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Affine Toda model coupled to matter and the string tension in 2D QCD
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Thesl(2) affine Toda model coupled to matter is shown to describe various features, such as the spectrum
and string tension, of the low-energy effective Lagrangian of two-dimensional @&8®flavor andN colors.
The corresponding string tension is computed when the dynamical quarks ardundhenentatepresentation
of SU(N) and in theadjoint representation o8U(2).
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It has been conjectured that the low-energy action of twoprocesses of thétwo-loop Wess-Zumino-Novikov-Witten
dimensional QCD (QCBH (e>my, my quark mass ané  (WZNW) theory from which the ATM are derivable
gauge coupling might be related to massive two dimen- [7,10,11.
sional integrable models, thus leading to the exact solution of We show that thesl(2) ATM model describes the low-
the strong coupled QCL1]. Although some hints toward an energy spectrum of QCD(one flavor andN colors in the
integrable structure in QCDhave been encountered the fundamental antN=2 in the adjoint representations, respec-
problem remains opef2]. tively). The exact computation of the string tension is per-

In recent papers by Armorét al. [3] it was proved that formed. A key role will be played by the equivalence be-
bosonized QCB [1] exhibits a screening natufganishing tween the Noether and topological currents at the quantum
of the string tensionwhen the dynamical quarks have no level [6].
mass both in the case when the source and the dynamical The Lagrangian of the ATM model {$-7]
fermions belong to the same representation of the gauge . _
group and in the case when the representation of the external (1/k)L=— 3 d,9d o+igyta, p—myih e?e sy (2)
charge is smaller than the representation of the massless fer-
mions. The string tension also vanishes when the test chargederek= k/2w (ke Z), ¢ is a real fieldm, is a mass pa-
are in the adjoint representation and the dynamical ones irameter, andy is a Dirac spinor. Notice tha?s?ﬂyo. We
the fundamental representation. Confinement is restored ign 4 takeTp= e, " [6], wheree, is a real dimensionless

the nonstandard matter content c&sey., dynamical adjont  ¢,nstant. The conformal versiéBATM) of Eq. (2) has been
matter and fundamental probe chargehen a small mass .onsiructed if11]. The integrability properties and the re-

(mg<<e) is given to the quarks, as initially argued [#].  gyction processes, WZNWCATM —ATM — sine-Gordon

Similar phenomena occur in QED2]. Integer charges can (SO + free field, have been considerd8,7,10,§. The

screen fractional charges when the dynamical electrons a8 (n) ATM exhibits a generalized sine-Gordon—massive

massless. The conflnement. phase is restored when the thirring correspondencd9]. Moreover, Eq.(2) exhibits

namical electrons are massive and when the external charge, << generation despite chiral symmettg] and confine-

is not an integer multiple of the dynamical charge. The stringyant of fermions in a self-generated potenf@iL3).

tension in QCR is [3] The Lagrangian is invariant under— ¢ +nar, thus the
topological chargthopo,_Efdij, i*=(1m)e*’d,p, can

assume nontrivial values. A reduction is performed imposing
U:mq“REi [1—cos 4m\;Kex{Kaynl, (D) the constrainf6,7,5]

1/27) €79, 0= (11m) fry*ih, 3
whereur~e (uiung=[exp®)/(2m*?e, v is the Euler num- (LI2m) e a,e=(Lmyy"y &

ben, \; are the isospin eigenvalues of the dynamical reprey hered :wa is theU(1) Noether current.
sentation ke, andkgyy, are the affine current algebra levels Equa;f[ion(3) implies ¢!y~ d,, thus the Dirac field is

of the external and dynf'ir_nical represen_tations, respectivel%onﬁned to live in regions where the fieldis not constant.
R= 'fun.damental and adjoint representgtlons.Aposgble genrpe 1(2)solitor(s) solutior(s) for ¢ and ¢ are of the sine-
erahza@hor_n of Eq._(l) to repres_entatlons to which the Gordon(SG) and massive ThirringMT) types, respectively;
bosonization techniques are applicable, among them the aﬂiey satisfy Eq(3) for |e,/=1, and so are solutions of the

tisymmetric and symmetric representations, i$3h reduced mod€]6]. Similar results hold irsl(n) ATM [8,9].

n addlthn, thgsl(n) affine TOd"’.‘ mode(ATM) coupled Introduce a new boson field representation of fermion bi-
to matter(Dirac) fields [5—11] constitutes an excellent labo- . Sy . (1 TT).
ratory to test ideas about confinemg®, the role of solitons Ilﬂears as [14] y(1xye)yi=— (culm):e "
in quantum field theorie§5], duality transformations inter- :#y“#:=— (1/\'m) €*”3,$,wherec=3exp(y) and u is an
changing solitons and particls,9], as well as the reduction infrared regulator. Define the fields andp as

2 2/
o= E(\/;dﬂr ®), p=g(2\/?e¢¢+ 7). (4)
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Then the LagrangiafR) becomeg6] Let us examine the “mass” term in Ed2) with the
SU(N) “color” sector of external fields {?)., in the fun-
€ ) 5 damental representation coupled to the Toda fieldn ATM
Lpos=— E(&Mp) + 65(%(13) + E(COSB(D)M (5 type theories the fermions confine in a self-generated poten-
tial [13], thus coupling the .,y)’s to ¢ implies some kind
where ﬂ2=|4w—8e¢|/|e¢k|, m2=c Myl 7l 47— 8e), of self-coupling in view of the equivalenc(é%)a. From Eq.
and e=sgn(4mr—8e,). Imposinge=1, e,<m/2 we get a (A3) we write W) exd ¥R ) exi= CM/ZW(G'QCTexf)ab; then
unitary sine-Gordon theory and a decoupled massless frae mass term (A2) becomes kmye, e e?¢ Y52

field. — (2] a2 QTS N2 QTS -2
. . o =(m/2B7)Tr(e'~c exe?+ e~ 'Sclexig™ 7'¥), .
The bosonized version of the constraif®$ is Defining the analogue of® in Eq. (4) as CDIQC

(V' |\|am—8e,l2m  d,p|¥)=0, (6) =2/B(\iQ.+ ¢), and from Eq.(4) replacinge in terms of
the fields® andp, the mass term in E@5) can be written as

m2

where thelW)’s are the space of states of the theory.
The low-energy spectrum of QGLhas been studied by

means of Abeliaf15] and non-Abelian bosonizatioh$,16]. m i m? 8 sgrie,)
In this limit the baryons of QCPare sine-Gordon solitons vy 21 cosp CDQC: - 21 COS(MQC— Wq)
[1]. In the largeN limit approach(weake and smalim,) the B 1= o
SG theory also emergé¢&7].
The low-energy limit of QCB (Ny=1) with quarks in ,3|k e \/_P” : 8

thefundamentatepresentation a6 U(N) is described by the
SG theory with(see the Appendix[1] B=+4#/N (N
>1).
Now, let us introduce in Eq(5) a new mass parameter
m by renormal ordering [2] (cospd),
=M IWf " (cosBd),y, then one has Lpos
— (1/2e,) (d,p)*+ 3 (9,@)?+2(m")?(cosB D),y where

The fields® andp in Eq. (4) inherit from ¢ the symme-
tries p—p+ (2w B)7n and ®—d+(27/B)n (ne2);
then the theory5) has a degenerate vac|@,). In order to
computes we need the VEV of the fields, thus we concen-
trate our attention on one of these vacua, 48y)q
®|0,), . Therefore, in accordance with the constraB)twe

!

(m")2=[|keylc (m,/2m) ()N DNVEN-D),

shall setp=0.
N In Eq. (8) settingp=0 (ATM — SG reductioh and «
ke,|= ) (77 =0 (absence of external chargese must recover the inter-
sgre )ﬂ+1 action term %/ B?)cosB® (without the sum ini), so we
Y0kl ~ requireB= +[ —8 sgne,)/B|k|], where the+ signs encode

the ®— = symmetry of the SG theory. Then one gets
From Eq.(7) and the QCD parametem’ (A7) one can

make the identificationg. =e/\2m; m,~m,. An exact re-

lationship betweemn,, and m, will be found below. In the *sgrie,)4N, dyn. quarksinthe
largeN limit [16,17, (m’ )ZNN em. fundamental rep of SU(N)

On the other hand, QCD(N;=1) with quarks in the |k|= i (9
adjoint representation oSU(2) is described by the SG +sgriey)4, dyn. quarks in the
theory with B2=4x (see the Appendix This allows us to adjoint rep. of SU(2).
make the identifications from Eq¢5) and (A8): m,~m,,

~3(~e).

Let us study the question of confinement of the “color”  From Egs.(7) and(9) for the fundamentakepresentation
degrees of freedom associated to the figltsee the Appen- one has|ke,|=N/2, |x|=4N, |e,|=m7/4~0.78, therefore
dix) in the ATM model by computing the string tension. In a m,/4w=mg. The limit |ke,|//AN—§ as x, N—x, is the
semi-classical analys|®,3], we put a pair of classical exter- semi-classical limit of the SG theory3(~0). In theadjoint
nal probe “color” chargesy and—q atL and —L described case one has to compare the coefficients of the “cos” term in
by the static potentiaQ.= o[ O (x+L)—O(x—L)] (e isa Eq.(5) with its QCD, analogugA8), thus for| x| =4 one has
yet unknown factor in the “color” space directionTs,,  e'myule,//m*=mE—m,~my, u~3(~e).
=diag\ 1,2, - - - A;,0,0,...,0), {\;} being the “isospin” In order to describe the chirally rotated mass term in
components of the representatiGhunder aSU(2) sub- QCD, (A5) we seta=4m(Kex/Kqyn) [the caseSU(2) re-
group. Then comparing the vacuum expectation vAUEV)  quires 2r instead of 4r] [3]. Actually, this is the first order
of the Hamiltonian given earlier in the presence of an exterterm in the (92/M§) expansion when the external probe
nal (dex) (—Jex) SOurce with the relevant one in the ab- charge is viewed as a dynamical field with very large mass
sence of such a source, we define the string tension in thel, (see more details if3]). Then the energy VEV in the
limit L—o [2] o=(H)—(H,), whereH, (H) is the Hamil- limit L—soe is (H)=—m?/ B3 (cod 4m\(Kext/Kayr) + BP]).
tonian in the absenc@resenceof the probe charges. Theno=(H)—(Hy) becomes
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m? o Kex
o= E Z, 1-cos 477)\ <cos,8(1))
. kext .
+sin4m\j—(sinBd)|. (10
kdyn
Thus the values ofcosp®) and(sina®) in the SG theory
are needed. ThexactVEV of type (€'2?) [Re(@)(\27/8]
in the SG theory has recently been propof&gl]. The au-

thors studiedCgg= 3 (9®P)?— 2 u,cosBP, assuming the nor-
malization

(cospd(x)cosBP(0)),, —o= 1/2|x|[F27 . (11)

From [18] we quote the expectation value fa=g

= J4m/N (N>1) [19]:

(exp(i®))=C(N)pg* ™1,
2N 1 2N/(2N—-1)
2N— I(l_iﬁ)
C(N)= p I
sl o) | Ty
AN—3 (1-2N)/N
1 (4N—2)
X 2
Pl Hm
2N-1
4 7 1™
X \/_S|n(4N Z)F 4N—2> (12

To use this exact result we have to relatgandm’. This is
done comparing Eq.11) with ([ cosBP(X)]w[cosBP(0)])

=coshi B2D(m',|x|)]~coshi %27 (— y—In(m'|X|/2))], for
smallm’|x|. We have (n')?=c?/(N=1)(,2N(N=1))
Then the string tensiofiL0) becomes
( |
2(m’)2 I(ext
(D, CN 2, (l—cos i)
R=fundamental repof SUN),
OR= I (13
(mg 2)2 1—-cos2m\+— )
kdyn
| R=adjoint rep. of SU2),

whereX in R=ad]. is the fermion condensateee the Ap-
pendiX. We propose Eq(13) as the exact QCPstring ten-
sion in the limite/my—o. Some comments are in order.

(i) The string tension(1) reproduces qualitatively Eq.
(13). Equation(1) has been derived using a semi-classical

average for the bosonized fields in E&5) ((g)=1) [3].
(ii) In the largeN limit for R=fund., Eq.(13) takes the
form o=2Ncmy(e/27) [ 1— cos 4m\i(Kex/Kgy 1, Which
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has the samen, ande dependence as El), except for a
27N factor[20]. Note that when the dynamical matter is in
the fundamental Ky,,=1) the string tension vanishes for
any external matter. In th&k=adjoint of SU(2) case
(kgyn=2) and external charges in the fundamerkigl=1
Eqg. (13) reproduces the result ¢#f] up to a factor 2. Con-

siderNung=(3,—3,0,0,...,0), and\ ;= (1,0-1).

The sl(n) ATM models may be relevant in the construc-
tion of the low-energy effective theories of multiflavor Q€D
with the dynamical fermions in the fundamental and adjoint
representations, thus providing an extension of the picture
described above. Notice that in these models the Noether and
topological currentggeneralizations of Eq3)] and the gen-
eralized sine-Gordon/massive Thirring models equivalences
(see Refs[8,9]) take place. A work in this direction is under
current investigation and will appear elsewhere.
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APPENDIX: THE EXTERNAL COLOR CHARGES

The equivalenceé3) for multisolitons describese = ¢y
[ Qtopo=Nsgn(e,)] and ¥ N-solitons of the SG and MT
type, respectively. Asymptotically one can write

N
= o= S, Ty (A1)
2776 V¢N~a:l ﬂ_‘/’a'y l//av

where they,'s are the solutions for the individual localized
lowest energy fermion states. In fact, E&1) encodes the
classical SG/MT correspondeni®l]. Thus, the ATM model
can accommodat®&l-fermion confined states with internal
“color” index a[13]. If we considerN free Dirac fermions
¥, we will have aSU(N) XU (1) symmetry with currents

=y, T andI*= ¢, y*4* where theT®s are the gen-
erators of SU(N) in the fundamental representation
[Tr(T3TP)=16%"]. TheU(1) currentJ* was bosonized ear-
lier.

In order to gain insight into the QCDorigin of the i,
fields [22] let us write the mass term in the multifermion
sector of ATM theory as

Ua€7 Y= P L7 iYL 8P (A2)
The non-Abelian bosonizatidri4] allows us to write
—i o
Ja=zTr(ﬁ,hhTTa), Ja =—Tr(hT(9+ T3,
Pyrp=M(})u(e )y, (A3)

whereh is a SU(N) matrix field andx.=t*=x. Then Eq.
(A2) becomes
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M(Trh €f®+TrhTe 18®),, (A4)
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In the strong coupling limit ¢/my—c) the heavy fields
can be ignored {=1) after normal ordering at the mass

where®=2/8(\/m$+ ¢) from Eq. (4) has been used. The scalee/\27. Then Eq.(A5) becomes the SG modgset

ATM mass term in the multifermion sector, EGA4), must

be compared to the corresponding term in the bosonize
QCD, in order to identify the fields related to the flavor and

color degrees of freedom.

The bosonized QCpaction (N;=1) with a chirally ro-
tated mass term in thieindamentaland adjoint representa-
tions can be schematically represented By

ik,
S~ Swnl 1+ Suneud A~ 42" [ dxTr A% g0 o

1 .
+ qu,u,Rf dx2Tr(ge *m(kext/kay Tayn

I e—i4w(kext/kdyn)T§’yngT) , (A5)
where g is an NXN unitary matrix [(N?>—1)X(N?—1)
orthogona] for the fundamental (adjoint) representation
and A, is the gauge fieldthe gaugeA_ =0 was usel
When the quarks transform in thedjoint rep. the WzZW
and the interaction terms must be multiplied pyecausey
is real and represents Majorana fermiorkg, (=1 for the
fundamental anéty,,= N for the adjoint reps., respectively
LR is to be fixed, andBy [ g]= 1/8f wd*xTr(d,g9*g ")
+1/12m [ dy e Tr(g~10,9) (97 19,9) (9™ 190).

For quarks in thefundamentalrepresentation we sej
=he#® (B=47mIN), h,eSU(N); then the mass term is

. 3 .
1 m pgynaf A2XTr(h @4 Kext/Kayn Tayngl B2

n e—i4w(kext/kdyn)TgynhTe—i,B<I>)_ (A6)

Kexi=0 in Eqg. (A5), i.e. absence of external chardj¢4],
&= [d?X[1(3, D)%+ 2(m')X(cospD)y ], where

(mr)ZZ[N c nh(e/ \/Z)(N—l)/N]ZN/(ZN—l). (A?)

From Eqgs.(A4) and (A6) one concludes that the “color”
degrees), (h matrix) confined inside the SG solitons corre-
spond to the heavy fields of QGDvhich decouple from the
light field ® at low-energies.

For quarks in the adjoint one has [23] g.p
=2 Tr(TuTu™ b, whereu is a unitaryNX N matrix. For
N=2 andu=€e"™"7 (n2=1: &,, Pauli matrices the
mass term of EQ.(A5) (kex=0) reproduces exactly:
cosy4n®, the remaining terms in EqA5) are the kinetic

and derivative interaction terms for the fieldsand ®. The
kinetic terms do not contribute to the change of the vacuum
energy in the presence of the external soU®g and the
interaction terms will not contribute in the strong coupling
limit. Actually, the change in the vacuum energy is due to the
mass ternj3]. We have the SG model witB?=4 [19],

Setr=Jd*X[3(3, D)%+ 2Mypaqi(cOSBD) (A8)

/‘adj]'

When N=2, instantons bring about a bilinear fermion
condensate (for small mg) [23]: 2u,qicosy4md)
=3 (~e).
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