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Light-front field theories at finite temperature

V. S. Alves} Ashok Das, and Silvana Pefez
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627-0171
(Received 4 September 2002; published 19 December)2002

We study the question of generalizing light-front field theories to finite temperature. We show that the naive
generalization has serious problems and we identify the source of the difficulty. We provide a proper gener-
alization of these theories to finite temperature based on a relativistic description of thermal field theories, both
in the real and the imaginary time formalisms. Various issues associated with scalar and fermion theories, such
as nonanalyticity of self-energy, tensor decomposition are discussed in detail.
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. INTRODUCTION (0),=Tre P1O=Tre #* 0 3
Quantum field theories are conventionally quantized on avhere 8 represents the inverse temperature in units where
spacelike surface. However, quantization on a lightlike surthe Boltzmann constant is unity. This has been, in fact, the
face provides an interesting alternative which dates back tgeneral thinkind8]. However, as we will show, this straight-
the works of Dirac[1]. Light-front field theories[2,3],  forward generalization is incorrect and leads to various prob-
namely theories quantized on a light front, have found applifems. We will discuss the proper description of thermal field
cations in various branches of physics such as QCD, stringheories(for scalars and fermiopson the light front, both in
theories and membrane theories, among othéfsIn the  the imaginary as well as the real time formalisms. In Sec. Il
case of QCD, for example, they provide a method for studywe will describe the naive generalization of the concepts of
ing nonperturbative phenomena systematically, which is difthermal field theories to light-front scalar field theories, both
ferent from the usual lattice studies. in the imaginary and the real time formalisms, and show that
In fact, there is a lot of activity in the study of light-front this leads to various problems. The source of the difficulty is
field theories within the context of QCD. Many of the fea- identified in Sec. Ill, where we give the proper description of
tures of light-front theories are quite distinct from the con-light-front scalar theories at finite temperature. We calculate
ventional equal-time field theories—one of the most signifi-various quantities of interest such as the thermal mass cor-
cant being that light-front theories are first ordas opposed rection as well as the nonanalyticity in the self-energy. We
to conventional theories which are second oydetime de-  show that there are more possible limits that can arise in
rivatives and, correspondingly, describe different degrees ohese theories, in contrast to conventional thermal field theo-
freedom. While the behavior of conventional field theories aties. A short description of the tensor decomposition, which
finite temperature are quite well understood by r{&#7], a  has a richer structure in such theories, is also given. In Sec.
systematic study of the thermal properties of light-front field|v, we discuss briefly the generalization of light-front fer-
theories is lacking so far. It is the purpose of this paper tamion theories to finite temperature. Here a new feature arises
work out the essential properties of scalar and fermion lightsince these theories have only half the number of indepen-
front field theories at finite temperature. We will defer the dent degrees of freedof]. The generalization of light-front
study of light-front gauge theories to a future publication. gauge theories to finite temperature as well as various other

It would seem that the generalization of the thermal fieldapplications are under study and will be described in a future
concepts to light-front theories should be straightforward. Inpublication.
fact, in n dimensions, if we define the light-front time vari-

able as [l. NAIVE GENERALIZATION TO FINITE TEMPERATURE
X+ :i(xo+xn—l) 1) In this section, we will discuss the naive generalization of
J2 the techniques of thermal field theory to the light-front scalar

field theories. Let us briefly establish the notation.nlli-
then the Hamiltonian of the system can be identified with mensions, we define

— 7:i 0_pn-1 t:i 04 yn—-1
H=P = (P7=P" ). ) xE= 00X @)

2

This would suggest that the ensemble average of an arbitramyherex™ is identified with the light-front time coordinate.
operator,®, in the light-front field theory, should be defined penoting the coordinate vector a&=(x*,x~,x), wherex

as represent thern(—2) transverse coordinates, it is easy to see
that the nontrivial components of the metric in this basis

) have the form
*Permanent address: Departamento dackj Universidade Fed-

eral do Para66075-110 Belm, Brazil. T =9 "=1, ,7ii = §li (5)
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so that the scalar product of two vectors can be written as  In the light-front variables, the Lagrangian density for a
oo ¢* theory, for example, takes the form
A-B=A*"B"+AB*—A-B. (6)
. 1 . m? A
The mc_)maentum vecitor can _also_ _ be yvrltten g L=0.dd d—=(V)>— 74)2_7‘(]54_ @)
=(p*,p",p), wherep~ can be identified with the energy 2 2 4
variable. In the light-front variables, the Einstein relation
takes a linear form It is clear that the Euler-Lagrange equations, following from
vy 2 this, are only first order in the™ derivative, which is a
__p"tm 7 distinctive feature of light-front theories. The quantization of
B 2pt @ this theory has been discussed quite a lot in the literature and
without going into details, we simply note here that the
This is a major difference from the conventional quantizationFeynman rules for this theory, at zero temperature, take the
on an equal-time surface. form

p

T 2ptpT — 52 —m2 + e

= —iM"(p+q+71+3) (9)

where all the momenta, at the vertex, are assumed to be iG+_(p):27r[9(—p‘)+nB(|p‘|)]5(2p+p‘—w§)
incoming.

I_n going to finite temperature, as is well known, the inter- iG_.(p)=2a[8(p )+ng(lp |)]8(2p p - w;)
action vertices of the theory are unaffected, but the propaga-

tors modify to reflect the periodicityor antiperiodicity of i

the field variable$5—7]. Let us generalize the theory in Eq. iG__(p)=—
(8) to finite temperature, following the naive identification 2pTp - wg— i€
(O)p=Tre AHO=Tre P 0. (10) +2mng(|p)d(2p P —wd)  (11)

formalism or in the imaginary time formalism and we dis-
cuss the two cases separately.

Ng(X)=

e -1
A. Real time formalism
Let us describe the propagators of the theory in the closeand have defined
time path formalisni7,9] for simplicity. A similar structure 2 22, o 12
for the propagators results in thermofield dynanfiédld], @p=ptm-. (12

which we do not go into. It is well known that, in the real
time formalism, the field degrees of freedom double and th
propagators have aX22 matrix structure. In the case of the . ; . )
light-front scalar field theory with the conventional generali-ventlonal theories where it depends on all the-(1) spatial

zation in Eq.(10), the propagators for the doubled degrees ofcomponents of the [“O.m.e”t}fm- We al‘:so note t,r\atjthsub—
freedom have the forms scripts refer to the “original” and the “doubled” degrees of

freedom respectively. The propagators have the usual struc-
ture of a sum of the zero temperature part and the finite
iGii(p)= > .6+27TnB(|p_|)6(2p+p_—w’2)) temperature part. However, the sign of trouble is already

p*p’—w§+| apparent in the form of the propagators in Efl). The

ét is worth remembering thab, involves only f—2) trans-
verse components of the momenta, as opposed to the con-
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k The form of the thermal correction in E@L5) is exact

and is quite interesting. It shows that even though this rep-
resents the thermal correction, it has a divergent part that is
independent of temperature. Thus, it would seem that in a
thermal background, the theory would require additional
temperature independent counterterms beyond the ones
needed for the regularization of the zero temperature theory.
This is quite distinct from the behavior of the conventional

p D thermal field theories and, if true, would cause enormous
problems with the renormalizability properties of the light-
FIG. 1. One loop self-energy is* theory. front theories at finite temperature. Furthermore, since the

integration over ther{—2) transverse directions is yet to be
thermal distribution function does not seem to provide theP€rformed, we see that the temperature dependent part of the
necessary damping, as is usual in conventional thermal fiel@MPlitude is finite only in ¥ 1 dimensions. In any other
theories. Namely, fop~ =0 (which is allowed by the delta dmen;mn, the temperature dependent part diverges as well,
function constraint the distribution function diverges. As €quiring temperature dependent counterterms. We would
we will see soon, more difficulties arise in actual calcula-<€ to émphasize here that, even though Ed) represents

tions. the temperature dependent part of the one loop self-energy;, it
There are two kinds of vertices in the thermal field theory,d0€S Not vanish when temperature vanishes, namelg as
“+" type and “—" type, with a relative sign difference —*- This is connected with the problem alluded to earlier,

between the two. However, at one loop, there is no mixing"@Mely, sincek™ can take a vanishing value, the limit
between the “original” and the “doubled” degrees of free- — Of the distribution function is ambiguou# is nonana-
dom. As a result, the one loop correction to the self-energ)byt'c at that poinj. Further problems arise when one studies

simply involves the tadpole gragkee Fig. 1, which can be the self-energy for the® theory on the light front, but we
readily evaluated. will not go into the details of these here. These are serious

problems which suggest that the naive generalization of

d'k ideas from conventional thermal field theories may not be

iG, . (K). (13)  appropriate in the case of light-front field theories. In the

(2m" next section, we will analyze the source of these problems
and propose the appropriate generalization for such theories.

Separating out the zero temperature part, the thermal correc-

tion to the self-energy can now be easily obtained. In fact, B. Imaginary time formalism

because of the delta function, tke€ integral can be trivially

done leading to

iN
iH++<p>=—7f

In the imaginary time formalism, we rotate the theory to
Euclidean spacémaginary time and assume that the energy
variable takes discrete values. Consequently, the energy in-

iA :
i@ - f nk K~ kK™ — w2 tegrals are replaced by a sum over the discrete Matsubara
IS () 2(2m)"1 d"k ng([k7) o @i frequencies. In the light-front theories, this translates to re-
placing, in the scalar propagator,
n f ol“kfmdk+ % 1 - _2imnT (16
e — n — . —Z211n
2(2m)" 1 o k' ol 2k* AT

where T=1/8 denotes temperature. As a result, the scalar
It is clear that thek™ integral is divergent at the ultraviolet propagator, in the imaginary time formalism, becomes
limit, k* —o0, and needs to be regularized. Regularizing the

power ofk™ in the denominator yields G(p)= 1 17)
4i7'rnTp+—wg.
[
e (p)=lim - ——— The tadpole diagram, Fig. 1, is now straightforward to evalu-
0 2(2m) ate in the imaginary time formalism,
*® dk+ a)ﬁ )N dn—lk *©
X d”‘ZkJ n ( ) - — o ==
J 0o (kt)tte Bl ok* 1(p) 2 (Zw)n—lTn;x G(k)
, I - 1
=lim —f -2k - _ ;j d" ik T -
e—0 4(2m)"* 2(2m)" 1t nzw 4imnTK" — w?
1 2 odk* 2
X| ==C+In27+In—+0O(e) |. (15 = LI dn—2k dk cot Pk . (19
€ Bwi 427"t o k* 4TK"
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Separating out the zero temperature contribution, we obtairsemble average0) to light-front theories and, consequently,
there are bound to be problems. Note that, for &) to

N B reduce to Eq(10), we must havei*=(1,0,Q . .. ,0), which,
~®)(p)=——] d" %k . . C
4(2m)" 1 with the light-front metric, gives
- dk*+ w? utu,=2u*u”—u-u=0.
xf — | cot ol
o k 4TK This is inconsistent with Eq21) and this is another way of

saying that we cannot have a heat bath at rest on the light

_LJ n-2 J'C’Odk+ wg front.
S 2(2m)t 0 kt Ne okt It is clear, therefore, that in dealing with light-front field
theories, we must use a manifestly covariant description of
(19 the thermal field theories. With this, let us now discuss the

This is exactly the same expression as in @4) and, there- proper gener_alization O.f real tim_e and imaginary “”?e for-
fore, all the subsequent analysis of the earlier subsection fol: alisms fo.r I|ght—front field theories separgtely. In th's sec-
lows. The real time and the imaginary time formalisms give lon, we wil restrict ogrsglves to scalar f|eld theories and
the same result which is, however, plagued by problems. Wgescrlbe fermion theories in the next section.

will discuss next the source of the problem. ) _
A. Real time formalism

Ill. THE PROPER GENERALIZATION Let us assume that the heat bath is moving with a velocity

TO FINITE TEMPERATURE u* subject to Eq(21). In that case, in the closed time path

. formalism, the propagators for the scalar field theory take the
To understand the source of the problems in the last S€Gorms (for the doubled degrees of freedpm

tion, let us recapitulate briefly what happens in a conven- :
tional theory. In a conventional thermal field theory, the ther- [

mal part of the propagator represents the interactions of the G+ (p)= 2ptp —witie
particle with the thermal distribution of real particles in the P
medium. This is suppressed at high energies. In contrast, the +2mng(Ju-p|)8(2p*p - w))

propagators in Eqg(11), as we have argued, do not provide P
the necessary damping. The form of the propagators is, of iG+-(P)=2m[6(—u-p)+ng(|u-p|)16(2p"p~ — wp)
course, derived from the assumption that the ensemble aver- . _ - 2

' _ =2 p)+ . (2 -
age, in light-front theories, is given by E{L0). This is, in G -.(p) =2l 6(u-p)+ne(|u-pl)]o(2p™p wp)
fact, where the problem lies. In a conventional theory, when i
one assumes that the ensemble average has the form iIG__(p)=-—

2p+p7—w,2)—ie

+2mng(lu-p|)8(2pTp —w)). (29

(0)p=Tre P10, (20

it is understood that we are in a Lorentz frame where the heat ] ) L
bath is at rest. In fact, this is not a manifestly Lorentz cova/* SImple choice for the velocity of the heat bath satisfying

riant description. One can give a manifestly covariant deEd- (21), for example, is(in the light-front basis

scription of thermal field theoriefl1,12 at the expense of 1
introducing a velocity for the heat bath#, normalized to u#=-—(1,1,0,9...,0 (24
unity, namely V2
u-u=utu,=1 (21  in which case, we have
.. 1
and generalizing the ensemble average to u-p= E(p++ p)
(O)g=Tre PUPO=Tre A"P.0. (22)

and the bosonic distribution function takes the form

1
nB(|u'p|):nB<E|p++p|)-

In a conventional thermal field theory, where the metric is
diagonal and is of the form+«,—,—,...,—), one can
choose a rest frame of the heat bath corresponding“to
=(1,0,0...,0) consistent with Eq(21) and, in this case,
Eqg. (22) would reduce to the conventional definition of en- It is easy to see that this distribution function provides the
semble average in E@20). necessary damping, on-shell, bothpdt=0 andp™ — .

In contrast, a light-front description of a theory is mani-  With this modification of the propagators, we can now
festly relativistic. Intuitively, it is clear that it is not possible reevaluate the tadpole diagraisee Fig. 1L With Eq. (24),
to have a heat bath at rest on the light front. Equafit®),  the temperature dependent part of the tadpole graph has the
on the other hand, is a generalization of the rest frame erform
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whereGg,G, denote the retarded and the advanced propa-

iA
i1 (p)=— ﬁf d"k ng gators respectively and we have defined a vestowhich is
2(2m) orthogonal tou* [as well as to any vector in the transverse
( 1 , (n—2) dimensional spadeand has a spacelike normaliza-
X| —=|k*+k| | 8(2kTk™ — wp) tion, namely,
V2
in © dk*t u-u=0, u-u=-1. (29
= _—f dn_zkf nB
2(2m)"1t k*

For the choice in Eq(24), u*=1/\2(1,-1,0, ... ,0).

w§+ 2(k*)? For completeness, let us also note here the forms of the

2\/—7 . (25) propagator in the formalism of thermofield dynamics in
light-front scalar field theories, with proper generalization,

It is worth emphasizing that, unlike the corresponding ex-

pression with the naive generalization in Ef4), this inte-

grand is well behaved in both the limiks"=0 andk™ —o° 1Gu(p)= 2pp —witie
as is expected of a thermal amplitude. As a result, it does not P
need any regularization. Furthermore, it vanishes at zero

+2mng(|u-p)8(2p T~ — wd)

temperature3— o, as we would expect since it represents iG1(p)=2mng(|u- P|)eﬁ|”'p‘/25(2p+pf—w;2))
the thermal correction to the self-energy. However, in gen-
eral, it cannot be evaluated in a closed form. In the high i621(p)=27-rnB(|u'p|)e5|”'p"25(2p+p‘—wf,)

temperature limit,Am<1, and in four space-time dimen-
sions, the integral has the value,

DY iGP)== 5
24'82+O(,8m). (26) - 2ptp —wh—ie

T (p)~—

+2mng(|u-p))a(2p*p —wj). (30

There are several things to note from this result. First of
all, this yields a thermal mass correction which, in the high Finally, let us note that since, in this case, we have two

temperature limit, has the form . — .
P preferred vectors available, namely? and u#, any given

, A AT? vector can be uniquely decomposed as
=——>0.
24p% 24 0 @

my

AF=(A-U)UA— (A-U)U#+ AL (31)
Namely, the thermal mass correction is positive as is the case
in conventional theories. This is, in fact, crucial for restora-whereA# is transverse to both, u. Similarly, any higher

tion of symmetry at finite temperature. More interestingly, o-qer tensor structure can also be decomposed with respect
we note that the thermal mass correction coincides exactly, ihese two vectors. In this way, a richer tensor structure
with that obtained in a conventional therm@calay field  ises in light-front theories at finite temperature than in con-

theory in four dimensions. _ __ventional thermal field theories.
Before closing this subsection on the real time formalism,

let us note that the propagatof@3) satisfy the usual rela-
tions B. Imaginary time formalism

. _ _ . In the imaginary time formalism, in the covariant descrip-
iIG,4(p)+iIG__(p)=iG,_(p)+iG_.(p) tion, it is the variable -p) that is rotated to Euclidean
space and takes discrete values. Thus,

iG41(p)—iG,_(p)=IG_,(p)—iG__(p)=iGg(p)
_ i
 (u-p)2—(u p)?—wl+iesgnu-p)  Which, with the choice of Eq(24), leads to

u-p—2ianT (32

iG. . (p)—iG_,(p)=iG, _(p)—iG__(p)=iGA(p) p-—2\2ianT-p*=p —p* (33)
B i

(u-p)?—(u-p)?—w3—iesgriu-p)

(28) p =2\2i7nT. (34)

where we have identified
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k+p ing u- p as an independent variablés a result, the scalar
propagator, in the imaginary time formalism, takes the form
P P
G(p)=—=
® 2(p”—pHp" —wp
‘ = : (35
FIG. 2. One loop self-energy igh* theory. 4\/§i 7TnTp+—[w,23+2(p+)2] :

[An alternate way of doing the rotation is to decompose the With this, let us calculate the tadpole diagram, Fig. 1, in
momentum vector as in E¢31) and rotateu- p while treat-  the ¢* theory,

- A - 1
—Il(p)=——— [ d" k2T G(k,n)=——| d" k2T
(P) 2(2w)“1f V2 n:E—oc (k) 2(2w)“1f V2 n;—w A\2imnTK —[w2+2(k")?]
A = dk* Wi+ 2(k+)2>
=— [ d" % c . 36
4(277)“1f fo k* Otr( 4\2k*T .

Here, the factor of/2 arises from the Jacobigbecause of the particular choice of the unit vect&eparating out the zero
temperature part, then, leads to the thermal correction to the self-energy,

°°dk+ 2+2 k+2
B([wk ( >]) a7

_H(B)(p):;f d”fzkf — N —m———— =
2(2)" 1 o k* 2\2k*

which coincides with the result calculated earlier in the real time formalism ifZsy.and all the subsequent analysis carries
through.

As another example, let us calculate the one loop scalar self-energy in a masdiveory in 3+ 1 dimensiongsee Fig.
2). In the imaginary time formalism, this has the form

2

~II(p)= g Jd3k\/§T2 G(k,m)G(k+p,m)
2(2m)3 m
2(2m)3 m o 2(2\2immT—k k" —wf 2(2J2immT+p —k* —p") (k" +p*)—wi,,
The sum can be evaluated using standard formulas and leads to
I(p)= g2 j d3k 1
P 162m)%) k' (k*+p*) wf, ,t2(kT+pT)?2 wf+2(kT)2
2(k"+p*) 2k*
wpt+2(k")? wg ot 2(kT+pt)2 po
X cothk—()—cot p & P _P . (39
4\2k* T 42(k*+pH)T 22T

If we use here the fact thﬁ* =2.2i 7nT as well as the periodicity of the hyperbolic function, the self-energy becénpes
rotation to real timg
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=9 [ 9 1
P ez e @pt2KTHPD7 oit2kD)E L
2(kT+p™) 2k*
w2+ 2(k")? Wi pt2(K +pT)?
x| coth— ( — coth) —P ( P (40)
4\2k*T 42k +p")T

It is now easy to take various limits of this expression. Inin this case. Let us consider, for example, a free massive
fact, in the present case, we have more possibilities of takinfermion theory on the light front described by the Lagrangian
limits than in a conventional thermal field thedd2,13. For  density,
example, we note that if we spt = 5=O and take the limit

p~—0, we obtain L=y(iy*d,—m)ip. (44)
~Il(p"=0,p"—0p=0)=0. (4D \We can, of course, add interactions, but, as we know, inter-
action vertices are not modified at finite temperature. There-
fore, it is sufficient to look at the free theory to determine the
propagators at finite temperature.
Let us define the light-front gamma matrices

On the other hand, if we sqﬂ‘=5=0 and take the limit
p*—0, we obtain

~TI(p*—0,p =0,p=0)

9’ f 1 2 S PO
= | & ———-—— y ===y (45)
256y27°T ((k*)2 w2 V2
2 +\2 . . .
wi+2(k™) These are, in fact, nilpotent matrices, namely,
X cosech———— (42) P y
4\2k* T s
(y)°=0. (46)
Finally, we can also sep”=p* =0 and take the limitp
—0. In this limit, we obtain Defining the projection operators,
~T(p"=0p =0,p—0) N S |
POI=Sy "y =5 (1= ay1) (47
g® 1 wi+2(k™)?
= 5 f d®k——cosech - .
256\27°T (k™) 4V2k*T where « represents the Dirac matrices, it is easy to check
(43) that
This shows that the three different ways of approaching the (P))2=p(=),

origin in the energy-momentum space lead to quite different
results. Thus, light-front theories have a richer structure than
the conventional thermal field theories also in this sense.
Note, however, that a§—0, all three limits lead to a van-
ishing result, as would be expected in a zero temperature P +p)=1. (48)
theory. Furthermore, an interesting question arises as to

whether the three limits would lead to newer definitions of  With these projection operators, let us define

masses in light-front theoriés a conventional thermal field

theory, we have only the screening mass and the plasmon Y =Py, (49)
mass corresponding to the two possible limits that are al-

lowed). Even the question of what would correspond to therpe it follows from the properties of the gamma matrices
screening and the plasmon masses in such theories remaigs,

an open question.

p(Hp(-l=0= p(—)p(+),

~ () =0= 4t (), 50
IV. FERMION THEORIES vy vy (50

The fermion theories on the light front are more tricky This allows us to write the Lagrangian density in the light-
simply because the number of degrees of freedom decreasfent variables as

125008-7
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This is well behaved with the two point function, in this

. yt _
L=V2| ' i0, gD+ ig_yO) projected space, corresponding to
1o - - p’-m? 2pTp -}
B CO NS TIVIL I AWI G -
2 1 y (y ) \/§p+ \/§p+
1oy vz and this pr t b il lized to finite tem-
T L (+) propagator can be easily generalized to finite tem
2 vy iy VMg (52) perature. We note that this form of the propagator has also

been calculated earlier directly from the field decomposition
It is clear now that only thes("), (") degrees of freedom in [14].

are dynamical. The other degrees of freedom are related to The fermion propagators at finite temperature, in the real

these and can be eliminated. time formalism(closed time path now take the forms
The fermion propagator, at zero temperature, has been
— i
derived long agd3] and has the form 5. (p)=2p* S
2p'p —wptie

iSe(x—y)={(0| T ((x)y(y))|0)

:@f a ippey[_BtM 7T —2mng(|u-p)8(2p* P~ w})
(2m)" p?—m?+ie 2p*
(52 iS, _(p)=—2\2mp"[ne(|u-p|)— 6(—u-p)]
where T+ denotes ordering with respect to". Thus, we X 5(2p+p’—wf,)
can identify
N — iS_,(p)=—2V2mp [ne(Ju-p|)— 6(u-p)]
S(p =2 |- 5 P o
g p?—m?+ie 2p* p?—m’+ie Xo(2pTp —wy)
(53 .
_ [
J— i = + e —
wherep” denotes an on-shell momentum, namely, IS-—(p)=2p 2p+p*—wr2,—ie
— . = - —  p*+m? 5
pT=p7, p=p, p = e (54) —2mne(Ju-p))d(2p*p~ — w}) (57)

The second form of the propagator makes it very clear thaiwheren, represents the fermion distribution function
when properly normalized, it can be thought of as a projec-

tion operator and, consequently, its inverse does not exist.
This is, therefore, not a suitable structure to generalize to Ne(X) =
finite temperature. On the other hand, the singular structure
of the zero temperature propagator simply reflects the fa

that there are constraints in the theory, namely, that not a btained and we do not go into this here. In the imaginary

the degregs of freedom are dynamical. If we eliminate th‘:‘[ime formalism, the fermion propagator, for the independent
nondynamical degrees of freedom, the entire theory can b&

) FAA egrees of freedom, takes the form
recast in terms of){™), y{*)" variables. Therefore, the rel-

e 41’

he propagators in thermofield dynamics can similarly be

evant propagator, from the point of view of the theory, is _ \/§p+
S(p)=———7= . (58
S0 y) =0T 6009 () l0) 2V2i(2n+ 1) mp" T [wp+2(p")’]
=(O|PITH [ y(x) 4h(y)1y°PH)|0) V. SUMMARY

" — In this paper, we have described how light-front field
_ —ip-(x—y) (55) . . ..
= (277)”e Sk(p)- theories can be generalized to finite temperature. We have
shown that the naive generalization leads to problems and
the origin of the difficulty is identified. Since light-front field
theories describe relativistic systems, a covariant description
of thermal field theories becomes necessary for the proper

This can, in fact, be calculated from E3) in a simple
manner and is determined to be

o J2p* J2pt formulation of thermal light-front theories. We discuss scalar
SP)=5———S "~ — 5 - (56)  and fermion light-front field theories at finite temperature in
pT—mtie 2p'p —wptie detail, including issues such as nonanalyticity of self-energy
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and tensor decomposition. Several open questions are also ACKNOWLEDGMENTS
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