
PHYSICAL REVIEW D 67, 012002 ~2003!
Including systematic uncertainties in confidence interval construction for Poisson statistics

J. Conrad, O. Botner, A. Hallgren, and C. Pe´rez de los Heros
Division of High Energy Physics, Uppsala University, S-75121 Uppsala, Sweden

~Received 30 January 2002; published 10 January 2003!

One way to incorporate systematic uncertainties into the calculation of confidence intervals is by integrating
over probability density functions parametrizing the uncertainties. In this paper we present a development of
this method which takes into account uncertainties in the prediction of background processes and uncertainties
in the signal detection efficiency and background efficiency, and allows for a correlation between the signal and
background detection efficiencies. We implement this method with the likelihood ratio~usually denoted as the
Feldman-Cousins! approach with and without conditioning. We present studies of coverage for the likelihood
ratio and Neyman ordering schemes. In particular, we present two different types of coverage tests for the case
where systematic uncertainties are included. To illustrate the method we show the relative effect of including
systematic uncertainties in the case of the dark matter search as performed by modern neutrino telescopes.

DOI: 10.1103/PhysRevD.67.012002 PACS number~s!: 06.20.Dk, 95.55.Vj
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I. INTRODUCTION

A limit on, or a measurement of, a physical quantity a
given confidence level is usually set by comparing a num
of detected events,no , with the number of expected even
from the known background sources contributing to
physical process in question,nb . How ‘‘compatible’’ these
numbers are determines how much room there is for n
processes, i.e., for a signal. How well the number of o
served events and expected background compare stro
depends on the systematic uncertainties present in the
surement. Systematic uncertainties must, therefore, be t
into account in the limit or confidence belt calculation that
finally published.

Traditionally, confidence limits are set using a Neym
construction@1#. This is a purely frequentist method. Fel
man and Cousins@2# have proposed an improved method
construct confidence intervals based on likelihood ratios
method already known in statistics and originally describ
in @3#. Still, this method is based on the original Neym
construction, and needs to be extended to incorporate
tematic uncertainties in the measurement. Along this line
modification of the Neyman method that incorporates s
tematic uncertainties in the experimental signal efficien
has been proposed by Highland and Cousins@4#. These au-
thors use a ‘‘semi-Bayesian’’ approach where an aver
over the probability distribution of the experimental sensit
ity ~and its uncertainty! is performed. By construction, th
method is of limited accuracy in the limit of high relativ
systematic uncertainties.

Recently, an entirely frequentist approach has been
posed for the uncertainty in the background rate predic
@5#. That approach is based on a two-dimensional confide
belt construction and likelihood ratio hypothesis testing a
treats the uncertainty in the background as a statistical
certainty rather than as a systematic one.

The interest aroused recently in the high energy phy
community about the many open issues on setting limits
quoting confidence levels is stressed by the organizatio
workshops devoted to the subject. We refer the reader to
proceedings of the recent workshops at CERN@6#, Fermilab
0556-2821/2003/67~1!/012002~11!/$20.00 67 0120
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@7#, and Durham@8# for a review of the status of the field.
In this paper we extend the method of confidence b

construction proposed in@4# to include systematic uncertain
ties in both the signal and background efficiencies as wel
theoretical uncertainties in the background prediction. T
proposed method also allows us to use newer orde
schemes. A recent attempt to include systematic uncerta
in the background prediction in a similar manner has be
presented in@9#. The paper is organized as follows. In Sec.
we give a short review of the confidence belt construct
schemes that we will use. In Sec. III we describe how
include the systematic uncertainties; in Sec. IV we disc
how the confidence belt construction is performed a
present some selected results. We compare the results o
method with other methods to include systematics in Sec
We introduce the tests of coverage performed in Sec. VI
present an example based on data from the Antarctic M
and Neutrino Detector Array~AMANDA ! neutrino experi-
ment in Sec. VII.

II. THE CONSTRUCTION OF CONFIDENCE INTERVALS

The frequentist construction of confidence intervals is
scribed in detail elsewhere@10#. Here we will give just a
short review.

Let us consider a Poissonian probability density funct
~PDF! p(n)s1b for a fixed but unknown signals in the pres-
ence of a known background with meanb. For every value
of s we can find two valuesn1 andn2 such that

(
n85n1

n2

p~n8!s1b512a ~1!

where 12a denotes the confidence level@usually quoted as
a 100(12a)% confidence interval#. Since we assume a
Poisson distribution, the equality will generally not be sat
fied exactly. A set of intervals@n1(s1b,a),n2(s1b,a)# is
called aconfidence belt. Graphically, upon a measurementno
theconfidence interval@s1 ,s2# is determined by the intersec
tion of the vertical line drawn from the measured valueno
and the boundary of the confidence belt. This is illustrated
©2003 The American Physical Society02-1
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Fig. 1. The probability that the confidence interval will co
tain the true values is 12a, since this is true for alls per
construction. The choice of then1 andn2 to define the con-
fidence belt is, however, not unique. An additional criteri
has to be applied. The choices originally proposed by N
man @1# are

(
n850

n1

p~n8!s1b5 (
n85n2

`

p~n8!s1b5
12a

2
~2!

for central confidence intervals, and

(
n850

n1

p~n8!s1b512a ~3!

for upper confidence limits. This method presents cert
drawbacks in the case of small samples and, in particu
can yield null results~in the sense that the algorithm gives n
answer! in the case when no events have been obser
Also, the decision to quote a measurement~that is, a central
confidence interval! or an upper limit might not be straight
forward before performing an experiment.

A. Likelihood ratio ordering

To solve this problem, a modification of the Neyma
method has been proposed@3,2# that is based on a mor
rationalized ordering scheme of the elements in the sum
Eq. ~1!, based on likelihood ratios. This approach autom
cally provides central confidence intervals when motiva
and upper limits when necessary; therefore it is often
noted as the ‘‘unified approach.’’ Instead of using the choi
given in the previous section, the following ordering sche
is applied in solving Eq.~1!.

For eachn the sbest is found which maximizes the likeli-
hoodL(n)s1b . In the case of a simple Poissonian distrib
tion with known background,sbest is given by max(0,n
2b). Then for a fixeds the ratio

FIG. 1. Illustration of the confidence belt construction. On thx
axis are the possible experimental outcomes~number of events!, on
they axis the parameter of the PDF (s). In this case a Poisson PD
was assumed.
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R~s,n!L5
Ls1b~n!

Lsbest1b~n!
~4!

is computed for eachn, and alln’s are consequently ranke
according to the value of this ratio. Values ofn are included
in the confidence belt starting with then with the highest
rank ~largest RL) and then decreasing rank unt
(n5n1

n2 p(n)s1b512a. After the confidence belt has bee

constructed in this way, the confidence interval@s1 ,s2# is
found as described in the previous section. Note that
ordering principle is a standard method within the theory
likelihood ratio tests@3#.

This approach has some undesired features as well. T
is a background dependence of the upper limit in the cas
fewer events observed than expected from background.
can lead to situations where measurements with higher b
ground give a better limit, a clearly undesirable effect. R
and Woodroofe@11# proposed a solution to this problem
which we briefly describe next.

B. Conditioning

A variation of the classical method of constructing con
dence belts is to use the fact that, given an observationno , it
is known that the background cannot have been larger t
no itself. To incorporate this knowledge into the PDF, t
authors in@11# proposed the following modification:

qs1b
no ~n!5

¦

p~n!s1b

(
n850

no

p~n8!b

if n<no ,

(
n850

no

p~n8!bp~n2n8!s

(
n850

no

p~n8!b

if n.no .

~5!

The likelihood ratio ordering can then be applied with th
new PDF. Note that in this case the PDF is dependent on
number of observed events. This approach solves the b
ground dependence of the upper limit: a limit set when
events are observed stays constant at a value of 2.44 i
pendent of the expected background~which agrees with the
result of the original likelihood ordering for no events o
served and no expected background!. However, this method
does not satisfy all the requirements of proper coverage@12#
and has problems when applied to the case of a Gaus
distribution with boundaries@13#. An extension based on
Bayesian approach with tests of coverage can be foun
@14#.

III. THE INCLUSION OF SYSTEMATIC UNCERTAINTIES

The way of incorporating systematic uncertainties into
confidence belt construction presented in this paper does
affect the particular ordering scheme. Instead, it takes
2-2
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INCLUDING SYSTEMATIC UNCERTAINTIES IN . . . PHYSICAL REVIEW D67, 012002 ~2003!
account the systematic uncertainties by assuming~or if pos-
sible determining! a PDF which parametrizes our knowledg
about the uncertainties and integrating over this PDF. It
been noted that averaging over systematic uncertaintie
itself is a Bayesian approach@4#. Therefore the method pre
sented is refered to as ‘‘semi-Bayesian,’’ combining class
and Bayesian elements. We return to this point in Sec.
Usually, uncertainties are assumed to be described b
Gaussian distribution, which we will adopt for the remaind
of this paper. The implementation, however, makes it eas
use other parametrizations for the uncertainties.

We will refer in the following to the parameters with sy
tematic uncertainties also asnuisance parameters.

Two examples of how the PDF is modified if systema
uncertainties are present are the following. In the case
the only uncertainty present is a theoretical uncertainty of
background process the PDF is modified to

q~n!s1b5
1

A2psb
E

0

`

p~n!s1b8e
2(b2b8)2/2sb

2
db8. ~6!

Hereb is the estimated background level, andsb is the un-
certainty in the background estimation. If, in addition to t
theoretical uncertainty for background, there is the need
include the uncertainty in the signal detection efficiency
expression forq(n)s1b might be extended to

q~n!s1b5
1

2psbse
E

0

`E
0

`

p~n!b81e8s

3e2(b2b8)2/2sb
2
e2(12e8)2/2se

2
db8de8 ~7!

where se is the uncertainty in the detection efficiency e
pressed inrelative terms with respect to the nominal effi
ciency. It is important to realize that the integration variabl
heree8 andb8, are the possible ‘‘true’’~but unknown! values
of the nuisance parameter. This indicates that this metho
based on Bayesian statistics.

IV. POLE: A GENERAL ALGORITHM FOR CONFIDENCE
BELT CONSTRUCTION

The integrals~6! and ~7! can be solved using differen
methods. We note, however, that they are examples of s
plified cases. The most general experimental situation
volves both an uncertainty in signal efficiency as well as
the background detection efficiency, which are usually c
related, and possibly an additional theoretical uncertainty
the background process prediction. We have developed
algorithm that takes these effects into account with
proper correlations between them. The algorithm perform
Monte Carlo integration over the systematic uncertainties
has been implemented as aFORTRAN program,POLE ~Poisso-
nian limit estimator! @15#. In the examples used in this se
tion a Gaussian distribution of uncertainties is assumed,
the algorithm makes it easy to implement PDFs other t
Gaussian~see the next section for an example of using
different distribution!. For the moment the code supports
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Gaussian, flat, and log-normal parametrization of the unc
tainties. After determining the PDF through evaluation of t
integrals, different ordering schemes can be applied for
final calculation of the confidence belt. The results presen
here are mainly for the likelihood ratio ordering scheme w
and without conditioning. We restrict ourselves to present
systematic uncertainties of signal and background effici
cies separately to give a clear idea of the effect of varyin
single variable at a time. Real applications usually comb
those uncertainties.

The confidence belt constructions have been perform
using steps of 0.05 in signal expectation and performing
construction up to a maximal signal expectation of 50 an
maximal number of detected events of 100. Including s
tematic uncertainties generally leads to a widening of
confidence belt. Figure 2 shows an example of a likeliho
ratio confidence belt construction with and without unc
tainty in the signal efficiency, where a background expec
tion b52 has been assumed.

Examples for some resulting intervals are given in Tab
I and II. Different combinations of the number of observ
eventsn0 and the expected backgroundb are given for dif-
ferent uncertainties in the signal and background efficien

The width of the interval for two particular examples
observed events and expected background as a functio
signal efficiency uncertainty and background uncertainty
shown in Fig. 3. Note that for low background expectati
the uncertainties in the background can be neglected~see
also Table II!. Figures 4 and 5 give more extended inform
tion on the resulting intervals.

An interesting case arises when there are significa
fewer events observed than expected from background
there is an uncertainty in the signal efficiency. In this ca
the width of the confidence interval does not increase~see

FIG. 2. 90% confidence belts obtained withPOLE using the like-
lihood ratio ordering scheme and assuming different uncertaintie
the signal efficiency. The inner band has been constructed assu
no uncertainty in the signal efficiency. The outer band represents
belt constructed with a signal efficiency uncertainty of 40%. T
background expectation in this particular case wasb52.
2-3
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Table III!. Note that if we use conditioning the effect disa
pears. The same cannot be observed in the case wher
consider only an increasing background uncertainty~see
Table IV!.

Negative values of the nuisance parameters:
Using a log-normal distribution

In experimental situations where the systematic uncert
ties are high, a problem might arise due to the fact that s
pling from a Gaussian PDF allows negative values.POLE

TABLE I. Examples of likelihood ratio 90% confidence inte
vals including systematic uncertainty in the signal efficiency a
assuming no uncertainty in the background prediction.

n0 b Signal efficiency Likelihood ratio Likelihood ratio interva
uncertainty~%! interval with conditioning

2 2 0 0: 3.90 0: 4.00
0.2 0: 3.95 0: 4.34
0.3 0: 4.10 0: 4.75
0.4 0: 4.65 0: 5.35

3 2 0 0: 5.40 0: 5.30
0.2 0: 5.70 0: 5.65
0.3 0: 5.95 0: 6.20
0.4 0: 6.80 0: 7.10

4 2 0 0: 6.60 0: 6.60
0.2 0: 7.10 0: 7.30
0.3 0: 7.75 0: 7.85
0.4 0: 8.95 0: 9.15

5 2 0 0.40: 7.95 0.50: 8.05
0.2 0.40: 8.60 0.50: 8.60
0.3 0.40: 9.55 0.50: 9.65
0.4 0.40:11.15 0.50:11.20

6 2 0 1.10: 9.45 1.10: 9.45
0.2 1.05,10.05 1.05:10.10
0.3 1.05:11.50 1.05:11.50
0.4 1.05:13.35 1.05:13.35
01200
we

n-
-

deals with these cases by truncating the Gaussian distribu
and renormalizing the part above zero.

We examine the effect of truncating the Gauss distribut
by calculating the confidence interval for different values
the truncation point~see Fig. 6!. Considering a Gaussia
distribution centered on 1 withs540%, a truncation at zero
removes only 0.7%. Figure 6 therefore indicates that effe
on the confidence interval due to the truncation are neglig
for all cases considered in this paper.

A PDF for the nuisance parameters extending to nega
values or which falls off to zero discontinuously is certain

d
TABLE II. Examples of likelihood ratio 90% confidence inte

vals including systematic uncertainty in the background expecta
and assuming no uncertainty in the signal efficiency.

n0 b Background Likelihood ratio Likelihood ratio
uncertainty interval interval with conditioning

2 2 0 0: 3.90 0: 4.00
0.2 0: 3.95 0: 4.10
0.3 0: 3.95 0: 4.25
0.4 0: 3.95 0: 4.35

3 2 0 0: 5.40 0: 5.30
0.2 0: 5.45 0: 5.35
0.3 0: 5.45 0: 5.45
0.4 0: 5.50 0: 5.55

4 2 0 0: 6.60 0: 6.60
0.2 0: 6.95 0: 6.65
0.3 0: 6.95 0: 6.80
0.4 0: 6.95 0: 6.80

5 2 0 0.40: 7.95 0.50: 8.05
0.2 0.35: 7.95 0.50: 8.10
0.3 0.30: 8.00 0.50: 8.10
0.4 0.20: 8.20 0.45: 8.15

6 2 0. 1.10: 9.45 1.10: 9.45
0.2 1.05: 9.45 1.10: 9.50
0.3 1.00: 9.50 1.05: 9.50
0.4 0.95: 9.50 1.00: 9.50
without
itional
FIG. 3. Example of the dependence of the likelihood ratio confidence interval width on the systematic uncertainties, with and
conditioning, as obtained withPOLE. The left plot shows the width as a function of the uncertainty in signal efficiency assuming no add
uncertainty in background expectation. The right plot shows the width as a function of the background uncertainty. We have usedno517 and
a background of 15 in constructing the plots.
2-4
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FIG. 4. Likelihood ratio upper limit as a function of signal efficiency uncertainty for expected backgrounds of 0, 2, 4, 6, 8, and 10
with number of observed events significantly fewer than expected background have been omitted.
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undesired from a conceptual point of view. We therefore t
the behavior of the confidence interval if we replace
Gaussian distribution with a log-normal distribution, whic
in the general form is given by

q~x!m,s5
1

A2pxs
e2(ln x2m)2/2s2

. ~8!

We require the mean of the log-normal distribution to be
01200
st
e

e

nominal value of the nuisance parameter and use the Ga
ian standard deviation as before~the variance of the log-
normal distribution will then be approximately the same!.
The confidence intervals for Neyman and likelihood ra
ordering under these assumptions are shown for one par
lar example of the number of observed events and expe
background as a function of signal efficiency in Fig. 7. T
differences between using a Gaussian distribution and u
a log-normal distribution are generally small, in our examp
2-5
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FIG. 5. Likelihood ratio upper limit as a function of background efficiency uncertainty for expected backgrounds of 0, 2, 4, 6, 8,
Cases with number of observed events significantly fewer than expected background have been omitted.
is
less than;2%. The use of a log-normal distribution
implemented as an option inPOLE.

V. COMPARISON WITH THE x2 METHOD

Since the ratio of the likelihoods is asymptoticallyx2 dis-
tributed the approximation
01200
Dx25223min
e

L~no ,s,e!

L~no ,sbest,ebest!
~9!

is often used; see, e.g.,@16#.
Here for a given observationn0 theDx2 is calculated as a

function of s and a cut onDx2 is performed to obtain the
confidence interval~e.g.,Dx252.71 corresponds to the 90%
2-6
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INCLUDING SYSTEMATIC UNCERTAINTIES IN . . . PHYSICAL REVIEW D67, 012002 ~2003!
confidence level for one degree of freedom!.
Figure 8 illustrates the effect of including uncertainties

the resulting confidence intervals for thex2 approximation as
compared to the method proposed here. Generally, thex2

approximation gives more conservative results than thePOLE

method. Since—as we will see in the following sections
using thePOLE method leads to some overcoverage, this
clearly undesirable.

VI. TESTS OF COVERAGE

From a frequentist point of view, an algorithm is said
have the correctcoverageif, given a confidence level 12a
and a large number of repeated identical experiments, it
vides correct answers in a fraction 12a of the cases, inde
pendent of the value ofs. To test the coverage of the algo
rithm proposed in this paper, we perform the construct
described in the previous sections for a large number
simulated experiments, where we predefine thetrue signal
and background and then determineno by random sampling
from a Poisson distribution. We then calculate how often

TABLE III. Likelihood ratio confidence intervals with system
atic uncertainty in the signal efficiency and no uncertainty in
background expectation. Here two examples are shown where
are fewer events observed than the expected background. The
val does not increase with increasing uncertainty if there are
nificantly fewer events observed than the expected backgro
However, if the expected background and number of obser
events are comparable, the interval becomes larger. When co
tioning is applied, it grows larger in all cases.

n0 b Signal efficiency Likelihood ratio Likelihood ratio interva
uncertainty interval with conditioning

2 6 0 0: 1.55 0: 3.15
0.2 0: 1.55 0: 3.35
0.4 0: 1.45 0: 4.00

4 6 0 0: 2.85 0: 4.30
0.2 0: 3.20 0: 4.60
0.4 0: 3.35 0: 5.35

TABLE IV. Likelihood ratio confidence intervals with system
atic uncertainty in the background expectation and no uncertain
the signal efficiency. Here two examples are shown where there
fewer events observed than expected background. The confid
interval becomes larger with increasing uncertainty in the ba
ground expectation.

n0 b Background Likelihood ratio Likelihood ratio interva
uncertainty~%! interval with conditioning

2 6 0 0: 1.55 0: 3.15
0.2 0: 1.55 0: 3.50
0.4 0: 2.64 0: 3.85

4 6 0 0: 2.85 0: 4.30
0.2 0: 3.25 0: 4.55
0.4 0: 4.60 0: 5.55
01200
s
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n
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obtained confidence interval does not contain the predefi
s. We define thecoverage ratio

R5
nf alse

ntot
. ~10!

Here,nf alse denotes the number of simulated experiments
which the result of the algorithm does not contain the p
defineds, andntot denotes the number of simulated expe
ments performed. If we choose 12a to be 0.9, perfect cov-
erage would meanR50.1, independent of the signa
expectation assumption. A value ofR smaller than 0.1 mean
that the method overcovers. Expected coverage has b
studied mostly in the context of Bayesian intervals, sm
numbers of events, or including conditioning@18–20# and
without taking into account systematic uncertainties. Ve
recently, a study was presented considering coverage inc
ing systematic uncertainties@17#.

In the next sections, in addition to presenting covera
tests done for higher signal expectations without uncerta

e
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FIG. 6. The relative change of the likelihood ratio interval wid
as a function of fraction of Gaussian removed. In this examp
no54 andb54 have been assumed.

FIG. 7. Likelihood ratio confidence interval width as a functio
of signal efficiency uncertainty for a Gaussian and a log-norm
distribution with mean at 1. In this example,no54 andb54 have
been assumed and the Gaussian was truncated at zero.
2-7
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FIG. 8. The likelihood ratio confidence interval as calculated byPOLE and using thex2 approximation. Number of observed events is
~left panel! and 1~right panel!. The background was assumed to be zero in both cases.
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ties, we will focus on the coverage of the methods if syste
atic uncertainties are included.

A. Coverage without systematic uncertainties

We show an example of a plot of the coverage ratio~here
using steps of 0.1 in signal space! in Fig. 9 for Neyman and
likelihood ratio ordering. Both methods seem to overco
for almost all cases~which is expected because of the d
creteness of the Poisson distribution!. There is no signal ex-
pectation dependence of the coverage ratio except for
‘‘seesaw’’ behavior, which again reflects the discreteness
the Poisson distribution.

B. Coverage with systematic uncertainties

Introducing systematic uncertainties in the calculation
confidence intervals and tests of coverage leads to the q
tion of what is meant by arepeatedexperiment. If we adhere
to the traditional definition in which an experiment is r
peated with fixed parameters such as efficiency or ba
ground rate, the algorithm presented here will inevita
01200
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y

yield overcoverage. Figure 10 shows the mean coverage
~mean here taken over six different signal expectation
sumptions! as a function of different systematic uncertai
ties. The overcoverage will not only increase with increas
uncertainties but also be dependent on the signal expecta
~Fig. 11!.

1. Bayesian coverage

The overcoverage described in the previous section
consequence of the fact that efficiencies and background
not random variables~there is a true but unknown fixed e
ficiency and background rate! but they are treated as rando
variables in the construction of the confidence belt@Eqs.~6!
and~7!#. Thus, while in the construction we are using a PD
which is a convolution of a Poisson distribution with
Gaussian distribution, repeated measurements~with param-
eters fixed! will produce a Poisson distribution. Howeve
one has to keep in mind that the distribution obtained in t
way is not theunderlyingone. To infer from the measure
Poisson distribution the underlying one, the signal efficien
and the background have to be taken into account. In part
eyman
t we can
FIG. 9. Coverage ratio as a function of different signal expectation assumptions. Left plot: Likelihood ratio ordering. Right plot: N
ordering. The thick line gives the line of perfect coverage, the thinner lines denote the measurement precision of this ratio tha
achieve with 10000 simulated experiments~taken as 1s of a binomial distribution!. A constant background expectation ofb510 has been
assumed.
2-8
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FIG. 10. Mean coverage ratio as a function of background uncertainty~left plot! and signal efficiency uncertainty~right plot!. Here the
mean is taken over six signal expectation assumptions between 12 and 42. The background expectation was taken to be constanb512. All
other uncertainties than the one displayed were assumed to be zero.
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lar, if these parameters are uncertain, there will not b
single underlying Poisson distribution, but a set of distrib
tions that are weighted with the probabilities of the possi
different efficiencies and backgrounds. In a way, we th
give different hypotheses different weights. To take this in
account we modify the coverage test described in the pr
ous section. Instead of drawing a measurement from Pois
distributions with predefined signal expectation and ba
ground, we draw the signal expectation and background
diction used in each simulated experiment from Gauss
distributions centered on the predefined true signal and b
ground, where the width of the Gaussian is the associa
systematic uncertainty. The measurement is then produ
by taking these new values as means for the final Pois
distributions.

Since, by using this approach, we give different weig
to different hypotheses, we call this modified coverage
Bayesian coverage. In this way, the PDFs used in the co
struction and in the coverage test are consistent with e
other, and the algorithm should, per construction, give
correct coverage~except for discreteness effects!. In particu-
lar, the coverage defined in this way should be independ
of the magnitude of the uncertainties present in the exp

FIG. 11. Signal expectation dependence of the coverage r
here for the case where signal efficiency uncertainty is 30%.
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ment. Figure 12 shows the mean Bayesian coverage for
ferent uncertainties in the signal efficiency together with
frequentist coverage. The mean is here taken over the
points in signal expectation space that were tested. As
pected the Bayesian coverage ratio is nearly constant.

Thus, if we loosen the criteria on the definition of ‘‘re
peated experiment,’’ allowing the ‘‘true’’~unknown! efficien-
cies to vary for each experiment repetition, the method
the desired statistical property of correct coverage.

2. Remark on the choice of ensemble

In the previous subsection we consider an ensemble
which the true value of the nuisance parameter, correspo
ing to e8 in Eq. ~7! is varied in each of the members of th
ensemble. We find, as expected, that thePOLE method satis-
fies the requirement of correct coverage with respect to
ensemble.

However, it can be argued that this ensemble does
describe the situation usually encountered in experime
physics. The systematic uncertainty is ameasurementuncer-
tainty, i.e., it is not the true value of the nuisance parame

io,

FIG. 12. Bayesian mean coverage ratio as a function of
uncertainty in signal efficiency. The mean is here taken over
signal expectation values. For comparison the frequentist resul
ing the same signal expectation assumptions has been include
2-9



a
g

ai
er

the
un-
e it
x-

en
e,
cs
-
of
in

und
atic
as
of
at-
el-

s-
to

ed
etric
ar-
-
he
y in
%,

pli-
la-

s

a

on
om
m
it
e

is

P
y
sent
c-
nal
lly,
ck-
olute

CONRAD, BOTNER, HALLGREN, AND PE´REZ de los HEROS PHYSICAL REVIEW D67, 012002 ~2003!
that changes in each experiment but themeasuredone. Stud-
ies for a few cases indicate that with respect to such
ensemble thePOLE method leads to moderate overcovera
@17#.

VII. LIMITS ON HIGH ENERGY COSMIC NEUTRINOS

In experimental situations where the systematic uncert
ties are negligible small, limits or central confidence int

FIG. 13. Limit on the flux from cosmic neutrinos of all flavor
and electron neutrinos as presented in@22#. Signal efficiency uncer-
tainties of 25% and 30% in backround prediction lead to an incre
of the upper limit by about 10%.

FIG. 14. Comparison of the effect of systematics on the limit
the neutrino-induced muon flux from the center of the Earth fr
neutralino annihilation. The solid line represents the current li
set by the AMANDA Collaboration, the dashed line is the lim
without including the systematic uncertainties present in th
analysis~figure taken from@23#, where more details of the analys
can be found!.
01200
n
e

n-
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vals can be calculated without evaluating the effects of
former. In more general situations, including systematic
certainties in the calculation of the limits is essential, sinc
is a way of incorporating the real sensitivity of a given e
periment to the quantity being measured.

In this section we will consider two real examples tak
from published results of the AMANDA neutrino telescop
where the programPOLE was used to include the systemati
in the final results. The AMANDA Collaboration has re
cently published 90% confidence limits on the diffuse flux
cosmic electron neutrinos and of neutrinos of all flavors
the energy range between 5 TeV and 300 TeV@22#. The
analysis revealed zero events with an expected backgro
from atmospheric neutrinos of 0.01 events. The system
uncertainty in the signal efficiency for this analysis w
;25%, determined from Monte Carlo studies. On top
that, the current theoretical systematic uncertainty in the
mospheric neutrino flux prediction in the energy range r
evant to the analysis is about 30%@21#, which has to be
taken into account as well. The effect of including the sy
tematic uncertainties is shown in Fig. 13. The effect is
worsen the limits by about 10%.

Another example worth noticing is the results publish
by the same collaboration on searches for supersymm
dark matter in the form of weakly interacting massive p
ticles ~WIMPs! @23#. In this analysis the uncertainties in sig
nal efficiency range from 10% to 25% depending on t
assumed signal spectrum and, additionally, an uncertaint
the background detection efficiency, estimated to be 20
has to be taken into account in this case. A further com
cation arises in including these uncertainties in the calcu

se

it

ir

FIG. 15. Effect of including uncertainties on a generic WIM
limit. The solid line represents the limit calculation without an
experimental systematic uncertainties. The dashed lines repre
~from bottom to top! a 20% uncertainty in the background expe
tation only, a 10%, 20%, 30%, and 40% uncertainty on the sig
efficiency on top of the 20% background uncertainty. Additiona
a 30% uncertainty in the theoretical atmospheric neutrino ba
ground expectation has been assumed in all cases. The abs
scale is arbitrary.
2-10
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tion of the final limits since the efficiencies in signal an
background detection are correlated. Moreover, the m
tioned theoretical uncertainty on the overall normalization
the atmospheric neutrino flux has to be added. In Fig. 14
show the limits to the muon flux from the center of the ea
as a function of WIMP mass. The full lines show the lim
for two diferent assumptions on the signal spectra, and
dashed lines the corresponding limits without including s
tematic uncertainties in the calculations.

For the purpose of illustration, we show in Fig. 15 t
effect of including systematic uncertainties in the limit ca
culation for five different values~dashed lines!, from bottom
to top a 20% uncertainty in background expectation only, a
a 10%, 20%, 30%, and 40% uncertainty in signal efficien
~on top of the mentioned 20% background uncertainty!. The
absolute scale of the plot is arbitrary since we are just in
ested in showing the relative effect of the inclusion of s
tematic uncertainties in the limit calculation, with respect
the no-systematics case~full line!. The figure shows the im
portance of correctly evaluating systematics and includ
them in the final result, since the effects can be importan

VIII. CONCLUSIONS

In this note we present a Monte Carlo algorithm for intr
ducing systematic uncertainties in the evaluation of class
confidence intervals which allows us to include uncertain
in the background prediction, in the background detect
efficiency, and in the signal detection efficiency, and cor
lations between them, by integrating over the~assumed!
PDFs of these parameters. We apply the method for a P
son process with a background under the assumption
Gaussian PDF describing the uncertainties. We presen
-
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sults where the construction has been performed using l
lihood ratio ordering with and without conditioning.

Generally, the introduction of systematic uncertaint
leads to an increase in the confidence interval width. Ho
ever, an interesting result is that likelihood ratio~as well as
Neyman! confidence intervals which take into account t
systematic uncertainty in the signal efficiency do not beco
larger with larger uncertainty, in the case that significan
fewer events have been observed than expected backgro
With respect to an ensemble with strictly identical expe
ments, introducing systematic uncertainties in the presen
manner inevitably leads to overcoverage, increasing with
magnitude of th systematic uncertainties. However, we sh
that, with respect to an ensemble where the systematic
certainties are taken into account in the coverage test
varying theirtrue assumed values in each pseudoexperime
the method presented here provides overcoverage only
the level already present due to the discreteness of the P
son distribution. Both ensembles are ideal ensembles
have to be seen as approximations to the ensemble enc
tered in experimental physics. In summary, the algorit
presented here provides a practical and flexible way to qu
titatively take into account systematic uncertainties pres
in experimental situations in the calculation of confiden
intervals.
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