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Origin of the anomalies: The modified Heisenberg equation
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The origin of the anomalies is analyzed. It is shown that they are due to the fact that the generators of the
symmetry do not leave the domain of definition of the Hamiltonian invariant and thus a term, normally
forgotten in the Heisenberg equation, gives an extra contribution responsible for the nonconservation of the
charges. This explanation is equivalent to that of Fujikawa in the path integral formalism. Finally, this approach
is applied to conformal symmetry breaking in two-dimensional quantum mechanics.

DOI: 10.1103/PhysRevD.66.125013 PACS number~s!: 11.10.Ef, 03.65.Ca, 11.30.2j
o
s

tu
el
ci
d
io
a

n

ly
us

to
, i
o-
ym
on

y
th
ym
el
th

e
ce
n

th

er
q

e

for

in

we

g

f

n
the
ian
the
The use of the symmetries of a system is one of the m
fruitful techniques in physics, especially for quantum sy
tems. Among the consequences of symmetry in quan
physics are selection rules, relations between matrix
ments of observables, degeneracies in energy, and espe
the existence of conservation laws which are guarantee
Noether’s theorem or its equivalent, the Ehrenfest equat
In particular, the evolution of the expectation values of
operatorB is given by the Heisenberg equation

d

dt
^C~ t !uBC~ t !&5 K C~ t !U]B

]t
C~ t !L

1
i

\
^C~ t !u@H,B#C~ t !&, ~1!

which says that for any group of symmetry whose eleme
~or generators in the associated Lie algebra! commute with
the HamiltonianH, if such operators do not depend explicit
on time t, their expectation value in any physical state m
be constant witht.

Even for the case when the symmetry is not exact~it is
explicitly broken!, the Heisenberg equation~1! shows how
the expectation values of the corresponding genera
evolve with time. This has been largely used, for example
particle physics where the flavor symmetry is explicitly br
ken by mass terms, or in nuclear physics where isospin s
metry is broken by the Coulomb interaction between prot
and by the up-down quark mass difference.

However, there are some cases where, although the s
metry is exact at the classical level, it is not preserved in
corresponding quantum theory. This is the anomalous s
metry breaking that was first discovered in quantum fi
theory when studying certain Feynman diagrams, and fur
in the analysis ofp0→2g decay @1#, and also in the
Schwinger model@2#. In the path integral formalism, th
existence of anomalies can be viewed as a consequen
the fact that, in this case, even if the classical Lagrangia
invariant under the symmetry, the measure is not@3#, which
gives rise to extra surface terms that are the origin of
anomaly.

In the Hamiltonian formalism, the anomaly can be und
stood as a consequence of the fact that the Heisenberg e
tion ~1! is exact only if the domain of definition of th
Hamiltonian is invariant with respect to the operatorB; in
0556-2821/2002/66~12!/125013~4!/$20.00 66 1250
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other cases, an extra term appears which is responsible
the anomaly@4#. To be more precise, letH be the quantum
Hamiltonian, which is self-adjoint when defined on a doma
DH ; then for any physical state in the Hilbert spaceH and
any operatorB we have

d

dt
^C~ t !uBC~ t !&

5 K C~ t !U]B

]t
C~ t !L 1

i

\
@^HC~ t !uBC~ t !&

2^C~ t !uBHC~ t !&#

which can be written as

d

dt
^C~ t !uBC~ t !&

5 K C~ t !U]B

]t
C~ t !L 1

i

\
^C~ t !u@H,B#C~ t !&1A,

~2!

where the anomalyA is defined as

A5
i

\
^C~ t !u~H12H !BC~ t !&, ~3!

and in Eq.~2! the commutator@H,B# is defined in the whole
Hilbert space. Equivalently, in the Heisenberg picture,
obtain that for any operatorB the derivative with respect to
the time obeys a generalized Heisenberg equation:

dB

dt
5

]B

]t
1

i

\
@H,B#1

i

\
~H12H !B. ~4!

Comparing Eqs.~1! and ~2! we see that the Heisenber
equation~1! is exact only wheneverB keeps invariant the
domain of definitionDH of the Hamiltonian, because i
BChPDH for ChPDH , then the extra term̂Ch(t)u(H1

2H)BCh(t)&50 as long asH15H when acting on states
of DH . But when B does not keepDH invariant, that is,
BCh¹DH , the extra term will give a surface contributio
responsible for the anomaly. In general, it is said that in
presence of an anomaly, the commutator of the Hamilton
with the corresponding charges has two contributions,
©2002 The American Physical Society13-1
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regular one and an extra part originated by the anom
@H,B# total5@H,B# reg1@H,B#anom. We see that the so
called regular part is nothing but the commutator of the
tension of the operators to the whole Hilbert space and
anomalous term is just (H12H)B.

It is easy to prove that the above description of t
anomalies is equivalent to that of the path integral@3#. For
example, in quantum mechanics, the Feynman propagat

K~z,t;y,0!5E
x(t)5z
x(0)5y @dm~x!#exp@ iS~x,ẋ!/\#

5( E
n
wn* ~y!wn~z!e2( iEnt/\), ~5!

wherewn are the eigenvectors of the Hamiltonian and(n*
means a sum over the discrete and an integral over the
tinuum spectrum. In this sense, different self-adjoint ext
sionsH (l) of the quantum Hamiltonian associated with t
same classical Lagrangian give rise to different sets of or
normal eigenvalueswn

(l)(x), depending on the self-adjoin
extension defined onDH

(l) , and each of them is characterize
by a different measure in the path integral version, so
particular domain of definitionDH

(l) is not invariant under the
operatorB, the same is true for the associated measure.
proof for quantum field theories is equivalent.

It should be noted that the existence of an anomaly
independent of the need or not for a regularization proc
for the theory, as can be seen in some quantum mecha
systems such as that of a charged particle moving on a
torus and coupled to an electromagnetic field~see@5# and
also @6#!.

Recently, there has been a renewed interest in anom
in conformal quantum mechanics: the three-dimensional 1r 2

potential which is relevant as an example of an anomaly
molecular physics@7#, and the two-dimensionald interaction
@8#. In what follows, we shall analyze the latter in the light
the generalized Heisenberg equation~2!. The problem is that
of a free particle in two-dimensional quantum mechan
with a d2(r ) interaction:

H5
P2

2m
1l

1

r
d~r !. ~6!

It can be seen that considering the extension ofH to the
whole Hilbert spaceH5L2(R1 ,rdr ) ^ L2(S1 ,dw), the
theory is scale invariant, that is, the dilation operatorD
5tH2G @whereG5(1/4)(rp1pr )], the conformal genera
tor K52t2H12tD1(1/2)r 2, andH close on commutation

i

\
@K,D#5K, ~7!

i

\
@H,K#522D, ~8!

i

\
@D,H#5H, ~9!
12501
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showing that the invariance algebra is SO~2,1!. The above
equations together with the classical Heisenberg equation~1!
mean that (d/dt)^K&5(d/dt)^D&50, and that there canno
be any normalizable bound state with energy different fr
0. However, in order to properly define the quantum theo
we must first define the domain of definitionDH of the
Hamiltonian in such a way thatD̄H5H, and so that when
acting onDH we haveH15H. In order to do that, we star
by removing the origin to avoid the singularities of th
Hamiltonian, and then working onṘ25R2/$0,0% @9# and in
polar coordinates, so the Hamiltonian reads

H52
\2

2m S ]2

]r 2 1
1

r

]

]r
1

1

r 2

]2

]w2D . ~10!

The first question is to define the domain of definition
the operatord2/dw2. In order to do that we start by looking
for normalizable solutions of the equations

d2

dw2 j6~w!56 i j6~w!. ~11!

In this case, there are two linearly independent solutio
j6

a (w)(a51,2) for each equation, so the deficiency indic
are d15d252, and there are infinitely many self-adjoin
extensions associated with different physical situations. H
we shall start with the one with periodic boundary con
tions. Definingd2/dw2 on

d05$ f ~w!PL2~S1 ,dw!u f ~0!5 f ~2p!; f 8~0!5 f 8~2p!%,

~12!

in that case, acting ond0 the eigenfunctions ofd2/dw2 are
jn(w)5(2p)21/2einw with nPZ, and thenDH can be writ-
ten as the direct sum

DH5 %

nPZ
@Dn~R1 ,rdr ! ^ jn~w!#, ~13!

whereDn(R1 ,rdr ) must be chosen in such a way that t
radial part of the Hamiltonian

Hr52
\2

2m S d2

dr2 1
1

r

d

dr
2

n2

r 2 D ~14!

is self-adjoint. Forn5” 0 the deficiency indices ofHr are
~0,0! so it is essentially self-adjoint acting on function
which vanish atr 50 and infinity. But for n50 the defi-
ciency indices are (1,1) and there are infinitely many se
adjoint extensions characterized by a parameterb:

Dn50
b 5H f ~r !PL2~R1 ,rdr !U lim

r→0
S f ~r !

log~a0r ! D
5b lim

r→0
F f ~r !2 lim

r 8→0
S f ~r 8!

log~a0r 8!
D log~a0r !G J ,

~15!
3-2
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wherea0
25(2mL0 /\2), andL0 is the dimensional constan

we must introduce in order to make the deficiency ind
equations HrC6(r )56 iL0C6(r ) dimensionally consis-
tent. The caseb50 is Friedrich’s extension and correspon
to the situationl50 in ~6!, whereasb5” 0 accounts for the
casel5” 0.

Equation ~15! means that if f (r )PDn50
b then for r

→0, f (r );a@ log(ar)1b#1O(r) with

1

b
5b1 logS a

a0
D . ~16!

Now, it can be seen that forn5” 0 we haveGDn,Dn so G
leaves Dn5” 0 invariant, but for n50, b5” 0, and f (r )
PD0

b , we obtain that forr→0

f ~r !;aS log~a0r !1
1

b D1O~r !,

G f~r !;aS log~a0r !1
1

b
11D1O~r !,

~17!

and consequently

G f~r !PD0
b8 , b85

b

b11
, ~18!

so D0
b is not invariant under the action ofG, and conse-

quently it is not invariant with respect toD andK. Hence the
symmetry will be anomalously broken. The most releva
manifestation of this anomalous symmetry breakdown is
existence of a normalizable bound state

C0~r ,w!5
a

p1/2
K0~ar ! ~19!

with energy

E052
\2

2m
a2, ~20!

where if C0PD0
b then a and b are related by 1/b

5 log(a/2a0)1g (g is Euler’s constant!. In this case for the
dilation operatorD the left side of Eq.~2! evaluates toE0
whereas for the right side we have that^C0u(]D/]t)C0&5
2( i /\)^C0u@H,D#C0&, and Eq.~2! reduces to

d

dt
^C0uDC0&5A5

i

\
^C0u~H12H !DC0&. ~21!
12501
x

t
e

Integrating by parts, we finally obtain

A5
\2a2

2m H F r
d

dr
K0~ar !S r

d

dr
11DK0~ar !G

0

`

2F rK 0~ar !
d

drS r
d

dr
11DK0~ar !G

0

`J 52
\2a2

2m
.

~22!

Then we see that it is precisely the fact thatD does not keep
D0

b invariant which causes the extra contribution that a
counts for the value of the left side.

Finally, we can consider what happens with other se
adjoint extensions of the Hamiltonian. For example, defin
the operatord2/dw2 with vanishing boundary conditions o
dv5$ f (w)PL2(S1 ,dw)u f (0)5 f (2p)50%, everything, re-
spective to the anomaly, is equivalent to the case of perio
boundary conditions, except that nown51,2, . . . sothere is
not then50 sector; but if we defined2/dw2 on

du5$ f ~w!PL2~S1 ,dw!u f ~0!

5ei2pu f ~2p!,

f 8~0!5ei2pu f 8~2p!;uP@0,1!% ~23!

then the domain of definition ofH can be written asDH5
% nPZ@Dn,u(R1 ,rdr ) ^ (2p)2(1/2)ei (n1u)w#, and for u5” 0
the deficiency indices of the radial part of the Hamiltonia

Hr
u52

\2

2m S d2

dr2 1
1

r

d

dr
2

~n1u!2

r 2 D ~24!

are (0,0) forn5” 0,21, and (1,1) forn50,21. In this last
case, defining the adequate domainsD0,u

b andD21,u
b8 it is easy

to see that both subspaces are not invariant underG, which
results in the fact that there are two normalizable bou
states.

In conclusion, it has been shown that the origin of t
anomalous symmetry breakdown is that the generators o
symmetry do not leave invariant the domain of definition
the Hamiltonian and thus, although the formal commuta
of those generators withH vanishes, the charges are not co
served due to the extra surface term that appears in the e
Heisenberg equation~2!. For the case of conformal symme
try breaking in thed2(r ) potential, the anomaly has bee
calculated exactly and Eq.~2! verified. Similar results for the
1/r 2 potential in three-dimensional quantum mechanics w
be discussed elsewhere.
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