of a plot of the coverage rétiere (Fig. 1.

using steps of 0.1 in signal spada Fig. 9 for Neyman and
likelihood ratio ordering. Both methods seem to overcover 1. Bayesian coverage

for almost all caseswhich is expected because of the dis- . . . L
w P The overcoverage described in the previous section is a

creteness of the Poisson distributiomhere is no signal ex- L
pectation dependence of the coverage ratio except for thgPnsequence of the fact that efficiencies and background are

“seesaw” behavior, which again reflects the discreteness o _O_t random variablegthere is a true but unknown fixed ef-
the Poisson distribution. iciency and background rateut they are treated as random

variables in the construction of the confidence bElys. (6)
and(7)]. Thus, while in the construction we are using a PDF
which is a convolution of a Poisson distribution with a
Introducing systematic uncertainties in the calculation ofGaussian distribution, repeated measureménith param-
confidence intervals and tests of coverage leads to the questers fixed will produce a Poisson distribution. However,
tion of what is meant by sepeatedexperiment. If we adhere one has to keep in mind that the distribution obtained in this
to the traditional definition in which an experiment is re- way is not theunderlyingone. To infer from the measured
peated with fixed parameters such as efficiency or backPoisson distribution the underlying one, the signal efficiency
ground rate, the algorithm presented here will inevitablyand the background have to be taken into account. In particu-

A. Coverage without systematic uncertainties

B. Coverage with systematic uncertainties

x 0.16 o 0.16
o.14f— o.14f—
o.12f— o.12f—
0.1 s ——— o.1; = -
o.os:— o.osi—
0.045— 0.045—
o.ozf— o.ozf—
o:\\\\‘\\\\‘\\\\‘I\\\‘\I\\‘\\\\‘\\\\‘\\ 07\\\\‘\\\\‘\\\\‘l\\\‘\l\\‘\\\\‘\\\\‘\\
10 105 11 115 12 125 13 135 10 105 11 115 12 125 13 135
S S

FIG. 9. Coverage ratio as a function of different signal expectation assumptions. Left plot: Likelihood ratio ordering. Right plot: Neyman
ordering. The thick line gives the line of perfect coverage, the thinner lines denote the measurement precision of this ratio that we can
achieve with 10000 simulated experimeftsken as & of a binomial distribution A constant background expectationlof 10 has been
assumed.
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FIG. 10. Mean coverage ratio as a function of background uncertdéftyplot) and signal efficiency uncertaintyight plot). Here the
mean is taken over six signal expectation assumptions between 12 and 42. The background expectation was taken to be tangthnt
other uncertainties than the one displayed were assumed to be zero.

lar, if these parameters are uncertain, there will not be anent. Figure 12 shows the mean Bayesian coverage for dif-
single underlying Poisson distribution, but a set of distribu-ferent uncertainties in the signal efficiency together with the
tions that are weighted with the probabilities of the possiblefrequentist coverage. The mean is here taken over the 29
different efficiencies and backgrounds. In a way, we thugoints in signal expectation space that were tested. As ex-
give different hypotheses different weights. To take this intopected the Bayesian coverage ratio is nearly constant.
account we modify the coverage test described in the previ- Thus, if we loosen the criteria on the definition of “re-
ous section. Instead of drawing a measurement from Poissqueated experiment,” allowing the “truefunknown efficien-
distributions with predefined signal expectation and back<cies to vary for each experiment repetition, the method has
ground, we draw the signal expectation and background prehe desired statistical property of correct coverage.

diction used in each simulated experiment from Gaussian

distributions centered on the predefined true signal and back- 2. Remark on the choice of ensemble

ground, where the width of the Gaussian is the associated
systematic uncertainty. The measurement is then produceg),
by taking these new values as means for the final PoissoI

distributions. ensemble. We find, as expected, that tloeE method satis-

Sllnce, by using this approach, we glvgldﬂ'ferent We'ghtsﬁes the requirement of correct coverage with respect to this
to different hypotheses, we call this modified coverage tes

; ! . Lnsemble.
Bayeslan covgragdn this way, the PDFs usgd n thg CON"  However, it can be argued that this ensemble does not
struction and in the coverage test are consistent W'_th eaC(91escribe the situation usually encountered in experimental
other, and the algorithm sh(_)uld, per construction, give th‘3physics. The systematic uncertainty isn@asurementncer-
correct coveragéexce_pt for dlsgreteness effextin particu- tainty, i.e., it is not the true value of the nuisance parameter
lar, the coverage defined in this way should be independent

of the magnitude of the uncertainties present in the experi-

In the previous subsection we consider an ensemble in
ich the true value of the nuisance parameter, correspond-
rﬁg to €' in Eq. (7) is varied in each of the members of the

0.1 E
[ E ovee—===
e
e 0.06 é 0.09 §
N 0.08 E Ry
0.05 |- 0.07 |
- 0.06
0.04 - 0.05 F )
- 0.04
0.03 |- E
C 0.03 |-
0.02 _ 0.02 ;— — Bayesian coverage
[ 0.01 ;— ----- frequentist coverage
0,01:— S I B B BN
- 0 0.05 0.1 0.15 0.2 0.25 03
[ | | | | | | signal efficiency uncertainty
o 111 1111 | | | | I I Y I | 11

15 20 % 30 35 40 FIG. 12. Bayesian mean coverage ratio as a function of the

uncertainty in signal efficiency. The mean is here taken over 29
FIG. 11. Signal expectation dependence of the coverage ratigignal expectation values. For comparison the frequentist result us-
here for the case where signal efficiency uncertainty is 30%. ing the same signal expectation assumptions has been included.
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FIG. 13. Limit on the flux from mic neutrin f all flavor: . . o .
G.13 on fhe flux from cosmic neutrinos ot af flavors FIG. 15. Effect of including uncertainties on a generic WIMP
and electron neutrinos as presentefi2f]. Signal efficiency uncer- . . o - . -
limit. The solid line represents the limit calculation without any

tainties of 25% and 30% in backround prediction lead to an increase . " . .
o éxperimental systematic uncertainties. The dashed lines represent
of the upper limit by about 10%.

(from bottom to top a 20% uncertainty in the background expec-

. . . tation only, a 10%, 20%, 30%, and 40% uncertainty on the signal
that changes in each experiment but suredbne. Stud efficiency on top of the 20% background uncertainty. Additionally,

1eS forb? fglw cases t'ﬂd:jc?te dthetlt W'thd restpect to such a1 309 uncertainty in the theoretical atmospheric neutrino back-
ensemble theoLE method leads to moderate overcoverageground expectation has been assumed in all cases. The absolute

[17]. scale is arbitrary.

VII. LIMITS ON HIGH ENERGY COSMIC NEUTRINOS vals can be calculated without evaluating the effects of the
. ) . . . former. In more general situations, including systematic un-
_ In experimental situations where the systematic uncertaingeriainties in the calculation of the limits is essential, since it
ties are negligible small, limits or central confidence inter-ig 4 way of incorporating the real sensitivity of a given ex-
periment to the quantity being measured.
- 10° S A B A In this section we will consider two real examples taken
:s. : AMANDA-BI0 from published results of the AMANDA neutrino telescope,
E i 130 dlivetime where the programoLE was used to include the systematics
&

Far =1 GV 1 in the final results. The AMANDA Collaboration has re-
3 cently published 90% confidence limits on the diffuse flux of
cosmic electron neutrinos and of neutrinos of all flavors in
the energy range between 5 TeV and 300 T&2]. The
analysis revealed zero events with an expected background
E from atmospheric neutrinos of 0.01 events. The systematic
1 uncertainty in the signal efficiency for this analysis was
] ~25%, determined from Monte Carlo studies. On top of
that, the current theoretical systematic uncertainty in the at-
mospheric neutrino flux prediction in the energy range rel-
evant to the analysis is about 30P@1], which has to be
taken into account as well. The effect of including the sys-
tematic uncertainties is shown in Fig. 13. The effect is to
e B worsen the limits by about 10%.
10 10 Another example worth noticing is the results published
Neutralino Mass (GeV) by the same collaboration on searches for supersymmetric
FIG. 14. Comparison of the effect of systematics on the limit ondark matter in the form of weakly interacting massive par-
the neutrino-induced muon flux from the center of the Earth fromticles (WIMPs) [23]. In this analysis the uncertainties in sig-
neutralino annihilation. The solid line represents the current limithal efficiency range from 10% to 25% depending on the
set by the AMANDA Collaboration, the dashed line is the limit assumed signal spectrum and, additionally, an uncertainty in
without including the systematic uncertainties present in theithe background detection efficiency, estimated to be 20%,
analysis(figure taken fron{23], where more details of the analysis has to be taken into account in this case. A further compli-
can be founy cation arises in including these uncertainties in the calcula-

Hard
spectra
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tion of the final limits since the efficiencies in signal and sults where the construction has been performed using like-
background detection are correlated. Moreover, the menihood ratio ordering with and without conditioning.
tioned theoretical uncertainty on the overall normalization of Generally, the introduction of systematic uncertainties
the atmospheric neutrino flux has to be added. In Fig. 14 wéeads to an increase in the confidence interval width. How-
show the limits to the muon flux from the center of the earthever, an interesting result is that likelihood ratas well as
as a function of WIMP mass. The full lines show the limits Neyman confidence intervals which take into account the
for two diferent assumptions on the signal spectra, and theystematic uncertainty in the signal efficiency do not become
dashed lines the corresponding limits without including sysdarger with larger uncertainty, in the case that significantly
tematic uncertainties in the calculations. fewer events have been observed than expected background.
For the purpose of illustration, we show in Fig. 15 the With respect to an ensemble with strictly identical experi-
effect of including systematic uncertainties in the limit cal- ments, introducing systematic uncertainties in the presented
culation for five different valuegdashed lines from bottom  manner inevitably leads to overcoverage, increasing with the
to top a 20% uncertainty in background expectation only, anagnagnitude of th systematic uncertainties. However, we show
a 10%, 20%, 30%, and 40% uncertainty in signal efficiencythat, with respect to an ensemble where the systematic un-
(on top of the mentioned 20% background uncertainfhe  certainties are taken into account in the coverage test by
absolute scale of the plot is arbitrary since we are just intervarying theirtrue assumed values in each pseudoexperiment,
ested in showing the relative effect of the inclusion of sys-the method presented here provides overcoverage only on
tematic uncertainties in the limit calculation, with respect tothe level already present due to the discreteness of the Pois-
the no-systematics castlll line). The figure shows the im- son distribution. Both ensembles are ideal ensembles and
portance of correctly evaluating systematics and includindiave to be seen as approximations to the ensemble encoun-
them in the final result, since the effects can be important. tered in experimental physics. In summary, the algorithm
presented here provides a practical and flexible way to quan-
VIIl. CONCLUSIONS titatively take into account systematic uncertainties present

) ) ) in experimental situations in the calculation of confidence
In this note we present a Monte Carlo algorithm for intro- jtervals.

ducing systematic uncertainties in the evaluation of classical

ponfldence intervals Wh|(':h.allov.vs us to include uncertainties ACKNOWLEDGMENTS
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