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Light-front field theories at finite temperature

V. S. Alves,* Ashok Das, and Silvana Perez*
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627-0171

~Received 4 September 2002; published 19 December 2002!

We study the question of generalizing light-front field theories to finite temperature. We show that the naive
generalization has serious problems and we identify the source of the difficulty. We provide a proper gener-
alization of these theories to finite temperature based on a relativistic description of thermal field theories, both
in the real and the imaginary time formalisms. Various issues associated with scalar and fermion theories, such
as nonanalyticity of self-energy, tensor decomposition are discussed in detail.
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I. INTRODUCTION

Quantum field theories are conventionally quantized o
spacelike surface. However, quantization on a lightlike s
face provides an interesting alternative which dates bac
the works of Dirac @1#. Light-front field theories@2,3#,
namely theories quantized on a light front, have found ap
cations in various branches of physics such as QCD, st
theories and membrane theories, among others@4#. In the
case of QCD, for example, they provide a method for stu
ing nonperturbative phenomena systematically, which is
ferent from the usual lattice studies.

In fact, there is a lot of activity in the study of light-fron
field theories within the context of QCD. Many of the fe
tures of light-front theories are quite distinct from the co
ventional equal-time field theories—one of the most sign
cant being that light-front theories are first order~as opposed
to conventional theories which are second order! in time de-
rivatives and, correspondingly, describe different degree
freedom. While the behavior of conventional field theories
finite temperature are quite well understood by now@5–7#, a
systematic study of the thermal properties of light-front fie
theories is lacking so far. It is the purpose of this paper
work out the essential properties of scalar and fermion lig
front field theories at finite temperature. We will defer t
study of light-front gauge theories to a future publication

It would seem that the generalization of the thermal fi
concepts to light-front theories should be straightforward
fact, in n dimensions, if we define the light-front time var
able as

x15
1

A2
~x01xn21! ~1!

then the Hamiltonian of the system can be identified with

H5P25
1

A2
~P02Pn21!. ~2!

This would suggest that the ensemble average of an arbi
operator,O, in the light-front field theory, should be define
as
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^O&b5Tr e2bHO5Tr e2bP2O ~3!

whereb represents the inverse temperature in units wh
the Boltzmann constant is unity. This has been, in fact,
general thinking@8#. However, as we will show, this straight
forward generalization is incorrect and leads to various pr
lems. We will discuss the proper description of thermal fie
theories~for scalars and fermions!, on the light front, both in
the imaginary as well as the real time formalisms. In Sec.
we will describe the naive generalization of the concepts
thermal field theories to light-front scalar field theories, bo
in the imaginary and the real time formalisms, and show t
this leads to various problems. The source of the difficulty
identified in Sec. III, where we give the proper description
light-front scalar theories at finite temperature. We calcul
various quantities of interest such as the thermal mass
rection as well as the nonanalyticity in the self-energy. W
show that there are more possible limits that can arise
these theories, in contrast to conventional thermal field th
ries. A short description of the tensor decomposition, wh
has a richer structure in such theories, is also given. In S
IV, we discuss briefly the generalization of light-front fe
mion theories to finite temperature. Here a new feature ar
since these theories have only half the number of indep
dent degrees of freedom@3#. The generalization of light-front
gauge theories to finite temperature as well as various o
applications are under study and will be described in a fut
publication.

II. NAIVE GENERALIZATION TO FINITE TEMPERATURE

In this section, we will discuss the naive generalization
the techniques of thermal field theory to the light-front sca
field theories. Let us briefly establish the notation. Inn di-
mensions, we define

x65
1

A2
~x06xn21! ~4!

wherex1 is identified with the light-front time coordinate
Denoting the coordinate vector asxm5(x1,x2,xW ), wherexW
represent the (n22) transverse coordinates, it is easy to s
that the nontrivial components of the metric in this ba
have the form

h125h2151, h i j 52d i j ~5!
©2002 The American Physical Society08-1
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so that the scalar product of two vectors can be written a

A•B5A1B21A2B12AW •BW . ~6!

The momentum vector can also be written aspm

5(p1,p2,pW ), wherep2 can be identified with the energ
variable. In the light-front variables, the Einstein relati
takes a linear form

p25
pW 21m2

2p1
. ~7!

This is a major difference from the conventional quantizat
on an equal-time surface.
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12500
n

In the light-front variables, the Lagrangian density for
f4 theory, for example, takes the form

L5]1f]2f2
1

2
~¹W f!22

m2

2
f22

l

4!
f4. ~8!

It is clear that the Euler-Lagrange equations, following fro
this, are only first order in thex1 derivative, which is a
distinctive feature of light-front theories. The quantization
this theory has been discussed quite a lot in the literature
without going into details, we simply note here that t
Feynman rules for this theory, at zero temperature, take
form
~9!
on

con-

f
ruc-
ite
dy
where all the momenta, at the vertex, are assumed to
incoming.

In going to finite temperature, as is well known, the inte
action vertices of the theory are unaffected, but the propa
tors modify to reflect the periodicity~or antiperiodicity! of
the field variables@5–7#. Let us generalize the theory in Eq
~8! to finite temperature, following the naive identification

^O&b5Tr e2bHO[Tr e2bP2O. ~10!

We can describe the resulting theory either in the real t
formalism or in the imaginary time formalism and we di
cuss the two cases separately.

A. Real time formalism

Let us describe the propagators of the theory in the clo
time path formalism@7,9# for simplicity. A similar structure
for the propagators results in thermofield dynamics@7,10#,
which we do not go into. It is well known that, in the re
time formalism, the field degrees of freedom double and
propagators have a 232 matrix structure. In the case of th
light-front scalar field theory with the conventional genera
zation in Eq.~10!, the propagators for the doubled degrees
freedom have the forms

iG11~p!5
i

2p1p22vp
21 i e

12pnB~ up2u!d~2p1p22vp
2!
be

-
a-

e

d

e

f

iG12~p!52p@u~2p2!1nB~ up2u!#d~2p1p22vp
2!

iG21~p!52p@u~p2!1nB~ up2u!#d~2p1p22vp
2!

iG22~p!52
i

2p1p22vp
22 i e

12pnB~ up2u!d~2p1p22vp
2! ~11!

where we have introduced the bosonic distribution functi

nB~x!5
1

ebx21

and have defined

vp
25pW 21m2. ~12!

It is worth remembering thatvp involves only (n22) trans-
verse components of the momenta, as opposed to the
ventional theories where it depends on all the (n21) spatial
components of the momentum. We also note that the6 sub-
scripts refer to the ‘‘original’’ and the ‘‘doubled’’ degrees o
freedom respectively. The propagators have the usual st
ture of a sum of the zero temperature part and the fin
temperature part. However, the sign of trouble is alrea
apparent in the form of the propagators in Eq.~11!. The
8-2
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thermal distribution function does not seem to provide
necessary damping, as is usual in conventional thermal
theories. Namely, forp250 ~which is allowed by the delta
function constraint!, the distribution function diverges. A
we will see soon, more difficulties arise in actual calcu
tions.

There are two kinds of vertices in the thermal field theo
‘‘ 1 ’’ type and ‘‘2 ’’ type, with a relative sign difference
between the two. However, at one loop, there is no mix
between the ‘‘original’’ and the ‘‘doubled’’ degrees of free
dom. As a result, the one loop correction to the self-ene
simply involves the tadpole graph~see Fig. 1!, which can be
readily evaluated.

iP11~p!52
il

2 E dnk

~2p!n
iG11~k!. ~13!

Separating out the zero temperature part, the thermal co
tion to the self-energy can now be easily obtained. In fa
because of the delta function, thek2 integral can be trivially
done leading to

iP11
(b) ~p!52

il

2~2p!n21E dnk nB~ uk2u!d~2k1k22vk
2!

52
il

2~2p!n21E dn22kE
0

`dk1

k1
nBS vk

2

2k1D . ~14!

It is clear that thek1 integral is divergent at the ultraviole
limit, k1→`, and needs to be regularized. Regularizing
power ofk1 in the denominator yields

iP11
(b) ~p!5 lim

e→0
2

il

2~2p!n21

3E dn22kE
0

` dk1

~k1!11e
nBS vk

2

2k1D
5 lim

e→0

il

4~2p!n21E dn22k

3S 1

e
2C1 ln 2p1 ln

2

bvk
2

1O~e!D . ~15!

FIG. 1. One loop self-energy inf4 theory.
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The form of the thermal correction in Eq.~15! is exact
and is quite interesting. It shows that even though this r
resents the thermal correction, it has a divergent part tha
independent of temperature. Thus, it would seem that i
thermal background, the theory would require addition
temperature independent counterterms beyond the o
needed for the regularization of the zero temperature the
This is quite distinct from the behavior of the convention
thermal field theories and, if true, would cause enormo
problems with the renormalizability properties of the ligh
front theories at finite temperature. Furthermore, since
integration over the (n22) transverse directions is yet to b
performed, we see that the temperature dependent part o
amplitude is finite only in 111 dimensions. In any othe
dimension, the temperature dependent part diverges as
requiring temperature dependent counterterms. We wo
like to emphasize here that, even though Eq.~15! represents
the temperature dependent part of the one loop self-energ
does not vanish when temperature vanishes, namely ab
→`. This is connected with the problem alluded to earli
namely, sincek2 can take a vanishing value, the limitb
→` of the distribution function is ambiguous~it is nonana-
lytic at that point!. Further problems arise when one studi
the self-energy for thef3 theory on the light front, but we
will not go into the details of these here. These are seri
problems which suggest that the naive generalization
ideas from conventional thermal field theories may not
appropriate in the case of light-front field theories. In t
next section, we will analyze the source of these proble
and propose the appropriate generalization for such theo

B. Imaginary time formalism

In the imaginary time formalism, we rotate the theory
Euclidean space~imaginary time! and assume that the energ
variable takes discrete values. Consequently, the energy
tegrals are replaced by a sum over the discrete Matsu
frequencies. In the light-front theories, this translates to
placing, in the scalar propagator,

p2→2ipnT ~16!

where T51/b denotes temperature. As a result, the sca
propagator, in the imaginary time formalism, becomes

G~p!5
1

4ipnTp12vp
2

. ~17!

The tadpole diagram, Fig. 1, is now straightforward to eva
ate in the imaginary time formalism,

2P~p!52
l

2E dn21k

~2p!n21
T (

n52`

`

G~k!

52
l

2~2p!n21E dn21k T (
n52`

`
1

4ipnTk12vk
2

5
l

4~2p!n21E dn22kE
0

`dk1

k1
cothS vk

2

4Tk1D . ~18!
8-3
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Separating out the zero temperature contribution, we ob

2P (b)~p!5
l

4~2p!n21E dn22k

3E
0

` dk1

k1 F cothS vk
2

4Tk1D 21G
5

l

2~2p!n21E dn22kE
0

`dk1

k1
nBS vk

2

2k1D .

~19!

This is exactly the same expression as in Eq.~14! and, there-
fore, all the subsequent analysis of the earlier subsection
lows. The real time and the imaginary time formalisms g
the same result which is, however, plagued by problems.
will discuss next the source of the problem.

III. THE PROPER GENERALIZATION
TO FINITE TEMPERATURE

To understand the source of the problems in the last
tion, let us recapitulate briefly what happens in a conv
tional theory. In a conventional thermal field theory, the th
mal part of the propagator represents the interactions of
particle with the thermal distribution of real particles in th
medium. This is suppressed at high energies. In contrast
propagators in Eq.~11!, as we have argued, do not provid
the necessary damping. The form of the propagators is
course, derived from the assumption that the ensemble a
age, in light-front theories, is given by Eq.~10!. This is, in
fact, where the problem lies. In a conventional theory, wh
one assumes that the ensemble average has the form

^O&b5Tr e2bHO, ~20!

it is understood that we are in a Lorentz frame where the h
bath is at rest. In fact, this is not a manifestly Lorentz co
riant description. One can give a manifestly covariant
scription of thermal field theories@11,12# at the expense o
introducing a velocity for the heat bath,um, normalized to
unity, namely

u•u5umum51 ~21!

and generalizing the ensemble average to

^O&b5Tr e2bu•PO5Tr e2bumPmO. ~22!

In a conventional thermal field theory, where the metric
diagonal and is of the form (1,2,2, . . . ,2), one can
choose a rest frame of the heat bath corresponding toum

5(1,0,0, . . . ,0) consistent with Eq.~21! and, in this case
Eq. ~22! would reduce to the conventional definition of e
semble average in Eq.~20!.

In contrast, a light-front description of a theory is man
festly relativistic. Intuitively, it is clear that it is not possibl
to have a heat bath at rest on the light front. Equation~10!,
on the other hand, is a generalization of the rest frame
12500
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semble average~20! to light-front theories and, consequentl
there are bound to be problems. Note that, for Eq.~22! to
reduce to Eq.~10!, we must haveum5(1,0,0, . . . ,0), which,
with the light-front metric, gives

umum52u1u22uW •uW 50.

This is inconsistent with Eq.~21! and this is another way o
saying that we cannot have a heat bath at rest on the
front.

It is clear, therefore, that in dealing with light-front fiel
theories, we must use a manifestly covariant description
the thermal field theories. With this, let us now discuss
proper generalization of real time and imaginary time fo
malisms for light-front field theories separately. In this se
tion, we will restrict ourselves to scalar field theories a
describe fermion theories in the next section.

A. Real time formalism

Let us assume that the heat bath is moving with a velo
um subject to Eq.~21!. In that case, in the closed time pa
formalism, the propagators for the scalar field theory take
forms ~for the doubled degrees of freedom!

iG11~p!5
i

2p1p22vp
21 i e

12pnB~ uu•pu!d~2p1p22vp
2!

iG12~p!52p@u~2u•p!1nB~ uu•pu!#d~2p1p22vp
2!

iG21~p!52p@u~u•p!1nB~ uu•pu!#d~2p1p22vp
2!

iG22~p!52
i

2p1p22vp
22 i e

12pnB~ uu•pu!d~2p1p22vp
2!. ~23!

A simple choice for the velocity of the heat bath satisfyi
Eq. ~21!, for example, is~in the light-front basis!

um5
1

A2
~1,1,0,0, . . . ,0! ~24!

in which case, we have

u•p5
1

A2
~p11p2!

and the bosonic distribution function takes the form

nB~ uu•pu!5nBS 1

A2
up11p2u D .

It is easy to see that this distribution function provides t
necessary damping, on-shell, both atp150 andp1→`.

With this modification of the propagators, we can no
reevaluate the tadpole diagram~see Fig. 1!. With Eq. ~24!,
the temperature dependent part of the tadpole graph ha
form
8-4
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iP11
(b) ~p!52

il

2~2p!n21E dnk nB

3S 1

A2
uk11k2u D d~2k1k22vk

2!

52
il

2~2p!n21E dn22kE
0

` dk1

k1
nB

3S vk
212~k1!2

2A2k1 D . ~25!

It is worth emphasizing that, unlike the corresponding e
pression with the naive generalization in Eq.~14!, this inte-
grand is well behaved in both the limitsk150 andk1→`
as is expected of a thermal amplitude. As a result, it does
need any regularization. Furthermore, it vanishes at z
temperature,b→`, as we would expect since it represen
the thermal correction to the self-energy. However, in g
eral, it cannot be evaluated in a closed form. In the h
temperature limit,bm!1, and in four space-time dimen
sions, the integral has the value,

iP11
(b) ~p!'2

il

24b2
1O~bm!. ~26!

There are several things to note from this result. First
all, this yields a thermal mass correction which, in the h
temperature limit, has the form

DmT
25

l

24b2
5

lT2

24
.0. ~27!

Namely, the thermal mass correction is positive as is the c
in conventional theories. This is, in fact, crucial for resto
tion of symmetry at finite temperature. More interesting
we note that the thermal mass correction coincides exa
with that obtained in a conventional thermal~scalar! field
theory in four dimensions.

Before closing this subsection on the real time formalis
let us note that the propagators~23! satisfy the usual rela
tions

iG11~p!1 iG22~p!5 iG12~p!1 iG21~p!

iG11~p!2 iG12~p!5 iG21~p!2 iG22~p!5 iGR~p!

5
i

~u•p!22~ ū•p!22vp
21 i e sgn~u•p!

iG11~p!2 iG21~p!5 iG12~p!2 iG22~p!5 iGA~p!

5
i

~u•p!22~ ū•p!22vp
22 i e sgn~u•p!

~28!
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whereGR,GA denote the retarded and the advanced pro
gators respectively and we have defined a vectorūm which is
orthogonal toum @as well as to any vector in the transver
(n22) dimensional space# and has a spacelike normaliza
tion, namely,

u•ū50, ū•ū521. ~29!

For the choice in Eq.~24!, ūm51/A2(1,21,0, . . . ,0).
For completeness, let us also note here the forms of

propagator in the formalism of thermofield dynamics
light-front scalar field theories, with proper generalization

iG11~p!5
i

2p1p22vp
21 i e

12pnB~ uu•pu!d~2p1p22vp
2!

iG12~p!52pnB~ uu•pu!ebuu•pu/2d~2p1p22vp
2!

iG21~p!52pnB~ uu•pu!ebuu•pu/2d~2p1p22vp
2!

iG22~p!52
i

2p1p22vp
22 i e

12pnB~ uu•pu!d~2p1p22vp
2!. ~30!

Finally, let us note that since, in this case, we have t
preferred vectors available, namely,um and ūm, any given
vector can be uniquely decomposed as

Am5~A•u!um2~A•ū!ūm1AT
m ~31!

where AT
m is transverse to bothu,ū. Similarly, any higher

order tensor structure can also be decomposed with res
to these two vectors. In this way, a richer tensor struct
arises in light-front theories at finite temperature than in c
ventional thermal field theories.

B. Imaginary time formalism

In the imaginary time formalism, in the covariant descri
tion, it is the variable (u•p) that is rotated to Euclidean
space and takes discrete values. Thus,

u•p→2ipnT ~32!

which, with the choice of Eq.~24!, leads to

p2→2A2ipnT2p15 p̄22p1 ~33!

where we have identified

p̄252A2ipnT. ~34!
8-5



th

r
rm

in

V. S. ALVES, A. DAS, AND S. PEREZ PHYSICAL REVIEW D66, 125008 ~2002!
@An alternate way of doing the rotation is to decompose
momentum vector as in Eq.~31! and rotateu•p while treat-

FIG. 2. One loop self-energy inf3 theory.
12500
e

ing ū•p as an independent variable.# As a result, the scala
propagator, in the imaginary time formalism, takes the fo

G~p!5
1

2~ p̄22p1!p12vp
2

5
1

4A2ipnTp12@vp
212~p1!2#

. ~35!

With this, let us calculate the tadpole diagram, Fig. 1,
the f4 theory,
ies
2P~p!52
l

2~2p!n21E dn21kA2T (
n52`

`

G~k,n!52
l

2~2p!n21E dn21kA2T (
n52`

`
1

4A2ipnTk12@vk
212~k1!2#

5
l

4~2p!n21E dn22kE
0

` dk1

k1
cothS vk

212~k1!2

4A2k1T
D . ~36!

Here, the factor ofA2 arises from the Jacobian~because of the particular choice of the unit vector!. Separating out the zero
temperature part, then, leads to the thermal correction to the self-energy,

2P (b)~p!5
l

2~2p!n21E dn22kE
0

` dk1

k1
nBS @vk

212~k1!2#

2A2k1 D ~37!

which coincides with the result calculated earlier in the real time formalism in Eq.~25! and all the subsequent analysis carr
through.

As another example, let us calculate the one loop scalar self-energy in a massivef3 theory in 311 dimensions~see Fig.
2!. In the imaginary time formalism, this has the form

2P~p!5
g2

2~2p!3E d3kA2T(
m

G~k,m!G~k1p,m!

5
g2

2~2p!3E d3kA2T(
m

1

2~2A2ipmT2k1!k12vk
2

1

2~2A2ipmT1 p̄22k12p1!~k11p1!2vk1p
2

. ~38!

The sum can be evaluated using standard formulas and leads to

2P~p!52
g2

16~2p!3E d3k

k1~k11p1!

1

vk1p
2 12~k11p1!2

2~k11p1!
2

vk
212~k1!2

2k1
2 p̄2

3F coth
vk

212~k1!2

4A2k1T
2cothS vk1p

2 12~k11p1!2

4A2~k11p1!T
2

p̄2

2A2T
D G . ~39!

If we use here the fact thatp̄252A2ipnT as well as the periodicity of the hyperbolic function, the self-energy becomes~upon
rotation to real time!
8-6
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2P~p!52
g2

16~2p!3E d3k

k1~k11p1!

1

vk1p
2 12~k11p1!2

2~k11p1!
2

vk
212~k1!2

2k1
2~p21p1!

3F coth
vk

212~k1!2

4A2k1T
2cothS vk1p

2 12~k11p1!2

4A2~k11p1!T
D G . ~40!
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It is now easy to take various limits of this expression.
fact, in the present case, we have more possibilities of tak
limits than in a conventional thermal field theory@12,13#. For
example, we note that if we setp15pW 50 and take the limit
p2→0, we obtain

2P~p150,p2→0,pW 50!50. ~41!

On the other hand, if we setp25pW 50 and take the limit
p1→0, we obtain

2P~p1→0,p250,pW 50!

5
g2

256A2p3T
E d3kS 1

~k1!2
2

2

vk
2D

3cosech2
vk

212~k1!2

4A2k1T
. ~42!

Finally, we can also setp25p150 and take the limitpW
→0. In this limit, we obtain

2P~p150,p250,pW →0!

5
g2

256A2p3T
E d3k

1

~k1!2
cosech2

vk
212~k1!2

4A2k1T
.

~43!

This shows that the three different ways of approaching
origin in the energy-momentum space lead to quite differ
results. Thus, light-front theories have a richer structure t
the conventional thermal field theories also in this sen
Note, however, that asT→0, all three limits lead to a van
ishing result, as would be expected in a zero tempera
theory. Furthermore, an interesting question arises as
whether the three limits would lead to newer definitions
masses in light-front theories~in a conventional thermal field
theory, we have only the screening mass and the plas
mass corresponding to the two possible limits that are
lowed!. Even the question of what would correspond to t
screening and the plasmon masses in such theories rem
an open question.

IV. FERMION THEORIES

The fermion theories on the light front are more tric
simply because the number of degrees of freedom decre
12500
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in this case. Let us consider, for example, a free mass
fermion theory on the light front described by the Lagrang
density,

L5c̄~ igm]m2m!c. ~44!

We can, of course, add interactions, but, as we know, in
action vertices are not modified at finite temperature. The
fore, it is sufficient to look at the free theory to determine t
propagators at finite temperature.

Let us define the light-front gamma matrices

g65
1

A2
~g06gn21!. ~45!

These are, in fact, nilpotent matrices, namely,

~g6!250. ~46!

Defining the projection operators,

P(6)5
1

2
g7g65

1

2
~16an21! ~47!

where aW represents the Dirac matrices, it is easy to che
that

~P(6)!25P(6),

P(1)P(2)505P(2)P(1),

P(1)1P(2)51. ~48!

With these projection operators, let us define

c (6)5P(6)c. ~49!

Then, it follows from the properties of the gamma matric
that

g2c (1)505g1c (2). ~50!

This allows us to write the Lagrangian density in the ligh
front variables as
8-7
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L5A2Fc (1)†
i ]1c (1)1c (2)†

i ]2c (2)

2
1

2
c (1)†

g2~ igW •¹W 1m!c (2)

2
1

2
c (2)†

g1~ igW •¹W 1m!c (1)G . ~51!

It is clear now that only thec (1),c (1)†
degrees of freedom

are dynamical. The other degrees of freedom are relate
these and can be eliminated.

The fermion propagator, at zero temperature, has b
derived long ago@3# and has the form

iSF~x2y!5^0uT1~c~x!c̄~y!!u0&

5A2i E dnp

~2p!n
e2 ip•(x2y)S p”1m

p22m21 i e
2

g1

2p1D
~52!

where ‘‘T1’’ denotes ordering with respect tox1. Thus, we
can identify

SF~p!5A2S p”1m

p22m21 i e
2

g1

2p1D 5A2
p”̄1m

p22m21 i e
~53!

wherep̄m denotes an on-shell momentum, namely,

p̄15p1, p̄W 5pW , p̄25
pW 21m2

2p1
. ~54!

The second form of the propagator makes it very clear t
when properly normalized, it can be thought of as a proj
tion operator and, consequently, its inverse does not e
This is, therefore, not a suitable structure to generalize
finite temperature. On the other hand, the singular struc
of the zero temperature propagator simply reflects the
that there are constraints in the theory, namely, that no
the degrees of freedom are dynamical. If we eliminate
nondynamical degrees of freedom, the entire theory can
recast in terms ofc (1),c (1)†

variables. Therefore, the re
evant propagator, from the point of view of the theory, is

S̄F~x2y!5^0uT1@c (1)~x!c (1)†
~y!#u0&

5^0uP(1)T1@c~x!c̄~y!#g0P(1)u0&

5E dnp

~2p!n
e2 ip•(x2y)S̄F~p!. ~55!

This can, in fact, be calculated from Eq.~53! in a simple
manner and is determined to be

S̄F~p!5
A2p1

p22m21 i e
5

A2p1

2p1p22vp
21 i e

. ~56!
12500
to

en

t,
-

st.
to
re
ct
ll
e
be

This is well behaved with the two point function, in th
projected space, corresponding to

p22m2

A2p1
5

2p1p22vp
2

A2p1

and this propagator can be easily generalized to finite t
perature. We note that this form of the propagator has a
been calculated earlier directly from the field decomposit
in @14#.

The fermion propagators at finite temperature, in the r
time formalism~closed time path!, now take the forms

iS̄11~p!5A2p1S i

2p1p22vp
21 i e

22pnF~ uu•pu!d~2p1p22vp
2!D

iS̄12~p!522A2pp1@nF~ uu•pu!2u~2u•p!#

3d~2p1p22vp
2!

iS̄21~p!522A2pp1@nF~ uu•pu!2u~u•p!#

3d~2p1p22vp
2!

iS̄22~p!5A2p1S 2
i

2p1p22vp
22 i e

22pnF~ uu•pu!d~2p1p22vp
2!D ~57!

wherenF represents the fermion distribution function

nF~x!5
1

ebx11
.

The propagators in thermofield dynamics can similarly
obtained and we do not go into this here. In the imagin
time formalism, the fermion propagator, for the independ
degrees of freedom, takes the form

S̄~p!5
A2p1

2A2i ~2n11!pp1T2@vp
212~p1!2#

. ~58!

V. SUMMARY

In this paper, we have described how light-front fie
theories can be generalized to finite temperature. We h
shown that the naive generalization leads to problems
the origin of the difficulty is identified. Since light-front field
theories describe relativistic systems, a covariant descrip
of thermal field theories becomes necessary for the pro
formulation of thermal light-front theories. We discuss sca
and fermion light-front field theories at finite temperature
detail, including issues such as nonanalyticity of self-ene
8-8
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and tensor decomposition. Several open questions are
discussed. Light-front gauge theories at finite temperatur
well as further applications are presently under study
will be reported later.
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