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Motivated by the conjecture that the cosmological constant problem could be solved by strong quantum
effects in the infrared, we use the exact flow equation of quantum Einstein gravity to determine the renormal-
ization group behavior of a class of nonlocal effective actions. They consist of the Einstein-Hilbert term and a
general nonlinear functiorf, (V) of the Euclidean space-time volunve A partial differential equation gov-
erning its dependence on the scélés derived and its fixed point is analyzed. For the more restrictive
truncation of theory space whetg(V) is of the formV+VInV, V+V2, andV-+ JV, respectively, the
renormalization group equations for the running couplings are solved numerically. The results are used in order
to determine thek-dependent curvature of th&*-type Euclidean space-times which are solutions to the
effective Einstein equations, i.e., stationary points of the scale dependent effective action. For the
V+V In V-invariant(discussed earlier by Taylor and Veneziane find that the renormalization group running
enormously suppresses the value of the renormalized curvature which results from Planck-size bare parameters
specified at the Planck scale. Hence one can obtain very large, almost flat universes without fine-tuning the
cosmological constant.
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. INTRODUCTION fd+/gR and [d\/g. In [5] the resulting coupled differ-
ential equations have been solved numerically, leading to the
Exact renormalization groufRG) equationg1] provide a  complete classification of the RG flow of the Einstein-
powerful tool for the nonperturbative investigation of both Hilbert truncation. In order to extend the truncated theory
fundamental(renormalizablg and effective quantum field SPace to |ng/ar|antzs containing higher powers of the curvature
theories. In particular the RG equation of the effective averSuch as/d X\/“éR , for instance, Refs[6-9] introduce a
age actior2] has been applied to a variety of matter field "W Cutoff of “type B” which is natural to use if one em-
oo a el o 0 quamum Ensi i, Py e Lareiee acoss seconpostionglia,
The main mgredleqt n Fh's approach IS the effective Ve high energy behavior of 4 dimensional quantum Einstein
erage actionl’,, a Wilsonian coarse grained free energy gravity seems to be governed by a non-Gaussian fixed point
functional which has a built-in infraredR) cutoff at a vari-  (NGFP which is ultraviolet(UV) attractive for both the di-
able mass scale Thek dependence df is governed by an  mensionless Newton constag(tk) =k~ ?G, and cosmologi-
exact functional RG equation. In any realistic theory it isca| constanth (k)=\,/k2. If this result also holds true for
impossible to solve this equation exactly. But by appropri-the exact theory, quantum Einstein gravity is renormalizable
ately truncating the space of action functiondfsheory  at the nonperturbative levgl2]. In this case it would pro-
space’) one can obtain nonperturbative approximate soluvide us with a fundamental rather than merely effective
tions which do not rely upon small expansion parameterstheory of quantum gravity which is mathematically consis-
The truncation is carried out by making an ansatz ]fo tent and predictive at arbitr_arily small _distances. In this
which contains a finite or infinite set dfédependent param- theory the Newton constant is asymptotically free: near the
eters(“coupling constants} g(k). Upon inserting this an- NGFP,Gy~g, /k°"“ vanishes fok—cc (if d>2).
satz into the functional RG equation and projecting the RGN Ref.[5] the flow equations of the Einstein-Hilbert trun-
flow onto the truncation subspace one obtains either a partig2tion were simplified by introducing a technically conve-
differential equation or a coupled system of ordinary differ-,["e.”t sharp cutoff andfthen Esed in order t% cor?ugiue the
ential equations for the running couplings. rajectories emanating from the NGFP towards the(dle-

In the case of Euclidean quantum gravity the ef'fectiveCreaSing k). The resulting RG flow in 4 dimensions is
) ) qua 9 Y sketched in Fig. 1. In addition to the NGFP it shows another
average action and its RG equation have been constructed

L . H?stinguished point: the Gaussian fixed poi@FP located
Ref. [3.]' This first construction used a cutoff of type A" at the origin of thex-g plane. The cross-over between the
which is formulated in terms of the complete metric fluctua-,, scaling regions governed by the Gaussian and non-

tionh,,. The r_esulting RG equ.ation has been used to derives 5;ssian fixed point, respectively, takes place at a $Ggjg
the flow equation for the running Newton const&)t and  \yhich is of the order of the Planck mm'EGauz_

the cosmological constang, on the theory space spanned by  Depending on whether the trajectories run to the left,
the “Einstein-Hilbert truncation,” i.e., by the invariants right, or on the stability axis of the GFP we find trajectories
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FIG. 1. Part of coupling constant space of the
Einstein-Hilbert truncation with its RG flow. The

Type Ila o . . .
arrows point in the direction of decreasing values
of k. The flow pattern is dominated by a non-
Type llla . X L X
N Gaussian fixed point in the first quadrant and a
L 01—t 5 trivial one at the origin.

Type IIIb

of the types Ia, llla, and lla, respectively. Only the trajecto-theory with A #0 is much more IR divergent than with
ries la and lla lead to well-definekl—0 limits of Gy and =0, one could argue that if quantum gravity is capable of
Nk, Yielding A (<0 and\,=0, respectively. The trajectories curing its IR diseases dynamically by nonperturbative ef-

[lla terminate at a finite value dfat the boundary of thE-g fects, then these effects should ere to zero fork—0.
space ah =1/2. Beyond this boundary th@ functions ofg Strong IR quantum effects of this kind would be compa-
and\ are undefined. Therefore the RG trajectories found inrable to phenomena like confinement or the formation of
the Einstein-Hilbert truncation can only lead to negative orhound states in QCD. It is clear that such strong coupling
vanishing values for the renormalized cosmological constanshenomena are much harder to understand than the weakly
No=lim,_o\. While the “separatrix” connecting the coupled asymptotic scaling region wheke>Aqcp in the
NGFP to the GFRtrajectory 113 leads toh,=0, the trajec- case of QCD ok>mp, for gravity [5]. In QCD fairly simple,
tories of type la generically give rise taegative renormal-  local truncations are sufficient for a reliable description of
ized cosmological constants of the order mE,'. Smaller the asymptotic scaling region, while in the IR much more
values can be obtained only by an extreme fine-tuning.  complicated, nonlocal truncations are neefi2?]. Likewise
Even though recent observations of high redshift supernoit seems that in gravity the Einstein-Hilbert truncation or
vae[13-15 and measurements of the power spectrum of thesimple local extensions of it are appropriate close to the
cosmic microwave radiatiofi6,17 seem to indicate that our NGFP[6,7], but in the IR, i.e. for scalek=mp,, we expect
universe is characterized by a smgibsitive cosmological that much more complicated, presumably nonlocal trunca-

constant, it is clear that a renormalized valyg=0(m3) is  tions are needed for a proper description. The termination of
phenomenologically unacceptable. In the present univers&e type llla trajectories at a nonzekgm=O(mp) is a typi-
the vacuum energy density due Xocan be of the order of cal symptom showing that the Einstein-Hilbert truncation be-

h densi — b I comes insufficient below a certain critical scglg.
the matter energy density at most. Hencenust be smaller ——\ynich invariants could be important in the IR of quantum

. “ ” 2 :
than its “natural” valuems, by about 120 orders of magni- grayity? As we are trying to understand its large distance
tude. This is the famous cosmological constant proldlesh behavior(on the scale set by the Planck length= 1/mp,

A notorious difficulty which any attempt at solving this _ Gy) it is clear that terms with higher powers of the cur-
naturalness problem will face is that its solution cannot com 4 wvpo 4
from any remote mechanism which is operative near thF\"/ature (d X\/aR’“"’”R ; Jd*gR, etc) are of no ;
Planck | v, In fact if £ there i %elp here. For a large universe, after the last cosmological
b anc scael on yll n fact, evenfl hor SOCTB% reahson ereis n?)hase transition, say, the contributions of these terms to the

are cosmological constant of the ord®,, the vacuum  eqctive Einstein equations are negligible compared to those

condensates associated with the electroweak or QCD phaﬁ%m [d*x\/gR. They are suppressed by inverse powers of
orders of magnitude larger than the experimental bound. As gnportant when the universe gets large. Typical invariants
consequence, if one tries to solve the fine-tuning problem byyhich meet this requirement are nonlocal functionals of the
invoking some dynamical mechanism giving rise to a suffi-metric. As an example, the terfidx\gR(—D?)~ 'R was
ciently small )\(_, automatically[19] then this mechanisr_n_ added tofd*x\/gR in Ref.[23], and it was shown that the
must be effective at very low energy scales, the familiaresulting modification of general relativity is phenomeno-
scales of standard particle physics and below. ~logically acceptable for a wide range of parameters. In Ref.

It is a very attractive speculation that strong renormallza{21] the IR physics resulting from the 4D “induced gravity”
tion effects of quantum gravity in the infrared are responsiblection [ d*x\/gRIn(—D?R was analyzed.
for the tiny value of\q [20,21. In fact, since perturbation In the present paper we shall perform a first investigation
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of the RG behavior of nonlocal actions in the effective aver-might lead to a solution of the cosmological constant prob-
age action framework. As we are mainly interested in gettindem. First, as speculated |29], the extension of the theory

a first idea about the qualitatively new effects which space could generate a new fixed point which is IR-attractive
can occur, and in order to avoid the extreme algebraidor the dimensionless cosmological constantk) —\j; as

coznplexity gf_l calculations involving  terms  liké k_,0. In this case the renormalized coupling constegt
[d*x\gR(~D?)"*R, we shall focus on a simpler class of =lim, o\ (k)k? would vanish with\ , proportional tok? for

$n¢ocal r:erm;. We are g(l)_lng to fStUth mvafrltz?]ntsEof tlh de P&y trajectories reaching the basin of attraction of the fixed
(V) where 7 is a nonlinear function of the Euclidean point. In this manner the cosmological evolution could be

space-time volum&= [d%\/g. In particular we will inves- understood as a “cross-over” from the NGEP in the UV to
tigate the RG flow of effective actions containing the invari- iha new fixed point in the IR.(In Ref. [31] it has been
antsVIn(V/Vo) and V2 which, in the context of wormhole-  ghoun by means of a straightforward RG improverfémat
physics, have already been discussed28] and[26-28,  {he NGFP in the UV leads to a very interesting cosmology of

respectively.(Here Vo denotes an arbitrary reference vol- ihe pjanck era which might provide a solution of the flatness
ume) The corresponding approximationslof will be called 514 the horizon problem.

“ n “ 2 H » H . . . . . .
the “V+VInV-"and “V+V“truncation” and are given by A different scenario using nonlocal effective actions in

1 - order to solve the cosmological constant problem has been
rk[g]:mj d%\g(—R+2\}) pr_oposed _by Ta)_/lor and VgneziadﬁS,Zﬂ. We will now

™ briefly review this mechanism using the example of the
V+V In V—truncation.

1 —
+ ——u VvV In(V/Vy) (1.D Varying Eq.(1.1) with respect to the metrig,,, leads to
16mG the following modified equation of motioh:
and -
1 — u u
1 REV— ZR@=—| N+ =+ =In(V/Vo) [g*". (1.3
B § — 2 2 2
I'dal=15-5 | d x\g(—R+2)\y)
The structure of this equation suggests defining an effective
— cosmological constanh«(V), as
2
+ 167TGWKV , 1.2 o
— u u
respectively. Inspired by the fixed point properties of the RG Ne(V)=N+ 5+ 5In(VIVo), (1.9

flow we shall also discuss thev'+ \V—truncation.”
As we are mostly interested in the IR regime we negleciwhich depends on the volume of the space-time. Thus Eq.
the running of Newton’s constant in the present investiga{1.3) takes on the usual form of the Einstein equation without
tion: G,=Gy=G. At least according to the results from the matter:
Einstein-Hilbert truncation this is a sensible first approxima-
tion if ksmp,.
We shall impose initial conditions fox, andu, or w; at

some scal&k=Kk, usually atk=mp;, and then use the RG _ _ o ,
equation in order to evolve the parameters towards smalldrontracting Eq(1.5 with g, and substituting the resulting
values ofk. It will turn out that if the new couplinggk and equationR= 4\ back into Eq.(1.5) leads to

w, are put to zero at the starting point, they will continue to R.=Nett U,y - (1.6)
vanish at all lower scalds<k. The RG flow resulting from

the truncationg1.1) or (1.2) cannot generate the new invari- Obviously all solutions to the modified Einstein equation are
ants if no initial “seed” is present. However, we expect that Einstein spaces. In the following we specialize for maxi-
with a more general truncation, nonlocal terms, perhaps of gally symmetric solutions. In particular the 4-sph&kof
more complicated structure, are generated dynamically alongdiusr has the following properties:

the RG trajectories emanating from the NGRR]. Imposing

1
RUV— SRG=—Ney(V) . (15

L — = : o : 2
nonzero initial valuesli or wi in our calculation mimics this ,3 12 S _ 87
. . RM __g,u y R—_, V—(T4r y O4=—FH7 -
more complicated dynamics to some extent. r2 r2 3
Another way of looking at our results is to interpret them (1.7

in the spirit of effective field theories. For instance, one

could imagine that string theory prepares the initial condi

tions for a low energy field theory description of gravity, and 1 j5 known [30] that 2D Liouville quantum gravity describes a

that these initial conditions include;#0 or wi#0 at the  similar cross-over between two conformal field theories.

Planck scale. 2For a similar RG improvement in black hole physics see Ref.
Including the new couplings in the effective action of [32].

gravity gives rise to various theoretical possibilities that 3we ignore thek-dependence of andu for the time being.
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Substituting the 4-sphere into E@L.5 we see that it is a
solution to the equations of motion provided

3 4
r—2=>\eﬁ(04r ). (1.9
The resulting equation for the radingead$
ur2+ur2 In(o4r*Ve) +2xr2—6=0. (1.9

Reexpressing? by the effective cosmological constant and
considering\ . the independent variable we find the condi-
tion

u (9
In
N

4

o
+1
V)

0

)\eﬁ:x‘k = 2
2 eff

. (1.10

PHYSICAL REVIEW [B6, 125001 (2002

verse:r(k=0)>r(R). The renormalization effects greatly
facilitate obtaining large, essentially flat universes from ge-

neric Planck-size initial values \{,u;) specified at
k=mg,. In this way one can effectively solve the cosmologi-

cal constant problem even thougl is not small.

The remaining sections of this paper are organized as fol-
lows. In Sec. Il we use the exact RG equation with the “type
A’ cutoff [3] to derive a partial differential equation which
governs thek dependence of an arbitrary nonlocal invariant
of the form F(V). The flow equations of th&+VInV-
andV+ V2—truncations are then derived by specializifig
to these truncations. In Sec. lll we investigate the RG flow of
the coupling constants in thé+ V In V—truncation by nu-
merically solving the flow equations with the sharp cutoff
introduced in5]. In Sec. IV we investigate the impact of the
running coupling constants in thé+V In V—truncation on

This equation has very interesting properties. Assuminéhe radius of the “classical3* solution of the modified Ein-

u>0 (which, as we will see, is a reasonable assumptiore
finds the following relations between the cosmological con

stant propen\_, and the effective cosmological constfd5|:

Ne=N\ if A>0,

90, 1/2 F{
~|—| ex
<

N1
=+ -

A<0.
u 2

if (1.11

stein equations. In Sec. V we discuss the properties of the
modified GFP which follow from the partial differential

equation forF, (V). Motivated by the results of this analysis
we investigate the RG flow of thé+ \V—truncation in Sec.
VI. In Appendix A we briefly summarize the results for the
RG flow and classical solutions in thé+ V2—truncation.

II. FLOW EQUATIONS WITH NONLOCAL INVARIANTS

In order to derive the nonperturbative partial differential

ForA>0 the cosmological constant and the effective cosmogquation describing the RG flow of an effective action of
logical constant are of the same order of magnitude while fogantum gravity which includes arbitrary nonlocal invariants

a negative sign ok the effective cosmological constant is
exponentially suppressed“quenched”). Therefore this

mechanism can provide a satisfactorily small effective cos-

Fu(V) we use the effective average action approach to quan-
tum Einstein gravity[3].
The main ingredient of this method is the exact evolution

mological constant, i.e. small space-time curvature, Withoubquation for the effective average act[Bp[gMV] for gravity

the need of the cosmological constant itself being small.
In the work of Taylor and Venezian@5,27, A andu are

which, in its original formulation, has been constructed in
[3]. The derivation of this evolution equation parallels the

classical parameters and no evolution effects are taken int@pproach already successfully tested for Yang-Mills theories
account. In the present paper we investigate the “RG im{34,35. In principle it is straightforward to include the addi-
provement” of the mechanism reviewed above. We shall retional renormalization effects coming from matter fields

placeX andu by their running counterparts, anduy. In
this manner the radiusof the S*, too, becomes a function of
k. We may expect that for a Euclidean universe of radius
the relevant effective action iF, at k=1/r. Thus, when

[36,37], but these are not included in the present derivation.
In the construction of ', [ g] one starts out with the usual

path integral ofd-dimensional Euclidean gravity. It is gauge

fixed by using the background field meth®88,39 and em-

looking for large universes, we should use the renormalize®!0¥ing @ background gauge fixing conditioA. priori the

couplingsh,Ug rather than the bare ones; and uj,.
For a given trajectoryk—(\,,u,) we shall solve Eq.

effective average actioh,[g;g] depends on Eoth the “dy-
namical” metricg and the background metrig. The con-

(1.9 with the running couplings inserted and obtain the ra-ventional effective actionI'[g] is regained as the

diusr=r(k) of the S* which is the stationary point df,.

We can then compare the “bare” radiugk) to the “renor-
malized” one,r(k=0). As we shall see, the inclusion of the
RG running leads to a tremendous “inflation” of the uni-

4As a consequence of the “principle of symmetric criticalifi33]
inserting theS* ansatz(1.5) into the action(1.1) and extremizing
the resulting function of leads to the same equation for the “on-
shell” value of the radius.

k—O0-limit of I',Jg]=T"\[9;9=9g] where the two metrics
have been identified. By this constructidi[ g] becomes
invariant under general coordinate transformations.

The crucial new component in the construction of

I'{g,9] is thek-dependent IR-cutoff term, S added to the
action under the path integral. This term discriminates be-
tween the high >>k? and low-momentum modes
(p2<k?). It suppresses the contribution of the low-
momentum modes to the path integral by adding a momen-
tum dependent mass term
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1 _ _
ASh.C.Cigl= 3¢ [ agh, RE gl h,, rioial=27| [ atai-R)+27vie)

_ + classical gauge fixing term. (2.5
+ﬁf dVgC,RIglc . (2.1

The functionF includes a running cosmological constant,
but we neglect the running of Newton’s constant in the
present investigation. The parameteiis treated as a con-

Here k=(327G) %2, and the first and second term on the
right-hand sidgRHS) prowde the cutoff for the fluctuations

of the metric,h,,=g,,—9,,, and the ghost fleld§ C¥, stant in the following.
respectively. In this paper we é:hoose the followmg form of Later on it will be easy to derive the ordinary differential
the cutoff operator®™ and R{" [3]: equations governing the scale dependence of the coupling
o o constants in theV+VInV-truncation (1.1) and the
RI? g]= 2z 92RO (- D/K?), V+V?—truncation(1.2). They correspond to specializing
RITg]=k?RO)(—D/K?). (2.2) 1
Fi(VKH =\ V+ SUKV In(V/Vo) (2.6)
Here (ZEraV)_”“”P‘E[(I - Pq})/”””—_(d—2)/2Pg’§VP‘T]Z,\“< is a
matrix acting on h,,. In this expression R,)*""”
=d Igrrgre projectsh,,, onto its trace partp. In the ter- and
minology of Ref[6], this form of A, S defines the “cutoff of
type A.” The so-called “shape functionR(® is essentially 1
arbitrary except that it has to satisfy the conditions F(VKI) =\ V + EWKVZ 2.7

RO0)=1, RO(z—x)=0. (2.3
) ) ) respectively.

Neglecting the evolution of the ghost sector which corre- | ot \1s now derive the RG equation &7, . Substituting
sponds to a first truncation of the general structurel&f, our ansatz foll, Eq.(2.5), into Eq. (2.4) we find the fol-
Fr}e finds thaf",[g,g] satisfies the following flow equation |owing expression for the left-hand sideHS) of the flow
3 equation:

— 1 — —
ald9.91=5Tr(x 2T P+ R ) oRI™{g]] Pigigl=ax’ 5, CRvk=slal. @8
K L '

—Tr[(—M[g,9]+RIMg]) *oRITg]l.

(2.4 The derivative with respect toacts on both the implicit and
o o the explicitk dependence af;, .
Herel“(kz)[g,g] denotes the Hessian b g,g] with respect For the evaluation of the RHSR, of Eq. (2. 4) we first

to g,, at fixed background fiel@;w, andt=In(k/k) is the  calculate the second functional derivativelgf g; g] at fixed
“renormalization group time” with respect to the reference packground metrlg We therefore decomp0§ﬁ=g+h into
scale k. Furthermore, M represents the Faddeev-Popovthe background metric and an arbitrary _flictuatimr_aﬂd
ghost operator. expand I',[h;g] in powers of h, I'[g+h;g]=I[g;0]

This equation is our starting point to derive the partial S, rouad — L
differential equation describing the RG flow of an effective +O(Ah)+rk Th;g]+0(h%). Splitting h,,, into its traceless

action including an arbitrary functiof,(VkY) of the volume  Parth,, and its trace part using

V=[d%./g. In this course we approxima[éK[g;E] by the

following truncation ansatz: - ¢ =
huvzhﬂv+d 1g/u;¢!

SKeeping the classical form of the ghost action is consistent with
the truncation(2.5) below, where the evolution of the gauge fixing
term is neglected, in the sense that the resuliipgsatisfies the
Becchi-Rouet-Stora{BRS)-Ward identities to lowest ordef3]. _
Close to the NGFP this approximation was found to be reliable $=g*'h,, (2.9
[6,9]. For reasons of simplicity we continue to use it also at lower
values ofk. Future improved truncations will have to further justify o
this truncation ansatz. we find the following quadratic terdfi??{h;g]:

a,uVﬁMV_
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_ (R — — o d=2 [ — d—4_] — .
r‘,ij”aC[h;g]=K2J o|de§[§hW[—DZ—ZJf;(v1<d)|<dJr R]h#»— Hfﬁ{—DZ—Zﬂ(de)k% —5 R|#—Ru."hy

— d—4 — . 1 —
R0t SR gR e+ 2 [ @G [ ay aeo0 FLTIOR (). (210

Here all the bared quantities are constructed from the back=gr g=& the traces Tr..] are functionals OE alone. In
ground metric, and the prime denotes the derivative”pf  order to determine the running of, we have to expand
with respect to its argument. 2Ff0m the quadratic f¢@10  these functionals and retain only the terms without any cur-
we can read off the Hessid{?) to be used under the trace yature quantity but with an arbitrary dependencevon
on the RHS of the flow equation. o This is most easily achieved by the following technical
This trace is a complicated functional of boghandg.  trick. We choosey to be a one-parameter family of flat met-
Our next task is to project this functional onto the truncationyics on the torus €, the free parameter being its volume
subspace parametrized by the angats). Since neither the v@:fdde:V From now on we considev a pure

Fefrm Jd x\/§RE) nor the clgssmal r?auge flxmg term cor?taln number rather than a functional of the metric. Thus our prob-
Information & OUU_—K we do not have to project out those o poils down to computing the dependence of the traces
terms. This means in particular that after having performe —

the second variation we may sgt=g, in which case the ...] on the parametel. Upon equating the resuit to
gauge fixing term vanishds]: ' S.[g]=4«?(d/dt) Fi(VKY) we_obtain the desired equation

for 7. Since for the flat toruRIs = 0,R= 0 R"s= 0

—— — — it is clear that this method projects out precisely the right
Fk[g;g]=2;<2[ f ddx\/ﬁ(—R)+2fk(de)}. terms froml" .
(2.11 Substituting the ¥ metric, Eq.(2.10 simplifies to

— L. — o _ _
l"ﬁ”ac[h;g]=f<2j ddeE{th[—D2—2]-"{<(de)kd]h“”— g L~ D= 27 (VKK

1 —
=50 [ ana | ayVasoo ALK a(y). (212

In order to diagonalize this quadratic form in field space we expand the d¢raceerms of harmonic functions,,, on the

torus. The functiond,, are eigenfunctions of the operatera2 constructed from the background metric, with eigenvajuges
and degeneracies; :

mo=0 for 1=0

~D?Tjp=wTim with m=1,....5 and 4=0 for 150, (2.13

Here Ton=1/\JV denotes the nondegenerate zero-mode —db2. Using the orthonormality relation for thd,,
Jd%NVG) TimTirm = 811 Smny » We can decompose the scalar figi¢x) into its zero-modep and the higher mode&b(x):

0 6|

$O)=CooToot 2, 2, CimTim(X)= @+ $(x). (214
Applying this decomposition to Eq2.12), we find that the result is now diagonal in the fieﬁi@,fb and ¢:
quadp gl — 2 | qd 1 "2 Tidyediper 37250 = " Tl 11 7
rethigl=«? | d%\g{ 5,0 D2~ 2F (VKK A"~ — =g — D2~ 27 (Vk)k’1$
d— — — 2d — _
—D2—2F(VKY)kdI— d_—zf’k'(de)kZdV ®

- HQD . (215)

From this quadratic form we can read off the operators which appear in the trace over the metric degrees of freedom in Eq.
(2.4):
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(k20 P[g; 9]+ RI™pa=[ — D2+ k?RO(— DZ/k?) — 2F}(VKI)k?]

d-2
(x2TPgig]+ RE™) 3= — — g~ [~ D?+K?RO(=D/K?) — 27 (VKI)K]

2 2d
(k2T PNg;g]+RI™M = — W[ K2— ka(de)kd f;;(de)kZdv (2.16

To derive the last line, we have used the fact thﬁzqo:O andR©(0)=1. Since we anyhow identifiegizaafter carrying

out the variation with respect to, we dropped the bars on the quantities constructed from the background metric.
After adding the ghost contribution already found[8] the RHS of Eq.(2.4) takes the following form:

k2 k2

No
+
K- 2F L (VKI)KH

Sp=Tr¢| — |+ Trgd —|—2Try| —

(2.17

A A

2d
k?— 2]—'k(de)kd f’k’(de)kZdv

Here the subscript$, S, andV on the traces indicate sums 5 e g
over traceless tensor, scalar and vector harmonics, respec-  TTW(—=D%)]=(4m) U(')Qd/z[W]f d’x\/g
tively. Furthermore, we have introduced the following nota- (2.22
tions:
1 with

No= 35 a[K*RO(=D/k*)] . B
Qn[W]Ef_ ds(—is)"W(s). (2.23
A=—D2+Kk?RO(~D¥k?) - 2F (VK)K*

Reexpressing),, in terms of W leads to a Mellin transform
Ap=—D?2+k?RO(-D?/k?), (218  (n=0):

In writing down Eq.(2.17) we have completed the trace over 1 (=
the ¢ modes by adding and subtracting the corresponding ~ QolW]=W(0), Q,[W]= mfo dzZ 7 'W(z).
zero-mode contribution, so that the scalar trace now runs (2.24
over the complete set of scalar harmonics, includia®. '
The traces in Eq(2.17) can be evaluated using the first

. In order to write down the evolution equation féf it is
term of the standard heat-kernel expansion, g Bl

convenient to introduce the following dimensionless stan-
dard threshold functionsp&=1,2, ... n>0):

CodR
T e 1s0%]= 4—5) () | do%\g,  (2.19
= RO(z2)—zRY'(z)
o . . DR(w)= 227t . (229
which is exact for a flat metric. Herledenotes the unit ma- r'(n)Jo [z+RO(z2)+w]P
trix of the space of fields on which- D? acts. Hence we
have By substituting the definitions o, N, and A, from Eq.
(2.18 into Eqg.(2.24 we find the following relation between
trg1]=1, trfl]=d, the Mellin transforms and the threshold functions:
_La-1)a+2 2.2 o]
trT[|]—§( —-1)(d+2). (2.20 Qupz ﬁ :kd—2p+2q)g/2[_Zfli(de)kd—Z]
For an arbitrary functio with Fourier transformW the -
trace No d—2p+2g,P
Qar2 ﬁ =k Dg(0) (2.26
Ao

T W(—D? =fw dsWs)Te s0"] (2.2
[W( )] —e SWs)TH ] (2.23 Evaluating the traces in E§2.17) using Eq.(2.22 and then

reexpressing the Mellin transforms in terms of the threshold
yields, in flat space, functions(2.25), the RHS of Eq(2.4) yields
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d(d+1) k?

——L @ [-2F(VkHKI~2]-2dDL (0)} - ————
2 d/2[ k( ) ] d/2( ) k2—2_7:{<(de)kd

Sr=(4)~ Y%y
k2
+ (2.27

5 .
k2—2]—"l’<(de)kd—d_—2]-"|’(’(de)k2dV

Since both the LHS and RHS of E(R.4) are already projected onto the subspace of action functionals under consideration,
the evolution equation af is simply found by equating Eq2.27) to S, of Eq. (2.8):

d(d+1) k?
®L [ —2F (VKHKI~2]—2ddL (0) | — ———
> ard K(VKOHK™ 7] d2(0) =2 (VKK

d
- — —d/2g,d
e dt]-'k(de) (4m)~ Y2k

k2
. g _ (2.28
k2= 2F (VKK = 5= Fr(VKD K>V

Introducing the dimensionless function
fi (9 =kI"2F(VKY) (2.29

depending on the dimensionless arguméetVk?, Eq. (2.28 takes on the following final form:

d(d+1)
(30 ()= (A=) D) = dI(D) + Gy 2 = Pl — 2f((9)]— 2dD(0)
1 1
+87GkI 2| — + (2.30
1-2f.(9)

i 2d n .
1= 2f((9) ~ g5 FU(9) D

This is the partial differential equation we wanted to derive.

We observe that the flow equati¢2.30 does not generate any nonlinear term$,irunless we start the evolution with an
f which is nonlinear at the initial point already. In fact,fi{(ﬂ)zk‘z)\(k)ﬂ without any nonlocality, then the RHS of Eq.
(2.30 is linear in 9, too, so thatf,(9)9 for all k<k.

In its general form Eq(2.30 will be analyzed in Sec. V. Here we use it in order to derive the flow equations for the
coupling constants of thé+V In V— andV+ V?—truncations, respectively.

In the case of th&/+V In V—truncation,F, has been given in Eq2.6). By substituting this ansatz into E¢R.28 and
projecting the resulting RHS onto the invariaMandV In(V/V,) we obtain the following flow equation for the cosmological
constant\, and the coefficient of th® In(V/Vy)-term, uy :

I\ = (4m) 1 P2GKHA(d+ 1) Do — 2N /K= Uy /k?) — 4d D §(0)}

du=(4m)1~922d(d+ 1) Gukd 22 ,(— 2\ /K2~ U, /k?) . (2.30)

In the expansion of the RHS we made use of the fact that\fa has no power series expansion abdet0, so that we can
expand the RHS treating and In{//V,) as independent variables.

The flow equation for the coupling constants in ¥e V2—truncation are found in an analogous way. SubstitutingZpe
given in Eq.(2.7) into Eq. (2.28 and projecting the RHS onto the subspace spanned by the invaviams V2 we find

Wy 1

ON = (4m) 192G KId(d+ 1) DL (— 2N /k2) — 4d DL (0)) + 167G — —
thVk ( ) { ( ) d/2( k ) d/Z( )} d—2 k2 (1_2)\k/k2)2

d(3d—4) w2 1
(d—2)2 k* (1—2)\, /K33

W= (47) 1 24d(d+ 1) Gwik? D3 ,(— 2\ /K?) +1287G (2.32

The properties of the RG floy2.31) are discussed in the main part of this paper. The analogous discussion of the flow
(2.32 is summarized in the Appendix.
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IIl. RENORMALIZATION GROUP FLOW A. The Gaussian fixed point

INTHE V+V In V-TRUNCATION In order to investigate the fixed point structure of Eq.
(2.31) we introduce the following k-scaled” dimensionless
We now analyze the/+V InV-truncation governed by coupling constants:
Eq. (2.31). We first investigate its fixed point structure before
we proceed to discussing the properties of the numerical so-  g(k)=Gki™2, A (k)=\k 2 u(k)=uk 2 (3.1
lutions of the flow equation.
Since we selG,=G=const, the flow equatio2.3]) is
expected to be valid only on scalkssmp, where, at least

They allow us to write the flow equation inkaindependent,
autonomous way:

according to the Einstein-Hilbert truncation, the running of 39(K) = By(\,g,U),

G, is negligible[6]. We do not expect that the solutions of

Eq. (2.31) can be continued up to arbitrarily high values of IN(K)=Br(\,g,u),

k>mp,, since for a proper description of the RG flow in this

region the running o6, is an essential effect. In the follow- du(k) = Bu(N,g,u). 3.2
ing we therefore only investigate the RG flow in the region The B functions resulting from substituting E¢@.1) into
k=mp. Eqg. (2.3 are

B\(\,g,u)=—2\+(4m) 1 Y2g{d(d+ 1) D}y — 2\ —u) — 4dD],(0)}
Bu(\,g,u)=—2u+ (4m) 1" ¥22d(d+ 1) gudi(—2 —u) . (3.3
The fixed point equation
B\(\*,g%,u*)=0, By(\*,g*,u*)=0, By(\*,g*,u*)=0 (3.9
has only the trivial solution
g*=0, A\*=0, u*=0 (3.5
which corresponds to the Gaussian fixed point. The corresponding stability Batix; B |q-o,-ou-o is given by
-2 (4w 92d(d-3)®},(0) O

Berr=| O (d—2) 0. (3.6)
0 0 -2

Herei,j e {\,g,u}. By diagonalizing the matrix3.6) we find the following stability coefficient®, and associated right
eigenvectord/' satisfyingBV'=—6,V'":

6,=+2 with V!=(1,0,07

6,=—(d—2) with V2=((4m) ¥(d—3)d},(0),1,0)7

6;=+2 with V3=(0,0,1)7. (3.7
|
We can now use these results to write down the linearized  y(t)=a5e 2. (3.9
RG flow g(t)=g" +3{_,a,ex —4t]V, for the couplings
Gi=\,0,=0,%;=U in the vicinity of the GFP: Here theq,’s are constants which allow for adjusting the
general solution of the linearized flow equation to given ini-
M) =are” 2+ ape @2 (4m) Y (d - 3)Dg(0) tial conditions. Replacing the RG tinte=In(kimo) by the
scalek and rewriting Eq.(3.8) in terms of the dimensionful
g(t)=a,eld 2t couplingsGy, N\ andu, we find
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G=G

M=o+ (4m)1~92(d—3)GKkiDL,(0)

Uk:U(). (39)

Here we expressed the constanfdy thek=0 values of the
corresponding coupling constantsx;=\q,a,=G and
a3EUO.

Equation (3.9 shows that including the new invariant
VIn(V/Vp) in the truncation does not change the linearize
RG flow of the cosmological constant in the vicinity of the
Gaussian fixed point. In the limi— 0 all coupling constants

run towards constant, but in general nonzero valGes,

andUO. Hence the modified GFP certainly does not provide
solution to the cosmological constant problem.

B. Numerical solution of the flow equation

We now investigate the numerical solutions of the flow

equation(2.31) in d=4 dimensions using the sharp cutoff
introduced in Ref[5]. For this special choice of the shape
function R(®) the integrals appearing in the threshold func-
tions (2.25 can be evaluated analyticall¢0]. They read5]

P (W)= — T (d2) IN(1+w)+ @qp

() SC= ! ! ! f >1

fra(w) T(d2) p—1 (11w L or p>1.
(3.10

Here thegy,,’s area priori arbitrary positive constants which

PHYSICAL REVIEW [B6, 125001 (2002

The interesting property of this equation is that the
V In(V/Vg)-term in the truncation leads to a modification of

the boundaryX=y/2 (corresponding to.=1/2) which was
found in the Einstein-Hilbert truncation. The new boundary
is located at

y=2\+U. (3.14

We find that for coupling constants in the regips2X +u
the RHS of Eq(3.13 is not defined, so that there are no RG

dtrajectorles in this region.

Compared to the Einstein-Hilbert truncation, the most im-
portant new property of Eq3.13 is that it is now possible

to obtain positive IR value§(0)>0 They can be compen-

asated by negative valueg0)<0 which prevent the trajec-

tory from running into the boundar{B.14).

Moreover, Eq.(3.13 shows that thg8 function ofu van-
ishes atu=0 for any X\, i.e. a trajectory starting at some
initial point y=y with ﬁ(§/) 0 does not dynamically gener-
ate a nonzero couplmg by the RG flow:

u(y)=0=u(y)=0 Yy<y. (3.19

Because of the vanishing function, the trajectories cannot
cross theu=0 line. This line separates trajectories with

u(y)>0 andu(y)<0.
Unless stated otherwise, we shall specify initial conditions

for u and N at the Planck scale:k=mp, k=1,
y=k?m3=1

In order to disentangle the various effects which contrib-
ute to the running ofi andx we first investigate the decou-

reflect the residual cutoff scheme dependence which is stiffled flow equation fou with X set to a constant value. In the
present after having opted for a sharp cutoff. In the followingsecond step we then drop this approximation.

we will make the “canonical” choicep,=2{(3) where( is
the Riemanry-function. (See[5] for a detailed discussion.

Introducing the ‘mp—scaled” dimensionless coupling
constants

NR=—, ul=—F (3.11)
Mpy Mpy
and the dimensionless scale variable
o k2
Y= sz — (312
Mg,

the flow equation(2.31) with the sharp cutoff becomes in
d=4

di(y) 'y S -
“dy 2t SIML-2RMly U]+ e
duty) 5 u(y)
2wy 3.1
dy  m'y—2x(y)-u(y) o

1. The decoupled flow equation

Approximating
\(y)~constX (3.16

in the flow equation3.13 leads to the following decoupled
differential equation fou(y):

du(y)
dy

5 u(y)
moy—2N—-u(y)

(3.17

The characteristic properties of this equation are shown in
Fig. 2 where we have solved E@.17) for the parameters
A=—0.1 and\ = +0.1 and various initial value§(§/).

In the case ok = — 0.1 we find that all trajectories can be
continued toy=0 and lead to nonvanishing IR values
|u(0)|>0. The values ofu(y) along the trajectory are
bounded by the initial values:

(3.18

lu(y)|<uy)|, Yy<y.
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i(y) i(y)
0.01; 0.01;
0.0075}A=-01 0.0075;A=01
0.005/ 0.005
0.0 —— 0.0025
g 64 —6-6_0.8 1" 0 1Y
-0.0025 -0.0025
_O.OOSK -0.005
-0.0075 -0.0075
-0.01 -0.01

FIG. 2. Solutions of the flow equatid@.17) for various valuesi(y) andk =—0.1, A= +0.1 in the left and right diagram, respectively.
The solutions withh = —0.1 all lead to a finite IR valugu(0)|>0. Forx=+0.1 all trajectories terminate >0 with a vanishing

U(Yiem -

In the case of\=+0.1 all trajectories terminate at a finite Taking the limity— Y,e;m Shows thaﬁ(yterm) vanishes, inde-
value Yiem>0 because the trajectories hit the boundarypendently of the sign ofi(y,). This exactly matches the
(3.14. In this course the coupling(y) vanishes identically: behavior found in Fig. 2.

U(YVierm) = 0. Substituting(Yer) =0 into Eq.(3.14) we see
that Yierm= 2X\.
In order to understand the vanlshlng un(fyte,m) analytl

2. The full flow equation

We now drop the approximatidr?» 16 and investigate the

Fig. 2 terminate due to the denominator of E8117) becom- the flow equation3.13 for the initial condmons)\(y) 0.1
ing zero, i.e. the corresponding trajectory runs into theand various positive and negative valuesj()f) The result-
boundary(3.14). Close toym We can approximate, in the ing trajectories are shown in Fig. 3.

denominator of Eq(3.17), Here we see that there is no qualitative difference between
the trajectories starting with positive and negative values of
2X+G(Y’“Yterm)*)’term= const. (3.19 D()?). All trajectories can be continued =0 and yield a

negative value for the renormalized cosmological constant,
Using this approximation, the flow equati@® 17 simplifies A (0)<0. Th's Is characteristic oj trajectories .Of .type la.
to Regarding the dependence ®{0) on the initial value
ﬁ(gl) we find that, compared to the trajectory with
duty) 5 yu(y) u(y)=0, negative values(y)<O0 lead to less negative cos-
ay 7YY (3.20 mological Ponstant§\(0)g(9)<0>X(O)g(9)=0, while positive
values u(y)>0 drive N(0) further away from zero:

It is easily integrated: M0)i5)>0<M(0)i =0 _
A consequence of the general trend that negative values

ﬁ(§/)<0 shift X(O) upwards is the existence of trajectories

v 1 5ylm i\, _ 5Yterm/ ™

u(y)=u(yo) € (y = Yiem) ™" with  positive renormalized cosmological constant:
with  Y=Yierms  Yierm™ 0. (3.2)  X(0)>0. Trajectories of this type did not exist in the
i(y)

0.04

0.02

-0.02

n/
%ﬂ

-0.04

FIG. 3. Numerical solutions to the full flow equati¢®.13 with initial conditionsk(y)=0.1 and selected positive and negative values
u(y). The initial conditions all lead to trajectories of type la, yielding negative values ). There is no qualitative difference between
the trajectories starting witli(y)>0 and u(y)<0. Compared to the trajectory starting witl{y) =0 the solutions withu(y)>0 and
u(y)<O0 lead to decreased and increased values(64, respectively.
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i(y) o)
0.03 0.5
0.02 0.4
0.01 0.3

1Y 0.2
-0.01
-0.02 0.1
-0.03 0.2 0.4 0.6 0.8 1Y
Aw)
0.004
0.002

¥
0.00020.00040.00060.00080.001

-0.002

-0.004

FIG. 4. Numerical solutions to the full flow equation with initial conditiongy) =0.44 andu(y)=0.05. Decreasing(y) by steps of
Au(y)=0.01 leads to an increase af(0). Fine-tuning U(y)=uU(y)i results in a trajectory witt\(0)=0. Initial conditions u(y)
<U(Y). vield trajectories of Type Vla wittx (0)>0. The dashed line indicates the former boundar space ai =y/2.

Einstein-Hilbert truncation. This new mechanism is illus- thatnegativeva|ue5a(§/) lead to an even earlier termination
trated in Fig. 4. of the trajectory. The third diagram of Fig. 5 further shows
_ Here we first consider the trajectory starting with that, unlike in the case of the approximated flow equation
A(y)=0.44pu(y)=0.05 which results in a trajectory with a (3.17), the trajectories starting withi(y)<0 do not reach

small negative valua (0)=<0. We then |0W9“vl(3:/) in steps  ((y,em) =0 but terminate at a nonzero valuéy,e,) <0 al-
of Au(y)=0.01 which leads to an increase »{0). The ready. This is due to the structure of the modified boundary

result is shown in the third diagram of Fig. 4. y=2\+U. Here negative valuas compensate a cosmologi-
We find that by fine-tuning the initial value to L .
cal constant that, setting=0, would already have run into

le(y)=U(y)Cm a trajectory that was_ originally type 1a W't_h the boundary. Close t9= Y., We find thatu(y) decreases
A(0)<0 can be turned into a trajectory of type Ila with 5.4 50 that this compensation becomes impossible. As a
vanishing A(0). By a further decrease ofi(y) to u(y)  consequence, the trajectory reaches the boundary with a fi-
<u(y)crir We find a new type of RG trajectories with a posi- pite (negative value U(Yerm) <0, contrary to the case of a
tive value)\_(0)>0. Trajectories of this_ type _WiII be r_eferred_ positive U.
to as solutions of type Vla. These trajectories provide a sig-
nificant new feature of the RG flow of the cosmological con- N # N
stant, since without thg/ In(V/VO)-invariantX(O) could only thatpositivevaluesu(y) genera_lly 'eb?d toa dgcrease)dfy)
assume negative values. so that the corresponding trajectories termln'c}te at a smaller
Another important issue is the impact of a nonzero couvalueyem than their counterpart starting witi(y) =0. But
pling U(Y) on the trajectories of type Illa which, without the in general this mechanism cannot be used to prevent the
new coupling, terminate in the bounday: y/2. Since there termmatlon of the trajectory _s_lnce we c?nAnot choose arbi-
are no initial conditions given at=1 that result in trajecto- tra/lly large values for the initial value ai(y) due to the
ries of this type, we choos:ez 0.5R~0.7mp|. The effect of boundary(3.14). We therefore find that the possibility of

the nonzerai(y) is illustrated in Fig. 5 for trajectories start- lowering Yierm by ghoosmgj(y_)>0 IS rathgr limited s0 that
, v oA , - ) only the trajectories terminating at sufficiently small values
ing with A\ (y) =0.2 and various positive and negative valuesyterm can be turned into a trajectory of type lla or type la by
u(y). . taking u(y) >0.

We find that including the effect of a running(y) in Figure 5 further shows that the mechanism which lowers
general does not prevent the termination of the trajectories at_ is not operative close to the termination point of the
a finite yye;m>0. Comparing to the case a{y)=0 we find  trajectory but is rather related to the general effect which

Considering the trajectories in the regif)(&)>0 we see
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i(y) ()
0.06 0.25 -
0.04} Typellla Type Illa g
0.02
-0.02
-0.04
-0.06
-0.08
-0.1
iy)
0.01 Type Illa
0.005
Yy
0.05 0.15 0.2
-0.005
-0.01
-0.015
-0.02
-0.025
-0.03

FIG. 5. Numerical solutions to the full flow equation with initial conditioﬁsgl)zo.z and various vaIueEl()A/) given at the scale

§/=0.5. These lead to trajectories of type llla which terminatg,gt,>0. Positive valueij(gl)>0 yield an extension of the trajectories
towards smaller valueg.,,, but in general do not prevent the termination of the trajectory. The dashed line indicates the former singularity

N=y/2.

u(y) has on the running ok (y) in the regiony>y,m. to the modifications in the flow ot (y) listed in the column
Close toy~Ym We find thatu(y) vanishes very quickly. “Changes in the flow of(y).”
Thereforeu(y) cannot have any healing effect on the flow of

X(y) near the boundary. ! .

. Lo~ . In Sec. Il A we found that the autonomous fixed point
. The impact of a nonzero couplingly) on the running of equation(3.4) gives rise to a Gaussian fixed point at the
A(y) is summarized in Table | which is organized as follows. origin of u-\-g space which should govern the scaling be-
The column “Type” indicates the type of trajectory found havior of these coupling constants in the IR region. In this
when solving the flow equatiof3.13 with u(y)=0. The subsection we therefore investigate if the solutions of Eg.

column “u(y) chosen” indicates which values aof(y) lead  (3.13 reflect the expected scaling laws forandX. In this

3. Scaling laws in the IR region

TABLE I. Summary of the modifications in the RG flow (if(y) arising from the inclusion of the
V In(V/Vg)—term in the truncation.

Type u(y) chosen Changes in the flow d{y)
U(Y) > U(Y) e Type la
Type lla
Type la U(y) =U(Y) erit fine-tuning ofu(y)
U(Y) <U(Y)eri Type Via
new solutions with (0)>0
u(y)>0 Type la
Type lla u(y)<o Type llla
generic: Type llla
u(y)>o0 (only solutions close to the region Ila
Type llla can be converted to a type lla or la trajecjory
u(y)<o Type llla
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0 i(y) Ay)
- 0.2
Type Ia Type Ia ’/
0.15 ’
,I
0.1 4

-0.05

-0.1
Logio(|(y)]) Logn(|A®)I)
- 0
Type Ia -0.5
-1.2
-1 i(g) =01
-1.4 -1.5
-2 #g) = -
-1.6 i(y) =-0.1 2.5
-1.8 9 =01 -3
-3.5 Type la
0.0001 0.001 0.01 0.1 1Y 0.0001 0.001 0.0l 0.1 1Y

FIG. 6. RG flow of a typical trajectory of type la arising from the initial conditiong/)=0.2 with u(y)=0.1 andu(y)=—0.1,
respectively. The dashed line indicates the boundan} epace aﬂ=y/2. The cusp appearing in the fourth diagram indicates il@yp
becomes negative below a certain vajuén the IR regime y<<0.01) bothX(y) andﬁ(y) are constant.

course we use the flow equati¢B.13) to find one represen- mological constant:\(0)<0. As typical trajectories we
tative trajectory for every type discussed in Sec. IlIB. Inchoose the solutions Wlth)\(y) 0.2 and u(y)=0.1,
order to focus on the IR propertiek0) we display the u(y)=—0.1 at the starting poing=1. They are shown in
solutions in double-logarithmic plots. Fig. 6.

We start our investigation with the trajectories of type la  The double-logarithmic diagrams in the second line of
which are characterized by a negative IR value of the cosFig. 6 show that both trajectories, starting with a positive and

ii(y) iw)
0.5
Type Vla
-0.01 0.4
-0.02 0.3
-0.03 0.2
-0.04 0.1
-0.05
Loguo(ii(y)) Logu(A(y))
- 0
—1.25} Type Vla 0.5t Type Vla
-1.5 -1
-1.75 -1.5
-2 -2
-2.25 -2.5
-2.5 -3
-2.75 -3.5
0.00010.001 0.01 0.1 1y 0.0001 0.001 0.01 0.1 1y

FIG. 7. Typical trajectory of type Vla with initial conditions(y)=0.45 andu(y)=—0.05. These lead to a positive IR value of the
cosmological constank (0)>0. In the IR region y<0.01) the coupling constanisy) andu(y) assume constant values.

125001-14



A CLASS OF NONLOCAL TRUNCATIONS IN QUANTUM.. ..

PHYSICAL REVIEW D66, 125001 (2002

i(y) i)
0.25 -
0.04 Type IiTa Type IITa '/"
0.02
-0.02
-0.04
Logio(|i(y)]) Logio(Ay))
-1.5 Type I1a #(§) = —0.05 -0.6 Type Ila
) -0.8
25 -1 #(g) = —0.05
-3 -1.2
-3.5 -1.4 #{g) = 0.05
-4 -1.6
-4.5 i(g) = 0.05 -1.8
Yy Y
0.05 0.1 0.2 0.5 0.05 0.1 0.2 0.5

FIG. 8. Typical trajectories of type llla with initial conditiongy) = 0.2 andu(y) = 0.05, u(y) = — 0.05 given at/=0.5. The trajectories

terminate at the boundary singularity= 2\ +U. Comparing to the trajectory starting witi{y) =0, positive and negative valuegy) lead
to a decrease or increase\qf,,, respectively.

negative vaIueEJ()A/), have the same qualitative properties. In of ﬁ(y) decreases rapidly. The third diagram thereby clearly
the IR regiony=0.01 bothX (y) andu(y) take on approxi- demonstrates that a positivgy) >0 vanishes identically at
mately constant values. This is exactly the scaling behavioy=y,,.,, while the trajectory starting witb(y)<0 ends at a
found for the trajectories of type la when considering EQ.nonzero valuel(y,e) <O.
(3.9 with @;=Ay<0. This matches the RG flow of the cos-  The last trajectory class found in Sec. Il B are the trajec-
mological constank (y) resulting from the Einstein-Hilbert tories of type lla which are characterized by a vanishing IR
truncation. Hence the inclusion of the couplingn the trun- ~ value of the cosmological constant(0)=0. These can
cation does not lead to a change in the scaling laws of therise either from choosing(y) =0 and fine-tuning o (y)
cosmological constant for trajectories of the type la. or by fine-tuningu(y)=u(y)<0 for a trajectory which
We now investigate the new trajectory class Vla whichwas of type la originally. To investigate the properties of
corresponds to a positive IR value of the cosmological conthese cases we choose the typical trajectories arising from
stant: \(0)>0. A typical solution arising from the initial X(0)=0 andu(0)=0, U(0)=—0.01° These are shown in
conditions\ (y) = 0.45 andi(y) = — 0.05 specified ag=1is  Fig. 9.
shown in Fig. 7. We find that the trajectories witﬁ(0)=0 show a mono-
Here we find thaﬁ(y) andX(y) again take on constant tonic increase oﬁ\(y) with y. This resembles the scaling

values in the IR region. This resembles the behavior founghenavior forX (y) found in the Einstein-Hilbert truncation.
for the trajectories of the type la. The smooth curve For the trajectory starting withﬁ(0)=—0.01 the third

log19(\(y)) in the fourth diagram of Fig. 7 thereby indicates diagram of Fig. 9 shows that(y) is approximately constant

that(y) is positive in the entire regionQy=<1. in the IR regiony=0.01. The fourth diagram of Fig. 9 is of

~ Next we investigate the scaling properties of the trajectoparticular interest in this case. Here we find the typical cusp
ries of type llla. These terminate at the boundary singularity, . .. v :

C - ) o o ~. 7 indicating that the curv(y) crosses the zero line. Together
of u-\ space. In this case we again fix our initial conditions

N c oa o X with the second diagram this indicates tiié(ty) becomes
at the scaley=0.5 and c_hoos&_(y)zO_.Z anQu(y)z0.0S, _ negative below a certain valyeOnly close toy=0 does the
u(y)=—0.05. The resulting typical trajectories are shown '”curveX(y) bend upward again so thil(O)zO is reached

Fig. 8. , , ~ from below.
Figure 8 confirms that, compared to the trajectory starting

with u(y)=0, the initial conditionsu(y)>0 andu(y)<O0
lead to a decreased and increased valg,, respectively.
The third diagram reveals that closeyt& yem, the modulus

8As one easily checks, these are admissible initial conditions. The
B functions of Eq.(3.13 are finite and well defined there.
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FIG. 9. Typical trajectories of type lla with initial conditioﬁ:{O)zo with G(O):O andfj(O): —0.01, respectively. The cusp appearing
in the fourth diagram showing the logarithm of the modulus of the cosmological constant indicates that the trajectory starting with
u(0)=—0.01 approaches(0)=0 from the negative sidk(y)<O0.

The results found in this section can be summarized ashosek dependence is explicitly known and leads to a well
follows. For the trajectories of type la and of type lla with defined limitI'g[g]. _ .
U(y)=0 the new couplingi(y) does not lead to a change in !N this section we investigate thedependent stationary

the IR scaling laws of the cosmological constant found in the?0ints of ' g]. In a slight abuse of language we shall refer
Einstein-Hilbert truncation. For the trajectories of type Ila 0 them as “classical solutions.” Actually we are considering

v A i - . a kind of “RG improved general relativity” here, i.e. equa-
with u(y) #0 and the type Via we find thai(y), and in the  j5ns of motion which explicitly depend on the scadethe

second case alsh(y), takes on constant values in the IR resolution of the “microscope” used. The following discus-
regiony=<0.01. This, and the crossing of the zero line in thesion focuses on maximally symmetric 4-dimensional Euclid-
case of type lla trajectories, indicates that these trajectoriesan space-times of the ty/88.

have the typical behavior of a trajectory of type la whose

~ ~ . 4 . .
parameteru(y) has been chosen such that it runs to A. S" solutions at constant couplings

X(0)>0 and\(0)=0, respectively. For the trajectories of  Before investigating the scale dependence of the station-
type llla the nonlocal coupling generically does not preventary points of Eq(4.1) we first consider solutions to the equa-
the termination of the trajectories at a finitg,,>0. tions of motion arising from Eq4.1) at a fixed value ok. In

the Introduction we saw already that the modified Einstein
equations resulting from the action Eg.1) are given by Eq.
(1.3), and that they are solved by a 4-sphere provided its

In the previous section we investigated the RG flow of the'adius satisfies Eq1.9). _ _
coupling constants andX in the V+V In V—truncation. We o Ir;ttlls jzﬁ;?f\}éognvé’zrig%m aogfr\?vﬁ?éﬁ%!or:iﬁgﬁr’ I\?a?urgsr
found that all admissible initial conditions imposed at the 9 q 9

- - . __of the radiusr are possible for the various, truncations.
scaley=1 lead to trajectories of the classes la and lla with Substituting the metric of a 4-sphere with raditiato Eq.
well defined IR values for the coupling constants. Substitut-(4_1) results in the effective actioffSP"®'¢r) which is an

ing these coupling constants into the truncated effective avgginary function of the radius of the S*. Introducing the
erage action results in tHedependent functional Planck lengtht pi= mgllE\/a and the dimensionless radius

r=r/€p=rmp, the function'>""*'¢r) reads

IV. SCALE-DEPENDENT S* SOLUTIONS

1 J—
rk[g]=mfd“ng<—R+2M> e — P24 20,57
FSpher?r):16_77[_]_20-4r2+20'4)\r4

1
+ ——=u, VIn(V/IVy) (4.2

167G +ourdin(o,rh]. 4.2
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e (i X = —0.1, /1 = 0.1) rseliers (3 X = 0.1, /4 = 0.1)
60 ; 60 ,
154 i st
40 / 40 /,
1 i/
20 ] 20 /
! !
T~ 2 3 4 5 6 T ¥, 2 3 A 5 6 '
~ ~ /
-20 ~s / -20 RN L
S 7 S~
—40}— v+v2 .. / —40f — V+V?
- V4VIV ~e__.7 - V4VIV
~60 -60
rSeiere(¥, X = 0.1, /1 = —0.1) rsefer(i X = 0.1, /¢ = —0.1)
60 60
- V¥V st -~ V4VhaV st
401 — V+v2 40— V+Vv?
20 20
_ 2 3 4 5 6 ' _ 2 3 4 5 6
-20 S -20 .
N AY
\ N
-40 \ -40 N
\ \
\
-60 . -60 N

FIG. 10. Dependence dfSP"®'¢r;X,u/w) on the radiug for typical values of the coupling constanis= +0.1 andu/w= +0.1 in the
case of th&/+V In V- andV + V2-truncation, respectively. The four cases resulting from the combination of the paraﬁlétedashed ling
andX,w (solid line) are shown in the diagrams above. Only for positive valuew>0 does a stable minimum occur.

Here we have specified the reference volume to\ke Figure 10 shows that the functiorsSP"®'¢r) for the
=(f. It is easy to see that the extrema of the functionv+V InV- andV+V2—truncations possess the same quali-
FHFSpherﬁ) are precisely the solutions of E¢L.9), i.e. tative properties. They lead to the same structure of minima
they correspond to the spherical solutions of the equations ¢ind the same asymptotic behavior. Only the effective actions
motion. This is a consequence of the “principle of symmetricwith u>0w>0 yield a stable minimum and are bounded
criticality” [33]. Because of the maximal symmetry 8f, below. Somewhat counterintuitivelglecreasinga negative
the variation of the action and the restriction of the func-)“\, ie. increasing|X|, generica”y results in the minimum

tional to S* spaces may be interchanged. being located alarger valuesr. Comparing the location of

We are now interested in finding stable minima of e ‘minimum for the two truncations we see that the

[SPetr), i.e. parametersuA) for which Fs?h.erﬁ;x.‘q) IS y4+vinv-ansatz leads to much larger valugg, than the
bounded below and possesses a nontrivial minimum &y, \/2_gnsatz

r>0. In this context it is of particular interest if there exists Considering the lower diagrams in Fig. 10 we find that, in

a “flat limit,” a minimum of T'SP"®'¢r) which is located at the region with negative valuas andw, I'SP"'r) is un-
very larger —. Equation(1.8) then shows that for these bounded below. The action can be lowered to arbitrarily low
solutions theeffectivecosmological constant vanishes or be- negative values by increasimg However, the corresponding
comes very small without the need of vanishing CO“p”ng“minimum“ f— is not a stationary point of SPhee The
constants andu. . o . only critical point in the regioru,w<0 arises for negative
In order to find out which combinations of coupling con- v . . .
. . here™ : values A<<O and is not shown in the diagrams. For
stants result in stable minima 6fP"'¢r) we choose typical - ~ < Sphere : .
. v - u,w,\ <0, I'°P"®{r) assumes a maximum at a finite value
values for the coupling constants==*+0.1 andu=*0.1. . : . .
Th ling functionsI'SP"® 5% = + 0 1li= +0 1 r>0. The resulting critical point then corresponds to an un-
e resulting functions {rA==01u==0.1) are  gapie solution of the equations of motion.

plotted in Fig. 10. Here the dashed line shaW¥"{r) for In the following discussion we will therefore limit our
the V+V InV-truncation. The solid line corresponds to the investigations to the region of coupling constant space where

function stable minima of [SP'¢r) exist. In the case of the

. 1 . . . V+V In V—truncation this corresponds to>0. The proper-
ISPhergr) = Tenl~ 120412+ 20,Ar*+0qwr®] (4.3 ties of the scale dependent solutions arising from this ansatz
will be discussed in the next subsection. The analogous re-
which, in the same way as above, follows from thesults for theV+ V?—truncation withw>0 are summarized in
V+ V2—truncation(1.2). the Appendix.
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B. Switching on the RG running The resulting radii r(y=y;u(y),x(y)) and
Let us now proceed and sEudy thedependence of the r(y=0;u(y),x(y)) are shown in Fig. 11[Note that Fig. 11
position of the stable minimun,y;,. Inserting thek depen-  displays the decadic logarithm ofy). The label %" at the

dent coupling constants=X(y) andu=u(y) into Eq.(1.9  vertical axis denotes the valugy) = 10~.]
leads to the following equation for the scale dependent mini-  The first diagram of Fig. 11 shows the numerical values of

MUM T in =T min(Y): r(y;u(y),x(y)), the radius determined from the Planck scale
N N . ters. The missing shaded squares correspond to initial
2 1 2 " parame j shaded sque
U ain(Y) U Fin Y)INL 04l min(Y) ] conditions in the region 2(y) + u(y)=y which do not give
+2N(y)r2,(y)—6=0. (4.4  rise to well-defined RG trajectories. The first diagram indi-
cates that generic initial datau(y),\(y)) lead to
After substituting a trajectory— (U(y),x(y)) into Eq.(4.4),  r(y)=O(1), i.e. a radius of the order of the Planck length.

me(y) parametrizes the location of the minimum along theThe only exception is the region Witﬁ(9)<0 and 6(9)
particular trajectory under consideration. To simplify our no- <1 where we find values(y)>1.

tation we drop the subscript “min” front i, in the follow- We then switch on the running of the coupling constants

Ing. , _ o and consider the “renormalized” valuegy=0;\(y),u(y))
The main emphasis of our studies is on the IR value of th?/vhich are shown in the second diagram of Fig. 11. The im-

functionr (y) sincer (y—0) is directly related to the cosmo- portant result is that including the effect of the RG flow

logical constant problem or, equivalently, the flathess prob- . . . oAl oA .
lem. It is particularly important to investigate if there are _reSUItS In a considerable extension of théy),\(y)) region

. . - . . in which large radiiy (0)>1, occur. In particular we see that
trajectories along whicl(y) gives rise to almost flat solu- " . o - )
tions with F(0)>1. For these solutions the cosmological this region now al.so gxtends. to(y)>0. The.most impor-
. . tant property of this diagram is that there exists an extended
constant proper,A(0)|, might well be very large, but for

solving the cosmological constant problem it is sufficientdomain of initial data(u(y).A(y)) which result in large
that X o~0. nearly flat space-times with(0)=10%, say.

In order to obtain well-defined valug§0) we restrict the ~ The regioni(y) <0.5,0<u(y) <0.005 in whichr(0) is
investigations in this section to trajectories of the types laparticularly large is displayed in detail in the third diagram of

and lla running inside the positive coupling regi6n>0. Fig. 1_1' ) ) ) .
Choosing these trajectories then guarantees that the IR limits This @_a_gram shows that Ehere_ e>.<|sts a 2-dimensional re-
of U(y) and X(y) are well defined. The restriction to the 9ion of initial values(u(y),A(y)), indicated by the flat top,
region withu>0 implies thatl'SP'§r) has a stable mini- Yvhose trajectories give rise to “macroscopic” radi
mum. r(0)=10'% i.e. r(0)=10'%p,. Since these macroscopic
In the previous section we found that for the trajectoriesradii occur for an extended domain of initial data, there is no
considered the couplings,\ were bounded by their initial pe(;ad>;%12f5|nt_ar—r':une I|n|t|al .COﬂdItI(:I'?S tlhn' order .tothotzt;ar:n
valuesTi(y) <t(y) andX (y)<X(J). Using this information ' (0)=10" The only requirement in this case is that the

in Eq. (4.4) implies thatr (y) should increase with decreasing initial ‘;a'”e of U |svatﬂleast 8 order§ Of_ magnitude .sr-n.aller
y: thanmpg,. Moreover,u(y) may be arbitrarily small: all initial

values 6<u(y)<103 result in a radius (0)>10'%,
F(y)>F(§/), Vy<§ _ The third diagram of Fig. 11 further shows that the rggion )
in coupling constant space where these macroscopic radii
for trajectories of type laand lla. (4.5  occur isnot located close to the boundary\ @y) + u(y)=y
where the use of our truncation could be problematic.
Stated differently, this means that the quantum fluctuations Even though the Euclidean space-tim®$ considered
which are taken into account via the RG running help us irhere cannot be compared directly to the Robertson-Walker
making the universe large and flat. space-times of Lorentzian signature which are relevant to
In order to investigate this mechanism in detail we fixcosmology it is nevertheless plausible to compare the two
initial  values (U(y),\(Y)) in the region u(y)>0, pertinent length scales. Loosely speaking, the radius of the
2X(9)+U(y)<Y, aty=1, resulting in trajectories of the S* is analogous to the Hubble rac_iiluﬁ in the Roberts_on-
types la and lla. We use the flow equati@l3 to find the Walker Ocas.e.- If we recall that in the vpresent gsnlverse
IR valuesu(0) andX (0) which arise from these initial val- "H~ 10265€P| it is clear that values as large a0)~10"*° or
ues. By substituting the couplings at the Planck scale{h'zlco1 €F(,)|Iare_z b?/ggr stuffltmertl)tbl;o:naody?haemtl)cal_ S%I]}';“r?e” “chG
()\(y),u(y)),.and in_thg IR’(U_(Q)L)‘(O))’ into Eq. (4.4) W? impro(ilsen; T(;glig?—Venr;iz?]o%ecianis%." =P
then determine the initial radiugy) and the evolved radius |y order to understand the appearance of the macroscopic

r(0) in dependence ai(y) andX(y). radii analytically, we return to Eq4.4). For the large values
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FIG. 11. Dependence af(y=y,u(y),\(y)) andr(y=0u(y),x(y)) on the initial values(t(y),\(y)) given aty=1. The functions
F(yzl) andF(y:O) are shown in the first and second diagram, respectively. The third diagram shows the region of initial values
(U(y),X(y)) which result in particularly large radfi(0)>10%°.

. (r>1). (4.6)

4.7

of r found in Fig. 11 we can neglect the—6" there. The Here we see that for largevalues where (y) is positive

resulting equation can easily be solved for the radiusF(y) is almost constant and of order 1. The argu-
The approximation(4.6) would lead to valueg <1. It is
certainly not applicable in this regime since the exact nu-

Obviously there is an exponential correlation between the | gweringy, the behavior changes whaify) turns nega-

coupling constantsi,X and the radius. Hence a small tive. In this case the argument of the exponential in @)

Equation(4.6) implies that in order to obtain(0)~10'%°it  a macroscopic valug(y)>1.

is sufficient that|X(0)/u(0)|~250 with X(0)/u(0)<0. In the IR regiony=0.01 bothX(y) and u(y) take on

uesu>0 only, this leads to the condition that in order to macroscopic value.

make this mechanism work(0) has to be negativeHence Taking the trajectory from Fig. 12 as an example we find

taining large spherical solutions wiﬂ(0)>1.

To investigate they dependence of(y) along a typical r(k=0) 1018
initial conditions X (y)=0.3 andu(y)=0.0002. The trajec-
tory as well as the functiongy),log;o(f (y)), and the expo- This huge number indicates that the RG running is of crucial

5 ment of the exponential in Eq44.6) is negative in this case.
F:(O' )*l/4ex _A_E
N 2u 4 €
merical solution of Eq(4.4) shows that (y)~1.

change inu,\ will have an exponentially large effect an  turns positive and we find tha(y) grows rapidly assuming
the trajectories of type la are the natural candidates for oba typical “magnification factor” of
trajectory of type la we choose the trajectory arising from the r(k=k)
nent appearing in Eq4.6) are shown in Fig. 12. importance for the actual size of the universe.
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FIG. 12. The functions\(y),u(y),r(y) of a typical trajectory of type la, starting from initial conditions(y)=0.0002 and
X(y)=0.3. In the region wherk(y)>0 the radius (y) is approximately constant and of orden{y) becoming negative induces a “phase
transition” or “inflation” in the sense thai(y) increases rapidly towards a macroscopic veil(t;e> 10'%5, In the IR region y< 0.01),F(y),
is constant again.

In summary we find that the transition fronfy)~0O(1)  tremendous amplification of this effect. Taking these quan-
to very large radiif (y)>1 is induced by the cosmological tum effects into account, the same initial data specified at the

v . . . Planck scale lead to by far larger universes than expected
constant properi(y), crossing zero and turning negative. classically
On the other hand, looking at E@L.8) it is clear that the '
effectivecosmological constant is positive along the entire

trajectory. In the region whera.(y)>0 the small radii V. THE MODIFIED GAUSSIAN FIXED POINT

r(y)~0O(1) correspond ta e(y) ~mz,. At low scalesx (y) We now return to the partial differential equati¢®.30
turning negative induces a “quenching” agy so that, inthe  \yhich describes the scale dependence of
IR region, 'Fhe effective cosmolgglcal constant takes on very (9)=kd 275 (Vkd), 9=Vk". Using this equation for the
small positive valuesh(y) <mp;. ~full nonlinear functionf, we shall study the properties of the
Thus we find that including the nonlocal invariant modified Gaussian fixed poifMGFP) in the now infinite
V In(V/Vp) with a small couplingu(y) into the effective ac- dimensional truncation subspace. Thereby we generalize the
tion indeed results in a tiny, positive IR value ®f; at the  methods used to investigate the fixed point properties in Sec.
end point of any type la trajectory. While the quenching oflll A to the infinite dimensional setting of “fixed functions.”
Aes due to the nonlocal invariant takes place at the classical In order to remove any explicik dependence from Eq.
level already, the inclusion of the RG running leads to a(2.30 we have to introduce the dimensionless Newton con-
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stantg(k)=GkY 2 satisfying the trivial equatiom,g=(d—2)g since G is assumed constant. This leads to the following
autonomous system of equations:

9= PBy(9.f), af(9)=pB(g.). (5.9
The B functions are
By(9,f)=(d-2)g (5.2

d(d+1)

Bi(9,1)=—{(2—d)f () +d I ()} +87G) (4m) 929 Py —2f1(9)]—2dP3,(0)

1 + ! (5.3
1- Zf&(ﬁ) ’ 2d ” .
1-2f(9)———= (O
d-2
|
(The prime denotes a derivative with respectitg The fixed point45.8) are scale invariant in the sense that

The fixed point condition for these evolution equations,the associated modified Einstein equation does not contain
By(g*,f*)=0,8:(g*,f*)=0, only admits the trivial solu- any dimensionful coupling constaht:
tion g* =0 which corresponds to the MGFP. Substituting
g=g*=0 into B;(g*,f*)=0 we find the following simple
condition for the vanishing of the secomgifunction:

1 ¢
, R,uv Zg,uvR_ 2 \/ngw (59)
2-d)f* (3 +ddf* (9)=0. (5.9
This equation is easily integrated. We find that the fixed poiniAs a consequence, E@5.9) cannot fix the “size” of the
is characterized bg* =0 together with universe. If we insert a 4-sphere, for example, its radius
drops out, and one finds that spheres of any radius are solu-
f*(9)=cod-2)/d, (5.5  tions to Eq.(5.9 provided that the parameterassumes the

special valuec=127+/2/3.
Here c denotes an arbitrary constant of integration which Note that trajectories starting without a nonlocal “seed,”
actually parametrizes a one-parameter family of fixed pointsi.e. with f, (%)}, cannot be in the basin of attraction of the

Specializing tod=4 dimensions Eq(5.5) reads JV-fixed points because the flo@®.32 preserves the form
fr(9) 9.
f* (%)= c\o. (5.6) Let us now investigate the stability properties of the fixed

point (5.5. We linearize g=g*+dég=6g and

On the level of the dimensionful functiaf, this result cor-  fi(9) =f*(9)+ 5, (), and make the following ansatz for
responds to the small perturbations:

1/2
f*=cW=cUd4xfg) . (5.7) 89=€ exp(— Bt)yy, Of () =€ exp(— o) Y(D).
(5.10

At the fixed point,I',[g] has the somewhat peculiar form
Here € is an infinitesimal parameter, ar@will be the sta-

1 bility coefficient (critical exponentassociated with the scal-
lel= 167rGf dVo(~R) ing field (yq,Y(9)). [Recall thatd is defined such that
o #<0 corresponds to eigendirections which are attractive in
+L( f dzwg) _ (5.9 the IR, ie. fort=In(kk)——, while directions with6>0
8mwG are IR repulsivé.The infinite dimensional stability matrix of

the MGFP has the structure
Herec acts as am priori undetermined coupling constant of
zero canonical dimension which multiplies the dimensionless———
JVIG. We observe that the cosmological constant vanishes7But we do not rule out the possibility of a dynamical generation
atI'*. of a mass scale by dimensional transmutation.
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17 1% d 1%
9By % dﬁﬁX(ﬁFﬁ (5.13
B g de | _, (5,19 99 |vicrp
MGFP— .
‘9_ﬂf ‘9_'Bf In d=4, and forc#0, d8;/J9|ucep iS given by
99 €l MGFP B
— =8m+ . .

lts eigenvectors are infinite “columnstyy,Y(9))". Be- 99 | e gm+0(\9) (5.14

causep, is independent of and of e therefore,Bygep is @
lower triangular matrix:

(d—2) 0

B B
E Je

(5.12

Bumcrr=

=04 MGFP

For the stability coefficiend=2—d there is an obvious ei-
genvector withy #0 and an accompanyiny(4)+#0. In
terms of the rescaled functiot(d)=Y(9)/y,, the form of

Substituting this result, Eq5.13 is easily integrated and
yields

X(9) =2 In(9) +const- O(\/9). (5.15

The O(\/9) terms are regular and vanish in the IR-¢0)
where, forV fixed, 9=Vk*—0. We now use this result to
write down the trajectory’,=1"* + 6I'\ due to the eigenvec-
tor (yg,Y(ﬁ))T. We make the assumption that it approxi-
mates a trajectory of the full nonlinear system which gets

Y(9) can be determined by solving the following differential close to the MGFRn the infrared i.e. fork—0. Expanding

equation:

6/"72
5Fk:
167

GZ

for smallk, oT'y is given by

{16776 In(k)+f d4x\/§R—2cN+4qu In(V) + constt terms vanishing fork—0. (5.16

Here €' =ey,, andk is the fixed reference scale from the relation between dimensionless and dimensionful coupling
constants involves explicit powers kfln order to obtain the

markably, apart from a field independent term which we Car{rajgctoryszf* + ol cqrresponding to_ gspecific eig_endi-
ignore, all terms indl",, either remain constant or vanish in rection one has to combine those explicit powersk afith

the IR limit k—0. Hence, at the level of dimensionful quan- the factor exp(-é)=(kk)’ coming from Eq.(5.10. It is
tities, the eigendirection corresponding #&=2—d is not  duite remarkable that in the case at hand all factors of
repulsive. cancel precisely so thall", actually does not depend dn

The eigenvectors of the matrBygrp With 6#2—d are In  four  dimensions  the eigenvectors are

of the form (0Y)T. In this case the functio is determined ~ Yo(9)=Cy 920" Reintroducing dimensionful variables
by the entry this becomes at the level &f,

definition of the renormalization group tinte=In(k/k). Re-

B4 J N 1 Y
_— = — = — (2+6)/4
7e | S P (@=0F"(9)+eY(D)) » (5.1 STg]= gz eckV . (5.20
The functionY has to satisfy Obviously the RHS of Eq(5.20 is completely independent
p of k. Thus, at the linearized level, the perturbatidbs20
[dﬂ_+(2_d)JY(ﬁ): oY (). (5.19  neither grow nor decay, and their actual stability properties
a9 can be inferred from the higher orderséronly.

Combining Egs.(5.16 and (5.20 we can say that there
exists no linearized trajectoly* + 6I" which, fork—0, is
repelled by the MGFP. While this “taming” of the IR behav-
ior due to the\V-fixed point is not yet a solution to the

This result is rather unusual, both because the spectrum &Psmological constant problem, it represents significant
Byaep IS continuousand because there are infinitely many progress compared to the usual situation wherextheirec-
relevant and irrelevant eigenvectofén conventional field tion at the GFP is strongly repulsive. According to E8,9),
theories the spectrum is discrete typically and there are onlthe dimensionful cosmological constant runs proportional to
a few relevant directions.While it is true that there are k* near the GFP; the analogous perturbation of {hefixed
infinitely many repulsive directions in the “theory space” of point is completely independent & however.[See Eg.
dimensionless couplings one should bear in mind that thé5.20 for §=2.]

This differential equation has a solution for every réal

Y(§)=c,00 2+ 0d=y (9). (5.19
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An investigation of the nonlinear stability properties of including the F,-term in Eq.(2.5), we find that theV + W
the NGFP and the determination of its basin of attractionruncation corresponds to choosing

would require solving the nonlinear partial differential equa-

tion (5.1) which is beyond the scope of the present paper. F(VKY =y WV + NV
Instead we shall study a simplified 2-dimensional flow in the _ _
next section. =k Y29+ Nk II=F (D). (6.2
VI. THE V+V—TRUNCATION Substituting this ansatz into ER.28), its LHS becomes
1 — _
In the previous section we found thEt[g] contains an %(MJW INV). (6.3

invariant proportional toyV. Motivated by this result we
now analyze a 2-dimensional truncation Bf which in-
cludes this structure. We investigate the RG flow arising in
the “V+ {V—truncation”

In order to determine the flow equation fﬁk and?k it
therefore suffices to determine the coefficients of the terms
proportional to\V and V appearing on the RHS of Eq.

M\0:0]- 1o [ dix(a(—R+2xy) 228,
K 167G K Calculating the first and second derivative&f(9) with

respect to its argument,

8 Guk\/_+ classical gauge fixing(6.1) , _?k*d/Z — . k92
Fr(9)= N + Ak, }—k(ﬂ)——m,
This ansatz foll, contains a running cosmological constant (6.4)
A and the coupling of the/V term, v

we see that, unlike in the case of thée+VInV- and
A. Projecting the flow equation V+ V2—truncation, these expressions contain inverse powers
V. As we will see shortly, it is due to this new feature that the

In order to derive the flow equation for the running cou-, JV—truncation doesotgive rise to a boundary singular-
pllngs)\k andvl< we make use of the partial differential equa- ity at A = 1/2.

tion (2.28 which describes the RG behavior of a general Substituting the derivative&.24), the RHS of Eq(2.28
nonlinear function#, (V). Comparing Eq(6.1) to the ansatz yields

i d(d+1) 20w W
L)~ Y24y Dl ——5 — =] —2dD§,(0) | — — N
(4m) > d/2< K2 k2\/V> dral )] — ek 2+ W(1-20Kk72)
M= - ' "
Fa UK V- 2ank?)

To determine the terms proportional {&/ andV we expand this expression in a power series¥hat V=0. Let us briefly
comment on this expansion. We begin with the case0. Using the definition ofb?(w) in Eg. (2.25 we find

Y R DS LU T
a2 k2 kz\/v F(d/Z) 0 2)\k Uy
2+RO(z)— K- X
k2 KWV
[ RO
T(d2) N —
\/\—/ Z+R(0)(Z)—F —vkk72
~k?
=c—/V+higher powers of V.. (6.6)
Uk
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Herec denotes a finite constant that depends on the particu-

lar choice ofR(”(z). We see that the leading term in the
expansion ofb},,[ — (2 /k?) — (v /k?\V)] is of order V.
When inserted into Eq6.5) it produces only a termc V3?2

outside our truncation subspace and therefore does not con-
tribute to the flow equation. The expansion of the penulti-

mate term in Eq(6.5) is straightforward and yields

W

uk 2= WV(1-20 k)

k2 k* -
==\V+=(1-20k ?)V+O(V?). (6.7)
Uk Uk

Expanding the last term in E@6.5 we need to distinguish

the casesl=4 andd#4. In d=4 dimensions the term be-
comes independent &f and lies outside the truncation sub-
space. Fod# 4 the expansion yields

WV
4-d A
a2V 1_2P>
2(d—2)k?2 4(d—2)%k4 A
I v )_2 1-2—|V
(4—d)y, (4—d)2? k2
+0(\V3), for d#4. (6.9

Introducing the dimension-dependent coefficients

1 for d=4
cud)=) _d_ for d#4,
4—d
1 for d=4
=4 d(8—3d )
c,(d) ( ) for  d=4 (6.9
(4—d)?

the RHS of Eq.2.28 takes on the following form:

2

k
cy(d) =V

Uk

2
+1 —2d(4m) YD g,(0) + co(d) =5 (K2 =2\ V
Uk

(6.10

+terms outside the truncation subspace.

Comparing the coefficients ofV and!in ECE. (6.3 and
(6.10 then yields the flow equation fox, and v, :

2

_ k
dv=8mGcy(d)=
Uk

PHYSICAL REVIEW B6, 125001 (2002
atfk=8we{ —2d(4m) " Y%kIDL ,(0)

2
+c2(d)5—2(k2—2ﬁ)]. (6.11)

Uk

It is important to note that the above derivation is valid only

if v#0. If vy, =0 for some value ok, the expansionés.6),
(6.7), and (6.8) break down, and th& dependence of Eg.

(6.5) changes abruptly. As a consequengewill continue to

vanish at all lower scales, and the evolutionﬂf is gov-
erned by the decoupled equafion

Ihe=(4m) " 2GKd(d+ 1) DL — 2N, /K?)

—4d®j,(0)]. (6.12

The abrupt change of th€ dependence a;k=0 suggests
already that th&/+ \V—truncation is probably not very re-

liable for small values ofv,|, and that the flow tends to
create additional invariants different frogf/. In fact, we are
actually interested in RG trajectories describing universes
which become large in the IRA— <) and which have small

nonlocalities. Under these condition®?.,(— (2\,/k?)
— (u/K?\V)) equals approximatelp’,(— 2\, /k?) which
is independent of/. It appears to be of ordefV only if we
choose a basis off’s consisting of powers ofyV and
project on it atv#0.

The parameter space of ther V—truncation is thex-v
plane with thev=0 line removed. According to the second

equation of Eq(6.11) the B function offk diverges on this
line. Interestingly enough, there is no boundary singularity at
A=1/2.

B. The solution of the flow equation

We now solve the system of differential equatidfsll)
analytically. We see that the flow equationgfis indepen-

dent offk and therefore decouples. Usidg=k(d/0k) it is
easily integrated and yields

=+ v~ 87Gey(d)(k2—k?). (6.13

As usualk is the scale where we impose the initial val?g,

Later on we shall sek=mp,. Next we substitute Eq6.13
into the flow equation for the cosmological constant:

8For d=4, this equation has been studied extensively[5h
where it has been obtained by switching off the runninGgpin the
B functions derived in the Einstein-Hilbert truncation.
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B(y)
10

8

6

FIG. 13. Graphical illustration O?J(y) given by Eq.(6.17) with selected positive and negative initial valde@) in the left and right
diagram, respectively. The trajectories of class Il starting vjﬁt(ﬂ/)|>|;/(§/)crit| can be continued toy=0. Those of class | with

|Zz(§/)|< |L(§/)Cm| run into the singularity ab=0 and terminate at finite valuss,~>0. The bold line indicates the trajectory separating the
trajectories of class | and II.

9_ This differential equation can also be integrated analytically.
kh=87G —2d(4m) " Y29} ,(0) For generald it leads to a rather complicated expression.
Settingd=4 the general solution simplifies considerably. It
202 o consists of two branches distinguished by the sign of the
- ca(d)k(k ?)‘k) _ (6.14  Square root in Eq6.13:
v, —8mGey(d)(k?—k?)

y=*+ i —87G(k2—k?)

8G2DY(0)(2K5+k®— 3k%k*) +6G(K*—k*) — 3\ ok
3[vi—87G(k2—k?)] '

A=

(6.195

This result gives a complete description of the RG flow of the \V—truncation in 4 dimensiona_.k and;,; are the initial
values ofy, and\, specified at the scale. The relevant branch is determined by the sigrvpf
In order to illustrate the properties of the soluti@@15 we introduce the following inp—scaled” quantities:

. - . Nk LS
uy)=w, My)=—3, y=k=—. (6.16
Mp Mp,
In terms of these couplings E(.15 read
uy)= = \u(y=1)-8m(1-y) (6.1

- 803(0)(2y°-3y?+1)+6(1-y) —3N(y=D)u(y=1)*

X(y)= -
v [uy=1)—8m(1-y)]

(6.18

Here we have identified the initial scale with, by setting = ./g8zy, run into the singularity ab=0 and terminate at

9: Rzlma: 1 .
Figure 13 visualizes the RG flow év(y) for various posi- . ;,5
tive and negative initial values(y). Here we see that for all Yierm= Y~ 8 (6.19

trajectories|v(y)| is bounded above by its initial value

lu(y)|. Figure 13 further shows that the trajectories of theThese trajectories will be labeled as trajectories of class |.
V+ \V—-truncation can be separated into two classes. Thghe trajectories starting with initial valués(y)|=|v(Y) i

ones starting below a critical valueu(y)|<|v(Y)ei/  can all be continued down tp=0. These will be labeled as
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i) scribed reliably by the truncation, at least not close/{g,
5 \ wherev approaches zero. On the other hand, the trajectories
of class Il which stay away from the problematic neighbor-
! L hood of =0 have a chance of being realistic. The
V+ V—truncation is interesting from the point of view that,

Y

0.2 . contrary to the other 2-parameter truncations, it has no prob-
-1 lems in producing positive renormalized cosmological con-
5 stants\ (0).
The fixed points(5.8) are characterized by a vanishing
-3 cosmological constant and an arbitréampnzerg prefactor of

12 g ; ian X
FIG. 14. Graphical illustration oi(y) for typical class | trajec- Ve S.mce’ m. thev+ \/_V—tryncatlon,?\(O) can have .any

_ _ <A _ 7 _ value it is obvious that in this truncation the trajectories are
torlevs,Astartlng from;(y)V:4 and various positive and negative val- not attracted towards the projection of the MGFP onto the
uesx(y). At y=Yyem My) diverges independently of the initial {rncation subspace. We do not know whether this reflects a
valueX\(y), causing the termination of the RG trajectory at a finite genuine property of the MGFP, or whether it is due to our
Yterm> 0. 2-dimensional approximation of, space.

trajectories of class Il. Depending on their initial vaﬁ(ei/)
these trajectories can end at any IR vai(). VII. DISCUSSION AND CONCLUSIONS

Let us now discuss th% RG evolution of the cosmological In this paper we used the exact RG equation of quantum
constant. Figure 14 showg(y) along typical trajectories of  Einstein gravity3] in order to study the scale dependence of
class I, starting withy(y) =4 and various positive and nega- nonlocal effective actions of the forth, (V) whereV is the
tive initial values\ (y). Here we find that, as the trajectories Euclidean space-time volume. Such investigations are both
approachye,, where ;)(yterm)zov the values ofX(y) di- interesting in their own right an.d they are |mportant for an
verge. This divergence causes the termination of the trajeéj-nderStandmg of quantum gravity at large distances. One of

he fini | b v o d the physical motivations of the present work is the conjecture
tory at the finite scale/iem becauseA (Yiem)| == does not ' sirong IR quantum effects might provide a solution to

allow us to continue the evolution afi, with Eq. (6.12. the cosmological constant problem. The Einstein-Hilbert
Figure 15 shows a typical set of trajectories of class Iitruncation is too simple, however, to encapsulate such ef-
starting with|v(y)|>|v(Y)il. In the plot we have chosen fects; in order to obtain a small value of the renormalized
|u(y)|=6 and various positive and negative initial valuescosmological constant one has to fine-tune the initial point of
X(y=1). Figure 15 illustrates that all trajectories of this € RG trajectory to be extremely close to the separatrix.

class can be continued down Jo=0. The important new In Sec. Il we presented a detailed investigation of the RG

feature found here is that, depending on the initial valuefIOW for an 7y of the formV+VInV, and in the Appendix

v o . . ) we performed a similar analysis fof+ V2. These specific
A(y) of the trajectory, we find negative, zero, as well asgpices were motivated by the fact that these actions had
positive IR values for the cosmological constant.

L . . been discussed before in the context of wormhole physics.
Probably the terminating class | trajectories are not deyeyertheless our investigation has nothing to do with worm-
) holes directly; it is supposed to apply at length scales much
Alw) larger than the wormhole size where an effective description

2 is possible[27,26,25. The wormholes might be needed to
v provide the “seeds” of the nonlocalities, though.
1 K The classification of the RG trajectories resulting from the

new nonlocal invariants leads to almost the same classes of
trajectories as in the Einstein-Hilbert truncation. We also

-1 found that theV In(V/Vy) and V2 terms in general do not
prevent the termination of the trajectories of type llla in the
-2 boundary singularity. A new feature in the RG flow are the

trajectories of type Vla which appeared in the case of the
V+V InV-truncation. They vyield apositive value of the
FIG. 15. Graphical illustration ok (y) given by Eq.(6.18 for renormalized cosmological constaTu which could not hap-
typical class Il trajectories, starting fronfy) =6 and various posi- pen in the Einstein-Hilbert truncation. The existence of these
tive and negative values(y). All trajectories can be continued to trajectories is due to a modification of the boundary singu-
y=0. Depending on the initial valug(y) they yield positive, van-  1arity where, in the case of th€+V InV—truncation, posi-
ishing or negative IR values(0). There is no boundary singularity t_iVe values of\, can be compensated by a negative coupling
preventing the trajectories from reaching positive IR valuesu.
x(0)>0. A rather impressive and potentially very important prop-
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erty of the nonlocal actions becomes obvious if one looks foclear that they cannot yet be used in order to construct real-
their (maximally symmetrig stationary points. We consid- istic cosmologies. The invariani (V) make sense only for
eredS*-type solutions of the modified Einstein equations andEuclidean space-times and not for the Lorentzian ones of the
determined their radius as a function of the parameters ifrobertson-Walker type, sdyin the future one of the main
I',. It is remarkable that there exist solutions whose curvaiasks will be to extend the RG analysis to nonlocal invariants
which have a Lorentzian interpretation, and then to check
whether the resulting modifications of general relativity and
) . cosmology are consistent with the experimental data. This
logical constant is. - includes questions of causality, and in particular the need of
We used our results for the running »f and the nonlo- making the nonlocal effects at large distances compatible
cality parameters in order to determine the impact the leadwith the experimental bounds. The general framework of the
ing renormalization effects have on the radius. In the case dfffective average action and its RG equation should work
the V In V—truncation we found that by including the RG also in the Lorentzian case, albeit applied to a different type
evolution of the parameters betwekr mp and k=0, the  Of “theory space”[3]. The crucial question is whether in the
S* resulting from generic Planck-size initial valuéfixed at ~ full, infinite dimensional theory space of Lorentzian gravity
k=mp) has a radius which is many orders of magnitudethere exist RG trajectories which solve the cosmological

larger than it would be classically. This “inflation” due to the constant problem along the lines discussed in this paper and,

RG running of the couplings helps in understanding howAt the same time, do not give rise to unacceptably large vio-

Planck-size bare parameters in an effective action valid altgtrl]:)ns O)f l;’g;‘lle'tg ar;]ir(;aiﬁ:“térzt l’iﬁ?bgr?;o&, 2%'3;:?’; at
k=mp, can give rise to large and almost flat universes. e w y nown «

X ) . .__least undetectably small. For the time being we cannot yet

Our most important results concerning this mechanism

: P .~ answer this question. Without having a realistic Lorentzian
are displayed in Figs. 11 and 12. They show that an arbltrarﬁG trajectory at our disposal it is very difficult to develop an

trajectory of type la with a negative, of the order ofm3,  inyitive understanding of the macroscopic quantum effects
leads to macroscopig® solutions if a small coupling con-  characterizing the vacuum of quantum gravity between the
stant O<u< 10‘3m§I is included. From these solutions we scales of centimeters and Megaparsecs, say. As for its tech-
obtain a very tiny, positive IR value of theffectivecosmo-  nical complexity and its intrinsically nonperturbative nature
logical constant which could be in agreement with the exthe problem can perhaps be compared to the strong quantum
perimental bounds. It is this effective cosmological constaneffects in the infrared of QCD which are at the heart of color
which is responsible for the curvature of space-time. Since itonfinement, for instance. Clearly much more work is
is extremely small for an entire class of trajectories, thisneeded in order to construct realistic cosmologies driven by
mechanism does not need a fine-tuning of the initial condid{R renormalization effects. We showed that at least in prin-
tions. Hence this “RG improved Taylor-Veneziano mecha-ciple such effects are contained in the gravitational RG equa-
nism” provides a very promising approach to explain a smalltion and that they might help us in solving some of the prob-
positive cosmological constant in a natural way. lems of standard cosmology. There is certainly an@riori

We found that the “inflation” of Planck length universes reason why such effects could not be embedded in a phe-
to a macroscopic size is not a general property offa(lV) nomenologically viable scenario.
truncations. While the qualitative features of tfie-V In V-
and theV+ V2—truncations are quite similar, the “magnifi-
cation factor’r(k=0)/r(k=mp) one can achieve with the ACKNOWLEDGMENTS
latter is not much larger than unity. . _ .

Another scenario one could think of and which also o V{;‘:‘;%‘#gr“kg tOLti?i:rinnkI,:\L’\. I?DOenreclgrc]((:)i’V\C/;Dl\até::::z'i:ﬁfle;ﬁ q
would solve the fine-tuning problem of the cosmologicalc'V\/etterich ;‘or Hel ful,disc';ussions o '
constant is to assume that, in the IR, is attracted by a fixed ' P '
point I'* which allows the space-time to becorf@mos}
flat. Even within our simple class of truncations we found a
first hint showing that a mechanism of this sort is indeed

possible in principle. We saw that in this truncation subspace |n this appendix we compare thée+ V2—truncation to the
the RG flow has a line of fixed points of the type v+V InV-truncation discussed in the main part of the paper.
Jd*x\gR+cV¥2 The associated modified Einstein equa-we start by stating the fixed point properties. Then we briefly
tions are scale invariant and the curvature of their solutiongummarize the properties of the RG flow found by studying
is completely unrelated to the parameters in the bare actiothe numerical solutions of the flow equation. We then deter-
Motivated by the structure of the modified GFP with its mine the dependence of the radius $¥f-solutions on the
characteristic,V—dependence we determined in Sec. VI therunning coupling constants along trajectories of type la and
2-dimensional RG flow of th¥ + V—truncation. It does not lla. As in the case of th& +V In V—truncation, we employ
suffer from the notorious boundary singularitydat 1/2 and
has no problems in achieving positive renormalized cosmo=——
logical constants. ®However, it could perhaps be possible to compare our results to
While these results are already very encouraging it isimulations of Euclidean simplicial quantum graviga,42.

ture is not, as usual, proportional to but rather is the
smaller thelarger the absolute value of th@rope) cosmo-

APPENDIX: THE V+V2-TRUNCATION
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FIG. 16. Functions?vl(y)zo and\7v2(y) along which the RHS FIG. 17. Numerical solutions of the approximate flow equation

of Eq. (A6) vanishes. The parametgris chosen a&d =0.1,0,—0.1  (A6) with A= —0.1 and various positive and negative initial values
and —0.2, respectively. These curves separate regiongy(y). The trajectories in the regiow(y)>0 are stable and yield
w(y)>wi(y), wi(y)=w(y)=w,(y), and w(y)<w,(y), where  w(y)<w(y) while these starting withwv(y)<0 generally become
the RHS of Eq(A6) is positive, negative and positive, respectively. nstable when reachin@/(y)<\7v2(y). For these trajectories we

Decreasing values of thereby lead to decreasing valukg(y). find Jv(y)ﬂ—oo at a finite valugy=y,om>0
erny .

the sharp cutoff with shape parameter1 in all calcula- Introducing the dimensionless coupling constants
tions. g(k)=k%2G, N(k)=k 2\, and w(k)=k @*2w, we
write Eqg.(2.32 in an autonomous way,

1. The Gaussian fixed point 9= By(\,g,W)

The starting point of our investigation of the
V+V2—truncation is the differential equatiof2.32. This Ih=Br(\,g,w),
equation describes the RG flow of the dimensionful coupling

—eSEreE . > o > dW=Bu(N,G.W), (A1)
constants\, andw, associated to the invariantsandV< in
an effective theory of gravity below the Planck scale. where theB functions are given by
By(N,g,w)=(d—2)g
1-d2 1 1 g
Br(N,g,W)=—2\+(4) g{d(d+1)Dg,(—2N)—4dDg,(0)} + 16wﬁgwm
d(3d—4) 1

2 . 2
(d—2)2 oW (1—2)\)3 (A2)

Bu(N,g,W)=—(d+2)w+ (47)1~924d(d+ 1) gwd3,(— 2\ ) + 1287
The only solution to the fixed point equatiofi(g* \*,w*)=0 Vie{g,\,w} is the Gaussian fixed poing* =0,
A*=0w*=0. From the pertinent stability matri8; =48, i,j €{g,\,w}, we find the following stability coefficients

(critical indice$ and eigenvectors satisfyirgVv'=— 6,V':

w(y) @)

, 0.5

( 0.2 0.4

-0.005 0.3

0.2

-0.01 0.1
-0.015 0.2L 0. ; \ 1Y

-0.1

-0.02 -0.2

FIG. 18. Numerical solutions of the full flow equation in the regiefy) <O, illustrated by trajectories starting with(y)=—0.1 and
various negative valuesv(y)<0. In the regionw(y)<w,(y,A(y)) all trajectories lead to diverging values(y— Yirm — —,
)'\(ylerm)=y[em{2. The bold line in the second diagram illustrates the boundary singuleasity/2.
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w(y)
0.005

0.004

0.003

0.002

0.001

0.2 0.4 0.6 0.8 1Y

FIG. 19. Typical type la solutions of the full flow equation starting witty)=0.1 and various positive values(y)>0. For the
trajectories starting witki/(f/) =0 (\7v(§/) =0.009 we obtain the largegsmallest IR value of the cosmological constant, i.epasitiveinitial
valuew(y) drivesX (0) away from zero.

6,=+2 with Vi=(1,0,07
0,=—(d—2) with V2=((4m)*"9%(d—3)®},(0),1,07

6;=d+2 with V3=(0,0,1)". (A3)

These stability coefficients and eigenvalues can be used teor the sharp cutoff witls=1 the constani, has the value
write down the linearized RG flow of the dimensionful cou- ¢,=2/(3). In order to systematically investigate the prop-
pling constants in the vicinity of the GFP: erties of the RG flow we first analyze the approximation of

G =G Eq. (A5) arising from settingh =const. This leads to the
- following decoupled flow equation foZv(y):
M=o+ (4m)1~92(d—3)GkID} ,(0)

Wie=Wo. (A4) diy) 10 w(y) W(y)?

As in the case of the/+V InV-truncation, the coupling dy ?y(y_z)‘\) +5127T(y_2;\)3' (AB)

constants take on constant but in general nonzero values as X . .
. — — Due to the quadratic nature of its RHS, 6) gives
k—0. The numerical value&, \y andw, depend on the g H&\®) g

RG trajectory chosen and are not determined by the propefiSe 0 two curveg—w(y)=0 andy—w,(y) <0 on which
ties of the fixed point. Hence the GFP in the dw(y)/dy vanishes. We note thgi—w,(y) is no trajectory
V+V2—truncation, too, does not provide a solution to thearising as a solution of Eq(A6). For the parameters

cosmological constant problem by achieving=0 auto-  X=0.1,0,-0.1, and— 0.2 these curves are shown in Fig. 16.
matically. They divide the w-y plane into three regions,
2. The RG flow W(y)>Wi(y), Wi(y)=w(y)=wWa(y), andw(y)<w(y) in
Let us now illustrate the different classes of solutionsVNich the RHS of Eq(A6) is positive, negative, and posi-
found by numerically solving the flow equation. Introducing Ve, respectively.

the dimensionless scaje=k?=k?/m32, and settingl=4, Eq. To illustrate the properties cw(y)vin these regions we
(2.32 takes the form solve Eq.(A6) numerically, choosing.=—0.1 and various
positive and negative initial values(y) given aty=1. The
dX(y) 1 . resulting trajecto_ries are shown in Fig. 17. This figure illus-
d—y: Ey{— 5In(1—-2N(y)/y)+ @5} trates the foIIowm(::] prop%rtles:
(i) In the regionw(y)>w-(y) where the RHS of EqA6)
\7v(y) is positive,\7v(y) is well behaved and monotonically decreas-
+1677m ing for decreasingy. All trajectories in this region can be

continued toy=0.
(i) For w(y)=w;,(y)=0 the RHS of Eq(A6) vanishes
identically for all y<y, i.e. the trajectory starting with

w(y) =0 hasw(y)=0 for all valuesy<y. Hencew=0 is a
(A5) stability axis of the RG flow leading to a separation between

dwly) 10 W) o W
dy 7 y-2)\(y) (y=2X(y)*
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w(y)
0.005

0.004
0.003

0.002

0.001

0.2 0.4 0.6 0.8 1Y

FIG. 20. Numerical solutions of the full flow equation starting Wh(ﬂ/) =0.005 and various value)vs(gl). Trajectories starting close to
the boundaryX=y/2 yield a rapid decrease ofl(y) at y-«§/. Nevertheless all trajectories displayed lead to nonvanishing values
\7v(0)>0. The bold straight line in the second diagram indicates the bourfd-alyglz.

the RG trajectories starting with positive and negaﬁx(é'), constant space to investigate the properties of the trajectories
respectively. in these regions separately.

(i) Trajectories starting in the regiom;(y)>w(y) As typical trajectories of the region(y) <0 we consider
>Ww,(y) in which the RHS of Eq.(A6) is positive yield squEiops starting withx (y) = — 0.1 and various negative val-
decreasing Va|ueb\;v(y)|<|\7v(9)| for y<§/ up to the point UeSW(y). The resylting trajeCtorieS arg shown in Flg 18
where the trajectories reao;b(y)=\7v2(y)50 These trajectories reflect the behavior already seen in the

. . . v - case of the decoupled flow EQq(A6). As long as
(iv) For the trajectories in the regiow(y)<<w,(y) we Wi X( ))>\7v( )>\7v( X( )). where now the zeros of
find that\7v(y) is rapidly decreasing. These trajectories termi- LAY y 2,AMY)),

. L~ the RHS of Eq.(A5) also depend on(y) along the trajec-
nate at a finitey;e;m>0, With W(y—Yierm) — — .

Hence we see that for the trajectories in the reglonory’ w(y) is stable and boundednw(y)|<|w(y)| Leaving
W(y)>0 the coupllngw(y) is “stable” and the correspond- this region of stability we again find thm(y) rapidly di-
ing trajectories lead to well defined value/$0)>0 while in vergesw(y)—> . In this course the cosmological constant
general the trajectories in the negative coupling region rur(Y) is driven into the boundary of the coupling constant
into the regionw(y)<w,(y) where w(y) becomes “un- space)\(y)ﬂyIZ so that the corresponding trajectories ter-
stable” and terminates ate0. Let us now return to the Minate at a finite valugem>0.
exact equatiorfA5). We observe that, unlike in the case of Regarding the RG flow in the positive coupling region

the V+V In V—truncation, including the nonlocal term does w=0, we find that the flow equatiofA5) gives rise to tra-
not lead to a modification of the boundary of coupling con-jectories of the types la, lla and llla. The trajectories of the

stant space. It is located Rt=y/2. Furthermore we find that new type Vla found in thé/+V InV—truncation are absent
w=0 still is a stability plane irw-X-y space which separates due to the unaltered boundary singuladity- y/2 which pre-

the trajectories in the regiong>0 andw<0. An important ~ vents trajectories from reaching positive valug®)>0.
consequence of this separation is that, if a trajectory starts Typical trajectories of the types la and Ila are displayed in
out with a zero coupllngw(y) 0. the RG flow of the Figs. 19 and 20. Flgure 19 shows the impact of a positive
V+V2—truncation will not lead to the dynamical generation initial value w(y) on X(y) along some typical trajectories
of this coupling. We will use the separation of the couplingstarting with X (y)=0.1 and various valuew(y)>0. Here

A(w) Log (w(y))
0.25 0
Type I Type Ia
0.2 -2
0.15 -4
0.1 -6
0.05 -8

0.1 0.2 0.3 0.4 0.5" 0.02 0.05 0.1 0.2 0.5

FIG. 21. Typical type llla trajectories with initial valuégy)=0.2 and various positive valueg(y) given at the scalg=0.5 The bold

straight line indicates the boundary singulaﬁtyt y/2. Increasing values df/(f/)>0 lead to smaller valués(y) and hence to a decreasing
value ofyerm.
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)

0.25
w(G) = 0
0.2 ——— w(g) =0.005
———— @) =08
0.15} - —— @) =25 /J
0.1 g
_ - //’/’
Tl

0.05 /,/f;/:::/

F=SE0.7 0.2 o0 0.4 0

FIG. 22. The effect of increasing the valn;dgl) on a typical
trajectory of type llla starting withx (y)=0.2w(y)=0 aty=0.5.
The bold straight line indicates the boundefryty/Z. Increasing
\7v(§/) leads to a decrease of the IR value of the cosmological con-

stant. For sufficiently large vaIueTs(Q), this effect can be used to
turn a trajectory of type llla into a trajectory of the type lla or la.

we find the following properties:

(i) For all trajectories shownw(y) decreases with de-
creasingy. All trajectories starting withw(y)>0 lead to

nonvanishing IR value\iv(O)>0.

(i) Compared to the trajectory starting @atfy)=0, a
nonzero initial valuev(y) leads to smaller values(y), i.e.
positivevalue5\7v(§/) drive the cosmological constant away

from zero.

(i) A coupling w(y)>0 changes the slopdX(y)/dy
when we approach the IR/{-0). The trajectory with zero
couplingw(y) curves upwarddX (y)/dy<0, while for the

PHYSICAL REVIEW D66, 125001 (2002

of w(y) aty=<y found for the trajectory starting close to the

boundary\ =y/2 does not result imv(0)=0.
The properties of the trajectories of type llla are illus-
trated in Figs. 21 and 22. As typical trajectories we choose

the solutions starting aﬁ(9)=0.2 and various values
w(y)>0 specified ay=0.5. We see that, as in the case of
the V+V In V—truncation, the new coupling/(y)>0 does
not prevent the trajectories from running into the boundary
singularityX=y/2; hence they terminate &t.,,>0. As in

the V+V In V—truncation, the new coupling vanishes identi-

cally as the trajectory approaches the boundair@yterm)

jectory starting withw(y) =0, positive valuesv(y) lead to a

choosingw(y) =W(Y) i and W(y)>W(Y)i, respectively.

w(y) vanishes identically.
The effects of a nonzero coupling(y) on the RG flow of

Type of trajectory which is obtained by settingy)=0. The
column “w(y) chosen” indicates which values of(y) then

trajectories  with w(y)>0 we find positive slopes M)~
dX(y)/dy>0. Figure 20 shows the impact of different initial

valuesh (y) on the flow ofw(y). As an example we use the
trajectories starting withw(y)=0.005 and various values
X(y). We find that larger initial values(y) lead to smaller,

3. ClassicalS* solutions

classicalS* solutions in theV + V2—truncation. The modified

but nonvanishing, IR values(0). Even the rapid decrease Einstein equations resulting from our ansatz

TABLE Il. Summary of the effect of7v(y) on the RG flow of the cosmological constavr(ty).

Type w(y) chosen Changes in the flow {y)
Termination of the trajectory
arbitrary w(y)<0 aty=Yierm>0 With W(Yiem)— —
Type la
Type la w(y)>0 Change in the slope of(y)
in the regiony=<0.01 fromd\/dy<0 to dX/dy>0
Type la
Type lla w(y)>0 w(y)>0 drives\ (0) away from zero
W(Y) <W(Y)or Type llla
Type llla N S Type lla
s W(y) =W(Y)eit Fine-tuning ofw(y)
W(Y)>W(Y) cri Type la
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=0, and therefore has no “healing effect” on the running of
N(y). Figure 22 further illustrates that, compared to the tra-

decrease of\(y) in the IR. Since we can choose arbitrarily

large vaIues?v(gl) this mechanism can be used to turn trajec-
tories of type llla into a trajectory of type lla and la by

For the “fine-tuned” type lla trajectories the IR value of

the cosmological constant are summarized in Table 1l which
is analogous to Table I. The column “Type” determines the

give rise to the changes of the RG flow of the cosmological
constant outlined in the column “Changes in the flow of

We now study the scale dependence of the radius of the
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FIG. 23. Dependence of the radiusof the spherical solutions on the initial valuegy),\(y) of the trajectories along which is
parametrized. The initial values are giveryat1. The left and right diagram show the dependencgpf 1) andr (y=0) onw(y=1) and
X(y=1), respectively. Including the effect of the running coupling constants generally leads to largern¢alyes(y).

If one inserts the metric of a&* into the functionalA7) and

1 —
— 4 _ -
I'lgl= 167G d*xVg(—R+2)) introduces the dimensionless radiusr/{p one obtains the
1 5 function TSP"e'¢r) of Eq. (4.3). Its extrema are given by the
n wl | d4x ) ’ A7 solutions of Eq.(A9). In dimensionless variables, and now
167TG‘( f Vo (A7) with y-dependent coupling constants, it reads

are of the form(1.5) again, with the effective cosmological aW(Y)r(Y)e+N(y)r(y)2—3=0. (A10)
constant given by

_ In Fig. 10 we saw that a stable minimum BfP"e§r)
Ne=N+WV. (A8)  only occurs for trajectories in the positive coupling region

o . . _ w(y)>0. This is exactly the region of coupling constant
A 4-sphere of radius is a solution provided Eq.1.8) with  space where we found “stable” trajectories of the types la,

Eq. (A8) is satisfied, i.e. if lla and Illa. As in the case of the+V In V—truncation we
shall now compute the “running*-radius” by solving Eq.
a0+ Ar2—3=0. (A9)  (A10) for r(y) with the running coupling constants of the
W(y) i)
0.01 0.5
0.008 0.4
0.006 0.3
0.004 0.2
0.002 0.1
0.2 0.4 0.6 0.8 1Y | 0.2 &4 0.6 0.8 1Y

#y) y
6 #y)
5 4.5
4 4
3.5
3
3
2 2.5
1 2
y 1.5 v
0.2 0.4 0.6 0.8 1 0.0001 0.001 0.01 0.1 1

FIG. 24. Radiug (y) along the typical type Ia trajectory startingvay)=0.01 and\ (y) =0.3. Outside the IR regiony(>0.01), r(y)
increases by a factor of 3 due to the runningadfy) andX(y). Fory<0.01,r(y) is approximately constant.
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type la and lla trajectories inserted. First we focus on theajuesr(0). Along the linew(y) =0 all trajectories lead to

dependence of the “initial radius” at the Planck scale, negative IR values (0)<0, i.e. to trajectories of type la. No
r(y=1;w(y),r(y)), and the “final radius” in the IR, stable minima occur along this line.

r(y=0;w(y),x(y)), on the initial data(w(y),\(y)) of the Let us now study the-dependence of (y) along the
trajectory. These functions are shown in Fig. 23. typical trajectory of type la starting with (y)=0.3 and
In the first diagram we find that, far(y)>0, the initial  w(y)=0.01. The trajectory as well agy) along this trajec-

radiusr (y) is generically of order unity. The only exception fOry are shown in Fig. 24.

LN - We see that there is a substantial increasé(w only in
909urs along  the Imew(y). _0' HereS Eosmvsz Avalues the region 0.0£y=<1. In the IR region y=<0.01) we find
N(Y)>0 lead to a stable minimum of>P"*"®at r(y)>1

. N ~ + . . ~ ~ . o
which, forx(y)—0", is driven tor (y) — while for values ¢y jsnotbased on a typical IR effect. Most importantly, we

thatF(y) is approximately constant. Hence the increase of

A(y)<0 no stable minima occur. see that by switching on the RG running of the couplings we

Regarding the IR valug(0) shown in the second diagram can increase the radius only by about a factor of 3, for typical
of Fig. 23 we find that including the running of the coupling initial conditions. This magnification factor has to be com-
constants generically leads to a moderate increase of the r@ared to the many orders of magnitude we gain by including

dius: 1(0)>1(}). For the trajectories starting close to the the RG running in thé/InV-case, see Sec. IVB.

boundary singularityf\(gl)sgllz, we find comparably large

vaIuAesF(O). This is caused by the rapid 9ecrease§\my) at  the Planck scale the nonlocal invariantn V is by far more
y~Yy which drives the minimum oF SP"®'§r) towards larger efficient thanVZ.
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