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Avoiding the Landau pole in perturbative QCD
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Department of Mathematical Physics and Astronomy, University of Ghent, Krijgslaan 281 (S9), 9000 Ghent, Belgium
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We propose an alternative perturbative expansion for QCD. All scheme and scale dependence is reduced to
one free parameter. Fixing this parameter with a fastest apparent convergence criterion gives sensible results in
the whole energy region. We apply the expansion to the calculation of the zero flavor triple gluon vertex, the
quark gluon vertex, the gluon propagator, and the ghost propagator. A qualitative agreement with the corre-
sponding lattice results is found.
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I. INTRODUCTION

Perturbation theory is by far the most successful too
get quantitative predictions from a field theory. Unfort
nately, the results depend on the renormalization scale
scheme and the number of free parameters describing
dependence grows with the order of truncation. In most ca
one does not bother too much with this dependence and
ply chooses a scheme@modified minimal subtraction (MS),
momentum subtraction (MOM),. . . ] which is supposed to
give good results. More sophisticated approaches sele
different ideal scheme for each perturbative series. The m
cited of the results in this context are Stevenson’s princ
of minimal sensitivity@1# and Grunberg’s method of effec
tive charges@2#.

In this paper we will reorganize the conventional pert
bation series in a new alternative expansion, which has o
one redundant free parameter, the expansion parameter i
This parameter will be fixed by a fastest apparent conv
gence criterion~FACC!. We find similar results as for ordi
nary QCD perturbation theory in the UV region and for i
termediate energies. In the IR region on the contrary,
expansion still gives sensible results whereas thenormalper-
turbation theory becomes useless if one approaches the
dau pole.

In Sec. II we will first review some of the major aspec
of ordinary perturbation theory and then use this as a star
point for the alternative expansion. Some results will be p
sented in Sec. III. We perform calculations on the trip
gluon vertex, the quark gluon vertex, the gluon propaga
and the ghost propagator. Our results are compared with
conventional perturbation theory and with the correspond
lattice results. We also show that the reason for the IR fin
results lies in a peculiar behavior of the running expans
parametery, resulting from the FACC. This behavior shou
be contrasted with the running couplinga that Shirkov and
Solovtsov obtain by imposing analyticity@3#. While we find
a universal power behavior fory, they find an IR-finite value
for a at zero momentum.

II. REWRITING PERTURBATION THEORY

In the following we will consider the perturbative calcu
lation of a renormalization scheme and scale invariant qu
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tity R, that is a function of only one external scaleq2, in a
massless version of QCD. In ordinary perturbation theo
one finds a row of approximationsR n for R, with

R n5h(n)N@11r 1~q2!h(n)1r 2~q2!h(n)21•••

1r n~q2!h(n)n#. ~1!

N depends on the calculated quantity. The coupling cons
h(n) is the solution of

b0 ln
m2

L2
5

1

h
1

b1

b0
ln~b0h!

1E
0

h

dxS 1

x2
2

b1

b0

1

x

2
b0

b0x21b1x31 . . . 1bnxn12D , ~2!

with m2]/]m2h[2(b0h21b1h31b2h41•••). As men-
tioned in the introduction, every truncationR n is highly
scale and scheme dependent. One can, for instance, des
this dependence with the free parameters@1#
b0 ln m2/L2,b2,b3, . . . ,bn . The dependence of the coeffi
cientsr i on each of these parameters cancels the depend
of the coupling constanth(n) up to orderh(n)n11.

In many cases one simply chooses a sche
(MS,MOM, . . . ) andresums the logarithmsby putting the
scalem2 equal to the external scaleq2. To get reliable re-
sults, one must hope that the first, second, or third or
approximation liesclose enoughto the exact result. The
working hypothesis of perturbation theory is that the pert
bation series is asymptotic to the exact resultR @4#. One then
obtains an error estimation by assuming that

UR2R n

R U;UR n112R n

R n11 U[Dn. ~3!

Other approaches fix the scale/scheme by imposing a co
tion on the truncated series. The minimal sensitivity con
tion @1# gives a different scale/scheme for every approxim
tion. The method of the effective charges@2#, setsq25m2,
©2002 The American Physical Society12-1
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K. VAN ACOLEYEN AND H. VERSCHELDE PHYSICAL REVIEW D66, 125012 ~2002!
the free parameters are then obtained by demanding the
efficientsr i to be zero. One now also findsDn to give a good
estimation of the error@5#.

As a consequence of asymptotic freedom, conventio
perturbation theory works well in the UV region, which
reflected in low values ofDn(n51,2,3) for high values of
q2. UnfortunatelyDn gets larger if we lower the externa
scaleq2. This signals that one has to add nonperturbat
power corrections to the conventional perturbation the
@4#. For intermediate energies, the sum rules@6# successfully
relate many of these power corrections to a few condensa
A further lowering of q2 towards the IR region is cata
strophic in most cases,1 Dn diverges together withRn as one
encounters the Landau pole and perturbation theory beco
useless.

The alternative expansion we propose in this paper ha
Landau-pole problem and gives sensible results up toq2

50 with a reasonable error estimation. To arrive at thisy
expansionwe start from the ordinary perturbation series in
certain renormalization scheme withm25q2. In the MS
scheme, for example, one has

R n5h(n)N~q!~11A1h(n)~q!1A2h(n)2~q!1•••

1Anh(n)n~q!!, ~4!

where all theq dependence is now residing inh(n)(q), found
as the solution of Eq.~2! with L5LMS, m5q, and
b2 ,b3 , . . . 5b̄2 ,b̄3 , . . . , the b coefficients in theMS
scheme.

The b2 ,b3 , . . . dependence is eliminated by reexpan
ing in yMS, defined by

b0 ln
q2

LMS
2 [

1

yMS
1

b1

b0
ln~b0yMS!. ~5!

After obtaining the relation forh(yMS),

h5yMSS 11yMS
2 S b2

b0
2

b1
2

b0
2D 1yMS

3 1

2 S b̄3

b0
2

b1
3

b0
3D 1••• D ,

~6!

we easily arrive at

R5yMS
N S 11yMS@A1#1yMS

2 FA21NS b̄2

b0
2

b1
2

b0
2D G1yMS

3 FA3

1A1~N11!S b̄2

b0
2

b1
2

b0
2D 1

N

2 S b̄3

b0
2

b1
3

b0
3D G1••• D . ~7!

Of course we can equally well start from the ordinary p
turbation series in another renormalization scheme, with
other renormalization scalem. Elimination of theb depen-
dence then leads to an expansion iny defined by

1Exceptions can be found in@5#, where the minimal sensitivity
criterion selects a scheme with an IR fixed point.
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b0 ln
m2

L2
[

1

y
1

b1

b0
ln~b0y!. ~8!

To find this general expansion we start from the expans
for yMS(y):

yMS5yF11yk1y2S b1

b0
k1k2D

1y3S b1
2

b0
2

k1
5b1

2b0
k21k3D 1•••G , ~9!

where

k~q2,y![b0 ln
m2

L2
2b0 ln

q2

LMS
2

5
1

y
1

b1

b0
ln~b0y!2b0 ln

q2

LMS
2 . ~10!

Combining this expansion with Eq.~7! results finally in
@with k5k(q2,y) given by the equation above#

R5yNS 11y@A11Nk#1y2FA21NS b̄2

b0
2S b1

b0
D 2D

1kS ~N11!A11N
b1

b0
D1k2

N

2
~N11!G

1y3FA31A1~N11!S b̄2

b0
2S b1

b0
D 2D 1

N

2
S b̄3

b0
2S b1

b0
D 3D

1kS A1~N11!
b1

b0
1~N12!A21N~N12!

b̄2

b0

2N~N11!S b1

b0
D 2D 1k2S A1

2
~N12!~N11!

1NS N1
3

2Db1

b0
D1k3S N

6
~N12!~N11! D G1••• D .

~11!

We now find a row of approximationsR n(y) @[ the
ordern truncation of Eq.~11!# with all the redundant depen
dence residing in one single free parameterb0 ln m2/L2 or
equivalentlyy. All the other scheme dependence has dis
peared. This might seem strange, since we explicitly refe
theMS scheme, but one can show that another choice for
reference scheme changes the coefficients2 Ai andb̄ i in such
a way that it exactly compensates the shift ofk (k→k85k
12b0 ln L8/LMS).

2The scheme or scale dependence ofr 1 ,r 2 ,r 3 was derived in@7#.
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Just as for ordinary perturbation theory, we still need
specify somerenormalization scheme, which in our case re-
duces to a choice fory.

The old resummation of the logarithms now translates
self in a choiceys(q) for y that putsks(q

2,y) equal to zero,
for some reference scheme with a certain scale param
Ls :

b0 ln
q2

Ls
2

5
1

ys~q!
1

b1

b0
ln b0ys~q!. ~12!

With this fixing of y, there is still a Landau-pole problem
This now manifests itself in the fact thatys(q) simply does
not exist for too low values ofq. Indeed, for fixedq,
ks(q

2,y) has a minimum aty5b0 /b1, hence the minimal
value ofq2 for which ys(q) exists is

Ls
2S e

b0
2

b1
D b1 /b0

2

. ~13!

Better ways of fixingy will enforce a criterion that takes
into account the whole structure of the series, includ
k(q2,y). We will use a FACC: for each approximatio
R n(y) and everyq2 we will sety equal toyn , the expansion
parameter that minimizes the relative correction to the fi
order truncation of the series:

minUR n~y!2R 1~y!

R 1~y!
U5UR n~yn!2R 1~yn!

R 1~yn!
U . ~14!

We will use the same error estimation as for the conventio
perturbation theory:

Dn[UR n11~yn11!2R n~yn!

R n11~yn11!
U . ~15!

~Notice the difference: the fixing ofy is done on the series
while the error is estimated on the results obtained after
ing.! As for any other possible fixing condition~e.g., minimal
sensitivity, another FACC, . . . ), there is no rigorous math
ematical motivation for the condition we use. The true m
tivation lies in the fact that it generates sensible results w
a good error estimation. Let us now present some res
obtained from Eqs.~11! and ~14!.

III. RESULTS

We now demonstrate they expansion on some quantitie
that also have been calculated on the lattice. All the requ
two and three loop results have been calculated by Chety
and Retey@8#. Everything is in the Landau gauge forNc
53 andNf50. We will take the method of effective charge
to be exemplary for the ordinary perturbation theory, b
similar results are found with any other approach to the c
ventional perturbation theory.
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A. Triple gluon vertex

There are several ways in which one can associat
~renormalization! scale and scheme invariant coupling co
stant with the triple gluon three-point function

Gmyr
(3)abc~p,q!

[ i 2E dxdye2 i (px1qy)^T@Am
a ~x!Ay

b~y!Ar
c~0!#&, ~16!

or more precisely with its related vertex functio
Gmyr

abc(p,q,2p2q), defined by

Gmyr
(3)abc~p,q![Dmm8

ad
~2p!Dyy8

be
~2q!Drr8

c f
~2p2q!

3Gm8y8r8
de f

~p,q,2p2q!, ~17!

where

Dmy
ab~q![ i E dxeiqx^T@Am

a ~x!Ay
b~0!#&. ~18!

If one sets one external momentum to zero, one finds@8# that
the vertex function can be written as

Gmyr
abc~q,2q,0!52 ig f abcF ~2gmyqr2gmrqy

2gryqm!T1~q2!

2S gmy2
qmqy

q2 D qrT2~q2!G . ~19!

The coupling that was calculated on the lattice@9,10# is
found to be~@8#, Sec. 6.4!

as~q2![4phMOM̃gg~q2!

5hS T1~2q2!2
1

2
T2~2q2! D 2

Z~2q2!3, ~20!

where

h5
g2

16p2
, ~21!

Dmy
ab~q!5dabS gmy2

qmqy

q2 D Z~q2!

q2
. ~22!

One can easily check the scheme and scale independen
as . The three loop result forhMOM̃gg in the MS scheme for
m25q2 is @8#

hMOM̃gg5h1h2F70

3 G1h3F516217

576
2

153

4
z3G

1h4F304676635

6912
2

299961

64
z32

81825

64
z5G ,

~23!
2-3
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wherez i is the Riemann zeta function. From this we can re
of the coefficientsA1 ,A2 ,A3, needed in Eq.~11!. The b

coefficients in theMS scheme have been calculated up
four loops in@11#:

b0511, b15102, b̄25
2857

2
, b̄35

149753

6
13564z3 .

~24!

We will compare our two and three loop results foras(q
2)

obtained from Eq.~11! ~with N51) and~14! with the results
obtained from the method of effective charges@2# or equiva-
lently in the MOM̃gg scheme defined on the triple gluo
vertex. The two and three loop MOM˜-scheme results ar
found as the solution of Eq.~2! with n52,3. The
MOM̃-schemeb coefficients can be easily obtained fro
Eqs.~23! and ~24!:

b2
MOM̃gg5

186747

64
2

1683

4
z3 ,

~25!

b3
MOM̃gg5

20783939

128
2

1300563

32
z32

900075

32
z5 .

The L parameter is given by@12#

2b0 ln
LMOM̃gg

LMS
5

70

3
. ~26!

Our two and three loop results are plotted together with
two and three loop MOM̃results in Figs. 1 and 2.

We can clearly distinguish three regions. Forq.30LMS
one finds the UV region: the four results foras coincide and
the perturbation theory is completely reliable. The interm
diate energies region goes fromq'30LMS down to q
'10LMS. A difference grows between the two and thr
loop results, but for both orders they-expansion results stil
coincide with the MOM̃results. Power corrections are e
pected. Forq,10LMS we find ourselves in the IR region

FIG. 1. as(q)(q in units ofLMS), for two and three loops in the

y expansion and in the MOM˜ scheme.
12501
d

e
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The MOM̃ results diverge while they-expansion results con
tinue to behave in a sensible way.

The same conclusions can be read off from Fig. 3, wh
D2 @see Eq.~3!# is plotted, both for the MOM̃scheme and for
the y expansion. In the IR-region the error estimation d
verges for the MOM̃scheme, while it stays in an acceptab
interval for they expansion.

It is the FACC~14! that keeps the error estimation und
control in the IR. This criterion, and in fact every other se
sible criterion, will select for each momentumq a value fory
that makes the higher order (n.1) terms in the series~11! as
small as possible. Both for small values ofq (q!LMS) and
for large values (q@LMS) it is the value of

yk~q2,y!511y
b1

b0
ln~b0y!2yb0 ln

q2

LMS
2 , ~27!

that determines the size of these higher order terms. Foq
@LMS the large logarithm will be compensated by they that
multiplies it. One finds the usual high energy running of t
expansion parameter:

FIG. 2. Zooming in on the intermediate energy region of Fig.

FIG. 3. q ~in units of LMS)→D25u(as
(2)2as

(3))/as
(3)u ~in per-

cent!, for both they expansion and the MOM˜ scheme.
2-4
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y 5
q→` 1

b0 ln
q2

LMS
2 1c

, ~28!

with c a constant dependent on the order of truncation
the specific criterion. This gives

k~q2,y!y '
q→` 1

b0 ln
q2

LMS
2

S c2
b1

b0
lnS ln

q2

LMS
2 D D . ~29!

For q!LMS the same cancellation cannot occur sincey must
be positive, the large logarithm will now be compensated
the logarithm in the second term, we find a power behav
for y ~with again the constantc8 order and criterion depen
dent!:

y 5
q→0

c8S q2

LMS
2 D b0

2/b1

~30!

and

k~q2,y!y '
q→0

1. ~31!

This high and low energy behavior of the expansion
rametery is completely universal, it is independent of th
order of truncation, of the coefficientsAi , and to a certain
extent of the criterion that was used. The running ofy is
depicted in Fig. 4 together with the fitted low@Eq. ~30!# and
high @Eq. ~28!# energy behavior for the three loop truncatio

If one would use the series itself to estimate the trunca
error, Eq.~31! would seem to invalidate the expansion f
low energies, since the higher order terms become orde
However, if one looks at the row of truncations~15! to esti-
mate the error, the expansion remains valid~at least for low
orders! sinceD2,7.5% ~see Fig. 3!. We have found a simi-
lar behavior ofD2 for every other possible vertex couplin
that could be calculated from@8#.

FIG. 4. y(q) ~q in units of LMS) for the tree loop truncation
Also depicted: the low and high energy fits~30! and ~28!.
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We will finally compare our results with the lattice resul
of @9#. This requires a fit ofLMS, which was done for the
two and three loop MOM̃results in@9# and @8# in the inter-
mediate energy region~3–10 GeV!. It was found that the
MOM̃ results could be fitted best to the lattice results if
power correctionc/p2 was added. The fitted two and thre
loop values ofLMS are 235 and 238 MeV. The three loo
power correction is 30% less than the two loop one.

Since in the intermediate energy region the results of thy

expansion are the same as the MOM˜ results we can rely on
the aforementioned fits. We will use the same valueLMS
5237 MeV for every order. The two and three loop resu
of they expansion are plotted together with the lattice resu
in Fig. 5. As expected, the difference between our results
the lattice result can be fitted as a power correction foq
.3 GeV. The amplitude of our maximum is significant
smaller than the amplitude for the lattice maximum in the
region. But both maxima seem to approach each other;
amplitude grows larger with the order of truncation while t
lattice amplitude becomes smaller for larger volum
~smallerb).

B. The quark gluon vertex

Again, there are several ways one can associate a s
and scheme invariant running coupling with the~zero
flavor3! quark-gluon vertexLm i j

a , which is defined by

Gm i j
(3)a~p,q!5Sii 8~2p!Lm8 i 8 j 8

d
~p,q,2q2p!Sj 8 j~q!

3Dm8m
ad

~p1q!, ~32!

whereGm i j
(3)a is the corresponding three-point function andSi j

is the quark propagator. After setting the external gluon m
mentum equal to zero, the vertex can be written as@8#

3No internal fermion loops.

FIG. 5. The lattice results@9# for the coupling from the triple
gluon vertex with the two and three loop results of they expansion
for LMS5237 MeV.
2-5
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K. VAN ACOLEYEN AND H. VERSCHELDE PHYSICAL REVIEW D66, 125012 ~2002!
Lm i j
a ~2q,q,0!5gTi j

a FgmLg~q2!

1gyS gmy2
qmqy

q2 D Lg
T~q2!G . ~33!

We find the coupling constant that was defined and ca
lated on the lattice in@13,14# to be

g~q2!54ph1/2~Lg~2q2!1Lg
T~2q2!!Z1/2~2q2!Z2~2q2!,

~34!

where

Si j ~q!52d i j

q”

q2
Z2~2q2!. ~35!

From @8# one finds, withm25q2 in the MS scheme,

g~q2!54ph1/2S 11hF151

24 G1h2F87557

384
247z3G

1h3F266866067

27648
2

824999

288
z32

349225

1152
z5G1••• D .

~36!

Putting these coefficients together with theb coefficients
~24! in Eq. ~11! ~now for N51/2) and fixing y with the
FACC ~14! will give us the two and three loopy-expansion
results forg(q2).

The two and three loop MOM˜ scheme results can now b
found as 4p(h(n))1/2 (n52,3), withh(n) solution of Eq.~2!.
From Eqs.~24! and ~36! we can easily determine the re
quiredb coefficients:

b2
MOM̃qg5

185039

48
21034z3 ,

b3
MOM̃qg5

32456317

192
2

4134361

72
z32

3841475

288
z5 . ~37!

The L parameter is now given by

2b0ln
LMOM̃qg

LMS
5

151

12
. ~38!

The results are completely similar to the results for the tri
gluon vertex. Instead of performing a separate fit, we sim
take the value~237 MeV! for LMS obtained from the triple
gluon vertex, to compare with the lattice result. From Fig
we can again observe a turnover for they-expansion results
and the lattice results around 1 GeV, where the MO˜
scheme results diverge. We finally note that the lattice res
were obtained for a~small! nonzero quark mass, while ou
results are for a massless quark, so we should not be
enthusiastic about the small amplitude difference in the
region.
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C. The gluon propagator

They expansion will now be applied to the calculation
the scale and scheme invariant gluon propagatorD̂my

ab(2q2)
defined by

D̂my
ab~2q2![ f ~h!Dmy

ab~2q2!, ~39!

with

m2
]

]m2
Dmy

ab~2q2![~g30
h1g31

h21g32
h31••• !

3Dmy
ab~2q2! ~40!

and

m2
]

]m2
f ~h![2~g30

h1g31
h21g32

h31••• ! f ~h!.

~41!

The general solution of Eq.~41! is

f ~h!5lhg30
/b0F11S g31

b0
2

g30
b1

b0
2 D h

1S g32

2b0
2

g31
b1

2b0
2

1
g30

2b0
S b1

b0
D 2

2
g30

b2

2b0
2

1
g31

2

2b0
2

2
g31

g30
b1

b0
3

1
g30

2 b1
2

2b0
4 D h21•••G , ~42!

with l a constant that determines the overall wave funct
renormalization. One can easily check the scale and sch
independence ofD̂. From @8# and Eq. ~42! we find for
Ẑ21(2q2) @cf. Eq. ~22!#, with m25q2 and in the MS
scheme:

FIG. 6. The lattice results@14# for the coupling from the quark
gluon vertex with the two and three loop results from they expan-

sion and the MOM̃scheme, withLMS5237 MeV.
2-6
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AVOIDING THE LANDAU POLE IN PERTURBATIVE QCD PHYSICAL REVIEW D66, 125012 ~2002!
Ẑ21~2q2!5l21h213/22S 11hF2
25085

2904G
1h2F2

412485993

1874048
1

9747

352
z3G1••• D .

~43!

~Unfortunately we can only determineẐ21 up to second or-
der since for the third order result one needs, besides
known third order coefficient forZ21 and the four loopb
coefficient also the four loopg3 coefficient, which is not
available at the moment. As a consequence we are not ab
perform an error estimation.! The two loopy-expansion re-
sult for Ẑ21 is now obtained from Eq.~11!, ~14!, and ~43!.
The two loop MOM scheme result is found asl21h(2)213/22

whereh(2) is the solution of Eq.~2! with

b2
MOMz5

105708585

29744
2

107217

208
z3

and

~44!
LMOMz5LMSexp25085/37752.

The two-loop results forZ(q2) ~Euclidean momentum!
are shown together with a lattice result from@15# in Fig. 7.
We now had to fit two things: the scaleLMS and the relative
wave function renormalizationl. Again, we choose the
triple gluon vertex value~237 MeV! for LMS. l is simply
determined by fitting the tail of the two-loop results on t
tail of the lattice result~at about 5.5 GeV!. The overall agree-
ment of our result with the lattice is similar as for the ver
ces. In the deep IR region, however, there is a discrepa
in @15# it is argued, by extrapolation to infinite lattice vo
ume, that the zero momentum gluon propagator is fin
while we find a singular zero momentum propagator. Inde
from the IR behavior ofy ~30! and the expansion forẐ21

~43! one easily obtains the IR behavior ofD(q):

FIG. 7. Lattice result @15# for the gluon propagator@q2

3D(q2)# with the two loop results from they expansion and the
MOM scheme,LMS5237 MeV.
12501
he

to

y:

e
d,

D~q! ;
q→0 y~q!g30

/b0

q2
;

q→0
q2(b0g30

2b1)/b15q261/102.

~45!

So our zero momentum result is still singular, although
singularity is much weaker than the tree level (1/q2) one. We
stress that this specific power behavior will not be altered
higher loop corrections.

D. The ghost propagator

The calculation of the ghost propagator is complet
similar as for the gluon propagator. Again we define the sc
and scheme invariant propagator

Ĝab~q![2dabf g~h!G~q2![2dab
Ẑg~q2!

q2
. ~46!

From @8# one now arrives at

Ẑg
21~2q2!5lg

21h29/44S 11hF2
5271

1936G
1h2F2

615512003

7496192
1

5697

704
z3G1••• D .

~47!

For the three loop MOMb coefficient and theL parameter
we get

b2
MOMgh5

653203

176
2

6963

16
z3

and

~48!
LMOMgh5LMS exp1757/2904.

The two loop results for the Euclidean propagator are plot
together with the lattice results from@16# in Fig. 8. Again we
have setLMS5237 MeV andlg was determined by fitting
the two loop results on the lattice results at the highest lat

FIG. 8. Lattice result taken from Fig. 1 in@16# ~with a21

52 GeV) for the ghost propagator with the two loop results fro
the y expansion and the MOM scheme,LMS5237 MeV.
2-7
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K. VAN ACOLEYEN AND H. VERSCHELDE PHYSICAL REVIEW D66, 125012 ~2002!
momentum ('5.5 GeV, not shown in the figure!. Notice the
Landau pole for the MOM result. The agreement of our
sult with the lattice results is satisfying, apart from t
strange single data point at the lowest lattice momentum.
the IR behavior of our result we now find:

G~q! ;
q→0

q2103/68, ~49!

which is more singular than the gluon propagator but l
singular than the tree level result. Although this IR behav
is consistent with@16#, we should remark that other lattic
studies@17,18# predict a more singular behavior.

IV. CONCLUSION

We have presented an alternative perturbative expan
for QCD with only one redundant parametery. Using a
FACC to fix y, we found the unexpected feature of IR-fini
results and a satisfying qualitative agreement with the lat
data, comparable with the Schwinger-Dyson results@19#.

The qualitative behavior of all the~dimensionless! results
is the same: there is an agreement in the UV and interm
ate energy region with the ordinary perturbation theory;
in the IR region, where the conventional perturbation the
diverges, there is a turnover and for lowq we find a universal
power behavior. To illustrate the universality of the pow
behavior we show in Fig. 9 the one, two, and three lo
results for the triple gluon vertex, withy fixed by the prin-
ciple of minimal sensitivity~PMS!. For the one and three
loop result there is a discontinuity at the point which se
rates the high energy region with a zero for]R n(y)/]y, and
the low energy region where such an extremum does
exist; the PMS translates itself then in]2R n(y)/]y2uy5yPMS

50. This discontinuity should be considered as an artifac
the truncation rather than an artifact of the formalism. In t
expansions~largeb0 limits! we have always found such dis
continuities to become less severe and eventually disap
for higher order truncations.

Obvious questions arise on the status of they expansion.
The most enthusiastic speculation would consider it to b
tool that solves the low energy QCD. Let us stress clea
that this is not the case. For one thing, they expansion will
not exhibit a ‘‘clean’’ dynamical chiral symmetry breaking
simply because the Feynman rules of massless QCD res
l.

12501
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ar
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this symmetry. We also do not obtain confinement: appli
tion of they expansion on the perturbative heavy-quark p
tential derived from the Wilson loop@20,21# does not give a
string tension. In fact, one of the classic arguments for c
finement is the IR explosion of the coupling constant; wh
is exactly avoided by they expansion.

The best we can hope for is that our expansion give
sound basis for the interpretation of perturbative calcu
tions. This is partially confirmed by the fact that one obta
sensible results in the whole range of energies, which alre
seems to make it a better framework to start from, if o
wants to estimate the true nonperturbative corrections. In
context it will be interesting to investigate the role of th
renormalons in they expansion. This issue is reserved f
future work.
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FIG. 9. The one, two, and three loop results for the three glu
vertex (q in units LMS) with y fixed by the PMS, notice the uni
versal deep IR behavior~30!. The discontinuities~for the one loop
result there is a discontinuity for the derivative]a(q)/]q) are con-
sidered as an artifact of the truncation.
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