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Conformally flat stationary axisymmetric spacetimes
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It is shown that within conformally flat stationary axisymmetric spacetimes, in addition to the locally static
family, there exists a new class of metrics, which is always stationary and axisymmetric. All these spacetimes,
the static and the stationary ones, are endowed with an arbitrary function depending on the two non-Killingian
coordinates. The explicit form of this function can be determined once the coupled matter, i.e., the energy-
momentum tensor, is given. The locally static branch allows for horizons, and hence for the existence of black
hole solutions, while the intrinsic stationary axisymmetric family does not permit black holes. Since both
classes of metrics allow for surfaces possessing an extrinsic curvature proportional to their intrinsic metrics,
there is room for the possibility of constructing two-branes in these spacetimes.
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[. INTRODUCTION time, are conformally flat. The method followed by Collin-
son in the demonstration of his proposition, although correct,
One of the challenging problems in general relativity isiS incomplete: to prove his assertion, Collinson started with
the search for interior solutions of isolated rotating bodieghe equations arising from the vanishing of the conformal
and the corresponding exterior solutidios the vacuum Ein- /eyl tensor, but he committed an unfortunate mistake at the
stein equations Usually, the description of the rotating St2ge of establishing his E(.1), losing the chance to con-
masses is done by means of a perfect fluid energ sider the existingas we establish in this workstationary

. : . "axisymmetric branch of metrics between the two possible
mgg]ign;un;c:inn?gg mT:]r;e f{:gtm:::\ggsgfiﬁtitr:(i)snar:ays aggyvn\} ones. Hence, the Collinson theorem fails to be true in its first
p ) P 8tatement. This fact deserves a full and clear demonstration

achieved at the very beginning of the Einstein theory byin its own right. Notice that to establish the conformally flat

Schwarzschild in the case of static spherically symmetric inwparacter of a metric, one does not need to satisfy the Ein-

terior (perfect fluig and exterior spacetimes. The algebraicgein equations; the first question refers to the geometrical
classification of the curvature tensor by Petfbyprovided &  characterization of a given metric in the spirit of the Petrov
powerful tool in the study of exact solutions. It was estab-c|assification, while the satisfaction of the Einstein equations
lished that the exterior Schwarzschild solution belongs to thgleals with the allowable gravitational content. These aspects
Petrov type-D family, while the interior Schwarzschild solu- concern two different problems, which one can handle sepa-
tion occurs as the conformally flat Petrov typg2)3]. Later,  rately. The existence of a new branch of conformally flat
in 1963, Kerr[4] published his famous rotating black hole stationary axisymmetric metrics suggests continuing the
solution, which, as is well known, belongs to the Petrovsearch for solutions of this class for relevant sources.
type-D class. To have a complete description of the gravita- In what follows the complex coefficients associated with
tional field of an isolated rotating body it is necessary tothe conformal Weyl tensor for the general stationary axisym-
establish the metric for the interior and the exterior solutionsmetric metric admitting two-spaces orthogonal to the Killing
taking care to satisfy the matching conditions on the boundvectors are given. Next, in Sec. Il the general integrals for
ary and the energy conditions as well. Thus, various reconformally flat spaces are presented, and we explicitly point
searchers started to search for interior solutions to the Kergut the flaw in Collinson’s proof. Section Il deals with con-
solution, among otherg5—7]. It is worth pointing out that  formally flat locally static spaces. As a by-product, we dem-
the problem of which interior solution corresponds toonstrate here that one can isolate spacetimes of the form
(matchegto the Kerr solution still remains open. Attempts in R x Barados-Teitelboim-ZanelliBTZ) [10,12; the results
this direction were accomplished mostly within Petrov of [10] suggest the possibility of constructing four dimen-
type-D stationary axisymmetric spacetimes, in part becaussional black holes bound to two-branes. In Sec. IV the gen-
of the Collinson theorerf9] (see[8]). eral expression for conformally flat stationary axisymmetric
In 1976, Collinson formulated the following theorem: Ev- metrics is given. Section V is devoted to the presentation of
ery conformally flat stationary axisymmetric spacetime isthe algebraic classification of the energy-momentum tensor
necessarily static. If the source of such spacetime is a perfegbrresponding to the derived metric. Finally, some conclud-
fluid, then the spacetime metric can be reduced to the usu@lg remarks are stated.
Schwarzschild interior metric. The main goal of the present The starting point in our study is the general stationary
work is to establish the existence of a new class of intrinsiaxisymmetric line element

cally stationary axisymmetric spacetimes, which, at the same 2603
- Z,Z

ds?=e 2R@2dz dz+ W[a(z,?)olﬁ dr]
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whered,, and g are Killing vectors, such that one is space- derived metric is diagonalizable or not, we accomplish in
like and the second is timelike. Complex conjugation is de-Sec. I B linear transformations of the Killingian coordinates,
noted by an overbar. Notice that our functiafz) differs  and arrive at the conclusion that there exists a class of non-
from that of Collinsona.(z)— —ayu(2). diagonal metrics, namely, the metric for conformally flat sta-
The easiest way known to derive the Einstein equationgionary axisymmetric spaces. Moreover, at the end of this
and the expressions for the curvature is based on the appection we derive the static metric.
cation of the Newman-Penrose formalism. In this approach Requiring the spacetime to be conformally flat, the Weyl
the spacetime metric is given by tensor has to vanish, which is equivalent to satisfying the
conditions¥ =¥ ,=¥,=0. Accordingly, one has

g=2el®e?’—2e3we?, 2
. . o dgadP d’a 2 [oa\?
where the null tetrad basis for the studied spacetime is \P0:0:>25 EJF E_ 6 72 =0 (5)
el= ie‘de e3=i e’ (d7—b do) and
J2 ' J2 Ja+b ’
_ 1 e© \1,4:0:>2@ £+‘92—b—i @)2:0. (6)
e’=—e %z, e'=— (dr+ado). dz 9z 572 at+bl iz
2 J2 Ja+b

©) Subtracting Egs.(5) and (6), and dividing by da/dz

The evaluation of the Newman-Penrose curvature_‘ﬂ)lﬂzgﬁo’One obtains

coefficients-Weyl complex components-yields the following

2p
nonvanishing quantities: iln € @_ @ -0 @
Jz | (a+b)2\dz dz '
e gadP a2 [oa)?
Wo= a+tb ZE EJF 972 atbloaz) | its integration yields
J 7] o J—
e Q| oboP b 2 [db\? a_B_ (z)(a+b)%e 2P, (8)
= —_——t— | — gz 9z Y
4 1
atb| 9z 9z 52 at+bloz
Next, dividing Eq.(5) by da/dz and Eq.(6) by db/dz, and
eQ 9P _gadb ogadb subsequently adding the resulting equations, one gets
2(a+b)?
= a — _— = =,
> (a+b)? 9zdz 97 9z 9z 92
(4) d e’  ga b
—In — —|=0; 9
_ Jz | (a+b)? 9z 9z
whereP=P(z,2):=Q—G.
Incidentally, the above metric structure describes Petroyp,s
type-l gravitational fields for general'’s, Petrov type-D
fields when the conditior\Ifo‘If4=91If§ is satisfied, and con- Jdadb _—_ » ap
formally flat spaces for vanishing’s. =7 5, _h@(a+b)’e . (10
II. STATIONARY AXISYMMETRIC METRICS: GENERAL Sincea, b, andP are real functions, then from E¢B) one
CASE da/ dz# dbl dz#0 has

As we stated in the previous section, the demonstration of
incorrectness of the Collinson theorem has to be done in a g(z)i(a—b)=5(?) i_(a—b) (11)
very clear and complete manner to avoid further misunder- z 9z '
standings, although this proof is time consuming and will
involve lengthy mathematics. To start with, we shall find thEUsing the freedom in the choice of the varialaeby intro-

general integrals of the equations arising from conformallyducing a newz, such thatg(z)d/dz— dldz, one can set
flat conditions, i.e., we shall demand the vanishing of theg(z)=1. Consequently Eq7) becomes
Weyl tensor components. In the middle of the method, we

shall explicitly notice where Collinson failed in his argument PR
of assigning only one definite sign to an integration constant. ———=|(a—b)=0. (12
According to our results, this constant can assume any real 9z oz

value. This gives room for the existence of stationary space- o
times in contrast to Collinson’s conclusion about the statiiHencea—b=F(z+2).
property of the considered spaces. To establish whether the The vanishing of¥’,, namely, of its imaginary part, yields
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gadb _ga b 13 V2 s X2 20
et a3 =y 20

Introducing the real coordinates and y throughz=X o, equivalently, dividing byx?#0, one has
+iy, denoting with overdots the derivatives with respect to

X, and substitutingg=b+ F(x) into Eq.(13), one obtains dy\?2 e dy N2+ e
— | =1+ —=——=v—/——, v==x1, (21
s g dXx y2 dX Y
F| —— —=]b=0. (14
9z 9z with the general integral

Therefore, two cases emerge from this condition: the general p(X=Xg) = Y2+ €,— Y2=(X—X,)2— ¢, (22)
case withF#0—b=Db(z+2z), a=a(z+z) and the branch
E=0 which is static. whereXg is an integration constant.

Up to this stage, we have integrated the equations arising
. : _ — _ — from¥,=0, ¥,=0, and one of the conditions, namely, Eq.
A. Metric for F#0, b=b(z+2), and a=a(z+2) (13), arising from the vanishing o¥,. Thus, it remains to
To our mind this is the main core of our work. We shall integrate the equation
carry out the integration of th& equations in the most

general casd=Db(x)#a=a(x) with all generality. Some e2Q ox2
particular branches arising from the metric obtained will be 6W,=—r| 2Y?P+e—|=0. (23)
treated in detail. Y Y

Without loss of generality, Eq8) rewrites Since the integral oY is given through the variabl by Eq.

a—b=(a+b)2e 2" (15) (22), it is more convenient to proceed further with this new
variable X. In relations of the formd/dx=Xd/dX, P
while Eq. (10), because of the real character of its left handz)'(p’xz ‘XP’, and P=X2P"+XP’, the derivativeX has
side, impliesh(z) =h(z); henceh(z)=const. Therefore, in to be taken from Eq(18); primes stand for derivatives with
general one arrives di(z)=ek?, where e=*+1, andk  respect toX. Moreover, the second derivativé(x) with re-
=const. There are neither mathematical reasons nor physwgbect tox yields X=2X2(Y'/Y—P’). Replacing all perti-
ones to restr_lct oneself to only one of the S|g_n95crjs Was  nent quantities in Eq23) one arrives at
done by Collinson, who chose=1 in our terminology. Re-
call that the functiora of the Collinson work differs from vz
. . . . €

our functiona. It is just at this point where our general dem- P"—2P'?+2—P'+—=0. (24)
onstration procedure and the proof by Collingosstricted to Y 24
only one possibility take different courses of action. _ _ .

Continuing with the general integration process, 8dq)  Introducing the functiorkK =exp(=2P), usingY’ from Eq.
amounts to (21) andY from Eq.(22), Eq. (24) becomes

ab= ek’(a+b)%e ", (16 [(X_X0)2_€]2K”“‘Z[(X_Xo)z_6](X_X0)K'_€KT20-)
5
where the parametee=+1. Introducing new dependent

functionsX=X(x) andY =Y(x) on the variablex according To obtain the general solution of the above equation, one
to accomplishes the chand€(X)=M (X)[(X—Xo)?— €] 2,

which yieldsM”=0— M (X)=Cy+ C,X. Therefore

e 2P=(Co+ C1X)/V(X—Xp)?—€. (26)

a+b=2kY, a=k(Y+X),

a—b=2kX, b=k(Y—-X), 17
In terms of the new coordinate§ after trivial scaling and
Eq. (15) becomes coordinate translations:X—Xq— X, \/§(r+ kXy0)— 1,
J2ko— o, together with a redefinition of the functio®,
. dX o ax 5 G—G—;In(X°—¢€)—In|2K|, the studied metric amounts to
X=—=2kY%e “"—dx= e, (18
dx 2kY? )
dX
— @~ 2G(X.y) 2
while Eqg.(16) amounts to ds’=e (Cot CX) (X2 ¢) F(Cot CoX)dy

Y2 X2=4ek?Y2e P, (19

+k(— edo?®—2Xdodr—d7?) (27)

Substitutinge™ 2" from Eq. (18) into Eq. (19) one obtains
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From this expression one sees that only the sigh wiight C. Conformally flat static metric

have some relevance; by additional scaling transformations g, completeness, we derive in this subsection the metric
of the Killingian coordinatesr and o one can achieve that
k==*1. The choice of the sign d&f determines thétimelike
or spacelike character of the Killing vectors.

for conformally flat static spacetimes. SinEe=0—F=F,
=const, thema(z) =b(z) + Fy. By linear transformations of
the (r,0) variables, one achieves tha{z) =b(z); therefore

the resulting metric is static. Since this is the case, one has to

B. Are these metrics diagonalizable? return to the W equations, and to substitute thesgz)
To establish whether this metric can be diagonalized o=b(z). From¥,=¥,=0, assumingia/dz#0, and using
not, one accomplishes in the Killingian metric sector freedom in the choice of the coordinate, without loss of
2 L ) 2 generality, one concludes that=a(z+z)=a(x), and P
d%:=k(—edo®—2Xdod7—d7%) 28 = P(x) which are constrained to satisfy
linear transformations of the Killingian variablesand o of a
the form e—zng, (34)
d7=ad7'+ Bdo’,

where the overdot denotes the derivative with respect to

Replacing a/a into the expression for,, one obtains
(29) 6W,=exp(Q)[2P+exp(—4P)]=0, which, multiplied byP

=dP/dx, integrates asdP/dx)?— ;exp(—4P)=K=const.
for real constantsy, B, vy, and 8. Theg,,,» component of This equation gives rise to a relation between xheriable

do=yd7' + édo’,ad— By+#0,

the metric sectod? amounts to and an auxiliary variablX:=e~2/2, namely,
R : 1 dX
Oror=—Kleys+X(By+ad)+apl, (30 gy s L | 39
. . . . 2X JK + X2
thus, g, ,» may vanish if there exists a real solution of the
equations In terms of this variableX Eq. (34) becomes
By+ad=0, da dx
3 ke %
afB+eys=0. (31)
. ) o with general integrals
The general solution of this system is given by
Ba(X)=[X+JK+X?],
a=*yle, y=v,
1
_ - _ na2
B=F05e, =06 (32) 2X(a)= a(K/,B pac). (37)

therefore these constants are real parameters only in the cadsing a instead of x as a new coordinate,dx

e=1. Accordingly, the metric-sector components ., and =1/(2X)dIna, and changingk and B8 correspondingly by

0, acquire the form new constants according #/8— « and 8— — 3, the con-
formally flat static metric amounts to

9= 2ky2(6i \/EX)!

da? a+ pa? dr?
dg?=e 26(@Y) + dy?+ado?— —/.
Qo= 2k (€7 \eX), (33 alatpad) a0 77 a
(38)
where the choice of the uppéower) sign ing,,,» has to be o ) o
accompanied by the choice of the upr(dnwer) Sign in In the derivation of this metric it has been aSSUme_d that
oo’ - daldz#0. In the casedal/dz=0, the function P(z,z)

Only in the branch of metrics witk=1 can one carryout = f(z) +f_(?) and the Corresponding metric can be given di-
real linear transformations of the Killingian coordinates suchrectly as a product of a conformal factor function with the
that the metric sectod>? becomes diagonal, which in its Minkowski metric.
turn implies the diagonal character of the whole medis2.

The casee=—1 deserves special attention; the transfor- |, \iETRIC FOR CONFORMALLY FLAT LOCALLY
mations(29) are purely imaginary ones, and the correspond- STATIC SPACETIMES, e=1
ing metric tensor components become complex, a fact which
is forbidden in real Einstein relativity. This case corresponds In the previous section, it was established that confor-
to a completely new branch of metrics. mally flat stationary axisymmetric spacetimes for 1 can
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be brought into the diagonal form. We shall give here a ca- Case B.Similarly to the treatment of the previous case,
nonical representation corresponding to tee1 static one introduces a new variabfe namely,

branch of the metri€27), and relate it to the metri¢38).

Moreover, we devote a subsection to an interesting local rep- X—

. . . 2_
resentation of the metri€27) with e=1, namely, the IR A*=77 X~1>0
X BTZ representation, which can be achieved when a nega-
tive cosmological constant is present. With respect to this )
form of the metric, an analysis about the existence of black _1+A A2
. . . . X= ., 1-A“>0, (43
holes is provided. These remarks on the possible existence of 1—A2

horizons are extended to the general me{#i©). The exis-

tence of spacetimes locally equivalent to static spacetimes {gentifying o—t, 7— ¢, Co+C;—2a, C;—Cy— 28, and

noteworthy to point out, but they are such that the coordinatesx y) — 1 |n(C,+C;x)—~G(Ay), one arrives at the expres-

transformations that would relate them are not globally wellgjon (42).

defined; in terms of symmetries, one may characterize this Thjs metric(42) reduces, by replacinG— G+ 2 In[A/(a

feature by saying that under transformations and identifica;. 542)] and A—a, to the conformally static metri38).

tions of coordinates from all local symmetries only the Kill- - “The interior Schwarzschild perfect fluid solution is de-

ing vectors corresponding to stationarity and axial symmetryqiined by the above metric with=1, 8=—1, and the

remain, in the present context, as such in the whole space¢,ction G(A,y)=F(A)+H(y), such that F(A)=p/(1
For e=1—the only case in which conformally flat sta- —A2), andH(y)=q cosy, wherep andq are constants. One

tionary ~axisymmetric ~ spacetimes can be locally yistinguishes two branches of solutions satisfying the energy
diagonalized—with an additional scaling transformation of.ynqitions: for details sek8,9].

the form 2y — 7 and 280’ — 0o, (X—X), the corre-

sponding metric becomes _ . i
Metric for conformally flat locally static spacetimes, e=1,

dx? a RXBTZ representation

ds?=e260Y) Co+C 24 We would like to point out an alternative formulation of
(Co+ Cax)(x ) the above metri€27) when a negative cosmological constant
is presentA ~ 1/12. One achieves al X BTZ representation
+(Co+Cyx)dy?— (17 x)do?— (1=x)d7?|. of the quoted metric by subjecting the Killingian coordinates
to linear transformations accompanied with a transformation
(39)  of theX coordinate.
For this purpose, we first replace in the mett&7) X

This branch corresponds to the choike 1; the casek= —X, G(X,y)—G(x,y)+3In(Cy+Cx), e=1, and k=1.
—1 yields similar final results. Considering the Killingian Secondly, in the resulting metric one accomplishes a
metric sector SL(2,IR) transformation of the Killingian coordinates of the
form
d32:=—(1+x)do?—(1—x)d72, (40)
d7= adt+ Bd¢,
one is faced with two possibilitiegA) x<—1, 4, timelike
Killing vector, andd, spacelike Killing vector{B) x>1, 4, do=ydt+6dp, ad—By+0
spacelike Killing vector, and,, timelike Killing vector. (44)
Case Alntroducing a new coordinata,
where
1+x
A’=——, 1+x<0,
a=——=(bgr, +agr_), =-—(aqr; +bor_),
A2+1 \/E( ol + 0 :8 \/E o' + 0
X=— . 1-A%>0, (41
1-A?
_ 2 b o= ! b
|dent|fy|ng 0__)(;(), T—7t, CO_C1—>2CY, CO+C1_)_2ﬁ1 Y= \/ﬁ( Or+ aOr—)! - \/E(a0r+ Or—)l

and G(x,y) — 3 In(Co+CX)—G(A)), one arrives at the ex-

pression I
4A2 A2 r.= \ﬁ\/MIix/MZIZ—Jz. (45)
ds?=e 26AV)| — 4 dy?+ d¢? 2
(a+ BA?)? a+ BA?
) Moreover, the constantS, andC, satisfy the relations
dt
_a+,3A2 : (42) C0+C1:_Za(2), CO_Clz_Zb(z) (46)
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The parameters M, andJ stand, respectively, for the inverse ing these values in Eq47), one obtainsx=1 for the black
of the cosmological constant, the global mass, and the totdlole horizon, while for the inner horizon one gets — 1.
angular momentum of the BTZ solution. Therefore, one might ask oneself if the existence of hori-
Finally, subjecting thex coordinate to the transformation zons is a generic feature of our mett7). Assuming in the
metric (27) that the functionG(X,y) is smooth in the ranges

b(r2—r?)+ag(r?—r?) of definition of the X and y variables, singularities could
X= b2(r2—r2 )—az(rz— r2 ) ' (47) emerge in the metric componegit®. In fact, let us consider
0 - - the normal vectorn, n,=&;, to the hypersurfaceX
one arrives at afit X BTZ representation of the studied met- =const, Its norm nﬂn"zg)&: exp(&3)(Co+CiX)(X°—¢)
ric, namely, could vanish atX?—e=0 or for Co+C;X=0. Conse-
quently, the metric becomes singular on these hypersurfaces.
ds’=e 26("Y)(dy?+ds%s17) For e=1, one might have inner and outer horizonsXat

—1 and X=1, respectively. The singularity aX=
—Cy/C; can be thought of as a coordinate singularity at the
origin of the x coordinatex:=Cy+ C,X. For e=—1 there
are no horizons. Incidentally, one arrives at the above con-
clusions on the existence of horizons, if any, by establishing
. (48  the existence of null hypersurfac&6x*) = const, satisfying
the equatiorg”"(4,5)(4,S) =0. )
As was demonstrated ifi10], the Weyl zero Plebaski- On the other hand, the Weyl zero PlebkirCarter[A]

Demiarski (WOPD) metric[see Eq/(5.5) in [10]] with nega- metric_ with negative cqsmological constaﬁmg] aIIovys fora
tive cosmological constant can be thought of as a rotatin oordinate transformation to a locally anti—de Sitter repre-

BTZ black string. he WOPD . entation. However, the Jaco_bian of this transform_ation
if in guarlcEqs.t&ng)] tﬁg?urnegirgggciess rtarj a ng byg] itr_lilfg blows up at the same set of points at which the Jacobian of

and the coordinatey is transformed according toy the transformation from the BTZ solution to the locally (2

— 1/Jharcta RZ/1IZ—\, whereR has been introduced in- +1) anti—de Sitter space becomes singular, namely, along
stead of the coordinate used ifil1] to avoid confusion) is

related to oul through\ =142, andl3=—3/A,, whereA, r.= \ﬁ\/Mli VM?12-72,
denotes the corresponding cosmological constant ef B 2
gravity. The results of 10] suggest the possibility of con-
structing four dimensional black holes bound to two-branes
Following [10] (see alsd11]), a brane can be introduced
in the spacetime if there exists a surface whose extrinsi
curvatureK,, is proportional to the intrinsic metrig,p,,
Kap~0ab, Where the italic subscripts, b run values denot-
ing coordinates defined on the surface. Introducing the nor-
mal to the surface unit vector*, the extrinsic curvature can
be evaluated according tH,,=V;n,. For the spacetime From the metriq27) whene=—1, one arrives at a new
(48), the slices at constany with normal vector n”  result: there is no way to carry out a diagonalization of the
= — &,/expG satisfy whole metricds?; it remainslocally stationary axisymmet-
ric. This conclusion contradicts the theorem by Collinson,
which asserts that “every conformally flat stationary axisym-
metric spacetime is necessarily static.” Introducing
o ) Xy, ¢,t} typing in the metric(27) such that for positivek
theref_org, one has the possibility of constructing squtlons\/ET_m Jko— ¢, while for k negativek=— x, \kr— &,
describing black holes on a two-brane. The comment on the xo— —t, one arrives at the canonical form of conformally

construgtlon of branes holds .also for our general megig; flat stationary axisymmetric spacetimes:
for slices y=const with normal vector n*

-1

2 2
r 2
dl

J
VL.

—e~26(ry) .
4r |

dt?

+r? de ) dt (2 |\/|+r2
. _ Y I =
2r? 4r? 12

i.e., just at the horizons of the metrics. The same behavior
under transformation is exhibited by the WOPD metric.
Therefore, one can consider that at each suryaceonst the
Penrose diagram for BTZ space occurs in our me#g).

IV. GENERAL METRIC FOR CONFORMALLY FLAT
STATIONARY AXISYMMETRIC SPACETIMES

1 G d9ab B G(?G

Kap=—5€ oy =e Wgab; (49)

=—8,/JCo+ C1XexpG, the extrinsic curvature is propor- dx2
tional to the intrinsic metric of the surface, namely, ds?=e 260y 5
(Cot+Cx)(x“+1)
« e® G 5
b~ o dy Jab’ (50 +(Co+ Cx)dy?+ (x2+1)d p?— (dt+xde)?|.
0 1
hence, in principle, by using this metric one might construct (51)
two-branes.

As is well known the BTZ solution has outer and inner  Since we started with a general form for the metric of
event horizons respectively at=r, andr=r_. Substitut- stationary axisymmetric spacetimes, and arrived at the above
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expression in the case of conformal flatness through the den correspondence with their timelike, spacelike, or null char-
termination of the general solution of the zero Weyl tensoracter, while for the single complex eigenvalue, the corre-

equations, the above metric is the more general form fOFsponding eigenvectors are denotede;de If multiplic-
Conforma”y flat Stationary aXisymmetriC Spacetimes. Ofr[y of eigenva|ues occurs, a number Corresponding to the
course, one can give other representations of this metric byyyltiplicity will appear in front of the eigenvector symbols.
using coordinate transformations of the variablendy; for For the studied metric, the energy-momentum tensor al-

instance, representations in terms of trigonometric or hypettows for the following algebraic general types:
bolic functions. The explicit expression for the factor func-

tion G(x,y) depends on the matter-field content, i.e., on the _
energy-momentum tensor for different kinds of fields in the A1=[S1=5= S T],
Einstein equations; different energy tensors will give rise to
different G(x,y). >
( y) AZZ[S]__SZ_Z_Z],
V. ALGEBRAIC STRUCTURE OF THE
ENERGY-MOMENTUM TENSOR Az=[S;—S,—2N]. (55

In this section the algebraic structure of the energy-
momentum tensor for our general metric is presented. The Energy-momentum tensors of typ®, describe matter
corresponding classification yields the best insight about pog¥hose movement velocity is less than the velocity of light; in
sible sources which could be coupled to the studied metri€onsequence they could be used to represent the usual mat-
(27). For definiteness we assume thet 1, and that the ter. Energy-momentum tensors of tydg and its degenera-
coordinateX has been replaced by For k=—1 the treat- tion[2S—Z—Z] do not represent standard matter since they
ment will give similar results. We use the orthonormal tetraddo not satisfy energy conditions. The class of tensors of type
formalism, in which the metric is given bg=w'°+w?  A; are associated with radiation processes.

+ 03— 0¥, where the orthonormal tetrag®, a=1, . . . 4, The subtypes ofA; are given by[S,—$,—2T], [2S,
is given by -S,—-T], [28_— 2'_I'], [S— 3T]., [3S—T], [4T]. Commonly
one deals with fields described by tensors of the classes
wl=e"CY)[Cy+C xdy, [25—2T], [3S—T], and[4T], which physically describe
general electromagnetic fields, perfect fluids, and the cosmo-
, o) dx logical constant term, respectively. Of course, within type-
w =g Y , tensors, one might search for gravitational solutions coupled
VCo+ Coxyx*—e to different tens%r combinatior?s, for instance, charged Eer-
fect fluids in the presence of the cosmological constant, or
w’=e" U)X’ edo, charged S; —S,— S;—T] anisotropic fluids.
4_ - G(xy) It is clear then that our conformally flat stationary axisym-
w'=¢€ P(d7+xdo). (52) metric metric and its static subclass do not allow solutions

for a strict vacuunithe irreducible decomposition of the Rie-
mann tensor involves the Weyl tensor and the Ricci and sca-
lar curvatures, since in this case they are all zero; then the
space reduces to the flat Minkowski spada the case of a

The evaluation, with respect to the abowetetrad, of the
energy-momentum tensat,;, by means of the Einstein equa-
tions, namely,G,,=8m T,,, Yields the following energy

matrix: pure cosmological constant term the solution corresponds to
locally (anti-)de Sitter spaces. For perfect fluids with cos-
Ty Tz O 0 . ;
mological constant one obtains three classes of
T8 ). Tiz Tz O 0 53 Schwarszchild-like solutions, from which, in the static
(%)= 0 0 Ta Tas | (53 spherical subclass, one recognizes the Schwarszchild interior

solutions with lambda. A detailed analysis of solutions be-

0 0 —Ta —Ta longing to tensor typé\; will be given elsewhere.

The eigenvalueg associated with this matrix, satisfying the
secular equation, amount to VI. CONCLUSIONS

In the light of the present results, we conclude that the
Collinson theorem is wrong. In addition to the locally static
class, there exists a branch of spacetimes which are confor-

1 1 5 > mally flat and, at the same time, are stationary and axisym-
v34= 5 (T3~ Tag) iz\/ (Tagt Tag)*— 4T3, metric. The conformal factor functioB(x,y) of both classes
(54) of metrics is a function of the non-Killingian variablgsand

y; its explicit expression depends on the sources of the Ein-
We shall follow the Plebaski notation[13], in which for real  stein equations. The family of spacetimes wéth —1 does
eigenvalues one denotes the eigenvectors thrau§handN  not allow for black hole solutions. On the contrary, the

1 1 5 >
Vo= §(T11+ T+ E\/(Tll_ T2 +4T1,,
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locally static branch permits the existence of black holes. ACKNOWLEDGMENTS
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