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A class of nonlocal truncations in quantum Einstein gravity and its renormalization
group behavior
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Motivated by the conjecture that the cosmological constant problem could be solved by strong quantum
effects in the infrared, we use the exact flow equation of quantum Einstein gravity to determine the renormal-
ization group behavior of a class of nonlocal effective actions. They consist of the Einstein-Hilbert term and a
general nonlinear functionFk(V) of the Euclidean space-time volumeV. A partial differential equation gov-
erning its dependence on the scalek is derived and its fixed point is analyzed. For the more restrictive
truncation of theory space whereFk(V) is of the form V1V ln V, V1V2, and V1AV, respectively, the
renormalization group equations for the running couplings are solved numerically. The results are used in order
to determine thek-dependent curvature of theS4-type Euclidean space-times which are solutions to the
effective Einstein equations, i.e., stationary points of the scale dependent effective action. For the
V1V ln V-invariant~discussed earlier by Taylor and Veneziano! we find that the renormalization group running
enormously suppresses the value of the renormalized curvature which results from Planck-size bare parameters
specified at the Planck scale. Hence one can obtain very large, almost flat universes without fine-tuning the
cosmological constant.

DOI: 10.1103/PhysRevD.66.125001 PACS number~s!: 11.10.Hi, 04.60.2m, 11.10.Jj, 11.15.Tk
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I. INTRODUCTION

Exact renormalization group~RG! equations@1# provide a
powerful tool for the nonperturbative investigation of bo
fundamental~renormalizable! and effective quantum field
theories. In particular the RG equation of the effective av
age action@2# has been applied to a variety of matter fie
theories as well as to quantum Einstein gravity@3,4#.

The main ingredient in this approach is the effective a
erage actionGk , a Wilsonian coarse grained free ener
functional which has a built-in infrared~IR! cutoff at a vari-
able mass scalek. Thek dependence ofGk is governed by an
exact functional RG equation. In any realistic theory it
impossible to solve this equation exactly. But by approp
ately truncating the space of action functionals~‘‘theory
space’’! one can obtain nonperturbative approximate so
tions which do not rely upon small expansion paramete
The truncation is carried out by making an ansatz forGk
which contains a finite or infinite set ofk-dependent param
eters~‘‘coupling constants’’! gi(k). Upon inserting this an-
satz into the functional RG equation and projecting the
flow onto the truncation subspace one obtains either a pa
differential equation or a coupled system of ordinary diffe
ential equations for the running couplings.

In the case of Euclidean quantum gravity the effect
average action and its RG equation have been construct
Ref. @3#. This first construction used a cutoff of ‘‘type A
which is formulated in terms of the complete metric fluctu
tion hmn . The resulting RG equation has been used to de
the flow equation for the running Newton constantGk and
the cosmological constantl̄k on the theory space spanned
the ‘‘Einstein-Hilbert truncation,’’ i.e., by the invariant
0556-2821/2002/66~12!/125001~34!/$20.00 66 1250
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*ddxAgR and *ddxAg. In @5# the resulting coupled differ-
ential equations have been solved numerically, leading to
complete classification of the RG flow of the Einstei
Hilbert truncation. In order to extend the truncated theo
space to invariants containing higher powers of the curva
such as*ddxAgR2, for instance, Refs.@6–9# introduce a
new cutoff of ‘‘type B’’ which is natural to use if one em
ploys the transverse-traceless decomposition ofhmn @10#.

One of the remarkable results found in@3,5–7,9,11# is that
the high energy behavior of 4 dimensional quantum Einst
gravity seems to be governed by a non-Gaussian fixed p
~NGFP! which is ultraviolet~UV! attractive for both the di-
mensionless Newton constantg(k)[kd22Gk and cosmologi-
cal constantl(k)[l̄k /k2. If this result also holds true for
the exact theory, quantum Einstein gravity is renormaliza
at the nonperturbative level@12#. In this case it would pro-
vide us with a fundamental rather than merely effect
theory of quantum gravity which is mathematically cons
tent and predictive at arbitrarily small distances. In th
theory the Newton constant is asymptotically free: near
NGFP,Gk'g* /kd22 vanishes fork→` ~if d.2).

In Ref. @5# the flow equations of the Einstein-Hilbert trun
cation were simplified by introducing a technically conv
nient sharp cutoff and then used in order to continue
trajectories emanating from the NGFP towards the IR~de-
creasing k). The resulting RG flow in 4 dimensions i
sketched in Fig. 1. In addition to the NGFP it shows anot
distinguished point: the Gaussian fixed point~GFP! located
at the origin of thel-g plane. The cross-over between th
two scaling regions governed by the Gaussian and n
Gaussian fixed point, respectively, takes place at a scalekasym
which is of the order of the Planck massmPl[G0

21/2.
Depending on whether the trajectories run to the le

right, or on the stability axis of the GFP we find trajectori
©2002 The American Physical Society01-1
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FIG. 1. Part of coupling constant space of th
Einstein-Hilbert truncation with its RG flow. The
arrows point in the direction of decreasing valu
of k. The flow pattern is dominated by a non
Gaussian fixed point in the first quadrant and
trivial one at the origin.
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of the types Ia, IIIa, and IIa, respectively. Only the trajec
ries Ia and IIa lead to well-definedk→0 limits of Gk and

l̄k , yielding l̄0,0 andl̄050, respectively. The trajectorie
IIIa terminate at a finite value ofk at the boundary of thel-g
space atl51/2. Beyond this boundary theb functions ofg
andl are undefined. Therefore the RG trajectories found
the Einstein-Hilbert truncation can only lead to negative
vanishing values for the renormalized cosmological cons
l̄0[ limk→0l̄k . While the ‘‘separatrix’’ connecting the
NGFP to the GFP~trajectory IIa! leads tol̄050, the trajec-
tories of type Ia generically give rise to~negative! renormal-
ized cosmological constants of the order ofmPl

2 . Smaller
values can be obtained only by an extreme fine-tuning.

Even though recent observations of high redshift super
vae@13–15# and measurements of the power spectrum of
cosmic microwave radiation@16,17# seem to indicate that ou
universe is characterized by a small~positive! cosmological
constant, it is clear that a renormalized valuel̄05O(mPl

2 ) is
phenomenologically unacceptable. In the present unive
the vacuum energy density due tol̄ can be of the order o
the matter energy density at most. Hencel̄ must be smaller
than its ‘‘natural’’ valuemPl

2 by about 120 orders of magn
tude. This is the famous cosmological constant problem@18#.

A notorious difficulty which any attempt at solving th
naturalness problem will face is that its solution cannot co
from any remote mechanism which is operative near
Planck scale only. In fact, even if for some reason there is
bare cosmological constant of the ordermPl

2 , the vacuum
condensates associated with the electroweak or QCD p
transition induce contributions tol̄0 which are still many
orders of magnitude larger than the experimental bound. A
consequence, if one tries to solve the fine-tuning problem
invoking some dynamical mechanism giving rise to a su
ciently small l̄0 automatically @19# then this mechanism
must be effective at very low energy scales, the fami
scales of standard particle physics and below.

It is a very attractive speculation that strong renormali
tion effects of quantum gravity in the infrared are responsi
for the tiny value ofl̄0 @20,21#. In fact, since perturbation
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theory with l̄Þ0 is much more IR divergent than withl̄
50, one could argue that if quantum gravity is capable
curing its IR diseases dynamically by nonperturbative

fects, then these effects should drivel̄k to zero fork→0.
Strong IR quantum effects of this kind would be comp

rable to phenomena like confinement or the formation
bound states in QCD. It is clear that such strong coupl
phenomena are much harder to understand than the we
coupled asymptotic scaling region wherek@LQCD in the
case of QCD ork@mPl for gravity @5#. In QCD fairly simple,
local truncations are sufficient for a reliable description
the asymptotic scaling region, while in the IR much mo
complicated, nonlocal truncations are needed@22#. Likewise
it seems that in gravity the Einstein-Hilbert truncation
simple local extensions of it are appropriate close to
NGFP@6,7#, but in the IR, i.e. for scalesk&mPl , we expect
that much more complicated, presumably nonlocal trun
tions are needed for a proper description. The termination
the type IIIa trajectories at a nonzerokterm5O(mPl) is a typi-
cal symptom showing that the Einstein-Hilbert truncation b
comes insufficient below a certain critical scale@5#.

Which invariants could be important in the IR of quantu
gravity? As we are trying to understand its large distan
behavior~on the scale set by the Planck length,Pl[1/mPl

[AG0) it is clear that terms with higher powers of the cu
vature (*d4xAgRmnrsRmnrs, *d4xAgR3, etc.! are of no
help here. For a large universe, after the last cosmolog
phase transition, say, the contributions of these terms to
effective Einstein equations are negligible compared to th
from *d4xAgR. They are suppressed by inverse powers
mPl . What one needs are invariants which grow and beco
important when the universe gets large. Typical invaria
which meet this requirement are nonlocal functionals of
metric. As an example, the term*d4xAgR(2D2)21R was
added to*d4xAgR in Ref. @23#, and it was shown that the
resulting modification of general relativity is phenomen
logically acceptable for a wide range of parameters. In R
@21# the IR physics resulting from the 4D ‘‘induced gravity
action*d4xAgR ln(2D2)R was analyzed.

In the present paper we shall perform a first investigat
1-2
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of the RG behavior of nonlocal actions in the effective av
age action framework. As we are mainly interested in gett
a first idea about the qualitatively new effects whi
can occur, and in order to avoid the extreme algebr
complexity of calculations involving terms like
*d4xAgR(2D2)21R, we shall focus on a simpler class o
nonlocal terms. We are going to study invariants of the ty
Fk(V) where Fk is a nonlinear function of the Euclidea
space-time volumeV[*ddxAg. In particular we will inves-
tigate the RG flow of effective actions containing the inva
antsVln(V/V0) and V2 which, in the context of wormhole
physics, have already been discussed in@25# and @26–28#,
respectively.~Here V0 denotes an arbitrary reference vo
ume.! The corresponding approximations ofGk will be called
the ‘‘V1V ln V–’’ and ‘‘ V1V2–truncation’’ and are given by

Gk@g#5
1

16pGE ddxAg~2R12l̄k!

1
1

16pG
ūkV ln~V/V0! ~1.1!

and

Gk@g#5
1

16pGE ddxAg~2R12l̄k!

1
1

16pG
w̄kV

2, ~1.2!

respectively. Inspired by the fixed point properties of the R
flow we shall also discuss the ‘‘V1AV–truncation.’’

As we are mostly interested in the IR regime we negl
the running of Newton’s constant in the present investi
tion: Gk'G0[G. At least according to the results from th
Einstein-Hilbert truncation this is a sensible first approxim
tion if k&mPl .

We shall impose initial conditions forl̄k and ūk or w̄k at
some scalek5 k̂, usually atk̂5mPl , and then use the RG
equation in order to evolve the parameters towards sma
values ofk. It will turn out that if the new couplingsūk and
w̄k are put to zero at the starting point, they will continue
vanish at all lower scalesk, k̂. The RG flow resulting from
the truncations~1.1! or ~1.2! cannot generate the new invar
ants if no initial ‘‘seed’’ is present. However, we expect th
with a more general truncation, nonlocal terms, perhaps
more complicated structure, are generated dynamically a
the RG trajectories emanating from the NGFP@24#. Imposing
nonzero initial valuesūk̂ or w̄k̂ in our calculation mimics this
more complicated dynamics to some extent.

Another way of looking at our results is to interpret the
in the spirit of effective field theories. For instance, o
could imagine that string theory prepares the initial con
tions for a low energy field theory description of gravity, a
that these initial conditions includeūk̂5” 0 or w̄k̂Þ0 at the
Planck scale.

Including the new couplings in the effective action
gravity gives rise to various theoretical possibilities th
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might lead to a solution of the cosmological constant pro
lem. First, as speculated in@29#, the extension of the theory
space could generate a new fixed point which is IR-attrac
for the dimensionless cosmological constant:l(k)→l IR* as

k→0. In this case the renormalized coupling constantl̄0

[ limk→0l(k)k2 would vanish withl̄k proportional tok2 for
all trajectories reaching the basin of attraction of the fix
point. In this manner the cosmological evolution could
understood as a ‘‘cross-over’’ from the NGFP in the UV
the new fixed point in the IR.1 ~In Ref. @31# it has been
shown by means of a straightforward RG improvement2 that
the NGFP in the UV leads to a very interesting cosmology
the Planck era which might provide a solution of the flatne
and the horizon problem.!

A different scenario using nonlocal effective actions
order to solve the cosmological constant problem has b
proposed by Taylor and Veneziano@25,27#. We will now
briefly review this mechanism using the example of t
V1V ln V–truncation.

Varying Eq.~1.1! with respect to the metricgmn leads to
the following modified equation of motion:3

Rmn2
1

2
Rgmn52F l̄1

ū

2
1

ū

2
ln~V/V0!Ggmn. ~1.3!

The structure of this equation suggests defining an effec
cosmological constant,leff(V), as

leff~V![l̄1
ū

2
1

ū

2
ln~V/V0!, ~1.4!

which depends on the volume of the space-time. Thus
~1.3! takes on the usual form of the Einstein equation witho
matter:

Rmn2
1

2
Rgmn52leff~V!gmn. ~1.5!

Contracting Eq.~1.5! with gmn and substituting the resulting
equationR54leff back into Eq.~1.5! leads to

Rmn5leff gmn . ~1.6!

Obviously all solutions to the modified Einstein equation a
Einstein spaces. In the following we specialize for ma
mally symmetric solutions. In particular the 4-sphereS4 of
radiusr has the following properties:

Rmn5
3

r 2
gmn, R5

12

r 2
, V5s4r 4, s4[

8p2

3
.

~1.7!

1It is known @30# that 2D Liouville quantum gravity describes
similar cross-over between two conformal field theories.

2For a similar RG improvement in black hole physics see R
@32#.

3We ignore thek-dependence ofl̄ and ū for the time being.
1-3
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Substituting the 4-sphere into Eq.~1.5! we see that it is a
solution to the equations of motion provided

3

r 2
5leff~s4r 4!. ~1.8!

The resulting equation for the radiusr reads4

ūr 21ūr 2 ln~s4r 4/V0!12l̄r 22650. ~1.9!

Reexpressingr 2 by the effective cosmological constant an
consideringleff the independent variable we find the cond
tion

leff5l̄1
ū

2 F lnS 9s4

leff
2 V0

D 11G . ~1.10!

This equation has very interesting properties. Assum
ū.0 ~which, as we will see, is a reasonable assumption! one
finds the following relations between the cosmological co
stant proper,l̄, and the effective cosmological constant@25#:

leff'l̄ if l̄.0,

leff'S 9s4

V0
D 1/2

expF l̄

ū
1

1

2G if l̄,0. ~1.11!

For l̄.0 the cosmological constant and the effective cosm
logical constant are of the same order of magnitude while
a negative sign ofl̄ the effective cosmological constant
exponentially suppressed~‘‘quenched’’!. Therefore this
mechanism can provide a satisfactorily small effective c
mological constant, i.e. small space-time curvature, with
the need of the cosmological constant itself being small.

In the work of Taylor and Veneziano@25,27#, l̄ andū are
classical parameters and no evolution effects are taken
account. In the present paper we investigate the ‘‘RG
provement’’ of the mechanism reviewed above. We shall
place l̄ and ū by their running counterpartsl̄k and ūk . In
this manner the radiusr of theS4, too, becomes a function o
k. We may expect that for a Euclidean universe of radiur
the relevant effective action isGk at k'1/r . Thus, when
looking for large universes, we should use the renormali
couplingsl̄0 ,ū0 rather than the bare ones,l̄ k̂ and ūk̂ .

For a given trajectoryk°(l̄k ,ūk) we shall solve Eq.
~1.9! with the running couplings inserted and obtain the
dius r[r (k) of the S4 which is the stationary point ofGk .
We can then compare the ‘‘bare’’ radiusr ( k̂) to the ‘‘renor-
malized’’ one,r (k50). As we shall see, the inclusion of th
RG running leads to a tremendous ‘‘inflation’’ of the un

4As a consequence of the ‘‘principle of symmetric criticality’’@33#
inserting theS4 ansatz~1.5! into the action~1.1! and extremizing
the resulting function ofr leads to the same equation for the ‘‘on
shell’’ value of the radiusr.
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verse: r (k50)@r ( k̂). The renormalization effects greatl
facilitate obtaining large, essentially flat universes from g

neric Planck-size initial values (l̄ k̂ ,ūk̂) specified at

k̂5mPl . In this way one can effectively solve the cosmolog

cal constant problem even thoughl̄0 is not small.
The remaining sections of this paper are organized as

lows. In Sec. II we use the exact RG equation with the ‘‘ty
A’’ cutoff @3# to derive a partial differential equation whic
governs thek dependence of an arbitrary nonlocal invaria
of the form Fk(V). The flow equations of theV1V ln V–
and V1V2–truncations are then derived by specializingFk

to these truncations. In Sec. III we investigate the RG flow
the coupling constants in theV1V ln V–truncation by nu-
merically solving the flow equations with the sharp cuto
introduced in@5#. In Sec. IV we investigate the impact of th
running coupling constants in theV1V ln V–truncation on
the radius of the ‘‘classical’’S4 solution of the modified Ein-
stein equations. In Sec. V we discuss the properties of
modified GFP which follow from the partial differentia
equation forFk(V). Motivated by the results of this analys
we investigate the RG flow of theV1AV–truncation in Sec.
VI. In Appendix A we briefly summarize the results for th
RG flow and classical solutions in theV1V2–truncation.

II. FLOW EQUATIONS WITH NONLOCAL INVARIANTS

In order to derive the nonperturbative partial different
equation describing the RG flow of an effective action
quantum gravity which includes arbitrary nonlocal invarian
Fk(V) we use the effective average action approach to qu
tum Einstein gravity@3#.

The main ingredient of this method is the exact evoluti
equation for the effective average actionGk@gmn# for gravity
which, in its original formulation, has been constructed
@3#. The derivation of this evolution equation parallels t
approach already successfully tested for Yang-Mills theo
@34,35#. In principle it is straightforward to include the add
tional renormalization effects coming from matter fiel
@36,37#, but these are not included in the present derivati

In the construction ofGk@g# one starts out with the usua
path integral ofd-dimensional Euclidean gravity. It is gaug
fixed by using the background field method@38,39# and em-
ploying a background gauge fixing condition.A priori the
effective average actionGk@g;ḡ# depends on both the ‘‘dy-
namical’’ metric g and the background metricḡ. The con-
ventional effective action G@g# is regained as the
k→0 –limit of Gk@g#[Gk@g;ḡ5g# where the two metrics
have been identified. By this constructionGk@g# becomes
invariant under general coordinate transformations.

The crucial new component in the construction
Gk@g,ḡ# is thek-dependent IR-cutoff termDkS added to the
action under the path integral. This term discriminates
tween the high (p2.k2) and low-momentum mode
(p2,k2). It suppresses the contribution of the low
momentum modes to the path integral by adding a mom
tum dependent mass term
1-4
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DkS@h,C,C̄;ḡ#5
1

2
k2E ddxAḡ hmnRk

grav@ ḡ#mnrshrs

1A2E ddxAḡC̄mRk
gh@ ḡ#Cm. ~2.1!

Here k[(32pG)21/2, and the first and second term on th
right-hand side~RHS! provide the cutoff for the fluctuation
of the metric,hmn5gmn2ḡmn , and the ghost fieldsC̄m ,Cm,
respectively. In this paper we choose the following form
the cutoff operatorsRk

grav andRk
gh @3#:

Rk
grav@ ḡ#5Z k

gravk2R(0)~2D̄/k2!,

Rk
gh@ ḡ#5k2R(0)~2D̄/k2!. ~2.2!

Here (Z k
grav)mnrs5@(I 2Pf)mnrs2(d22)/2Pf

mnrs#ZNk is a
matrix acting on hmn . In this expression (Pf)mnrs

[d21ḡmnḡrs projectshmn onto its trace partf. In the ter-
minology of Ref.@6#, this form ofDkS defines the ‘‘cutoff of
type A.’’ The so-called ‘‘shape function’’R(0) is essentially
arbitrary except that it has to satisfy the conditions

R(0)~0!51, R(0)~z→`!50. ~2.3!

Neglecting the evolution of the ghost sector which cor
sponds to a first truncation of the general structure of5 Gk ,
one finds thatGk@g,ḡ# satisfies the following flow equation
@3#:

] tGk@g,ḡ#5
1

2
Tr†~k22Gk

(2)1Rk
grav@ ḡ# !21] tRk

grav@ ḡ#‡

2Tr†~2M@g,ḡ#1Rk
gh@ ḡ# !21] tRk

gh@ ḡ#‡.

~2.4!

HereGk
(2)@g,ḡ# denotes the Hessian ofGk@g,ḡ# with respect

to gmn at fixed background fieldḡmn , and t[ ln(k/k̂) is the
‘‘renormalization group time’’ with respect to the referen
scale k̂. Furthermore,M represents the Faddeev-Pop
ghost operator.

This equation is our starting point to derive the part
differential equation describing the RG flow of an effecti
action including an arbitrary functionFk(Vkd) of the volume
V[*ddxAg. In this course we approximateGk@g;ḡ# by the
following truncation ansatz:

5Keeping the classical form of the ghost action is consistent w
the truncation~2.5! below, where the evolution of the gauge fixin
term is neglected, in the sense that the resultingGk satisfies the
Becchi-Rouet-Stora-~BRS!-Ward identities to lowest order@3#.
Close to the NGFP this approximation was found to be relia
@6,9#. For reasons of simplicity we continue to use it also at low
values ofk. Future improved truncations will have to further justi
this truncation ansatz.
12500
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Gk@g;ḡ#52k2H E ddxAg~2R!12Fk~Vkd!J
1classical gauge fixing term. ~2.5!

The functionFk includes a running cosmological constan
but we neglect the running of Newton’s constant in t
present investigation. The parameterk is treated as a con
stant in the following.

Later on it will be easy to derive the ordinary differenti
equations governing the scale dependence of the coup
constants in the V1V ln V–truncation ~1.1! and the
V1V2–truncation~1.2!. They correspond to specializing

Fk~Vkd!5l̄kV1
1

2
ūkV ln~V/V0! ~2.6!

and

Fk~Vkd!5l̄kV1
1

2
w̄kV

2 ~2.7!

respectively.
Let us now derive the RG equation forFk . Substituting

our ansatz forGk , Eq. ~2.5!, into Eq. ~2.4! we find the fol-
lowing expression for the left-hand side~LHS! of the flow
equation:

d

dt
Gk@g;ḡ#54k2

d

dt
Fk~Vkd![SL@g#. ~2.8!

The derivative with respect tot acts on both the implicit and
the explicitk dependence ofFk .

For the evaluation of the RHS,SR , of Eq. ~2.4! we first
calculate the second functional derivative ofGk@g;ḡ# at fixed
background metricḡ. We therefore decomposeg5ḡ1h̄ into
the background metric and an arbitrary fluctuationh̄ and
expand Gk@ h̄;ḡ# in powers of h̄, Gk@ ḡ1h̄;ḡ#5Gk@ ḡ;ḡ#

1O(h̄)1Gk
quad@ h̄;ḡ#1O(h̄3). Splitting h̄mn into its traceless

part ĥmn and its trace part using

h̄mn5ĥmn1d21ḡmnf,

ḡmnĥmn50,

f[ḡmnh̄mn ~2.9!

we find the following quadratic termGk
quad@ h̄;ḡ#:

h

e
r

1-5
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Gk
quad@ h̄;ḡ#5k2E ddxAḡH 1

2
ĥmn@2D̄222F k8~V̄kd!kd1R̄#ĥmn2

d22

4d
fF2D̄222F k8~V̄kd!kd1

d24

d
R̄Gf2R̄mnĥnrĥr

m

1R̄abnmĥbnĥam1
d24

d
fR̄mnĥmnJ 1

1

2
k2E ddxAḡE ddyAḡf~x!F k9~V̄kd!k2df~y!. ~2.10!
c
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Here all the bared quantities are constructed from the ba
ground metric, and the prime denotes the derivative ofFk
with respect to its argument. From the quadratic form~2.10!
we can read off the HessianGk

(2) to be used under the trac
on the RHS of the flow equation.

This trace is a complicated functional of bothg and ḡ.
Our next task is to project this functional onto the truncat
subspace parametrized by the ansatz~2.5!. Since neither the
term *ddxAgR nor the classical gauge fixing term conta
information aboutFk we do not have to project out thos
terms. This means in particular that after having perform
the second variation we may setg5ḡ, in which case the
gauge fixing term vanishes@3#:

Gk@ ḡ;ḡ#52k2H E ddxAḡ~2R̄!12Fk~V̄kd!J .

~2.11!
12500
k-

d

For g5ḡ, the traces Tr@ ...# are functionals ofḡ alone. In
order to determine the running ofFk we have to expand
these functionals and retain only the terms without any c
vature quantity but with an arbitrary dependence onV̄.

This is most easily achieved by the following technic
trick. We chooseḡ to be a one-parameter family of flat me
rics on the torus Td, the free parameter being its volum

V@ ḡ#5*ddxAḡ5V̄. From now on we considerV̄ a pure
number rather than a functional of the metric. Thus our pr
lem boils down to computing the dependence of the tra
Tr@ ...# on the parameterV̄. Upon equating the result to
SL@ ḡ#54k2(d/dt)Fk(V̄kd) we obtain the desired equatio
for Fk . Since for the flat torusR̄mnrs

torus 50,R̄mn
torus50,R̄torus50

it is clear that this method projects out precisely the rig
terms fromGk .

Substituting the Td metric, Eq.~2.10! simplifies to
m in Eq.
Gk
quad@ h̄;ḡ#5k2E ddxAḡH 1

2
ĥmn@2D̄222F k8~V̄kd!kd#ĥmn2

d22

4d
f@2D̄222F k8~V̄kd!kd#fJ

1
1

2
k2E ddxAḡE ddyAḡf~x!F k9~V̄kd!k2df~y!. ~2.12!

In order to diagonalize this quadratic form in field space we expand the tracef in terms of harmonic functionsTlm on the
torus. The functionsTlm are eigenfunctions of the operator2D̄2 constructed from the background metric, with eigenvaluesm l
and degeneraciesd l :

2D̄2Tlm5m lTlm with m51, . . . ,d l and H m050 for l 50

m l.0 for l .0.
~2.13!

Here T0m[1/AV denotes the nondegenerate zero-mode of2D̄2. Using the orthonormality relation for theTlm ,

*ddxAḡ(x)TlmTl 8m85d l l 8dmm8 , we can decompose the scalar fieldf(x) into its zero-modew and the higher modesf̂(x):

f~x!5c00T001(
l 51

`

(
m51

d l

clmTlm~x![w1f̂~x!. ~2.14!

Applying this decomposition to Eq.~2.12!, we find that the result is now diagonal in the fieldsĥmn ,f̂ andw:

Gk
quad@ h̄;ḡ#5k2E ddxAḡH 1

2
ĥmn@2D̄222F k8~V̄kd!kd#ĥmn2

d22

4d
f̂@2D̄222F k8~V̄kd!kd#f̂

2
d22

4d
wF2D̄222F k8~V̄kd!kd2

2d

d22
F k9~V̄kd!k2dV̄GwJ . ~2.15!

From this quadratic form we can read off the operators which appear in the trace over the metric degrees of freedo
~2.4!:
1-6
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~k22Gk
(2)@g;g#1Rk

grav! ĥĥ5@2D21k2R(0)~2D2/k2!22F k8~Vkd!kd#

~k22Gk
(2)@g;g#1Rk

grav!f̂f̂52
d22

2d
@2D21k2R(0)~2D2/k2!22F k8~Vkd!kd#

~k22Gk
(2)@g;g#1Rk

grav!ww52
d22

2d Fk222F k8~Vkd!kd2
2d

d22
F k9~Vkd!k2dVG . ~2.16!

To derive the last line, we have used the fact that2D̄2w50 andR(0)(0)51. Since we anyhow identifiedg[ḡ after carrying
out the variation with respect toh̄, we dropped the bars on the quantities constructed from the background metric.

After adding the ghost contribution already found in@3# the RHS of Eq.~2.4! takes the following form:

SR5TrTFN0

A G1TrSFN0

A G22TrVFN0

A0
G2

k2

k222F k8~Vkd!kd
1

k2

k222F k8~Vkd!kd2
2d

d22
F k9~Vkd!k2dV

. ~2.17!
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Here the subscriptsT, S, andV on the traces indicate sum
over traceless tensor, scalar and vector harmonics, res
tively. Furthermore, we have introduced the following no
tions:

N05
1

2
] t@k2R(0)~2D2/k2!#

A52D21k2R(0)~2D2/k2!22F k8~Vkd!kd

A052D21k2R(0)~2D2/k2!. ~2.18!

In writing down Eq.~2.17! we have completed the trace ov
the f̂ modes by adding and subtracting the correspond
zero-mode contribution, so that the scalar trace now r
over the complete set of scalar harmonics, includingl 50.

The traces in Eq.~2.17! can be evaluated using the fir
term of the standard heat-kernel expansion,

Tr@e2 isD2
#5S i

4psD
d/2

tr~ I !E ddxAg, ~2.19!

which is exact for a flat metric. HereI denotes the unit ma
trix of the space of fields on which2D2 acts. Hence we
have

trS@ I #51, trV@ I #5d,

trT@ I #5
1

2
~d21!~d12!. ~2.20!

For an arbitrary functionW with Fourier transformW̃ the
trace

Tr@W~2D2!#5E
2`

`

dsW̃~s!Tr@e2 isD2
# ~2.21!

yields, in flat space,
12500
ec-
-

g
s

Tr@W~2D2!#5~4p!2d/2tr~ I !Qd/2@W#E ddxAg

~2.22!

with

Qn@W#[E
2`

`

ds~2 is!nW̃~s!. ~2.23!

ReexpressingQn in terms ofW leads to a Mellin transform
(n>0):

Q0@W#5W~0!, Qn@W#5
1

G~n!
E

0

`

dzzn21W~z!.

~2.24!

In order to write down the evolution equation forFk it is
convenient to introduce the following dimensionless sta
dard threshold functions (p51,2, . . . ,n.0):

Fn
p~w![

1

G~n!
E

0

`

dzzn21
R(0)~z!2zR(0)8~z!

@z1R(0)~z!1w#p
. ~2.25!

By substituting the definitions ofN, N0 and A0 from Eq.
~2.18! into Eq.~2.24! we find the following relation between
the Mellin transforms and the threshold functions:

Qd/2F N0

A pG5kd22p12Fd/2
p @22F k8(Vkd)kd22]

Qd/2F N0

A 0
pG5kd22p12Fd/2

p ~0! . ~2.26!

Evaluating the traces in Eq.~2.17! using Eq.~2.22! and then
reexpressing the Mellin transforms in terms of the thresh
functions~2.25!, the RHS of Eq.~2.4! yields
1-7
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SR5~4p!2d/2kdVH d~d11!

2
Fd/2

1 @22Fk8~Vkd!kd22#22dFd/2
1 ~0!J 2

k2

k222F k8~Vkd!kd

1
k2

k222F k8~Vkd!kd2
2d

d22
F k9~Vkd!k2dV

. ~2.27!

Since both the LHS and RHS of Eq.~2.4! are already projected onto the subspace of action functionals under conside
the evolution equation ofFk is simply found by equating Eq.~2.27! to SL of Eq. ~2.8!:

1

8pG

d

dt
Fk~Vkd!5~4p!2d/2kdVH d~d11!

2
Fd/2

1 @22F k8~Vkd!kd22#22dFd/2
1 ~0!J 2

k2

k222F k8~Vkd!kd

1
k2

k222F k8~Vkd!kd2
2d

d22
F k9~Vkd!k2dV

. ~2.28!

Introducing the dimensionless function

f k~q![kd22Fk~Vkd! ~2.29!

depending on the dimensionless argumentq[Vkd, Eq. ~2.28! takes on the following final form:

~] t f k!~q!5~d22! f k~q!2dq f k8~q!1
2

~4p!d/221
Gqkd22Fd~d11!

2
Fd/2

1 @22 f k8~q!#22dFd/2
1 ~0!G

18pGkd22F 2
1

122 f k8~q!
1

1

122 f k8~q!2
2d

d22
f k9~q!qG . ~2.30!

This is the partial differential equation we wanted to derive.
We observe that the flow equation~2.30! does not generate any nonlinear terms inf k unless we start the evolution with a

f k which is nonlinear at the initial point already. In fact, iff k̂(q)5 k̂22l( k̂)q without any nonlocality, then the RHS of Eq
~2.30! is linear inq, too, so thatf k(q)}q for all k, k̂.

In its general form Eq.~2.30! will be analyzed in Sec. V. Here we use it in order to derive the flow equations for
coupling constants of theV1V ln V– andV1V2–truncations, respectively.

In the case of theV1V ln V–truncation,Fk has been given in Eq.~2.6!. By substituting this ansatz into Eq.~2.28! and
projecting the resulting RHS onto the invariantsV andV ln(V/V0) we obtain the following flow equation for the cosmologic
constantl̄k and the coefficient of theV ln(V/V0)-term, ūk :

] tl̄k5~4p!12d/2Gkd$d~d11!Fd/2
1 ~22l̄k /k22ūk /k2!24dFd/2

1 ~0!%

] tūk5~4p!12d/22d~d11!Gūkk
d22Fd/2

2 ~22l̄k /k22ūk /k2! . ~2.31!

In the expansion of the RHS we made use of the fact that ln(V/V0) has no power series expansion aboutV50, so that we can
expand the RHS treatingV and ln(V/V0) as independent variables.

The flow equation for the coupling constants in theV1V2–truncation are found in an analogous way. Substituting theFk
given in Eq.~2.7! into Eq. ~2.28! and projecting the RHS onto the subspace spanned by the invariantsV andV2 we find

] tl̄k5~4p!12d/2Gkd$d~d11!Fd/2
1 ~22l̄k /k2!24dFd/2

1 ~0!%116pG
d

d22

w̄k

k2

1

~122l̄k /k2!2

] tw̄k5~4p!12d/24d~d11!Gw̄kk
d22Fd/2

2 ~22l̄k /k2!1128pG
d~3d24!

~d22!2

w̄k
2

k4

1

~122l̄k /k2!3
. ~2.32!

The properties of the RG flow~2.31! are discussed in the main part of this paper. The analogous discussion of the
~2.32! is summarized in the Appendix.
125001-8
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III. RENORMALIZATION GROUP FLOW
IN THE V¿V ln V–TRUNCATION

We now analyze theV1V ln V–truncation governed by
Eq. ~2.31!. We first investigate its fixed point structure befo
we proceed to discussing the properties of the numerical
lutions of the flow equation.

Since we setGk[G5const, the flow equation~2.31! is
expected to be valid only on scalesk&mPl where, at least
according to the Einstein-Hilbert truncation, the running
Gk is negligible@6#. We do not expect that the solutions
Eq. ~2.31! can be continued up to arbitrarily high values
k@mPl , since for a proper description of the RG flow in th
region the running ofGk is an essential effect. In the follow
ing we therefore only investigate the RG flow in the regi
k&mPl .
ze

12500
o-

f

A. The Gaussian fixed point

In order to investigate the fixed point structure of E
~2.31! we introduce the following ‘‘k-scaled’’ dimensionless
coupling constants:

g~k![Gkd22, l~k![l̄kk
22, u~k![ūkk

22. ~3.1!

They allow us to write the flow equation in ak-independent,
autonomous way:

] tg~k!5bg~l,g,u!,

] tl~k!5bl~l,g,u!,

] tu~k!5bu~l,g,u!. ~3.2!

The b functions resulting from substituting Eq.~3.1! into
Eq. ~2.31! are
t

bg~l,g,u!5~d22!g

bl~l,g,u!522l1~4p!12d/2g$d~d11!Fd/2
1 ~22l2u!24dFd/2

1 ~0!%

bu~l,g,u!522u1~4p!12d/22d~d11!guFd/2
2 ~22l2u! . ~3.3!

The fixed point equation

bl~l* ,g* ,u* !50, bg~l* ,g* ,u* !50, bu~l* ,g* ,u* !50 ~3.4!

has only the trivial solution

g* 50, l* 50, u* 50 ~3.5!

which corresponds to the Gaussian fixed point. The corresponding stability matrixBi j 5] jbi ug50,l50,u50 is given by

BGFP5F 22 ~4p!12d/2d~d23!Fd/2
1 ~0! 0

0 ~d22! 0

0 0 22
G . ~3.6!

Here i , j P$l,g,u%. By diagonalizing the matrix~3.6! we find the following stability coefficientsu I and associated righ
eigenvectorsVI satisfyingBVI52u IV

I :

u1512 with V15~1,0,0!T

u252~d22! with V25„~4p!12d/2~d23!Fd/2
1 ~0!,1,0…T

u3512 with V35~0,0,1!T. ~3.7!
e
ni-

l

We can now use these results to write down the lineari
RG flow gj (t)5gj* 1( I 51

3 a Iexp@2uIt#Vj
I for the couplings

g1[l,g2[g,g3[u in the vicinity of the GFP:

l~ t !5a1e22t1a2e(d22)t~4p!12d/2~d23!Fd/2
1 ~0!

g~ t !5a2e(d22)t
d u~ t !5a3e22t. ~3.8!

Here thea I ’s are constants which allow for adjusting th
general solution of the linearized flow equation to given i
tial conditions. Replacing the RG timet[ ln(k/mPl) by the
scalek and rewriting Eq.~3.8! in terms of the dimensionfu
couplingsGk , l̄k and ūk we find
1-9
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Gk5G

l̄k5l̄01~4p!12d/2~d23!GkdFd/2
1 ~0!

ūk5ū0 . ~3.9!

Here we expressed the constantsa I by thek50 values of the
corresponding coupling constants:a1[l̄0 ,a2[G and
a3[ū0.

Equation ~3.9! shows that including the new invarian
V ln(V/V0) in the truncation does not change the lineariz
RG flow of the cosmological constant in the vicinity of th
Gaussian fixed point. In the limitk→0 all coupling constants
run towards constant, but in general nonzero valuesG,l̄0

andū0. Hence the modified GFP certainly does not provid
solution to the cosmological constant problem.

B. Numerical solution of the flow equation

We now investigate the numerical solutions of the flo
equation~2.31! in d54 dimensions using the sharp cuto
introduced in Ref.@5#. For this special choice of the shap
function R(0) the integrals appearing in the threshold fun
tions ~2.25! can be evaluated analytically@40#. They read@5#

Fd/2
1 ~w!sc52

1

G~d/2!
ln~11w!1wd/2

Fd/2
p ~w!sc5

1

G~d/2!

1

p21

1

~11w!p21
for p.1.

~3.10!

Here thewd/2’s area priori arbitrary positive constants whic
reflect the residual cutoff scheme dependence which is
present after having opted for a sharp cutoff. In the followi
we will make the ‘‘canonical’’ choicew2[2z(3) wherez is
the Riemannz-function. ~See@5# for a detailed discussion.!

Introducing the ‘‘mPl–scaled’’ dimensionless couplin
constants

l̆~ k̆!5
l̄k

mPl
2

, ŭ~ k̆!5
ūk

mPl
2

~3.11!

and the dimensionless scale variable

y[ k̆2[
k2

mPl
2

~3.12!

the flow equation~2.31! with the sharp cutoff becomes i
d54

dl̆~y!

dy
5

y

2p
$25 ln@122 l̆~y!/y2ŭ~y!/y#1w2%

dŭ~y!

dy
5

5

p
y

ŭ~y!

y22 l̆~y!2ŭ~y!
. ~3.13!
12500
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The interesting property of this equation is that t
V ln(V/V0)-term in the truncation leads to a modification
the boundaryl̆5y/2 ~corresponding tol51/2) which was
found in the Einstein-Hilbert truncation. The new bounda
is located at

y52 l̆1ŭ. ~3.14!

We find that for coupling constants in the regiony<2l̆1ŭ
the RHS of Eq.~3.13! is not defined, so that there are no R
trajectories in this region.

Compared to the Einstein-Hilbert truncation, the most i
portant new property of Eq.~3.13! is that it is now possible
to obtain positive IR valuesl̆(0).0. They can be compen
sated by negative valuesŭ(0),0 which prevent the trajec
tory from running into the boundary~3.14!.

Moreover, Eq.~3.13! shows that theb function of ŭ van-
ishes atŭ50 for any l̆, i.e. a trajectory starting at som
initial point y5 ŷ with ŭ( ŷ)50 does not dynamically gener
ate a nonzero couplingŭ by the RG flow:

ŭ~ ŷ!50⇒ŭ~y!50 ;y, ŷ. ~3.15!

Because of the vanishingb function, the trajectories canno
cross theŭ50 line. This line separates trajectories wi
ŭ(y).0 andŭ(y),0.

Unless stated otherwise, we shall specify initial conditio
for ŭ and l̆ at the Planck scale:k̂5mPl , k̆51,
ŷ[ k̂2/mPl

2 51.
In order to disentangle the various effects which contr

ute to the running ofŭ and l̆ we first investigate the decou
pled flow equation forŭ with l̆ set to a constant value. In th
second step we then drop this approximation.

1. The decoupled flow equation

Approximating

l̆~y!'const[l̆ ~3.16!

in the flow equation~3.13! leads to the following decoupled
differential equation forŭ(y):

dŭ~y!

dy
5

5

p
y

ŭ~y!

y22l̆2ŭ~y!
. ~3.17!

The characteristic properties of this equation are shown
Fig. 2 where we have solved Eq.~3.17! for the parameters
l̆520.1 andl̆510.1 and various initial valuesŭ( ŷ).

In the case ofl̆520.1 we find that all trajectories can b
continued to y50 and lead to nonvanishing IR value
uŭ(0)u.0. The values ofŭ(y) along the trajectory are
bounded by the initial values:

uŭ~y!u,uŭ~ ŷ!u, ;y, ŷ. ~3.18!
1-10
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FIG. 2. Solutions of the flow equation~3.17! for various valuesŭ( ŷ) andl̆520.1, l̆510.1 in the left and right diagram, respectivel

The solutions withl̆520.1 all lead to a finite IR valueuŭ(0)u.0. For l̆510.1 all trajectories terminate atŷterm.0 with a vanishing

ŭ( ŷterm).
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In the case ofl̆510.1 all trajectories terminate at a finit
value yterm.0 because the trajectories hit the bounda
~3.14!. In this course the couplingŭ(y) vanishes identically:
ŭ(yterm)50. Substitutingŭ(yterm)50 into Eq.~3.14! we see
that yterm52l̆.

In order to understand the vanishing ofŭ(yterm) analyti-
cally we observe that the trajectories in the right diagram
Fig. 2 terminate due to the denominator of Eq.~3.17! becom-
ing zero, i.e. the corresponding trajectory runs into
boundary~3.14!. Close toyterm we can approximate, in the
denominator of Eq.~3.17!,

2l̆1ŭ~y'yterm!'yterm5const. ~3.19!

Using this approximation, the flow equation~3.17! simplifies
to

dŭ~y!

dy
'

5

p

yŭ~y!

y2yterm
. ~3.20!

It is easily integrated:

ŭ~y!5ŭ~y0!e5y/p~y2yterm!5yterm/p

with y*yterm, yterm.0. ~3.21!
12500
y

f

e

Taking the limity→yterm shows thatŭ(yterm) vanishes, inde-
pendently of the sign ofŭ(y0). This exactly matches the
behavior found in Fig. 2.

2. The full flow equation

We now drop the approximation~3.16! and investigate the
coupled system of equations forŭ(y) and l̆(y). We solve
the flow equation~3.13! for the initial conditionsl̆( ŷ)50.1
and various positive and negative values ofŭ( ŷ). The result-
ing trajectories are shown in Fig. 3.

Here we see that there is no qualitative difference betw
the trajectories starting with positive and negative values
ŭ( ŷ). All trajectories can be continued toy50 and yield a
negative value for the renormalized cosmological consta
l̆(0),0. This is characteristic of trajectories of type Ia.

Regarding the dependence ofl̆(0) on the initial value
ŭ( ŷ) we find that, compared to the trajectory wit
ŭ( ŷ)50, negative valuesŭ( ŷ),0 lead to less negative cos
mological constants,l̆(0)ŭ( ŷ),0.l̆(0)ŭ( ŷ)50, while positive
values ŭ( ŷ).0 drive l̆(0) further away from zero:
l̆(0)ŭ( ŷ).0,l̆(0)ŭ( ŷ)50.

A consequence of the general trend that negative va
ŭ( ŷ),0 shift l̆(0) upwards is the existence of trajectori
with positive renormalized cosmological constan
l̆(0).0. Trajectories of this type did not exist in th
es

n

FIG. 3. Numerical solutions to the full flow equation~3.13! with initial conditionsl̆( ŷ)50.1 and selected positive and negative valu

ŭ( ŷ). The initial conditions all lead to trajectories of type Ia, yielding negative values forl̆(0). There is no qualitative difference betwee

the trajectories starting withŭ( ŷ).0 and ŭ( ŷ),0. Compared to the trajectory starting withŭ( ŷ)50 the solutions withŭ( ŷ).0 and

ŭ( ŷ),0 lead to decreased and increased values ofl̆(0), respectively.
1-11
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FIG. 4. Numerical solutions to the full flow equation with initial conditionsl̆( ŷ)50.44 andŭ( ŷ)50.05. Decreasingŭ( ŷ) by steps of

Dŭ( ŷ)50.01 leads to an increase ofl̆(0). Fine-tuning ŭ( ŷ)5ŭ( ŷ)crit results in a trajectory withl̆(0)50. Initial conditions ŭ( ŷ)

,ŭ( ŷ)crit yield trajectories of Type VIa withl̆(0).0. The dashed line indicates the former boundary ofl̆ space atl̆5y/2.
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Einstein-Hilbert truncation. This new mechanism is illu
trated in Fig. 4.

Here we first consider the trajectory starting wi

l̆( ŷ)50.44,ŭ( ŷ)50.05 which results in a trajectory with

small negative valuel̆(0)&0. We then lowerŭ( ŷ) in steps

of Dŭ( ŷ)50.01 which leads to an increase ofl̆(0). The
result is shown in the third diagram of Fig. 4.

We find that by fine-tuning the initial value t
ŭ( ŷ)5ŭ( ŷ)crit a trajectory that was originally type Ia wit
l̆(0),0 can be turned into a trajectory of type IIa wi
vanishing l̆(0). By a further decrease ofŭ( ŷ) to ŭ( ŷ)
,ŭ( ŷ)crit we find a new type of RG trajectories with a pos
tive valuel̆(0).0. Trajectories of this type will be referre
to as solutions of type VIa. These trajectories provide a s
nificant new feature of the RG flow of the cosmological co
stant, since without theV ln(V/V0)-invariantl̆(0) could only
assume negative values.

Another important issue is the impact of a nonzero c
pling ŭ( ŷ) on the trajectories of type IIIa which, without th
new coupling, terminate in the boundaryl̆5y/2. Since there
are no initial conditions given atŷ51 that result in trajecto-
ries of this type, we chooseŷ50.5,k̂'0.7mPl . The effect of
the nonzeroŭ( ŷ) is illustrated in Fig. 5 for trajectories star
ing with l̆( ŷ)50.2 and various positive and negative valu
ŭ( ŷ).

We find that including the effect of a runningŭ(y) in
general does not prevent the termination of the trajectorie
a finite yterm.0. Comparing to the case ofŭ( ŷ)50 we find
12500
-
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s

at

thatnegativevaluesŭ( ŷ) lead to an even earlier terminatio
of the trajectory. The third diagram of Fig. 5 further show
that, unlike in the case of the approximated flow equat

~3.17!, the trajectories starting withŭ( ŷ),0 do not reach

ŭ(yterm)50 but terminate at a nonzero valueŭ(yterm),0 al-
ready. This is due to the structure of the modified bound

y52l̆1ŭ. Here negative valuesŭ compensate a cosmolog

cal constant that, settingŭ50, would already have run into

the boundary. Close toy5yterm we find thatŭ(y) decreases
rapidly so that this compensation becomes impossible. A
consequence, the trajectory reaches the boundary with

nite ~negative! value ŭ(yterm),0, contrary to the case of a

positive ŭ.

Considering the trajectories in the regionŭ( ŷ).0 we see

thatpositivevaluesŭ(y) generally lead to a decrease ofl̆(y)
so that the corresponding trajectories terminate at a sm

valueyterm than their counterpart starting withŭ( ŷ)50. But
in general this mechanism cannot be used to prevent
termination of the trajectory since we cannot choose a

trarily large values for the initial value ofŭ( ŷ) due to the
boundary ~3.14!. We therefore find that the possibility o

lowering yterm by choosingŭ( ŷ).0 is rather limited so that
only the trajectories terminating at sufficiently small valu
yterm can be turned into a trajectory of type IIa or type Ia
taking ŭ( ŷ).0.

Figure 5 further shows that the mechanism which low
yterm is not operative close to the termination point of t
trajectory but is rather related to the general effect wh
1-12
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FIG. 5. Numerical solutions to the full flow equation with initial conditionsl̆( ŷ)50.2 and various valuesŭ( ŷ) given at the scale

ŷ50.5. These lead to trajectories of type IIIa which terminate atyterm.0. Positive valuesŭ( ŷ).0 yield an extension of the trajectorie
towards smaller valuesyterm, but in general do not prevent the termination of the trajectory. The dashed line indicates the former sing

l̆5y/2.
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q.
ŭ(y) has on the running ofl̆(y) in the regiony.yterm.

Close toy'yterm we find thatŭ(y) vanishes very quickly.
Thereforeŭ(y) cannot have any healing effect on the flow
l̆(y) near the boundary.

The impact of a nonzero couplingŭ( ŷ) on the running of
l̆(y) is summarized in Table I which is organized as follow
The column ‘‘Type’’ indicates the type of trajectory foun
when solving the flow equation~3.13! with ŭ( ŷ)50. The
column ‘‘ŭ( ŷ) chosen’’ indicates which values ofŭ( ŷ) lead
12500
.

to the modifications in the flow ofl̆(y) listed in the column
‘‘Changes in the flow ofl̆(y). ’’

3. Scaling laws in the IR region

In Sec. III A we found that the autonomous fixed poi
equation~3.4! gives rise to a Gaussian fixed point at th
origin of u-l-g space which should govern the scaling b
havior of these coupling constants in the IR region. In t
subsection we therefore investigate if the solutions of E
~3.13! reflect the expected scaling laws forŭ and l̆. In this
TABLE I. Summary of the modifications in the RG flow ofl̆(y) arising from the inclusion of the
V ln(V/V0)–term in the truncation.

Type ŭ( ŷ) chosen Changes in the flow ofl̆(y)

ŭ( ŷ).ŭ( ŷ)crit
Type Ia

Type IIa
Type Ia ŭ( ŷ)5ŭ( ŷ)crit fine-tuning ofŭ( ŷ)

ŭ( ŷ),ŭ( ŷ)crit
Type VIa

new solutions withl̆(0).0

ŭ( ŷ).0 Type Ia

Type IIa ŭ( ŷ),0 Type IIIa

generic: Type IIIa

ŭ( ŷ).0 ~only solutions close to the region IIa

Type IIIa can be converted to a type IIa or Ia trajectory!

ŭ( ŷ),0 Type IIIa
1-13
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FIG. 6. RG flow of a typical trajectory of type Ia arising from the initial conditionsl̆( ŷ)50.2 with ŭ( ŷ)50.1 and ŭ( ŷ)520.1,

respectively. The dashed line indicates the boundary ofl̆ space atl̆5y/2. The cusp appearing in the fourth diagram indicates thatl̆(y)

becomes negative below a certain valuey. In the IR regime (y,0.01) bothl̆(y) and ŭ(y) are constant.
-
In

Ia
o

of
nd
course we use the flow equation~3.13! to find one represen
tative trajectory for every type discussed in Sec. III B.
order to focus on the IR properties (k→0) we display the
solutions in double-logarithmic plots.

We start our investigation with the trajectories of type
which are characterized by a negative IR value of the c
12500
s-

mological constant:l̆(0),0. As typical trajectories we
choose the solutions withl̆( ŷ)50.2 and ŭ( ŷ)50.1,
ŭ( ŷ)520.1 at the starting pointŷ51. They are shown in
Fig. 6.

The double-logarithmic diagrams in the second line
Fig. 6 show that both trajectories, starting with a positive a
e
FIG. 7. Typical trajectory of type VIa with initial conditionsl̆( ŷ)50.45 andŭ( ŷ)520.05. These lead to a positive IR value of th

cosmological constant:l̆(0).0. In the IR region (y,0.01) the coupling constantsl̆(y) and ŭ(y) assume constant values.
1-14
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FIG. 8. Typical trajectories of type IIIa with initial conditionsl̆( ŷ)50.2 andŭ( ŷ)50.05, ŭ( ŷ)520.05 given atŷ50.5. The trajectories

terminate at the boundary singularityy52l̆1ŭ. Comparing to the trajectory starting withŭ( ŷ)50, positive and negative valuesŭ( ŷ) lead
to a decrease or increase ofyterm, respectively.
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negative valueŭ( ŷ), have the same qualitative properties.
the IR regiony&0.01 bothl̆(y) and ŭ(y) take on approxi-
mately constant values. This is exactly the scaling beha
found for the trajectories of type Ia when considering E
~3.9! with a1[l̄0,0. This matches the RG flow of the co
mological constantl̆(y) resulting from the Einstein-Hilber
truncation. Hence the inclusion of the couplingŭ in the trun-
cation does not lead to a change in the scaling laws of
cosmological constant for trajectories of the type Ia.

We now investigate the new trajectory class VIa whi
corresponds to a positive IR value of the cosmological c
stant: l̆(0).0. A typical solution arising from the initia
conditionsl̆( ŷ)50.45 andŭ( ŷ)520.05 specified atŷ51 is
shown in Fig. 7.

Here we find thatŭ(y) and l̆(y) again take on constan
values in the IR region. This resembles the behavior fou
for the trajectories of the type Ia. The smooth cur
log10„l̆(y)… in the fourth diagram of Fig. 7 thereby indicate
that l̆(y) is positive in the entire region 0<y<1.

Next we investigate the scaling properties of the trajec
ries of type IIIa. These terminate at the boundary singula
of ŭ-l̆ space. In this case we again fix our initial conditio
at the scaleŷ50.5 and choosel̆( ŷ)50.2 andŭ( ŷ)50.05,
ŭ( ŷ)520.05. The resulting typical trajectories are shown
Fig. 8.

Figure 8 confirms that, compared to the trajectory start
with ŭ( ŷ)50, the initial conditionsŭ( ŷ).0 and ŭ( ŷ),0
lead to a decreased and increased valueyterm, respectively.
The third diagram reveals that close toy*yterm the modulus
12500
or
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g

of ŭ(y) decreases rapidly. The third diagram thereby clea
demonstrates that a positiveŭ( ŷ).0 vanishes identically a
y5yterm, while the trajectory starting withŭ( ŷ),0 ends at a
nonzero valueŭ(yterm),0.

The last trajectory class found in Sec. III B are the traje
tories of type IIa which are characterized by a vanishing
value of the cosmological constant:l̆(0)50. These can
arise either from choosingŭ( ŷ)50 and fine-tuning ofl̆( ŷ)
or by fine-tuningŭ( ŷ)5ŭ( ŷ)crit,0 for a trajectory which
was of type Ia originally. To investigate the properties
these cases we choose the typical trajectories arising f
l̆(0)50 and ŭ(0)50, ŭ(0)520.01.6 These are shown in
Fig. 9.

We find that the trajectories withŭ(0)50 show a mono-
tonic increase ofl̆(y) with y. This resembles the scalin
behavior forl̆(y) found in the Einstein-Hilbert truncation.

For the trajectory starting withŭ(0)520.01 the third
diagram of Fig. 9 shows thatŭ(y) is approximately constan
in the IR regiony&0.01. The fourth diagram of Fig. 9 is o
particular interest in this case. Here we find the typical cu
indicating that the curvel̆(y) crosses the zero line. Togethe
with the second diagram this indicates thatl̆(y) becomes
negative below a certain valuey. Only close toy50 does the
curve l̆(y) bend upward again so thatl̆(0)50 is reached
from below.

6As one easily checks, these are admissible initial conditions.
b functions of Eq.~3.13! are finite and well defined there.
1-15
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FIG. 9. Typical trajectories of type IIa with initial conditionsl̆(0)50 with ŭ(0)50 andŭ(0)520.01, respectively. The cusp appearin
in the fourth diagram showing the logarithm of the modulus of the cosmological constant indicates that the trajectory starti

ŭ(0)520.01 approachesl̆(0)50 from the negative sidel̆(y),0.
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The results found in this section can be summarized
follows. For the trajectories of type Ia and of type IIa wi
ŭ( ŷ)50 the new couplingŭ(y) does not lead to a change
the IR scaling laws of the cosmological constant found in
Einstein-Hilbert truncation. For the trajectories of type I
with ŭ( ŷ)Þ0 and the type VIa we find thatŭ(y), and in the
second case alsol̆(y), takes on constant values in the I
regiony&0.01. This, and the crossing of the zero line in t
case of type IIa trajectories, indicates that these trajecto
have the typical behavior of a trajectory of type Ia who
parameter ŭ( ŷ) has been chosen such that it runs
l̆(0).0 and l̆(0)50, respectively. For the trajectories o
type IIIa the nonlocal coupling generically does not prev
the termination of the trajectories at a finiteyterm.0.

IV. SCALE-DEPENDENT S4 SOLUTIONS

In the previous section we investigated the RG flow of
coupling constantsŭ andl̆ in theV1V ln V–truncation. We
found that all admissible initial conditions imposed at t
scaleŷ51 lead to trajectories of the classes Ia and IIa w
well defined IR values for the coupling constants. Substi
ing these coupling constants into the truncated effective
erage action results in thek-dependent functional

Gk@g#5
1

16pGE d4xAg~2R12l̄k!

1
1

16pG
ūkV ln~V/V0! ~4.1!
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whosek dependence is explicitly known and leads to a w
defined limitG0@g#.

In this section we investigate thek-dependent stationary
points ofGk@g#. In a slight abuse of language we shall ref
to them as ‘‘classical solutions.’’ Actually we are considerin
a kind of ‘‘RG improved general relativity’’ here, i.e. equa
tions of motion which explicitly depend on the scalek, the
resolution of the ‘‘microscope’’ used. The following discu
sion focuses on maximally symmetric 4-dimensional Eucl
ean space-times of the typeS4.

A. S4 solutions at constant couplings

Before investigating the scale dependence of the stat
ary points of Eq.~4.1! we first consider solutions to the equ
tions of motion arising from Eq.~4.1! at a fixed value ofk. In
the Introduction we saw already that the modified Einst
equations resulting from the action Eq.~4.1! are given by Eq.
~1.3!, and that they are solved by a 4-sphere provided
radius satisfies Eq.~1.9!.

In this subsection we employ a graphical method in or
to get a qualitative understanding of which ‘‘on-shell’’ value
of the radiusr are possible for the variousFk truncations.

Substituting the metric of a 4-sphere with radiusr into Eq.
~4.1! results in the effective actionGSphere(r ) which is an
ordinary function of the radiusr of the S4. Introducing the
Planck length,Pl[mPl

21[AG and the dimensionless radiu

r̆[r /,Pl[rmPl , the functionGSphere( r̆ ) reads

GSphere~ r̆ !5
1

16p
@212s4r̆ 212s4l̆ r̆ 4

1s4ŭr̆ 4ln~s4r̆ 4!#. ~4.2!
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FIG. 10. Dependence ofGSphere( r̆ ;l̆,ŭ/w̆) on the radiusr̆ for typical values of the coupling constants:l̆560.1 andŭ/w̆560.1 in the

case of theV1V ln V- andV1V2-truncation, respectively. The four cases resulting from the combination of the parametersl̆,ŭ ~dashed line!

and l̆,w̆ ~solid line! are shown in the diagrams above. Only for positive valuesŭ.0,w̆.0 does a stable minimum occur.
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Here we have specified the reference volume to beV0

5,Pl
4 . It is easy to see that the extrema of the functi

r̆ °GSphere( r̆ ) are precisely the solutions of Eq.~1.9!, i.e.
they correspond to the spherical solutions of the equation
motion. This is a consequence of the ‘‘principle of symmet
criticality’’ @33#. Because of the maximal symmetry ofS4,
the variation of the action and the restriction of the fun
tional to S4 spaces may be interchanged.

We are now interested in finding stable minima
GSphere( r̆ ), i.e. parameters (ŭ,l̆) for which GSphere( r̆ ;l̆,ŭ) is
bounded below and possesses a nontrivial minimum
r̆ .0. In this context it is of particular interest if there exis
a ‘‘flat limit,’’ a minimum of GSphere( r̆ ) which is located at
very large r̆→`. Equation~1.8! then shows that for thes
solutions theeffectivecosmological constant vanishes or b
comes very small without the need of vanishing coupl
constantsl̆ and ŭ.

In order to find out which combinations of coupling co
stants result in stable minima ofGSphere( r̆ ) we choose typical
values for the coupling constants:l̆560.1 andŭ560.1.
The resulting functionsGSphere( r̆ ;l̆560.1,ŭ560.1) are
plotted in Fig. 10. Here the dashed line showsGSphere( r̆ ) for
the V1V ln V–truncation. The solid line corresponds to t
function

GSphere~ r̆ !5
1

16p
@212s4r̆ 212s4l̆ r̆ 41s4

2w̆r̆ 8# ~4.3!

which, in the same way as above, follows from t
V1V2–truncation~1.2!.
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Figure 10 shows that the functionsGSphere( r̆ ) for the
V1V ln V– andV1V2–truncations possess the same qua
tative properties. They lead to the same structure of min
and the same asymptotic behavior. Only the effective acti
with ŭ.0,w̆.0 yield a stable minimum and are bounde
below. Somewhat counterintuitively,decreasinga negative
l̆, i.e. increasing ul̆u, generically results in the minimum
being located atlarger valuesr̆ . Comparing the location of
the minimum for the two truncations we see that t
V1V ln V–ansatz leads to much larger valuesr̆ min than the
V1V2–ansatz.

Considering the lower diagrams in Fig. 10 we find that,
the region with negative valuesŭ and w̆, GSphere( r̆ ) is un-
bounded below. The action can be lowered to arbitrarily l
negative values by increasingr̆ . However, the correspondin
‘‘minimum’’ r̆→` is not a stationary point ofGSphere. The
only critical point in the regionŭ,w̆,0 arises for negative
values l̆,0 and is not shown in the diagrams. F
ŭ,w̆,l̆,0, GSphere( r̆ ) assumes a maximum at a finite valu
r̆ .0. The resulting critical point then corresponds to an u
stable solution of the equations of motion.

In the following discussion we will therefore limit ou
investigations to the region of coupling constant space wh
stable minima of GSphere( r̆ ) exist. In the case of the
V1V ln V–truncation this corresponds toŭ.0. The proper-
ties of the scale dependent solutions arising from this an
will be discussed in the next subsection. The analogous
sults for theV1V2–truncation withw̆.0 are summarized in
the Appendix.
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M. REUTER AND F. SAUERESSIG PHYSICAL REVIEW D66, 125001 ~2002!
B. Switching on the RG running

Let us now proceed and study thek dependence of the
position of the stable minimum,r̆ min . Inserting thek depen-
dent coupling constantsl̆[l̆(y) andŭ[ŭ(y) into Eq. ~1.9!
leads to the following equation for the scale dependent m
mum r̆ min[r̆min(y):

ŭ~y! r̆ min
2 ~y!1ŭ~y! r̆ min

2 ~y!ln@s4r̆ min
4 ~y!#

12l̆~y! r̆ min
2 ~y!2650. ~4.4!

After substituting a trajectoryy°„ŭ(y),l̆(y)… into Eq.~4.4!,
r̆ min(y) parametrizes the location of the minimum along t
particular trajectory under consideration. To simplify our n
tation we drop the subscript ‘‘min’’ fromr̆ min in the follow-
ing.

The main emphasis of our studies is on the IR value of
function r̆ (y) sincer̆ (y→0) is directly related to the cosmo
logical constant problem or, equivalently, the flatness pr
lem. It is particularly important to investigate if there a
trajectories along whichr̆ (y) gives rise to almost flat solu
tions with r̆ (0)@1. For these solutions the cosmologic
constant proper,ul̆(0)u, might well be very large, but for
solving the cosmological constant problem it is sufficie
that l̆eff'0.

In order to obtain well-defined valuesr̆ (0) we restrict the
investigations in this section to trajectories of the types
and IIa running inside the positive coupling regionŭ.0.
Choosing these trajectories then guarantees that the IR li
of ŭ(y) and l̆(y) are well defined. The restriction to th
region with ŭ.0 implies thatGSphere( r̆ ) has a stable mini-
mum.

In the previous section we found that for the trajector
considered the couplingsŭ,l̆ were bounded by their initia
values:ŭ(y),ŭ( ŷ) andl̆(y),l̆( ŷ). Using this information
in Eq. ~4.4! implies thatr̆ (y) should increase with decreasin
y:

r̆ ~y!. r̆ ~ ŷ!, ;y, ŷ

for trajectories of type Ia and IIa. ~4.5!

Stated differently, this means that the quantum fluctuati
which are taken into account via the RG running help us
making the universe large and flat.

In order to investigate this mechanism in detail we
initial values „ŭ( ŷ),l̆( ŷ)… in the region ŭ( ŷ).0,
2l̆( ŷ)1ŭ( ŷ)< ŷ, at ŷ51, resulting in trajectories of the
types Ia and IIa. We use the flow equation~3.13! to find the
IR valuesŭ(0) andl̆(0) which arise from these initial val
ues. By substituting the couplings at the Planck sc
„l̆( ŷ),ŭ( ŷ)…, and in the IR,„ŭ(0),l̆(0)…, into Eq. ~4.4! we
then determine the initial radiusr̆ ( ŷ) and the evolved radius
r̆ (0) in dependence ofŭ( ŷ) and l̆( ŷ).
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The resulting radii r̆ „y5 ŷ;ŭ( ŷ),l̆( ŷ)… and

r̆ „y50;ŭ( ŷ),l̆( ŷ)… are shown in Fig. 11.@Note that Fig. 11

displays the decadic logarithm ofr̆ (y). The label ‘‘x’’ at the

vertical axis denotes the valuer̆ (y)510x.]
The first diagram of Fig. 11 shows the numerical values

r̆ „ŷ;ŭ( ŷ),l̆( ŷ)…, the radius determined from the Planck sca
parameters. The missing shaded squares correspond to i

conditions in the region 2l̆( ŷ)1ŭ( ŷ)> ŷ which do not give
rise to well-defined RG trajectories. The first diagram in

cates that generic initial data„ŭ( ŷ),l̆( ŷ)… lead to

r̆ ( ŷ)'O(1), i.e. a radius of the order of the Planck lengt

The only exception is the region withl̆( ŷ),0 and ŭ( ŷ)

!1 where we find valuesr̆ ( ŷ)@1.
We then switch on the running of the coupling consta

and consider the ‘‘renormalized’’ valuesr̆ „y50;l̆( ŷ),ŭ( ŷ)…
which are shown in the second diagram of Fig. 11. The
portant result is that including the effect of the RG flo

results in a considerable extension of the„ŭ( ŷ),l̆( ŷ)… region

in which large radii,r̆ (0)@1, occur. In particular we see tha

this region now also extends tol̆( ŷ).0. The most impor-
tant property of this diagram is that there exists an exten

domain of initial data„ŭ( ŷ),l̆( ŷ)… which result in large

nearly flat space-times withr̆ (0)*1020, say.

The regionl̆( ŷ),0.5,0,ŭ( ŷ),0.005 in whichr̆ (0) is
particularly large is displayed in detail in the third diagram
Fig. 11.

This diagram shows that there exists a 2-dimensional
gion of initial values„ŭ( ŷ),l̆( ŷ)…, indicated by the flat top,
whose trajectories give rise to ‘‘macroscopic’’ rad
r̆ (0)*10125, i.e. r (0)*10125,Pl . Since these macroscopi
radii occur for an extended domain of initial data, there is
need to fine-tune initial conditions in order to obta
r̆ (0)*10125. The only requirement in this case is that th
initial value of ūk is at least 3 orders of magnitude small
thanmPl

2 . Moreover,ŭ( ŷ) may be arbitrarily small: all initial

values 0,ŭ( ŷ),1023 result in a radiusr̆ (0).10125.
The third diagram of Fig. 11 further shows that the regi

in coupling constant space where these macroscopic r
occur isnot located close to the boundary 2l̆(y)1ŭ(y)5y
where the use of our truncation could be problematic.

Even though the Euclidean space-timesS4 considered
here cannot be compared directly to the Robertson-Wa
space-times of Lorentzian signature which are relevan
cosmology it is nevertheless plausible to compare the
pertinent length scales. Loosely speaking, the radius of
S4 is analogous to the Hubble radiusr H in the Robertson-
Walker case. If we recall that in the present univer
r H'1060,Pl it is clear that values as large asr̆ (0)'10125 or
r'10125,Pl are by far sufficient for a dynamical solution o
the cosmological constant problem on the basis of the ‘‘R
improved Taylor-Veneziano mechanism.’’

In order to understand the appearance of the macrosc
radii analytically, we return to Eq.~4.4!. For the large values
1-18
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FIG. 11. Dependence ofr̆ „y5 ŷ,ŭ( ŷ),l̆( ŷ)… and r̆ „y50,ŭ( ŷ),l̆( ŷ)… on the initial values„ŭ( ŷ),l̆( ŷ)… given at ŷ51. The functions

r̆ (y51) and r̆ (y50) are shown in the first and second diagram, respectively. The third diagram shows the region of initial

„ŭ( ŷ),l̆( ŷ)… which result in particularly large radiir̆ (0).1020.
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of r̆ found in Fig. 11 we can neglect the ‘‘26’’ there. The
resulting equation can easily be solved forr̆ :

r̆ 5~s4!21/4expF2
l̆

2ŭ
2

1

4G , ~ r̆ @1!. ~4.6!

Obviously there is an exponential correlation between
coupling constantsŭ,l̆ and the radiusr̆ . Hence a small
change inŭ,l̆ will have an exponentially large effect onr̆ .
Equation~4.6! implies that in order to obtainr̆ (0)'10125 it
is sufficient that ul̆(0)/ŭ(0)u'250 with l̆(0)/ŭ(0),0.
SinceGSphere(r ) possesses a stable minimum for positive v
ues ŭ.0 only, this leads to the condition that in order
make this mechanism workl̆(0) has to be negative. Hence
the trajectories of type Ia are the natural candidates for
taining large spherical solutions withr̆ (0)@1.

To investigate they dependence ofr̆ (y) along a typical
trajectory of type Ia we choose the trajectory arising from
initial conditions l̆( ŷ)50.3 andŭ( ŷ)50.0002. The trajec-
tory as well as the functionsr̆ (y), log10„r̆ (y)…, and the expo-
nent appearing in Eq.~4.6! are shown in Fig. 12.
12500
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Here we see that for largey values wherel̆(y) is positive
the radiusr̆ (y) is almost constant and of order 1. The arg
ment of the exponential in Eq.~4.6! is negative in this case
The approximation~4.6! would lead to valuesr̆ !1. It is
certainly not applicable in this regime since the exact n
merical solution of Eq.~4.4! shows thatr̆ (y)'1.

Lowering y, the behavior changes whenl̆(y) turns nega-
tive. In this case the argument of the exponential in Eq.~4.6!
turns positive and we find thatr̆ (y) grows rapidly assuming
a macroscopic valuer̆ (y)@1.

In the IR regiony&0.01 both l̆(y) and ŭ(y) take on
constant values. As a result,r̆ (y) ‘‘freezes out’’ and keeps its
macroscopic value.

Taking the trajectory from Fig. 12 as an example we fi
a typical ‘‘magnification factor’’ of

r ~k50!

r ~k5 k̂!
'10138. ~4.7!

This huge number indicates that the RG running is of cruc
importance for the actual size of the universe.
1-19
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FIG. 12. The functionsl̆(y),ŭ(y), r̆ (y) of a typical trajectory of type Ia, starting from initial conditionsŭ( ŷ)50.0002 and

l̆( ŷ)50.3. In the region wherel̆(y).0 the radiusr̆ (y) is approximately constant and of order 1.l̆(y) becoming negative induces a ‘‘phas

transition’’ or ‘‘inflation’’ in the sense thatr̆ (y) increases rapidly towards a macroscopic valuer̆ (y).10125. In the IR region (y,0.01), r̆ (y),
is constant again.
l
e.

ire

er

nt

o
ic

an-
the

cted

of

e

the
ec.

’
.
on-
In summary we find that the transition fromr̆ (y)'O(1)
to very large radiir̆ (y)@1 is induced by the cosmologica
constant proper,l̆(y), crossing zero and turning negativ
On the other hand, looking at Eq.~1.8! it is clear that the
effectivecosmological constant is positive along the ent
trajectory. In the region wherel̆(y).0 the small radii
r̆ (y)'O(1) correspond toleff(y)'mPl

2 . At low scales,l̆(y)
turning negative induces a ‘‘quenching’’ ofleff so that, in the
IR region, the effective cosmological constant takes on v
small positive values,leff(y)!mPl

2 .
Thus we find that including the nonlocal invaria

V ln(V/V0) with a small couplingŭ( ŷ) into the effective ac-
tion indeed results in a tiny, positive IR value ofleff at the
end point of any type Ia trajectory. While the quenching
leff due to the nonlocal invariant takes place at the class
level already, the inclusion of the RG running leads to
12500
y

f
al
a

tremendous amplification of this effect. Taking these qu
tum effects into account, the same initial data specified at
Planck scale lead to by far larger universes than expe
classically.

V. THE MODIFIED GAUSSIAN FIXED POINT

We now return to the partial differential equation~2.30!
which describes the scale dependence
f k(q)[kd22Fk(Vkd),q[Vkd. Using this equation for the
full nonlinear functionf k we shall study the properties of th
modified Gaussian fixed point~MGFP! in the now infinite
dimensional truncation subspace. Thereby we generalize
methods used to investigate the fixed point properties in S
III A to the infinite dimensional setting of ‘‘fixed functions.’

In order to remove any explicitk dependence from Eq
~2.30! we have to introduce the dimensionless Newton c
1-20
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stantg(k)[Gkd22 satisfying the trivial equation] tg5(d22)g sinceG is assumed constant. This leads to the followi
autonomous system of equations:

] tg5bg~g, f !, ] t f k~q!5bf~g, f !. ~5.1!

The b functions are

bg~g, f !5~d22!g ~5.2!

bf~g, f !52$~22d! f k~q!1dq f k8~q!%18pGH ~4p!2d/2qS d~d11!

2
Fd/2

1 @22 f k8~q!#22dFd/2
1 ~0! D

2
1

122 f k8~q!
1

1

122 f k8~q!2
2d

d22
f k9~q!qJ . ~5.3!
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~The prime denotes a derivative with respect toq.!
The fixed point condition for these evolution equation

bg(g* , f * )50,bf(g* , f * )50, only admits the trivial solu-
tion g* 50 which corresponds to the MGFP. Substituti
g5g* 50 into bf(g* , f * )50 we find the following simple
condition for the vanishing of the secondb function:

~22d! f * ~q!1dq f * 8~q!50. ~5.4!

This equation is easily integrated. We find that the fixed po
is characterized byg* 50 together with

f * ~q!5cq (d22)/d. ~5.5!

Here c denotes an arbitrary constant of integration wh
actually parametrizes a one-parameter family of fixed poi

Specializing tod54 dimensions Eq.~5.5! reads

f * ~q!5cAq. ~5.6!

On the level of the dimensionful functionFk this result cor-
responds to

F* 5cAV5cS E d4xAgD 1/2

. ~5.7!

At the fixed point,Gk@g# has the somewhat peculiar form

G* @g#5
1

16pGE d4xAg~2R!

1
c

8pG S E d4xAgD 1/2

. ~5.8!

Herec acts as ana priori undetermined coupling constant o
zero canonical dimension which multiplies the dimensionl
AV/G. We observe that the cosmological constant vanis
at G* .
12500
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The fixed points~5.8! are scale invariant in the sense th
the associated modified Einstein equation does not con
any dimensionful coupling constant:7

Rmn2
1

2
gmnR52

1

2

c

AV@g#
gmn . ~5.9!

As a consequence, Eq.~5.9! cannot fix the ‘‘size’’ of the
universe. If we insert a 4-sphere, for example, its rad
drops out, and one finds that spheres of any radius are s
tions to Eq.~5.9! provided that the parameterc assumes the
special valuec512pA2/3.

Note that trajectories starting without a nonlocal ‘‘seed
i.e. with f k(q)}q, cannot be in the basin of attraction of th
AV-fixed points because the flow~2.32! preserves the form
f k(q)}q.

Let us now investigate the stability properties of the fix
point ~5.5!. We linearize g5g* 1dg5dg and
f k(q)5 f * (q)1d f k(q), and make the following ansatz fo
the small perturbations:

dg5e exp~2ut !yg , d f k~q!5e exp~2ut !Y~q!.
~5.10!

Here e is an infinitesimal parameter, andu will be the sta-
bility coefficient ~critical exponent! associated with the scal
ing field „yg ,Y(q)…. @Recall that u is defined such tha
u,0 corresponds to eigendirections which are attractive
the IR, i.e. fort5 ln(k/k̂)→2`, while directions withu.0
are IR repulsive.# The infinite dimensional stability matrix o
the MGFP has the structure

7But we do not rule out the possibility of a dynamical generati
of a mass scale by dimensional transmutation.
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BMGFP5F ]bg

]g

]bg

]e U
e50

]bf

]g

]bf

]e U
e50

G
MGFP

. ~5.11!

Its eigenvectors are infinite ‘‘columns’’„yg ,Y(q)…T. Be-
causebg is independent off and ofe therefore,BMGFP is a
lower triangular matrix:

BMGFP5F ~d22! 0

]bf

]g

]bf

]e U
e50

G
MGFP

. ~5.12!

For the stability coefficientu522d there is an obvious ei
genvector withygÞ0 and an accompanyingY(q)Þ0. In
terms of the rescaled functionX(q)[Y(q)/yg , the form of
Y(q) can be determined by solving the following differenti
equation:
e

a
in
n-

ny

n

f
th

12500
dq
d

dq
X~q!5

]bf

]g U
MGFP

. ~5.13!

In d54, and forcÞ0, ]bf /]guMGFP is given by

]bf

]g U
MGFP

58p1O~Aq!. ~5.14!

Substituting this result, Eq.~5.13! is easily integrated and
yields

X~q!52p ln~q!1const1O~Aq!. ~5.15!

The O(Aq) terms are regular and vanish in the IR (k→0)
where, forV fixed, q5Vk4→0. We now use this result to
write down the trajectoryGk5G* 1dGk due to the eigenvec
tor „yg ,Y(q)…T. We make the assumption that it approx
mates a trajectory of the full nonlinear system which g
close to the MGFPin the infrared, i.e. for k→0. Expanding
for small k, dGk is given by
dGk5
e8k̂22

16pG2 H16pG ln~k!1E d4xAgR22cAV14pG ln~V!1const1terms vanishing fork→0J . ~5.16!
ling
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Here e8[eyg , and k̂ is the fixed reference scale from th
definition of the renormalization group timet[ ln(k/k̂). Re-
markably, apart from a field independent term which we c
ignore, all terms indGk either remain constant or vanish
the IR limit k→0. Hence, at the level of dimensionful qua
tities, the eigendirection corresponding tou522d is not
repulsive.

The eigenvectors of the matrixBMGFP with uÞ22d are
of the form (0,Y)T. In this case the functionY is determined
by the entry

]bf

]e U
e50

[
]

]e
bf„g50,f * ~q!1eY~q!…U

e50

. ~5.17!

The functionY has to satisfy

H dq
]

]q
1~22d!J Y~q!5uY~q!. ~5.18!

This differential equation has a solution for every realu:

Y~q!5cuq (d221u)/d[Yu~q!. ~5.19!

This result is rather unusual, both because the spectrum
BMGFP is continuousand because there are infinitely ma
relevant and irrelevant eigenvectors.~In conventional field
theories the spectrum is discrete typically and there are o
a few relevant directions.! While it is true that there are
infinitely many repulsive directions in the ‘‘theory space’’ o
dimensionless couplings one should bear in mind that
n

of

ly

e

relation between dimensionless and dimensionful coup
constants involves explicit powers ofk. In order to obtain the
trajectoryGk5G* 1dGk corresponding to a specific eigend
rection one has to combine those explicit powers ofk with
the factor exp(2ut)5(k̂/k)u coming from Eq.~5.10!. It is
quite remarkable that in the case at hand all factors ok
cancel precisely so thatdGk actually does not depend onk.

In four dimensions the eigenvectors a
Yu(q)5cu q (21u)/4. Reintroducing dimensionful variable
this becomes at the level ofGk ,

dGk@g#5
1

8pG
ecuk̂uV(21u)/4. ~5.20!

Obviously the RHS of Eq.~5.20! is completely independen
of k. Thus, at the linearized level, the perturbations~5.20!
neither grow nor decay, and their actual stability propert
can be inferred from the higher orders ine only.

Combining Eqs.~5.16! and ~5.20! we can say that there
exists no linearized trajectoryG* 1dGk which, for k→0, is
repelled by the MGFP. While this ‘‘taming’’ of the IR behav
ior due to theAV-fixed point is not yet a solution to the
cosmological constant problem, it represents signific
progress compared to the usual situation where thel̄k direc-
tion at the GFP is strongly repulsive. According to Eq.~3.9!,
the dimensionful cosmological constant runs proportiona
k4 near the GFP; the analogous perturbation of theAV-fixed
point is completely independent ofk, however. @See Eq.
~5.20! for u52.#
1-22
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A CLASS OF NONLOCAL TRUNCATIONS IN QUANTUM . . . PHYSICAL REVIEW D66, 125001 ~2002!
An investigation of the nonlinear stability properties
the NGFP and the determination of its basin of attract
would require solving the nonlinear partial differential equ
tion ~5.1! which is beyond the scope of the present pap
Instead we shall study a simplified 2-dimensional flow in t
next section.

VI. THE V¿AV –TRUNCATION

In the previous section we found thatG* @g# contains an
invariant proportional toAV. Motivated by this result we
now analyze a 2-dimensional truncation ofGk which in-
cludes this structure. We investigate the RG flow arising
the ‘‘V1AV–truncation’’

Gk@g;ḡ#5
1

16pGE ddxAg~2R12l̄k!

1
1

8pG
ȳkAV1classical gauge fixing.~6.1!

This ansatz forGk contains a running cosmological consta
l̄k and the coupling of theAV term, ȳk .

A. Projecting the flow equation

In order to derive the flow equation for the running co
plings l̄k andȳk we make use of the partial differential equ
tion ~2.28! which describes the RG behavior of a gene
nonlinear functionFk(V). Comparing Eq.~6.1! to the ansatz
12500
n
-
r.

n

t

l

including theFk-term in Eq.~2.5!, we find that theV1AV
truncation corresponds to choosing

Fk~Vkd!5 ȳkAV1l̄kV

5 ȳkk
2d/2Aq1l̄kk

2dq5Fk~q!. ~6.2!

Substituting this ansatz into Eq.~2.28!, its LHS becomes

1

8pG
~] tȳkAV1] tl̄kV!. ~6.3!

In order to determine the flow equation forl̄k and ȳk it
therefore suffices to determine the coefficients of the te
proportional toAV and V appearing on the RHS of Eq
~2.28!.

Calculating the first and second derivative ofFk(q) with
respect to its argument,

F k8~q!5
ȳkk

2d/2

2Aq
1l̄kk

2d, F k9~q!52
ȳkk

2d/2

4q3/2
,

~6.4!

we see that, unlike in the case of theV1V ln V– and
V1V2–truncation, these expressions contain inverse pow
V. As we will see shortly, it is due to this new feature that t
V1AV–truncation doesnot give rise to a boundary singular
ity at l51/2.

Substituting the derivatives~5.24!, the RHS of Eq.~2.28!
yields
~4p!2d/2kdVH d~d11!

2
Fd/2

1 S 2
2l̄k

k2
2

ȳk

k2AV
D 22dFd/2

1 ~0! J 2
AV

2 ȳkk
221AV~122l̄kk

22!

1
AV

42d

2~d22!
ȳkk

221AV~122l̄kk
22!

. ~6.5!

To determine the terms proportional toAV andV we expand this expression in a power series inAV at V50. Let us briefly
comment on this expansion. We begin with the caseȳkÞ0. Using the definition ofFn

p(w) in Eq. ~2.25! we find

Fd/2
1 S 2

2l̄k

k2
2

ȳk

k2AV
D 5

1

G~d/2!
E

0

`

dzzd/221
R(0)~z!2zR(0)8~z!

Fz1R(0)~z!2
2l̄k

k2
2

ȳk

k2AV
G

5AV
1

G~d/2!
E

0

`

dzzd/221
R(0)~z!2zR(0)8~z!

FAVS z1R(0)~z!2
2l̄k

k2 D 2 ȳkk
22G

5 c̃
k2

ȳk

AV1higher powers ofAV. ~6.6!
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Here c̃ denotes a finite constant that depends on the part
lar choice ofR(0)(z). We see that the leading term in th
expansion ofFd/2

1 @2(2l̄k /k2)2( ȳk /k2AV)# is of orderAV.
When inserted into Eq.~6.5! it produces only a term}V3/2

outside our truncation subspace and therefore does not
tribute to the flow equation. The expansion of the penu
mate term in Eq.~6.5! is straightforward and yields

AV

ȳkk
222AV~122l̄kk

22!

5
k2

ȳk

AV1
k4

ȳk
2 ~122l̄kk

22!V1O~AV3!. ~6.7!

Expanding the last term in Eq.~6.5! we need to distinguish
the casesd54 anddÞ4. In d54 dimensions the term be
comes independent ofV and lies outside the truncation su
space. FordÞ4 the expansion yields

AV

42d

2~d22!

ȳk

k2
1AVS 122

l̄k

k2D
5

2~d22!k2

~42d!ȳk

AV2
4~d22!2k4

~42d!2ȳk
2 S 122

l̄k

k2D V

1O~AV3!, for dÞ4. ~6.8!

Introducing the dimension-dependent coefficients

c1~d!5H 1 for d54

d

42d
for dÞ4,

c2~d!5H 1 for d54

d~823d!

~42d!2
for dÞ4

~6.9!

the RHS of Eq.~2.28! takes on the following form:

c1~d!
k2

ȳk

AV

1H 22d~4p!2d/2kdFd/2
1 ~0!1c2~d!

k2

ȳk
2 ~k222l̄k!J V

1terms outside the truncation subspace. ~6.10!

Comparing the coefficients ofAV and V in Eqs. ~6.3! and
~6.10! then yields the flow equation forl̄k and ȳk :

] tȳk58pGc1~d!
k2

ȳk
12500
u-

n-
-

] tl̄k58pGH 22d~4p!2d/2kdFd/2
1 ~0!

1c2~d!
k2

ȳk
2 ~k222l̄k!J . ~6.11!

It is important to note that the above derivation is valid on
if ȳkÞ0. If ȳk50 for some value ofk, the expansions~6.6!,
~6.7!, and ~6.8! break down, and theV dependence of Eq
~6.5! changes abruptly. As a consequence,ȳk will continue to
vanish at all lower scales, and the evolution ofl̄k is gov-
erned by the decoupled equation8

] tl̄k5~4p!12d/2Gkd@d~d11!Fd/2
1 ~22l̄k /k2!

24dFd/2
1 ~0!#. ~6.12!

The abrupt change of theV dependence atȳk50 suggests
already that theV1AV–truncation is probably not very re
liable for small values ofu ȳku, and that the flow tends to
create additional invariants different fromAV. In fact, we are
actually interested in RG trajectories describing univer
which become large in the IR (V→`) and which have smal
nonlocalities. Under these conditionsFd/2

1
„2(2l̄k /k2)

2( ȳk /k2AV)… equals approximatelyFd/2
1 (22l̄k /k2) which

is independent ofV. It appears to be of orderAV only if we
choose a basis ofFk’s consisting of powers ofAV and
project on it atȳÞ0.

The parameter space of theV1AV–truncation is thel̄-ȳ
plane with theȳ50 line removed. According to the secon
equation of Eq.~6.11! the b function of l̄k diverges on this
line. Interestingly enough, there is no boundary singularity
l51/2.

B. The solution of the flow equation

We now solve the system of differential equations~6.11!
analytically. We see that the flow equation ofȳk is indepen-
dent of l̄k and therefore decouples. Using] t5k(]/]k) it is
easily integrated and yields

ȳk56Aȳ k̂
2
28pGc1~d!~ k̂22k2!. ~6.13!

As usualk̂ is the scale where we impose the initial value,ȳ k̂ .
Later on we shall setk̂5mPl . Next we substitute Eq.~6.13!
into the flow equation for the cosmological constant:

8For d54, this equation has been studied extensively in@5#,
where it has been obtained by switching off the running ofGk in the
b functions derived in the Einstein-Hilbert truncation.
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FIG. 13. Graphical illustration ofy̆(y) given by Eq.~6.17! with selected positive and negative initial valuesy̆( ŷ) in the left and right

diagram, respectively. The trajectories of class II starting withu y̆( ŷ)u>u y̆( ŷ)critu can be continued toy50. Those of class I with

u y̆( ŷ)u,u y̆( ŷ)critu run into the singularity aty̆50 and terminate at finite valuesyterm.0. The bold line indicates the trajectory separating t
trajectories of class I and II.
lly.
n.
It
the
k
]

]k
l̄k58pGF22d~4p!2d/2kdFd/2

1 ~0!

1
c2~d!k2~k222l̄k!

ȳ k̂
2
28pGc1~d!~ k̂22k2!

G . ~6.14!
l
e
he
Th

12500
This differential equation can also be integrated analytica
For generald it leads to a rather complicated expressio
Settingd54 the general solution simplifies considerably.
consists of two branches distinguished by the sign of
square root in Eq.~6.13!:
ȳk56Aȳ k̂
2
28pG~ k̂22k2!

l̄k52
8G2F2

1~0!~2k61 k̂623k̂2k4!16G~ k̂42k4!23l̄ k̂ȳ k̂
2

3@ ȳ k̂
2
28pG~ k̂22k2!#

. ~6.15!

This result gives a complete description of the RG flow of theV1AV–truncation in 4 dimensions.l̄ k̂ and ȳ k̂ are the initial
values ofȳk and l̄k specified at the scalek̂. The relevant branch is determined by the sign ofȳ k̂ .

In order to illustrate the properties of the solution~6.15! we introduce the following ‘‘mPl–scaled’’ quantities:

y̆~y![ȳk , l̆~y![
l̄k

mPl
2

, y[ k̆25
k2

mPl
2

. ~6.16!

In terms of these couplings Eq.~6.15! read

y̆~y!56Ay̆~ ŷ51!228p~12y! ~6.17!

l̆~y!52
8F2

1~0!~2y323y211!16~12y2!23l̆~ ŷ51!y̆~ ŷ51!2

3@ y̆~ ŷ51!228p~12y!#
. ~6.18!
s I.
Here we have identified the initial scale withmPl by setting

ŷ5 k̂2/mPl
2 51.

Figure 13 visualizes the RG flow ofy̆(y) for various posi-
tive and negative initial valuesy̆( ŷ). Here we see that for al
trajectories u y̆(y)u is bounded above by its initial valu
u y̆( ŷ)u. Figure 13 further shows that the trajectories of t
V1AV–truncation can be separated into two classes.
ones starting below a critical value,u y̆( ŷ)u,u y̆( ŷ)critu
e

[A8p ŷ, run into the singularity aty̆50 and terminate at

yterm5 ŷ2
y̆ ŷ

2

8p
. ~6.19!

These trajectories will be labeled as trajectories of clas
The trajectories starting with initial valuesu y̆( ŷ)u>u y̆( ŷ)critu
can all be continued down toy50. These will be labeled as
1-25
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trajectories of class II. Depending on their initial valuey̆( ŷ)
these trajectories can end at any IR valuey̆(0).

Let us now discuss the RG evolution of the cosmologi
constant. Figure 14 showsl̆(y) along typical trajectories o
class I, starting withy̆( ŷ)54 and various positive and nega
tive initial valuesl̆( ŷ). Here we find that, as the trajectorie
approachyterm where y̆(yterm)50, the values ofl̆(y) di-
verge. This divergence causes the termination of the tra
tory at the finite scaleyterm becauseul̆(yterm)u5` does not
allow us to continue the evolution ofl̄k with Eq. ~6.12!.

Figure 15 shows a typical set of trajectories of class
starting with u y̆( ŷ)u.u y̆( ŷ)critu. In the plot we have chose
u y̆( ŷ)u56 and various positive and negative initial valu
l̆( ŷ51). Figure 15 illustrates that all trajectories of th
class can be continued down toy50. The important new
feature found here is that, depending on the initial va
l̆( ŷ) of the trajectory, we find negative, zero, as well
positive IR values for the cosmological constant.

Probably the terminating class I trajectories are not

FIG. 14. Graphical illustration ofl̆(y) for typical class I trajec-

tories, starting fromy̆( ŷ)54 and various positive and negative va

ues l̆( ŷ). At y5yterm, l̆(y) diverges independently of the initia

value l̆( ŷ), causing the termination of the RG trajectory at a fin
yterm.0.

FIG. 15. Graphical illustration ofl̆(y) given by Eq.~6.18! for

typical class II trajectories, starting fromy̆( ŷ)56 and various posi-

tive and negative valuesl̆( ŷ). All trajectories can be continued t

y50. Depending on the initial valuel̆( ŷ) they yield positive, van-

ishing or negative IR valuesl̆(0). There is no boundary singularit
preventing the trajectories from reaching positive IR valu

l̆(0).0.
12500
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scribed reliably by the truncation, at least not close toyterm

wherey̆ approaches zero. On the other hand, the trajecto
of class II which stay away from the problematic neighbo
hood of y̆50 have a chance of being realistic. Th
V1AV–truncation is interesting from the point of view tha
contrary to the other 2-parameter truncations, it has no pr
lems in producing positive renormalized cosmological co
stantsl̆(0).

The fixed points~5.8! are characterized by a vanishin
cosmological constant and an arbitrary~nonzero! prefactor of
V1/2. Since, in theV1AV–truncation,l̆(0) can have any
value it is obvious that in this truncation the trajectories a
not attracted towards the projection of the MGFP onto
truncation subspace. We do not know whether this reflec
genuine property of the MGFP, or whether it is due to o
2-dimensional approximation ofFk space.

VII. DISCUSSION AND CONCLUSIONS

In this paper we used the exact RG equation of quan
Einstein gravity@3# in order to study the scale dependence
nonlocal effective actions of the formFk(V) whereV is the
Euclidean space-time volume. Such investigations are b
interesting in their own right and they are important for
understanding of quantum gravity at large distances. On
the physical motivations of the present work is the conject
that strong IR quantum effects might provide a solution
the cosmological constant problem. The Einstein-Hilb
truncation is too simple, however, to encapsulate such
fects; in order to obtain a small value of the renormaliz
cosmological constant one has to fine-tune the initial poin
the RG trajectory to be extremely close to the separatrix

In Sec. III we presented a detailed investigation of the R
flow for an Fk of the formV1V ln V, and in the Appendix
we performed a similar analysis forV1V2. These specific
choices were motivated by the fact that these actions
been discussed before in the context of wormhole phys
Nevertheless our investigation has nothing to do with wor
holes directly; it is supposed to apply at length scales m
larger than the wormhole size where an effective descrip
is possible@27,26,25#. The wormholes might be needed
provide the ‘‘seeds’’ of the nonlocalities, though.

The classification of the RG trajectories resulting from t
new nonlocal invariants leads to almost the same classe
trajectories as in the Einstein-Hilbert truncation. We a
found that theV ln(V/V0) and V2 terms in general do no
prevent the termination of the trajectories of type IIIa in t
boundary singularity. A new feature in the RG flow are t
trajectories of type VIa which appeared in the case of
V1V ln V-truncation. They yield apositive value of the
renormalized cosmological constantl̄0 which could not hap-
pen in the Einstein-Hilbert truncation. The existence of the
trajectories is due to a modification of the boundary sing
larity where, in the case of theV1V ln V–truncation, posi-
tive values ofl̄0 can be compensated by a negative coupl
ū.

A rather impressive and potentially very important pro
s
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A CLASS OF NONLOCAL TRUNCATIONS IN QUANTUM . . . PHYSICAL REVIEW D66, 125001 ~2002!
erty of the nonlocal actions becomes obvious if one looks
their ~maximally symmetric! stationary points. We consid
eredS4-type solutions of the modified Einstein equations a
determined their radius as a function of the parameter
Gk . It is remarkable that there exist solutions whose cur

ture is not, as usual, proportional tol̄ but rather is the
smaller thelarger the absolute value of the~proper! cosmo-

logical constantl̄ is.

We used our results for the running ofl̄k and the nonlo-
cality parameters in order to determine the impact the le
ing renormalization effects have on the radius. In the cas
the V ln V–truncation we found that by including the R
evolution of the parameters betweenk5mPl and k50, the
S4 resulting from generic Planck-size initial values~fixed at
k5mPl) has a radius which is many orders of magnitu
larger than it would be classically. This ‘‘inflation’’ due to th
RG running of the couplings helps in understanding h
Planck-size bare parameters in an effective action valid
k5mPl can give rise to large and almost flat universes.

Our most important results concerning this mechan
are displayed in Figs. 11 and 12. They show that an arbit
trajectory of type Ia with a negativel̄0 of the order ofmPl

2

leads to macroscopicS4 solutions if a small coupling con
stant 0,ū<1023mPl

2 is included. From these solutions w
obtain a very tiny, positive IR value of theeffectivecosmo-
logical constant which could be in agreement with the
perimental bounds. It is this effective cosmological const
which is responsible for the curvature of space-time. Sinc
is extremely small for an entire class of trajectories, t
mechanism does not need a fine-tuning of the initial con
tions. Hence this ‘‘RG improved Taylor-Veneziano mech
nism’’ provides a very promising approach to explain a sm
positive cosmological constant in a natural way.

We found that the ‘‘inflation’’ of Planck length universe
to a macroscopic size is not a general property of allFk(V)
truncations. While the qualitative features of theV1V ln V-
and theV1V2–truncations are quite similar, the ‘‘magnifi
cation factor’’ r (k50)/r (k5mPl) one can achieve with the
latter is not much larger than unity.

Another scenario one could think of and which al
would solve the fine-tuning problem of the cosmologic
constant is to assume that, in the IR,Gk is attracted by a fixed
point G* which allows the space-time to become~almost!
flat. Even within our simple class of truncations we found
first hint showing that a mechanism of this sort is inde
possible in principle. We saw that in this truncation subsp
the RG flow has a line of fixed points of the typ
*d4xAgR1cV1/2. The associated modified Einstein equ
tions are scale invariant and the curvature of their soluti
is completely unrelated to the parameters in the bare ac

Motivated by the structure of the modified GFP with
characteristicAV–dependence we determined in Sec. VI t
2-dimensional RG flow of theV1AV–truncation. It does no
suffer from the notorious boundary singularity atl51/2 and
has no problems in achieving positive renormalized cosm
logical constants.

While these results are already very encouraging it
12500
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clear that they cannot yet be used in order to construct r
istic cosmologies. The invariantsFk(V) make sense only for
Euclidean space-times and not for the Lorentzian ones of
Robertson-Walker type, say.9 In the future one of the main
tasks will be to extend the RG analysis to nonlocal invaria
which have a Lorentzian interpretation, and then to che
whether the resulting modifications of general relativity a
cosmology are consistent with the experimental data. T
includes questions of causality, and in particular the need
making the nonlocal effects at large distances compat
with the experimental bounds. The general framework of
effective average action and its RG equation should w
also in the Lorentzian case, albeit applied to a different ty
of ‘‘theory space’’@3#. The crucial question is whether in th
full, infinite dimensional theory space of Lorentzian gravi
there exist RG trajectories which solve the cosmologi
constant problem along the lines discussed in this paper
at the same time, do not give rise to unacceptably large
lations of locality and causality at the~laboratory, solar sys-
tem, •••) scales where they are known to be absent or
least undetectably small. For the time being we cannot
answer this question. Without having a realistic Lorentz
RG trajectory at our disposal it is very difficult to develop a
intuitive understanding of the macroscopic quantum effe
characterizing the vacuum of quantum gravity between
scales of centimeters and Megaparsecs, say. As for its t
nical complexity and its intrinsically nonperturbative natu
the problem can perhaps be compared to the strong quan
effects in the infrared of QCD which are at the heart of co
confinement, for instance. Clearly much more work
needed in order to construct realistic cosmologies driven
IR renormalization effects. We showed that at least in pr
ciple such effects are contained in the gravitational RG eq
tion and that they might help us in solving some of the pro
lems of standard cosmology. There is certainly noa priori
reason why such effects could not be embedded in a p
nomenologically viable scenario.
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APPENDIX: THE V¿V2–TRUNCATION

In this appendix we compare theV1V2–truncation to the
V1V ln V–truncation discussed in the main part of the pap
We start by stating the fixed point properties. Then we brie
summarize the properties of the RG flow found by study
the numerical solutions of the flow equation. We then de
mine the dependence of the radius ofS4–solutions on the
running coupling constants along trajectories of type Ia a
IIa. As in the case of theV1V ln V–truncation, we employ

9However, it could perhaps be possible to compare our result
simulations of Euclidean simplicial quantum gravity@41,42#.
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M. REUTER AND F. SAUERESSIG PHYSICAL REVIEW D66, 125001 ~2002!
the sharp cutoff with shape parameters51 in all calcula-
tions.

1. The Gaussian fixed point

The starting point of our investigation of th
V1V2–truncation is the differential equation~2.32!. This
equation describes the RG flow of the dimensionful coupl
constantsl̄k andw̄k associated to the invariantsV andV2 in
an effective theory of gravity below the Planck scale.

FIG. 16. Functionsw̆1(y)[0 andw̆2(y) along which the RHS

of Eq. ~A6! vanishes. The parameterl̆ is chosen asl̆50.1,0,20.1
and 20.2, respectively. These curves separate regi

w̆(y).w̆1(y), w̆1(y)>w̆(y)>w̆2(y), and w̆(y),w̆2(y), where
the RHS of Eq.~A6! is positive, negative and positive, respective

Decreasing values ofl̆ thereby lead to decreasing valuesw̆2(y).
12500
g

Introducing the dimensionless coupling consta
g(k)[kd22G, l(k)[k22l̄k and w(k)[k2(d12)w̄k we
write Eq. ~2.32! in an autonomous way,

] tg5bg~l,g,w!,

] tl5bl~l,g,w!,

] tw5bw~l,g,w!, ~A1!

where theb functions are given by

s

FIG. 17. Numerical solutions of the approximate flow equati

~A6! with l̆520.1 and various positive and negative initial valu

w̆( ŷ). The trajectories in the regionw̆( ŷ).0 are stable and yield

w̆(y),w̆( ŷ) while these starting withw̆( ŷ),0 generally become

unstable when reachingw̆(y),w̆2(y). For these trajectories we

find w̆(y)→2` at a finite valuey5yterm.0.
bg~l,g,w!5~d22!g

bl~l,g,w!522l1~4p!12d/2 g $d~d11!Fd/2
1 ~22l!24dFd/2

1 ~0!%116p
d

d22
gw

1

122l

bw~l,g,w!52~d12!w1~4p!12d/24d~d11!gwFd/2
2 ~22l!1128p

d~3d24!

~d22!2
gw2

1

~122l!3
. ~A2!

The only solution to the fixed point equationbi(g* ,l* ,w* )50 ; i P$g,l,w% is the Gaussian fixed pointg* 50,
l* 50,w* 50. From the pertinent stability matrixBi j 5] jbi , i , j P$g,l,w%, we find the following stability coefficients
~critical indices! and eigenvectors satisfyingBVI52u IV

I :

FIG. 18. Numerical solutions of the full flow equation in the regionw̆( ŷ),0, illustrated by trajectories starting withl̆( ŷ)520.1 and

various negative valuesw̆( ŷ),0. In the region w̆(y),w̆2„y,l̆(y)… all trajectories lead to diverging valuesw̆(y→yterm)→2`,

l̆(yterm)5yterm/2. The bold line in the second diagram illustrates the boundary singularityl̆5y/2.
1-28
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u1512 with V15~1,0,0!T

u252~d22! with V25„~4p!12d/2~d23!Fd/2
1 ~0!,1,0…T

u35d12 with V35~0,0,1!T. ~A3!

FIG. 19. Typical type Ia solutions of the full flow equation starting withl̆( ŷ)50.1 and various positive valuesw̆( ŷ).0. For the

trajectories starting withw̆( ŷ)50 „w̆( ŷ)50.005… we obtain the largest~smallest! IR value of the cosmological constant, i.e. apositiveinitial

valuew̆( ŷ) drives l̆(0) away from zero.
d
u-

s

pe
e
he

ns
g

p-
of

6.

,

i-

s-

s-

en
These stability coefficients and eigenvalues can be use
write down the linearized RG flow of the dimensionful co
pling constants in the vicinity of the GFP:

Gk5G

l̄k5l̄01~4p!12d/2~d23!GkdFd/2
1 ~0!

w̄k5w̄0 . ~A4!

As in the case of theV1V ln V–truncation, the coupling
constants take on constant but in general nonzero value
k→0. The numerical valuesG, l̄0 and w̄0 depend on the
RG trajectory chosen and are not determined by the pro
ties of the fixed point. Hence the GFP in th
V1V2–truncation, too, does not provide a solution to t
cosmological constant problem by achievingl̄050 auto-
matically.

2. The RG flow

Let us now illustrate the different classes of solutio
found by numerically solving the flow equation. Introducin
the dimensionless scaley[ k̆2[k2/mPl

2 and settingd54, Eq.
~2.32! takes the form

dl̆~y!

dy
5

1

2p
y$25 ln„122l̆~y!/y…1w2%

116p
w̆~y!

„y22l̆~y!…2

dw̆~y!

dy
5

10

p
y

w̆~y!

y22l̆~y!
1512p

w̆~y!2

„y22l̆~y!…3
.

~A5!
12500
to

as

r-

For the sharp cutoff withs51 the constantw2 has the value
w2[2z(3). In order to systematically investigate the pro
erties of the RG flow we first analyze the approximation

Eq. ~A5! arising from settingl̆5const. This leads to the

following decoupled flow equation forw̆(y):

dw̆~y!

dy
5

10

p
y

w̆~y!

~y22l̆ !
1512p

w̆~y!2

~y22l̆ !3
. ~A6!

Due to the quadratic nature of its RHS, Eq.~A6! gives

rise to two curvesy°w̆1(y)[0 andy°w̆2(y),0 on which

dw̆(y)/dy vanishes. We note thaty°w̆2(y) is no trajectory
arising as a solution of Eq.~A6!. For the parameters

l̆50.1, 0,20.1, and20.2 these curves are shown in Fig. 1

They divide the w̆-y plane into three regions

w̆(y).w̆1(y), w̆1(y)>w̆(y)>w̆2(y), and w̆(y),w̆2(y) in
which the RHS of Eq.~A6! is positive, negative, and pos
tive, respectively.

To illustrate the properties ofw̆(y) in these regions we
solve Eq.~A6! numerically, choosingl̆520.1 and various
positive and negative initial valuesw̆( ŷ) given atŷ51. The
resulting trajectories are shown in Fig. 17. This figure illu
trates the following properties:

~i! In the regionw̆(y).w̆1(y) where the RHS of Eq.~A6!

is positive,w̆(y) is well behaved and monotonically decrea
ing for decreasingy. All trajectories in this region can be
continued toy50.

~ii ! For w̆( ŷ)5w̆1( ŷ)[0 the RHS of Eq.~A6! vanishes
identically for all y< ŷ, i.e. the trajectory starting with
w̆( ŷ)50 hasw̆(y)50 for all valuesy< ŷ. Hencew̆50 is a
stability axis of the RG flow leading to a separation betwe
1-29
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FIG. 20. Numerical solutions of the full flow equation starting withw̆( ŷ)50.005 and various valuesl̆( ŷ). Trajectories starting close to

the boundaryl̆5y/2 yield a rapid decrease ofw̆(y) at y' ŷ. Nevertheless all trajectories displayed lead to nonvanishing va

w̆(0).0. The bold straight line in the second diagram indicates the boundaryl̆5y/2.
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the RG trajectories starting with positive and negativew̆( ŷ),
respectively.

~iii ! Trajectories starting in the regionw̆1( ŷ).w̆( ŷ)
.w̆2( ŷ) in which the RHS of Eq.~A6! is positive yield
decreasing valuesuw̆(y)u,uw̆( ŷ)u for y, ŷ up to the point
where the trajectories reachw̆(y)5w̆2(y)[0.

~iv! For the trajectories in the regionw̆(y),w̆2(y) we
find thatw̆(y) is rapidly decreasing. These trajectories term
nate at a finiteyterm.0, with w̆(y→yterm)→2`.

Hence we see that for the trajectories in the reg
w̆(y).0 the couplingw̆(y) is ‘‘stable’’ and the correspond
ing trajectories lead to well defined valuesw̆(0).0 while in
general the trajectories in the negative coupling region
into the regionw̆(y),w̆2(y) where w̆(y) becomes ‘‘un-
stable’’ and terminates atyterm.0. Let us now return to the
exact equation~A5!. We observe that, unlike in the case
the V1V ln V–truncation, including the nonlocal term doe
not lead to a modification of the boundary of coupling co
stant space. It is located atl̆5y/2. Furthermore we find tha
w̆50 still is a stability plane inw̆-l̆-y space which separate
the trajectories in the regionsw̆.0 andw̆,0. An important
consequence of this separation is that, if a trajectory st
out with a zero couplingw̆( ŷ)50, the RG flow of the
V1V2–truncation will not lead to the dynamical generati
of this coupling. We will use the separation of the coupli
12500
-

n

n

-

ts

constant space to investigate the properties of the trajecto
in these regions separately.

As typical trajectories of the regionw̆( ŷ),0 we consider
solutions starting withl̆( ŷ)520.1 and various negative val
uesw̆( ŷ). The resulting trajectories are shown in Fig. 18.

These trajectories reflect the behavior already seen in
case of the decoupled flow Eq.~A6!. As long as
w̆1„y,l̆(y)….w̆(y).w̆2„y,l̆(y)…, where now the zeros o
the RHS of Eq.~A5! also depend onl̆(y) along the trajec-
tory, w̆(y) is stable and bounded,uw̆(y)u,uw̆( ŷ)u. Leaving
this region of stability we again find thatw̆(y) rapidly di-
verges,w̆(y)→2`. In this course the cosmological consta
l̆(y) is driven into the boundary of the coupling consta
space,l̆(y)→y/2, so that the corresponding trajectories t
minate at a finite valueyterm.0.

Regarding the RG flow in the positive coupling regio
w̆>0, we find that the flow equation~A5! gives rise to tra-
jectories of the types Ia, IIa and IIIa. The trajectories of t
new type VIa found in theV1V ln V–truncation are absen
due to the unaltered boundary singularityl̆5y/2 which pre-
vents trajectories from reaching positive valuesl̆(0).0.

Typical trajectories of the types Ia and IIa are displayed
Figs. 19 and 20. Figure 19 shows the impact of a posit
initial value w̆( ŷ) on l̆(y) along some typical trajectorie
starting with l̆( ŷ)50.1 and various valuesw̆( ŷ).0. Here
g

FIG. 21. Typical type IIIa trajectories with initial valuesl̆( ŷ)50.2 and various positive valuesw̆( ŷ) given at the scaleŷ50.5 The bold

straight line indicates the boundary singularityl̆5y/2. Increasing values ofw̆( ŷ).0 lead to smaller valuesl̆(y) and hence to a decreasin
value ofyterm.
1-30
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A CLASS OF NONLOCAL TRUNCATIONS IN QUANTUM . . . PHYSICAL REVIEW D66, 125001 ~2002!
we find the following properties:
~i! For all trajectories shown,w̆(y) decreases with de

creasingy. All trajectories starting withw̆( ŷ).0 lead to
nonvanishing IR valuesw̆(0).0.

~ii ! Compared to the trajectory starting atw̆( ŷ)50, a
nonzero initial valuew̆( ŷ) leads to smaller valuesl̆(y), i.e.
positivevaluesw̆( ŷ) drive the cosmological constant awa
from zero.

~iii ! A coupling w̆( ŷ).0 changes the slopedl̆(y)/dy
when we approach the IR (y→0). The trajectory with zero
coupling w̆( ŷ) curves upward,dl̆(y)/dy,0, while for the
trajectories with w̆( ŷ).0 we find positive slopes
dl̆(y)/dy.0. Figure 20 shows the impact of different initia
valuesl̆( ŷ) on the flow ofw̆(y). As an example we use th
trajectories starting withw̆( ŷ)50.005 and various value
l̆( ŷ). We find that larger initial valuesl̆( ŷ) lead to smaller,
but nonvanishing, IR valuesw̆(0). Even the rapid decreas

FIG. 22. The effect of increasing the valuew̆( ŷ) on a typical

trajectory of type IIIa starting withl̆( ŷ)50.2,w̆( ŷ)50 at ŷ50.5.

The bold straight line indicates the boundaryl̆5y/2. Increasing

w̆( ŷ) leads to a decrease of the IR value of the cosmological c

stant. For sufficiently large valuesw̆( ŷ), this effect can be used to
turn a trajectory of type IIIa into a trajectory of the type IIa or Ia
12500
of w̆(y) at y& ŷ found for the trajectory starting close to th

boundaryl̆5y/2 does not result inw̆(0)50.
The properties of the trajectories of type IIIa are illu

trated in Figs. 21 and 22. As typical trajectories we choo

the solutions starting atl̆( ŷ)50.2 and various values

w̆( ŷ).0 specified atŷ50.5. We see that, as in the case

the V1V ln V–truncation, the new couplingw̆( ŷ).0 does
not prevent the trajectories from running into the bound

singularity l̆5y/2; hence they terminate atyterm.0. As in
the V1V ln V–truncation, the new coupling vanishes iden

cally as the trajectory approaches the boundary,w̆(yterm)
50, and therefore has no ‘‘healing effect’’ on the running

l̆(y). Figure 22 further illustrates that, compared to the t

jectory starting withw̆( ŷ)50, positive valuesw̆( ŷ) lead to a

decrease ofl̆(y) in the IR. Since we can choose arbitrari

large valuesw̆( ŷ) this mechanism can be used to turn traje
tories of type IIIa into a trajectory of type IIa and Ia b

choosingw̆( ŷ)5w̆( ŷ)crit and w̆( ŷ).w̆( ŷ)crit , respectively.
For the ‘‘fine-tuned’’ type IIa trajectories the IR value o

w̆(y) vanishes identically.
The effects of a nonzero couplingw̆( ŷ) on the RG flow of

the cosmological constant are summarized in Table II wh
is analogous to Table I. The column ‘‘Type’’ determines t
Type of trajectory which is obtained by settingw̆( ŷ)50. The
column ‘‘w̆( ŷ) chosen’’ indicates which values ofw̆( ŷ) then
give rise to the changes of the RG flow of the cosmologi
constant outlined in the column ‘‘Changes in the flow
l̆(y). ’’

3. ClassicalS4 solutions

We now study the scale dependence of the radius of
classicalS4 solutions in theV1V2–truncation. The modified
Einstein equations resulting from our ansatz

n-
TABLE II. Summary of the effect ofw̆(y) on the RG flow of the cosmological constantl̆(y).

Type w̆( ŷ) chosen Changes in the flow ofl̆(y)

Termination of the trajectory
arbitrary w̆( ŷ),0 at y5yterm.0 with w̆(yterm)→2`

Type Ia
Type Ia w̆( ŷ).0 Change in the slope ofl̆(y)

in the regiony&0.01 fromdl̆/dy,0 to dl̆/dy.0

Type Ia
Type IIa w̆( ŷ).0 w̆( ŷ).0 drivesl̆(0) away from zero

Type IIIa

w̆( ŷ),w̆( ŷ)crit
Type IIIa

w̆( ŷ)5w̆( ŷ)crit
Type IIa

Fine-tuning ofw̆( ŷ)

w̆( ŷ).w̆( ŷ)crit Type Ia
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FIG. 23. Dependence of the radiusr̆ of the spherical solutions on the initial valuesw̆( ŷ),l̆( ŷ) of the trajectories along whichr̆ is

parametrized. The initial values are given atŷ51. The left and right diagram show the dependence ofr̆ (y51) andr̆ (y50) onw̆( ŷ51) and

l̆( ŷ51), respectively. Including the effect of the running coupling constants generally leads to larger valuesr̆ (0). r̆ ( ŷ).
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G@g#5
1

16pGE d4xAg~2R12l̄ !

1
1

16pG
w̄S E d4xAgD 2

, ~A7!

are of the form~1.5! again, with the effective cosmologica
constant given by

leff5l̄1w̄V. ~A8!

A 4-sphere of radiusr is a solution provided Eq.~1.8! with
Eq. ~A8! is satisfied, i.e. if

s4v̄r 61l̄r 22350. ~A9!
12500
If one inserts the metric of anS4 into the functional~A7! and
introduces the dimensionless radiusr̆[r /,Pl one obtains the
functionGSphere( r̆ ) of Eq. ~4.3!. Its extrema are given by the
solutions of Eq.~A9!. In dimensionless variables, and no
with y-dependent coupling constants, it reads

s4w̆~y! r̆ ~y!61l̆~y! r̆ ~y!22350. ~A10!

In Fig. 10 we saw that a stable minimum ofGSphere( r̆ )
only occurs for trajectories in the positive coupling regi
w̆(y).0. This is exactly the region of coupling consta
space where we found ‘‘stable’’ trajectories of the types
IIa and IIIa. As in the case of theV1V ln V–truncation we
shall now compute the ‘‘runningS4-radius’’ by solving Eq.
~A10! for r̆ (y) with the running coupling constants of th
FIG. 24. Radiusr̆ (y) along the typical type Ia trajectory starting atw̆( ŷ)50.01 andl̆( ŷ)50.3. Outside the IR region (y.0.01), r̆ (y)

increases by a factor of 3 due to the running ofw̆(y) and l̆(y). For y,0.01, r̆ (y) is approximately constant.
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type Ia and IIa trajectories inserted. First we focus on
dependence of the ‘‘initial radius’’ at the Planck sca

r̆ „y51;w̆( ŷ),l̆( ŷ)…, and the ‘‘final radius’’ in the IR,

r̆ „y50;w̆( ŷ),l̆( ŷ)…, on the initial data„w̆( ŷ),l̆( ŷ)… of the
trajectory. These functions are shown in Fig. 23.

In the first diagram we find that, forw̆( ŷ).0, the initial

radiusr̆ ( ŷ) is generically of order unity. The only exceptio

occurs along the linew̆( ŷ)50. Here positive values

l̆( ŷ).0 lead to a stable minimum ofGSphere at r̆ ( ŷ).1

which, for l̆( ŷ)→01, is driven tor̆ ( ŷ)→` while for values

l̆( ŷ),0 no stable minima occur.

Regarding the IR valuer̆ (0) shown in the second diagram
of Fig. 23 we find that including the running of the couplin
constants generically leads to a moderate increase of th
dius: r̆ (0). r̆ ( ŷ). For the trajectories starting close to th
boundary singularity,l̆( ŷ)& ŷ/2, we find comparably large
valuesr̆ (0). This is caused by the rapid decrease ofw̆(y) at
y' ŷ which drives the minimum ofGSphere( r̆ ) towards larger
ic

00
cs

-
na

r-

12500
e
,

ra-

valuesr̆ (0). Along the linew̆( ŷ)50 all trajectories lead to
negative IR valuesl̆(0),0, i.e. to trajectories of type Ia. No
stable minima occur along this line.

Let us now study they-dependence ofr̆ (y) along the
typical trajectory of type Ia starting withl̆( ŷ)50.3 and
w̆( ŷ)50.01. The trajectory as well asr̆ (y) along this trajec-
tory are shown in Fig. 24.

We see that there is a substantial increase ofr̆ (y) only in
the region 0.01&y&1. In the IR region (y&0.01) we find
that r̆ (y) is approximately constant. Hence the increase
r̆ (y) is not based on a typical IR effect. Most importantly, w
see that by switching on the RG running of the couplings
can increase the radius only by about a factor of 3, for typi
initial conditions. This magnification factor has to be com
pared to the many orders of magnitude we gain by includ
the RG running in theV ln V–case, see Sec. IV B.

Thus we conclude that in order to dynamically gener
large or even flat universes from natural initial data fixed
the Planck scale the nonlocal invariantV ln V is by far more
efficient thanV2.
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