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Avoiding the Landau pole in perturbative QCD
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We propose an alternative perturbative expansion for QCD. All scheme and scale dependence is reduced to
one free parameter. Fixing this parameter with a fastest apparent convergence criterion gives sensible results in
the whole energy region. We apply the expansion to the calculation of the zero flavor triple gluon vertex, the
quark gluon vertex, the gluon propagator, and the ghost propagator. A qualitative agreement with the corre-
sponding lattice results is found.
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. INTRODUCTION tity R, that is a function of only one external scaj® in a
massless version of QCD. In ordinary perturbation theory,

Perturbation theory is by far the most successful tool tapne finds a row of approximatior® " for R, with
get quantitative predictions from a field theory. Unfortu-

nately, the results depend on the renormalization scale and R"=hMN1+r,(g?)h™M +r,(g?)hM2+. ..
scheme and the number of free parameters describing this
dependence grows with the order of truncation. In most cases +rn(g?)hmn], (D)

one does not bother too much with this dependence and sim-

ply chooses a schemenodified minimal subtraction\S), N depends on the calculated quantity. The coupling constant
momentum subtraction (MOM),. . ] which is supposed to h(" is the solution of
give good results. More sophisticated approaches select a
differentideal scheme for each perturbative series. The most w2 1 B
cited of the results in this context are Stevenson’s principle Boln—=+—+ —l|n(ﬁoh)
of minimal sensitivity[1] and Grunberg’s method of effec- 2 h B
tive chargeg2].
In this paper we will reorganize the conventional pertur- h 1 i1
bation series in a new alternative expansion, which has only +] d
one redundant free parameter, the expansion parameter itself.
This parameter will be fixed by a fastest apparent conver- Bo
gence criteriofFACC). We find similar results as for ordi- — 5 3 1
nary QCD perturbation theory in the UV region and for in- Box“+ X+ ...+ BX"
termediate energies. In the IR region on the contrary, our
expansion still gives sensible results whereasthrenalper- ~ with u29/du?h= —(Boh?+ B,h3+ B,h*+---). As men-
turbation theory becomes useless if one approaches the Latiened in the introduction, every truncatigR" is highly
dau pole. scale and scheme dependent. One can, for instance, describe
In Sec. Il we will first review some of the major aspectsthis dependence with the free parameterfl]
of ordinary perturbation theory and then use this as a starting, in /A% ,,5s, . . . ,8,. The dependence of the coeffi-
point for the alternative expansion. Some results will be prezientsr; on each of these parameters cancels the dependence
sented in Sec. lll. We perform calculations on the tripleyf the coupling constartt™ up to orderh(™n+1,

gluon vertex, the quark gluon vertex, the gluon propagator, |, many cases one simply chooses a scheme
and the ghost propagator. Our results are compared with t?

0

@

conventional perturbation theory and with the correspondin S’MZOM’ - - -) andresums the logarithmby putting the

lattice results. We also show that the reason for the IR finit caleu” equal to the external sqato;z. To get rellablle re-

results lies in a peculiar behavior of the running expansiorpt/tS: oné must hope that the first, second, or third order

parametey, resulting from the FACC. This behavior should @PProximation liesclose enoughto the exact result. The

be contrasted with the running coupliagthat Shirkov and  Working hypothesis of perturbation theory is that the pertur-

Solovtsov obtain by imposing analyticif@]. While we find ~ bation series is asymptotic to the exact regufi4]. One then

a universal power behavior for they find an IR-finite value ©Ptains an error estimation by assuming that

for a at zero momentum.

Rn+1_Rn‘ .
Rn+l ‘:A : (3)

R—Rﬂ
II. REWRITING PERTURBATION THEORY

R |

In the following we will consider the perturbative calcu-
lation of a renormalization scheme and scale invariant quan®@ther approaches fix the scale/scheme by imposing a condi-
tion on the truncated series. The minimal sensitivity condi-
tion [1] gives a different scale/scheme for every approxima-
*Email address: karel.vanacoleyen@rug.ac.be tion. The method of the effective charge, setsq®= u?,
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the free parameters are then obtained by demanding the co- w2 1 B
efficientsr; to be zero. One now also finds' to give a good Bo In—2 =—+ —In(Byy). (8
estimation of the errof5]. AZ Y Bo

As a consequence of asymptotic freedom, conventional
perturbation theory works well in the UV region, which is To find this general expansion we start from the expansion
reflected in low values oA"(n=1,2,3) for high values of for yms(y):
g°. Unfortunately A" gets larger if we lower the external

scaleg?. This signals that one has to add nonperturbative B1
i i i ws=Y| 1+yk+y?| —k+k?
power corrections to the conventional perturbation theory ymMs=Y YKty Bo
[4]. For intermediate energies, the sum ryl@ksuccessfully
relate many of these power corrections to a few condensates. ,32 583
A further lowering of g? towards the IR region is cata- +yl —;k+ P3|, )
strophic in most casésA" diverges together witiR" as one Bo 2Bo
encounters the Landau pole and perturbation theory becomes
useless. where
The alternative expansion we propose in this paper has no
Landau-pole problem and gives sensible results um%o w? 2
=0 with a reasonable error estimation. To arrive at tis k(9%y)=BoIn— —BoIn——
expansionwe start from the ordinary perturbation series in a A Afts
certain renormalization scheme with?=q?. In the MS 1B o
scheme, for example, one has = v + B_im(lgoy)_lgo InA_Z—' (10)
R"=hMN(q)(1+Ash™(q) + AN 2(q)+ - >
+AhM(Q)) (4) Combining this expansion with Eq.7) results finally in
" ’ [with k=Kk(g?,y) given by the equation aboye
where all theg dependence is now residing " (q), found B
as the solution of Eq.2) with A=Ays, w=q, and N ) Bo [ B1)\?
ByBas ... =B Ba ..., the B coefficients in thems  ~=Y | 1+Y[Ar+NKJ+yT Ay +N Bo | Bo
scheme.
The 8,,B3, ... dependence is eliminated by reexpand- B N
ing in yys, defined by +k (N+1)A1+NE +k2§(N+ 1)
q° 1 B B2 (ﬂl)z N (Es (,31)3)
IN——=—+—"In WiS) - 5 +y3 Ag+ AN+ === | =] |+ 55— |5
Bo Afﬂ_s vie | Bo (BoYwms) 5 y3| Ag+ Ay ) 5\ B 2137\ B,
After obtaining the relation foh(yws), K Al(N+1)%+(N+2)A2+N(N+2)%
— _ 0 0
B Bi| 3 1[Bs Bi
h=yws 1+y2—(——— +Voes| 57— —= RN 2 A
MS( MSBo g2 TVMS2\ By 3 NN+ D[22 e A2 (s 2y N 1)
(6) Bo 2
i i 3 N
we easily arrive at +N(N+— B1 +K3 —(N+2)(N+1)) T
- 2] Bo 6
Ry 1y ag+y2d agen] 22 P2 443 | A 1D
=Yus yus ALl + Vgl Az Bo BS Ywms| A3

o We now find a row of approximation®"(y) [= the
Bs B ordern truncation of Eq(11)] with all the redundant depen-
E_ E () dence residing in one single free paramesgin u%/A? or

0 equivalentlyy. All the other scheme dependence has disap-
Of course we can equally well start from the ordinary per-P€&réd. This might seem strange, since we explicitly refer to

turbation series in another renormalization scheme, with anthe MS scheme, but one can show that another choice for the

other renormalization scale. Elimination of the@ depen-  reference scheme changes the coefficfetsand g; in such

dence then leads to an expansioryidefined by a way that it exactly compensates the shiftkofk—k’ =k
+2BoIn A'Awg).

) 2

N

()(g_ﬁ_)_
0

!Exceptions can be found if5], where the minimal sensitivity
criterion selects a scheme with an IR fixed point. 2The scheme or scale dependenceaf ,,r; was derived if7].
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Just as for ordinary perturbation theory, we still need to A. Triple gluon vertex
specify somaenormalization schemavhich in our case re-
duces to a choice foy.

The old resummation of the logarithms now translates it
self in a choicey4(q) for y that putsk(g?,y) equal to zero,
for some reference scheme with a certain scale parameteiG(*2*<(p,q)
Ag:

There are several ways in which one can associate a
(renormalization scale and scheme invariant coupling con-
“stant with the triple gluon three-point function

i Eizj dxdye ' (PFM(TIAZ(x)AY(Y)AS(0)]), (16)
a“_1 A
o=y " B

S

In . 12
Boys(a) 12 or more precisely with its related vertex function

ra%(p,q,~p—aq), defined by

With this fixing of y, there is still a Landau-pole problem. (3)ab _ ad be cf
This now manifests itself in the fact thgg(q) simply does Guvp (P.A)=D,, (=)D, (=)D, (~p—0)

not exist for too low values ofg. Indeed, for fixedq, def L
ks(g?,y) has a minimum ay=8,/8;, hence the minimal XLy (PG, =P =), (17)
value ofqg? for which y¢(q) exists is where
ﬂz Bl/ﬁg ab ; Teh3 a b
Ag(eﬁ—") | 13 D()=i | dxe™(T[ALOANO)]). (19
1

If one sets one external momentum to zero, one fiBdithat
Better ways of fixingy will enforce a criterion that takes the vertex function can be written as
into account the whole structure of the series, including
k(g2y). We will use a FACC: for each approximation

b — b
R "(y) and everyy? we will sety equal toy,,, the expansion Iop(d,—0,00= =igf*9 (29,,0,~ 9.0,
parameter that minimizes the relative correction to the first
order truncation of the series: —gpvq#)Tl(qz)
mm‘R”(y)—R%y) :‘R”wn)—myn) o —(gw— %_jv)quz(qa] .19
RYy) | RYyw | f

The coupling that was calculated on the latti@&10] is
We will use the same error estimation as for the conventionalound to be([8], Sec. 6.4
perturbation theory: .
as(q?)=4mhMOMI g?)

R" N Yni1) = R"(Yn) 1 2
A= . (15 _ M2y ST (2 _~2)\3
‘ Ry | h(Tl( 99— 5T2(—q )) Z(—9%)%, (20)
(Notice the difference: the fixing of is done on the series, Where
while the error is estimated on the results obtained after fix- 2
ing.) As for any other possible fixing conditige.g., minimal h= 9 (21)
sensitivity, another FACC . . ), there is no rigorous math- 1672

ematical motivation for the condition we use. The true mo-

tivation lies in the fact that it generates sensible results with . 9,9, Z(g?)
a good error estimation. Let us now present some results D) =6 9uu— — > (22)
obtained from Eqs(11) and (14). q q
One can easily check the scheme and scale independence of
. RESULTS as. The three loop result fonMOM99 in the MS scheme for
2_ 2 ;
We now demonstrate theexpansion on some quantities # = 9" 1S [8]
that also have been calculated on the lattice. All the required 70 516217 153
two and three loop results have been calculated by Chetyrkin  hMOMI9— h 4 2 —} + h3[ S — 3}
and Retey[8]. Everything is in the Landau gauge ft\; 3 576 4
=3 andN;=0. We will take the method of effective charges 304676635 299961 81825
to be exemplary for the ordinary perturbation theory, but 4[ 6912 62 {3— 6a 4“5},
similar results are found with any other approach to the con-
ventional perturbation theory. (23
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FIG. 1. a¢(q)(q in units of Ayg), for two and three loops in the

FIG. 2. Zooming in on the intermediate energy region of Fig. 1.
y expansion and in the MOMcheme.

. . ) . The MOM results diverge while thg-expansion results con-
where{; is the Riemann zeta function. From this we can readijnye to behave in a sensible way.

of the coefficientsA;,A;,A, needed in Eq(1l). The B The same conclusions can be read off from Fig. 3, where

coefficients in theMS scheme have been calculated up toA2 [see Eq(3)] is plotted, both for the MOMscheme and for
four loops in[11]: the y expansion. In the IR-region the error estimation di-
verges for the MOMscheme, while it stays in an acceptable
interval for they expansion.

It is the FACC(14) that keeps the error estimation under
control in the IR. This criterion, and in fact every other sen-
sible criterion, will select for each momentugra value fory
that makes the higher ordem¥ 1) terms in the seried 1) as
small as possible. Both for small values@p{g<<Aws) and

2857

_ 149753
Bo=11, pB,;=102, 5227,

5 +3564s.
(24

Bz=

We will compare our two and three loop results fayg(q?)
obtained from Eq(11) (with N=1) and(14) with the results
obtained from the method of effective charg@$or equiva-

lently in the MQ scheme defined on the triple gluon

vertex. The two and three IooETVI—éM:heme results are
found as the solution of Eq.(2) with n=2,3. The

MOM-schemep coefficients can be easily obtained from
Egs.(23) and(24):

—_—

MOMgg__

186747 1683
N - T

64 a4 %o

(29
ﬁmgg: 20783939_ 1300563§ 3 900075§
° 128 32 % T3 fs
The A parameter is given bj12]
Aomgg 70
2BgIn Auis =3 (26)

Our two and three loop results are plotted together with the

two and three Iooﬁ—WD/Mesults in Figs. 1 and 2.

We can clearly distinguish three regions. FEpr 30Aws
one finds the UV region: the four results fag coincide and
the perturbation theory is completely reliable. The interme-
diate energies region goes from~30Ays down to q
~10Ays. A difference grows between the two and three
loop results, but for both orders tlyeexpansion results still

coincide with themresults. Power corrections are ex-

for large values > A ) it is the value of

q2
BoY) —YBoIn——,
Afs

&In(

k(g2,y)=1+
yk(g%,y) yﬁ0

(27)

that determines the size of these higher order terms.gFor
> A s the large logarithm will be compensated by theéhat
multiplies it. One finds the usual high energy running of the
expansion parameter:

50

— Y-expansion
— MOM

30—

Al@

10

O0 30

FIG. 3. q (in units of Agg)—A%=|(a®@—a®)/a®)]| (in per-

pected. Forg<10Aws we find ourselves in the IR region. cend, for both they expansion and the MOMcheme.
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FIG. 4. y(q) (g in units of Ayg) for the tree loop truncation. FIG. 5. The lattice resultf9] for the coupling from the triple
Also depicted: the low and high energy fit30) and (28). gluon vertex with the two and three loop results of yhexpansion
for Aps=237 MeV.
q— 1
y = 92 ' (28) We will finally compare our results with the lattice results
Boln——+cC of [9]. This requires a fit ofAys, which was done for the
IS two and three loop MOMesults in[9] and[8] in the inter-

with ¢ a constant dependent on the order of truncation an&jﬂj_l?te energy reg|o(8f10 Gey. It was fognd that th?
the specific criterion. This gives MOM results could be fitted best to the lattice results if a

power correctiorc/p? was added. The fitted two and three
e 1 B, 92 loop values ofAyg are 235 and 238 MeV. The three loop
5 (c In (29
q

k(g%y)y =~ - B—In — power correction is 30% less than the two loop one.
Boln 0 MS Since in the intermediate energy region the results of/the
0 % expansion are the same as the M@&éults we can rely on

the aforementioned fits. We will use the same valugs
For q< Ays the same cancellation cannot occur siggaust =237 MeV for every order. The two and three loop results
be positive, the large logarithm will now be compensated byof they expansion are plotted together with the lattice results
the logarithm in the second term, we find a power behavioin Fig. 5. As expected, the difference between our results and
for y (with again the constart’ order and criterion depen- the lattice result can be fitted as a power correctiondor

den: >3 GeV. The amplitude of our maximum is significantly
) smaller than the amplitude for the lattice maximum in the IR
q—0 92 Byl P1 region. But both maxima seem to approach each other; our
y =c¢'|— (300  amplitude grows larger with the order of truncation while the
Afs lattice amplitude becomes smaller for larger volumes
(smallerp).
and
k(q2 y)yq;Ol_ (32) B. The quark gluon vertex

o ] . Again, there are several ways one can associate a scale
This high and low energy behavior of the expansion pazng scheme invariant running coupling with theero

rametery is completely universal, it is independent of the flavor) quark-gluon vertexA? ., which is defined by
order of truncation, of the coefficiens;, and to a certain e

extent of the criterion that was used. The runningyoif G(s-?a(p,q):Si-,(—p)Ad,.,.,(p,q,—q—p)s,-(q)
depicted in Fig. 4 together with the fitted Id&g. (30)] and - ' pt M
high[Eq. (28)] energy behavior for the three loop truncation. X DZ‘?H(p+ q), (32

If one would use the series itself to estimate the truncation
error, Eq.(31) would seem to invalidate the expansion for
low energies, since the higher order terms become order lzvhereGEf’i}a is the corresponding three-point function &d
However, if one looks at the row of truncatiofikb) to esti- is the quark propagator. After setting the external gluon mo-
mate the error, the expansion remains véitlleast for low mentum equal to zero, the vertex can be writtei&s
orders sinceA?<7.5% (see Fig. 3. We have found a simi-
lar behavior ofA? for every other possible vertex coupling
that could be calculated frof8]. 3No internal fermion loops.
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4 —— — T

Ailj(_qquo):nga] ’)/p,Ag(qz) || e B=60

. =+ 2]oo]

1 “ 5 ZloogMOM
\ —— 3loop —

e — - 3loop MOM

a.9.
+ % o ; )AT( 2. (33

We find the coupling constant that was defined and calcu-*@2["

lated on the lattice 113,14 to be

9(a®)=47h"(Ay(—g®)+ Ay(—a*) 2"~ ) Z,(—?), '
(34)
where
0 i | L | L | i | L | L
0 1 2 3 4 5 6
q q(GeV)
. =— 5 — —qg?
Si(a) 9 qZZZ( a°). (35 FIG. 6. The lattice resultgl4] for the coupling from the quark
gluon vertex with the two and three loop results from yhexpan-
From[8] one finds, withu?=g? in the MS scheme, sion and the MOMscheme, withA =237 MeV.

C. The gluon propagator
g(g?) = 47-rh1’2( 1+h

51} h2[87557
24 384 They expansion will now be applied to the calculation of

266866067 824999 349275 the scale and scheme invariant gluon propagaf}( —q?)
3 _ {3~ lel+--- defined by
27648 288 1152

—4703

(36) D2h(—g?)=f(h)D35(—q?), (39)

Putting these coefficients together with tjge coefficients  with
(24) in Eqg. (11) (now for N=1/2) and fixingy with the
FACC (14) will give us the two and three loop-expansion

results forg(q?). M &—D *(—a%)=(y3,h+ y3,h®+y3,h%+- )
The two and three loop MOMcheme results can now be H
found as 4r(hM)'2 (n=2,3), withh(™ solution of Eq.(2). xXD2(—q?) (40)
From EQgs.(24) and (36) we can easily determine the re-
quired B coefficients: and
—— 185039 J
MOMag__
Bz = — 10343, Mzﬁf(h)z—(%oth y3,n?+ 3 he+ - )f(h).
(41)
oviaq 32456317 4134361 3841475
By - l . @37 | |
3 192 72 53 " 288 The general solution of Eq41) is
The A parameter is now given by 731 y30/81
f(h)=\h?3/Po| 1+ >—|h
AMOng 151 Bo B3
MS
Y3, 7V3,P1 e Y3, ,81 73052

The results are completely similar to the results for the triple 2_,80 233 2Bo ,80 2,3(2)
gluon vertex. Instead of performing a separate fit, we simply
take the valug237 MeV) for As obtained from the triple 'y%l Y3, Y3,P1 V3B
gluon vertex, to compare with the lattice result. From Fig. 6 —— 3 h? -1, (42
we can again observe a turnover for frexpansion results 2,30 Bo 2P0

and the lattice results around 1 GeV, where the MOM

scheme results diverge. We finally note that the lattice resul g"th A a constant that determines the overall wave function
were obtained for dsmal) nonzero quark mass, while our renormalization. One can easily check the scale and scheme

results are for a massless quark, so we should not be tdgdependence ob. From [8] and Eq.(42) we find for
enthusiastic about the small amplitude difference in the IRZ"1(—q?) [cf. Eq. (22)], with u?=q? and in the MS
region. scheme:
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T T T T T T T T T 14 T J ! T T T * T
sl : . P=438 i i = L6
— 2loop 12+ ! o 124 =
! —- 2loopMOM| | i i ¢ Ln
1 I — 2loop
i 10 : —= 2loopMOM| -
61— i — L 1
1
L ;‘ j 8| ]
%) ¢ \ G@ T :
-, \ - 6~ p
\Y L
_ Al
2 F .
2_
0 . 1 . 1 . 1 . 1 . I . oE 1
[} 1 2 3 4 5 6 0 0.5 1 1.5 2 2.5 3
q(GeV) q(GeV)
FIG. 7. Lattice result[15] for the gluon propagatofq? FIG. 8. Lattice result taken from Fig. 1 ifl6] (with a !
X D(g?)] with the two loop results from thg expansion and the =2 GeV) for the ghost propagator with the two loop results from
MOM scheme Ays=237 MeV. they expansion and the MOM schemégs= 237 MeV.
. 2508 90 y(q)7%'Pog—0
5-1_g2)=\"1h"1323 14+p| - D ~ 2 q2Bors,~B1)/B1— g~ 61/102
(—9?) 904 )] 7 q 0 q
45
,| 412485993 9747 49
~ 71874048 + 352 L3l . So our zero momentum result is still singular, although the

singularity is much weaker than the tree levelf?)/one. We
(43 stress that this specific power behavior will not be altered by

A higher loop corrections.
(Unfortunately we can only determir& * up to second or-

der since for the third order result one needs, besides the D. The ghost propagator
known third order coefficient foZ ! and the four loop3
coefficient also the four loopy; coefficient, which is not
available at the moment. As a consequence we are not able
perform an error estimationThe two loopy-expansion re-

The calculation of the ghost propagator is completely
§8ﬂilar as for the gluon propagator. Again we define the scale
and scheme invariant propagator

sult for Z~1 is now obtained from Eq(11), (14), and (43). A b (9?)
The two loop MOM scheme result is found &sth(?)~13/22 G2(q)=— 8%f4(h)G(g?)=— 5" 9—2 (46)
whereh(@ is the solution of Eq(2) with
From[8] one now arrives at
o, _ 105708585 107217 (8]
2 29744 208 °3 51— g2y n 194 14 1 5271
o g (70)=Ag 1936
(44 ) 615512003+ 5697 N
A yomz = Aigexpro08s/37752 7496192 " 702%2|"):
(47

The two-loop results foZ(q?) (Euclidean momentum
are shown together with a lattice result frab] in Fig. 7. For the three loop MOMB coefficient and the\ parameter
We now had to fit two things: the scaleyg and the relative  we get
wave function renormalizationn. Again, we choose the
triple gluon vertex valug237 MeV) for Ays. \ is simply gﬂOMgh:@{ &63 s
determined by fitting the tail of the two-loop results on the 176 16
tail of the lattice resultat about 5.5 GeY, The overall agree-
ment of our result with the lattice is similar as for the verti-
ces. In the deep IR region, however, there is a discrepancy:
in [15] it is argued, by extrapolation to infinite lattice vol-
ume, that the zero momentum gluon propagator is finiterhe two loop results for the Euclidean propagator are plotted
while we find a singular zero momentum propagator.AIndeedt,ogether with the lattice results frof6] in Fig. 8. Again we
from the IR behavior ofy (30) and the expansion faZ > have setAys=237 MeV and\4 was determined by fitting
(43) one easily obtains the IR behavior bf{q): the two loop results on the lattice results at the highest lattice

(48)
A MOMgh= Am eXp’L757/290£.1
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momentum 5.5 GeV, not shown in the figureNotice the I— — T —T
Landau pole for the MOM result. The agreement of our re- L R At
sult with the lattice results is satisfying, apart from the 08k — 1-loop |
strange single data point at the lowest lattice momentum. Fol ’ - - 2-loop
the IR behavior of our result we now find: ] —- 3-loop
0.6~ TN ) T
G 90 1osses R s W
which is more singular than the gluon propagator but less O \:‘\\\\
singular than the tree level result. Although this IR behavior ‘\*1\\\,\__‘\_____
is consistent witH16], we should remark that other lattice 0.2
studies[17,18§ predict a more singular behavior.
IV. CONCLUSION % s i 15 2 25 %
Q)

We have presented an alternative perturbative expansion

for QCD with only one redundant parameter Using a
Q Y P b4 g vertex (@ in units Ays) with y fixed by the PMS, notice the uni-

FACC to fixy, we found the unexpected feature of IR-finite . X L
results and a satisfying qualitative agreement with the Iatticé’ersal deep IR behaviaB0). The discontinuitiesfor the one loop

data, comparable with the Schwinger-Dyson resiilg. r(_esult there is a d_iscontinuity for the_derivativa(q)/ﬁq) are con-
o . . . sidered as an artifact of the truncation.

The qualitative behavior of all th@imensionlessresults
is the same: there is an agreement in the UV and intermedthis symmetry. We also do not obtain confinement: applica-
ate energy region with the ordinary perturbation theory; bution of they expansion on the perturbative heavy-quark po-
in the IR region, where the conventional perturbation theorytential derived from the Wilson loof20,21] does not give a
diverges, there is a turnover and for laywe find a universal  string tension. In fact, one of the classic arguments for con-
power behavior. To illustrate the universality of the powerfinement is the IR explosion of the coupling constant; which
behavior we show in Fig. 9 the one, two, and three loop's exactly avoided by thg expansion.
results for the triple gluon vertex, with fixed by the prin- The best we can hope for is that our expansion gives a
ciple of minimal sensitivity(PMS). For the one and three sound basis for the interpretation of perturbative calcula-
loop result there is a discontinuity at the point which sepadions. This is partially confirmed by the fact that one obtains
rates the high energy region with a zero #2 "(y)/dy, and sensible results in the whole range of energies, which already

the low energy region where such an extremum does ndgieems to make it a better framework to start from, if one
exist: the PMS translates itself then ,pﬁRn(y)/,;y2|y_y wants to estimate the true nonperturbative corrections. In this
—JPMS

—0. This discontinuity should be considered as an artifact of ©NteXt it will be interesting to investigate the role of the
the truncation rather than an artifact of the formalism. In toy][epormaloEs in they expansion. This issue is reserved for
expansionglarge B, limits) we have always found such dis- uture work.

FIG. 9. The one, two, and three loop results for the three gluon

continuities to become _Iess severe and eventually disappear ACKNOWLEDGMENTS
for higher order truncations.
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tool that solves the low energy QCD. Let us stress clearlythank P. Bowman, O. Pene, C. Pittori, J. Micheli, and J.
that this is not the case. For one thing, thexpansion will ~ Skullerud. We also thank K. Chetyrkin for giving hiper-
not exhibit a “clean” dynamical chiral symmetry breaking, turbative results in several output formats. Finally we thank
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