
PHYSICAL REVIEW D 66, 127701 ~2002!
Affine Toda model coupled to matter and the string tension in 2D QCD
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The sl(2) affine Toda model coupled to matter is shown to describe various features, such as the spectrum
and string tension, of the low-energy effective Lagrangian of two-dimensional QCD~one flavor andN colors!.
The corresponding string tension is computed when the dynamical quarks are in thefundamentalrepresentation
of SU(N) and in theadjoint representation ofSU(2).
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It has been conjectured that the low-energy action of tw
dimensional QCD (QCD2) (e@mq , mq quark mass ande
gauge coupling! might be related to massive two dime
sional integrable models, thus leading to the exact solutio
the strong coupled QCD2 @1#. Although some hints toward a
integrable structure in QCD2 have been encountered th
problem remains open@2#.

In recent papers by Armoniet al. @3# it was proved that
bosonized QCD2 @1# exhibits a screening nature~vanishing
of the string tension! when the dynamical quarks have n
mass both in the case when the source and the dynam
fermions belong to the same representation of the ga
group and in the case when the representation of the exte
charge is smaller than the representation of the massless
mions. The string tension also vanishes when the test cha
are in the adjoint representation and the dynamical one
the fundamental representation. Confinement is restore
the nonstandard matter content case~e.g., dynamical adjon
matter and fundamental probe charge! when a small mass
(mq!e) is given to the quarks, as initially argued in@4#.
Similar phenomena occur in QED2 @2#. Integer charges can
screen fractional charges when the dynamical electrons
massless. The confinement phase is restored when the
namical electrons are massive and when the external ch
is not an integer multiple of the dynamical charge. The str
tension in QCD2 is @3#

s5mqmR(
i

@12cos 4pl i kext/kdyn#, ~1!

wheremR;e „m f und5@exp(g)/(2p)3/2#e, g is the Euler num-
ber…, l i are the isospin eigenvalues of the dynamical rep
sentation,kext andkdyn are the affine current algebra leve
of the external and dynamical representations, respectiv
R5 fundamental and adjoint representations. A possible g
eralization of Eq. ~1! to representations to which th
bosonization techniques are applicable, among them the
tisymmetric and symmetric representations, is in@3#.

In addition, thesl(n) affine Toda model~ATM ! coupled
to matter~Dirac! fields @5–11# constitutes an excellent labo
ratory to test ideas about confinement@6#, the role of solitons
in quantum field theories@5#, duality transformations inter
changing solitons and particles@5,9#, as well as the reduction
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processes of the~two-loop! Wess-Zumino-Novikov-Witten
~WZNW! theory from which the ATM are derivable
@7,10,11#.

We show that thesl(2) ATM model describes the low
energy spectrum of QCD2 ~one flavor andN colors in the
fundamental andN52 in the adjoint representations, respe
tively!. The exact computation of the string tension is p
formed. A key role will be played by the equivalence b
tween the Noether and topological currents at the quan
level @6#.

The Lagrangian of the ATM model is@5–7#

~1/k!L52 1
4 ]mw]mw1 i c̄gm]mc2mcc̄ e2iw g5c, ~2!

wherek5k/2p (kPZ), w is a real field,mc is a mass pa-
rameter, andc is a Dirac spinor. Notice thatc̄[c̃Tg0. We
shall takec̃5ecc* @6#, whereec is a real dimensionless
constant. The conformal version~CATM! of Eq. ~2! has been
constructed in@11#. The integrability properties and the re
duction processes, WZNW→CATM→ATM→ sine-Gordon
~SG! 1 free field, have been considered@5,7,10,6#. The
sl(n) ATM exhibits a generalized sine-Gordon–massi
Thirring correspondence@9#. Moreover, Eq. ~2! exhibits
mass generation despite chiral symmetry@12# and confine-
ment of fermions in a self-generated potential@6,13#.

The Lagrangian is invariant underw→w1np, thus the
topological charge,Qtopol.[*dx j0, j m5(1/p)emn]nw, can
assume nontrivial values. A reduction is performed impos
the constraint@6,7,5#

~1/2p! emn]nw5~1/p!c̄gmc, ~3!

whereJm5c̄gmc is theU(1) Noether current.
Equation ~3! implies c†c;]xw, thus the Dirac field is

confined to live in regions where the fieldw is not constant.
The 1(2)-soliton~s! solution~s! for w andc are of the sine-
Gordon~SG! and massive Thirring~MT! types, respectively;
they satisfy Eq.~3! for uecu51, and so are solutions of th
reduced model@6#. Similar results hold insl(n) ATM @8,9#.

Introduce a new boson field representation of fermion
linears as @14# :c̄(16g5)c:52 (cm/p) :e(6 iA4pf): ,
:c̄gmc:52 (1/Ap) emn]nf,wherec5 1

2 exp(g) andm is an
infrared regulator. Define the fieldsF andr as

F5
2

b
~Apf1w!, r5

A2/p

b
~2Apecf1pw!. ~4!
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Then the Lagrangian~2! becomes@6#

Lbos52
e

2ec
~]mr!21e

1

2
~]mF!21

m2

b2
~cosb F!m ~5!

where b25u4p28ecu/uecku, m25c mcm/pu4p28ecu,
and e5sgn(4p28ec). Imposinge51, ec,p/2 we get a
unitary sine-Gordon theory and a decoupled massless
field.

The bosonized version of the constraints~3! is

^C8uAu4p28ecu/2p ]mruC&50, ~6!

where theuC& ’s are the space of states of the theory.
The low-energy spectrum of QCD2 has been studied b

means of Abelian@15# and non-Abelian bosonizations@1,16#.
In this limit the baryons of QCD2 are sine-Gordon soliton
@1#. In the largeN limit approach~weake and smallmq) the
SG theory also emerges@17#.

The low-energy limit of QCD2 (Nf51) with quarks in
the fundamentalrepresentation ofSU(N) is described by the
SG theory with ~see the Appendix! @1# b5A4p/N (N
.1).

Now, let us introduce in Eq.~5! a new mass paramete
m8 by renormal ordering @2# (cosb F)m

5(m8/m)b2/4p(cosb F)m8 , then one has Lbos
52 (1/2ec) (]mr)21 1

2 (]mF)212(m8)2(cosb F)m8 where

~m8!25@ ukecuc ~mc/2p! ~m!(N21)/N#2N/(2N21),

ukecu5
N

Usgn~ec!
4N

uku
61U . ~7!

From Eq.~7! and the QCD2 parameterm8 ~A7! one can
make the identificationsm5e/A2p; mc;mq . An exact re-
lationship betweenmc and mq will be found below. In the
largeN limit @16,17#, (m8)2;N e mq .

On the other hand, QCD2 (Nf51) with quarks in the
adjoint representation ofSU(2) is described by the SG
theory with b254p ~see the Appendix!. This allows us to
make the identifications from Eqs.~5! and ~A8!: mc;mq ,
m;S(;e).

Let us study the question of confinement of the ‘‘colo
degrees of freedom associated to the fieldc ~see the Appen-
dix! in the ATM model by computing the string tension. In
semi-classical analysis@2,3#, we put a pair of classical exter
nal probe ‘‘color’’ chargesq and2q at L and2L described
by the static potentialQc5a@Q(x1L)2Q(x2L)# (a is a
yet unknown factor!, in the ‘‘color’’ space directionText

3

5diag(l1 ,l2 , . . . ,l l ,0,0, . . . ,0), $l i% being the ‘‘isospin’’
components of the representationR under aSU(2) sub-
group. Then comparing the vacuum expectation value~VEV!
of the Hamiltonian given earlier in the presence of an ex
nal (qext)(2qext) source with the relevant one in the a
sence of such a source, we define the string tension in
limit L→` @2# s5^H&2^H0&, whereH0 ~H! is the Hamil-
tonian in the absence~presence! of the probe charges.
12770
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Let us examine the ‘‘mass’’ term in Eq.~2! with the
SU(N) ‘‘color’’ sector of external fields (ca)ext in the fun-
damental representation coupled to the Toda fieldw. In ATM
type theories the fermions confine in a self-generated po
tial @13#, thus coupling the (cext)’s to w implies some kind
of self-coupling in view of the equivalence~3!. From Eq.

~A3! we write (cL
†a)ext(cR b)ext5cm/2p(eiQcText

3
)ab ; then

the mass term ~A2! becomes kmcecc̄ae2iw g5ca

5(m2/2b2)Tr(eiQcText
3

e2iw1e2 iQcText
3

e22iw).
Defining the analogue ofF in Eq. ~4! as FQc

i

52/b(l iQc1w), and from Eq.~4! replacingw in terms of
the fieldsF andr, the mass term in Eq.~5! can be written as

m2

b2 (
i 51

l

cosb FQc

i 5
m2

b2 (
i 51

l FcosS l iQc2
8 sgn~ec!

buku
F

1
8

bukecu
Ap/2r D G

m

. ~8!

The fieldsF andr in Eq. ~4! inherit from w the symme-
tries r→r1(A2p/b)pn and F→F1(2p/b)n (nPZ);
then the theory~5! has a degenerate vacuau0n&. In order to
computes we need the VEV of the fields, thus we conce
trate our attention on one of these vacua, sayu0o&F

^ u0o&r . Therefore, in accordance with the constraint~6! we
shall setr50.

In Eq. ~8! setting r50 ~ATM → SG reduction! and a
50 ~absence of external charges! we must recover the inter
action term (m2/b2)cosb F ~without the sum ini ), so we
requireb56@28 sgn(ec)/buku#, where the6 signs encode
the F→6F symmetry of the SG theory. Then one gets

uku55
6sgn~ec!4N, dyn. quarks in the

f undamental rep. of SU~N!

6sgn~ec!4, dyn. quarks in the

ad joint rep. of SU~2!.

~9!

From Eqs.~7! and ~9! for the fundamentalrepresentation
one hasukecu5N/2, uku54N, uecu5p/4'0.78, therefore
mc/4p5mq . The limit ukecu/4N→ 1

8 as k, N→`, is the
semi-classical limit of the SG theory (b→0). In theadjoint
case one has to compare the coefficients of the ‘‘cos’’ term
Eq. ~5! with its QCD2 analogue~A8!, thus foruku54 one has
egmcmuecu/p25mqS→mc;mq , m;S(;e).

In order to describe the chirally rotated mass term
QCD2 ~A5! we seta54p(kext /kdyn) @the caseSU(2) re-
quires 2p instead of 4p] @3#. Actually, this is the first order
term in the (e2/Mq

2) expansion when the external prob
charge is viewed as a dynamical field with very large m
Mq ~see more details in@3#!. Then the energy VEV in the
limit L→` is ^H&52m2/b2( i^cos@4pli(kext/kdyn)1bF#&.
Thens5^H&2^H0& becomes
1-2
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s5
m2

b2 (
i 51

l F S 12cos 4pl i

kext

kdyn
D ^cosbF&

1sin 4pl i

kext

kdyn
^sinbF&G . ~10!

Thus the values of̂cosbF& and ^sinbF& in the SG theory
are needed. TheexactVEV of type ^eiaF& @Re(a)^A2p/b#
in the SG theory has recently been proposed@18#. The au-
thors studiedLSG5 1

2 (]F)222mocosbF, assuming the nor-
malization

^cosbF~x!cosbF~0!&mo505 1/2uxub
2/2p . ~11!

From @18# we quote the expectation value fora5b
5A4p/N (N.1) @19#:

^exp~ ibF!&5C~N!mo
1/(2N21) ,

C~N![

2N

2N21

16 sinS p

2N21D S pGS 12
1

2ND
GS 1

2ND D 2N/(2N21)

3
1

FGS N

2N21D G2
S GS 4N23

4N22D
4Ap

D (122N)/N

3F 4

Ap
sinS p

4N22DGS 1

4N22D G 1/N

. ~12!

To use this exact result we have to relatemo andm8. This is
done comparing Eq.~11! with ^@cosbF(x)#m8@cosbF(0)#m8&
5cosh@b2D(m8,uxu)#;cosh@b2/2p (2g2ln(m8uxu/2))#, for
small m8uxu. We have (m8)25c2/(2N21)(mo

2N/(2N21)).
Then the string tension~10! becomes

sR55
2~m8!2

~c2/(2N21)!
C~N!(

i 51

l S 12cos 4pl i

kext

kdyn
D ,

R5 f undamental rep. o f SU~N!,

~mqS!(
i 51

l S 12cos 2pl i

kext

kdyn
D ,

R5ad joint rep. o f SU~2!,

~13!

whereS in R5ad j. is the fermion condensate~see the Ap-
pendix!. We propose Eq.~13! as the exact QCD2 string ten-
sion in the limite/mq→`. Some comments are in order.

~i! The string tension~1! reproduces qualitatively Eq
~13!. Equation~1! has been derived using a semi-classi
average for the bosonized fields in Eq.~A5! (^g&51) @3#.

~ii ! In the largeN limit for R5fund., Eq.~13! takes the
form s52Ncmq(e/A2p)( i@12cos 4pli(kext/kdyn)#, which
12770
l

has the samemq ande dependence as Eq.~1!, except for a
2pN factor @20#. Note that when the dynamical matter is
the fundamental (kdyn51) the string tension vanishes fo
any external matter. In theR5ad joint of SU(2) case
(kdyn52) and external charges in the fundamentalkext51,
Eq. ~13! reproduces the result of@4# up to a factor 2. Con-

siderlW f und5( 1
2 ,2 1

2 ,0,0, . . . ,0), andlW ad j5(1,0,21).
The sl(n) ATM models may be relevant in the constru

tion of the low-energy effective theories of multiflavor QCD2
with the dynamical fermions in the fundamental and adjo
representations, thus providing an extension of the pict
described above. Notice that in these models the Noether
topological currents@generalizations of Eq.~3!# and the gen-
eralized sine-Gordon/massive Thirring models equivalen
~see Refs.@8,9#! take place. A work in this direction is unde
current investigation and will appear elsewhere.
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APPENDIX: THE EXTERNAL COLOR CHARGES

The equivalence~3! for multisolitons describes,w5wN

@Qtopol5N sgn(ec)# and C N-solitons of the SG and MT
type, respectively. Asymptotically one can write

1

2p
emn]nwN' (

a51

N
1

p
c̄agmca , ~A1!

where theca’s are the solutions for the individual localize
lowest energy fermion states. In fact, Eq.~A1! encodes the
classical SG/MT correspondence@21#. Thus, the ATM model
can accommodateN-fermion confined states with interna
‘‘color’’ index a @13#. If we considerN free Dirac fermions
ca we will have aSU(N)3U(1) symmetry with currents
Jm

a 5c̄gmTac andJm5c̄agmca where theTa’s are the gen-
erators of SU(N) in the fundamental representatio
@Tr(TaTb)5 1

2 dab#. TheU(1) currentJm was bosonized ear
lier.

In order to gain insight into the QCD2 origin of the ca
fields @22# let us write the mass term in the multifermio
sector of ATM theory as

c̄ae2iw g5ca5cL
†acR ae

2iw1cR
†acL ae22iw. ~A2!

The non-Abelian bosonization@14# allows us to write

Ja5
2 i

2p
Tr~]2hh†Ta!, J̄a5

i

2p
Tr~h†]1hTa!,

cL
†acR b5M ~hb

a!M~eiA4pf!M , ~A3!

whereh is a SU(N) matrix field andx65t6x. Then Eq.
~A2! becomes
1-3
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M ~Tr h eibF1Tr h†e2 ibF!M , ~A4!

whereF52/b(Apf1w) from Eq. ~4! has been used. Th
ATM mass term in the multifermion sector, Eq.~A4!, must
be compared to the corresponding term in the boson
QCD2 in order to identify the fields related to the flavor an
color degrees of freedom.

The bosonized QCD2 action (Nf51) with a chirally ro-
tated mass term in thefundamentaland adjoint representa-
tions can be schematically represented by@3#

S5SWZW@g#1Skinetic@Am#2
ikdyn

4p E d2xTr A1
a g]2g†

1
1

2
mqmRE dx2Tr~gei4p(kext /kdyn)Tdyn

3

1e2 i4p(kext /kdyn)Tdyn
3

g†!, ~A5!

where g is an N3N unitary matrix @(N221)3(N221)
orthogonal# for the fundamental ~adjoint! representation
and Am is the gauge field~the gaugeA250 was used!.
When the quarks transform in theadjoint rep. the WZW
and the interaction terms must be multiplied by1

2 becauseg
is real and represents Majorana fermions (kdyn51 for the
fundamental andkdyn5N for the adjoint reps., respectively!,
mR is to be fixed, andSWZW@g#5 1/8*pd2xTr(]mg]mg21)
11/12p*d3ye i jkTr(g21] ig)(g21] jg)(g21]kg).

For quarks in thefundamentalrepresentation we setg
5heibF (b5A4p/N), h,eSU(N); then the mass term is

1
2 m m f und*d2xTr~hei4p(kext /kdyn)Tdyn

3
eibF

1e2 i4p(kext /kdyn)Tdyn
3

h†e2 ibF!. ~A6!
et

s.

,

12770
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In the strong coupling limit (e/mq→`) the heavy fields
can be ignored (h51) after normal ordering at the mas
scalee/A2p. Then Eq.~A5! becomes the SG model@set
kext50 in Eq. ~A5!, i.e. absence of external charges# @1#,

Se f f5*d2x@ 1
2 (]mF)212(m8)2(cosbF)m8#, where

~m8!25@N c mq~e/A2p!(N21)/N#2N/(2N21). ~A7!

From Eqs.~A4! and ~A6! one concludes that the ‘‘color’
degreesca (h matrix! confined inside the SG solitons corre
spond to the heavy fields of QCD2 which decouple from the
light field F at low-energies.

For quarks in the adjoint, one has @23# gab
52 Tr(TauTbu21), whereu is a unitaryN3N matrix. For
N52 and u5eiApFnW •sW (nW 251; sa , Pauli matrices!, the
mass term of Eq.~A5! (kext50) reproduces exactly
cosA4pF, the remaining terms in Eq.~A5! are the kinetic
and derivative interaction terms for the fieldsnW andF. The
kinetic terms do not contribute to the change of the vacu
energy in the presence of the external source@3#, and the
interaction terms will not contribute in the strong couplin
limit. Actually, the change in the vacuum energy is due to
mass term@3#. We have the SG model withb254p @19#,

Se f f5*d2x@ 1
2 ~]mF!212mqmad j~cosbF!mad j

#. ~A8!

When N52, instantons bring about a bilinear fermio
condensate ~for small mq) @23#: 2mad j^cosA4pF&
5S(;e).
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