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Origin of the anomalies: The modified Heisenberg equation
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The origin of the anomalies is analyzed. It is shown that they are due to the fact that the generators of the
symmetry do not leave the domain of definition of the Hamiltonian invariant and thus a term, normally
forgotten in the Heisenberg equation, gives an extra contribution responsible for the nonconservation of the
charges. This explanation is equivalent to that of Fujikawa in the path integral formalism. Finally, this approach
is applied to conformal symmetry breaking in two-dimensional quantum mechanics.
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The use of the symmetries of a system is one of the mosither cases, an extra term appears which is responsible for
fruitful techniques in physics, especially for quantum sys-the anomaly{4]. To be more precise, léd be the quantum
tems. Among the consequences of symmetry in quanturilamiltonian, which is self-adjoint when defined on a domain
physics are selection rules, relations between matrix eleb,,; then for any physical state in the Hilbert spaideand
ments of observables, degeneracies in energy, and especiadlyy operatoB we have
the existence of conservation laws which are guaranteed by
Noether’s theorem or its equivalent, the Ehrenfest equation.
In particular, the evolution of the expectation values of an
operatorB is given by the Heisenberg equation
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+ %(q;(m[H,B]\p(t)), (1)  which can be written as

d
which says that for any group of symmetry whose elements a(\lf(t)|B\If(t))
(or generators in the associated Lie alg¢lmammute with
the HamiltoniarH, if such operators do not depend explicitly
on timet, their expectation value in any physical state must :<\I’(t)
be constant with.

Even for the case when the symmetry is not exicis 2
explicitly broken, the Heisenberg equatiofl) shows how \\here the anomaly is defined as
the expectation values of the corresponding generators
evolve with time. This has been largely used, for example, in i
particle physics where the flavor symmetry is explicitly bro- A= (P(O[(HT—H)BW (1)), 3
ken by mass terms, or in nuclear physics where isospin sym-
metry is broken by the Coulomb interaction between protonsind in Eq.(2) the commutatofH,B] is defined in the whole
and by the up-down quark mass difference. Hilbert space. Equivalently, in the Heisenberg picture, we

However, there are some cases where, although the syrabtain that for any operatds the derivative with respect to
metry is exact at the classical level, it is not preserved in theéhe time obeys a generalized Heisenberg equation:
corresponding quantum theory. This is the anomalous sym- 4B B i _
metry breaking that was first discovered in quantum field I I
theory when studying certain Feynman diagrams, and further at - at +%[H Bl+ %(H T-H)B. )
in the analysis of7°—2y decay[1], and also in the
Schwinger mode[2]. In the path integral formalism, the Comparing Egs(1) and (2) we see that the Heisenberg
existence of anomalies can be viewed as a consequence @duation(1) is exact only wheneveB keeps invariant the
the fact that, in this case, even if the classical Lagrangian isomain of definitonDy; of the Hamiltonian, because if
invariant under the symmetry, the measure is[8twhich ~ BW¥,eDy for ¥,e Dy, then the extra terndW,(t)[(H*
gives rise to extra surface terms that are the origin of the-H)BW,(t))=0 as long aH™=H when acting on states
anomaly. of Dy . But whenB does not kee,, invariant, that is,

In the Hamiltonian formalism, the anomaly can be underBY¥, Dy, the extra term will give a surface contribution
stood as a consequence of the fact that the Heisenberg equasponsible for the anomaly. In general, it is said that in the
tion (1) is exact only if the domain of definition of the presence of an anomaly, the commutator of the Hamiltonian
Hamiltonian is invariant with respect to the operarin  with the corresponding charges has two contributions, the

B i
H\I’(t)> + g(?(t)l[H,B]\P(t))JrA,
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regular one and an extra part originated by the anomalyshowing that the invariance algebra is @(Q). The above
[H,Bliotai=[H,Blregt[H,Blanom- We see that the so- equations together with the classical Heisenberg equétjon
called regular part is nothing but the commutator of the ex-mean that ¢/dt){K)=(d/dt)(D)=0, and that there cannot
tension of the operators to the whole Hilbert space and thée any normalizable bound state with energy different from

anomalous term is just{* —H)B.

0. However, in order to properly define the quantum theory,

It is easy to prove that the above description of thewe must first define the domain of definitidd, of the

anomalies is equivalent to that of the path inted&dl For

Hamiltonian in such a way th5H=H, and so that when

example, in quantum mechanics, the Feynman propagator iting onD,, we haveH " =H. In order to do that, we start

K(zt;y,0)= XEO)):y[d,u(x)]exr[iS(x,i()/ﬁ]
X(t)=z

=> fnsoﬁ(y)son(z)e‘“En”ﬁ), (5

where ¢, are the eigenvectors of the Hamiltonian ang

means a sum over the discrete and an integral over the co%
tinuum spectrum. In this sense, different self-adjoint exten
sionsH™ of the quantum Hamiltonian associated with the

by removing the origin to avoid the singularities of the

Hamiltonian, and then working oR>=R?/{0,0} [9] and in
polar coordinates, so the Hamiltonian reads

e h? 32+1¢9+1 9 10
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The first question is to define the domain of definition of
e operatod?/d¢?. In order to do that we start by looking

for normalizable solutions of the equations

same classical Lagrangian give rise to different sets of ortho- d2

normal eigenvaluesoﬁ,”)(x), depending on the self-adjoint
extension defined o™ | and each of them is characterized
by a different measure in the path integral version, so if

particular domain of definitio®{} is not invariant under the

operatorB, the same is true for the associated measure. Th

proof for quantum field theories is equivalent.
It should be noted that the existence of an anomaly

W%i(@):iigt(go)- (11

4n this case, there are two linearly independent solutions

% (¢)(@=1,2) for each equation, so the deficiency indices
red,=d_=2, and there are infinitely many self-adjoint

. extensions associated with different physical situations. Here

| . . . . .
independent of the need or not for a regularization proceséve shall start with the one with periodic boundary condi-

for the theory, as can be seen in some quantum mechanical

ns. Definingd?/d¢? on

systems such as that of a charged particle moving on a two- do={f(¢) e LA(S,,de)|f(0)=f(2m):f (0)=f'(2m)}

torus and coupled to an electromagnetic fidde[5] and
also[6]).

(12

Recently, there has been a renewed interest in anomaligs that case, acting od, the eigenfunctions ofi%/d¢? are
in conformal quantum mechanics: the three-dimensional 1/ gn(<p):(277)‘1’2e‘”‘*’ with ne Z, and thenD,, can be writ-
potential which is relevant as an example of an anomaly ifen as the direct sum

molecular physic§7], and the two-dimensional interaction

[8]. In what follows, we shall analyze the latter in the light of

the generalized Heisenberg equati@h The problem is that

Dy= @ [Dn(Ry rdr)®&n(e)], (13

neZ

of a free particle in two-dimensional quantum mechanics

with a %(r) interaction:

PZ

1
H=ﬁ+)\F5(r)

(6)
It can be seen that considering the extensiorHofo the
whole Hilbert space H=L?(R, ,rdr)®L?(S,,d¢), the
theory is scale invariant, that is, the dilation operalr
=tH—G [whereG=(1/4)(rp + pr)], the conformal genera-
tor K= —t?H+2tD + (1/2)r?, andH close on commutation:

FIKDI=K, ™
%[H,K]I—ZD, (8)
D H]=H, ©

whereD,(R, ,rdr) must be chosen in such a way that the
radial part of the Hamiltonian

H A2 (d> 1d n? 14
=T 2mlda? Trdar 2 (19

is self-adjoint. Forn#0 the deficiency indices oH, are
(0,0 so it is essentially self-adjoint acting on functions
which vanish atr=0 and infinity. But forn=0 the defi-
ciency indices are (1,1) and there are infinitely many self-
adjoint extensions characterized by a paramgter

ol

Dﬁ_oz[f(r)eLZ(R+,rdr) log(agr)
r—0

= Blim

r—0

_ ( f(r') )
f(r)— lim | ———|log(aqr) | } ,
o\ log(agr”)

(15
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Whereagz(ZmAO/ﬁz), andA is the dimensional constant Integrating by parts, we finally obtain

we must introduce in order to make the deficiency index
equationsH, V. (r)==*iAyV_.(r) dimensionally consis-
tent. The cas@=0 is Friedrich’s extension and corresponds
to the situatiol\ =0 in (6), whereas3+ 0 accounts for the

casen #0.
Equation (15 means that iff(r)eD?_, then for r
—0, f(r)~a[log(ar)+b]+0O(r) with
—=b+log

-
B ap)
Now, it can be seen that far#0 we haveGD,CD, so G

leaves Do invariant, but for n=0, B#0, and f(r)
e D, we obtain that for —0

1
(16)

f(r)y~a Iog(aor)+% +0(r),
1
Gf(r)~a Iog(aor)+E+1)+O(r),
17
and consequently
Gf(r)eDf’ B':i (18)
0 B+1’

so D% is not invariant under the action @&, and conse-
guently it is not invariant with respect © andK. Hence the

_ﬁ2a2 dK d 1k *
A= om ra olar) ra+ olar) )
[K( )d( d+1)K( )m] i
—|rKg(ar)=—|r— olar =— .
dr\ dr 0 2m
(22

Then we see that it is precisely the fact tBatloes not keep
D# invariant which causes the extra contribution that ac-
counts for the value of the left side.

Finally, we can consider what happens with other self-
adjoint extensions of the Hamiltonian. For example, defining
the operatod?/d¢? with vanishing boundary conditions on
d,={f(¢) eL?(S;,do)|f(0)=f(27)=0}, everything, re-
spective to the anomaly, is equivalent to the case of periodic

boundary conditions, except that now1,2, ... scthere is
not then=0 sector; but if we defined?/d¢? on
dy={f(¢) eL?(S;,d¢)|f(0)
=e?m(2m),
f(0)=€e"2"%"(2m);0e[0,1)} (23

then the domain of definition dfi can be written ady=
BnezDno(Ry ,rdr)®(2m)~ M2+ 0e] and for #0
the deficiency indices of the radial part of the Hamiltonian

Lo_ AP 1d (nt)? o
"~ omlae Trar 7 24

symmetry will be anomalously broken. The most relevant
manifestation of this anomalous symmetry breakdown is there (0,0) forn#0,—1, and (1,1) fom=0,—1. In this last

existence of a normalizable bound state

o

Wo(r, @)= —Kolar) (19
a
with energy
ﬁZ
Eo=— ﬁaz. (20)

where if W,e Dg then « and B are related by BB
=log(a/2ag)+7v (y is Euler’s constant In this case for the
dilation operatorD the left side of Eq(2) evaluates tdE,
whereas for the right side we have tHat,|(dD/at) W)=
—(ilh){(W,|[H,D]¥y), and Eq.(2) reduces to

q .
a(‘l’o|D\I’o>:A: %‘(‘I’o|(H+—H)D‘I’o>- (21

case, defining the adequate domeﬁ}ﬁ andD‘f'l’o it is easy

to see that both subspaces are not invariant u@evhich
results in the fact that there are two normalizable bound
states.

In conclusion, it has been shown that the origin of the
anomalous symmetry breakdown is that the generators of the
symmetry do not leave invariant the domain of definition of
the Hamiltonian and thus, although the formal commutator
of those generators witH vanishes, the charges are not con-
served due to the extra surface term that appears in the exact
Heisenberg equatiof?). For the case of conformal symme-
try breaking in thes?(r) potential, the anomaly has been
calculated exactly and E¢R) verified. Similar results for the
1/r? potential in three-dimensional quantum mechanics will
be discussed elsewhere.
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