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Conformally flat stationary axisymmetric spacetimes

Alberto A. Garcı´a* and Cuauhtemoc Campuzano†

Departamento de Fı´sica, Centro de Investigacio´n y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000 Me´xico DF, Mexico
~Received 20 May 2002; published 31 December 2002!

It is shown that within conformally flat stationary axisymmetric spacetimes, in addition to the locally static
family, there exists a new class of metrics, which is always stationary and axisymmetric. All these spacetimes,
the static and the stationary ones, are endowed with an arbitrary function depending on the two non-Killingian
coordinates. The explicit form of this function can be determined once the coupled matter, i.e., the energy-
momentum tensor, is given. The locally static branch allows for horizons, and hence for the existence of black
hole solutions, while the intrinsic stationary axisymmetric family does not permit black holes. Since both
classes of metrics allow for surfaces possessing an extrinsic curvature proportional to their intrinsic metrics,
there is room for the possibility of constructing two-branes in these spacetimes.
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I. INTRODUCTION

One of the challenging problems in general relativity
the search for interior solutions of isolated rotating bod
and the corresponding exterior solutions~of the vacuum Ein-
stein equations!. Usually, the description of the rotatin
masses is done by means of a perfect fluid ener
momentum tensor in the framework of stationary axisy
metric spacetimes. The first success in this respect
achieved at the very beginning of the Einstein theory
Schwarzschild in the case of static spherically symmetric
terior ~perfect fluid! and exterior spacetimes. The algebra
classification of the curvature tensor by Petrov@1# provided a
powerful tool in the study of exact solutions. It was esta
lished that the exterior Schwarzschild solution belongs to
Petrov type-D family, while the interior Schwarzschild sol
tion occurs as the conformally flat Petrov type 0@2,3#. Later,
in 1963, Kerr@4# published his famous rotating black ho
solution, which, as is well known, belongs to the Petr
type-D class. To have a complete description of the grav
tional field of an isolated rotating body it is necessary
establish the metric for the interior and the exterior solutio
taking care to satisfy the matching conditions on the bou
ary and the energy conditions as well. Thus, various
searchers started to search for interior solutions to the K
solution, among others@5–7#. It is worth pointing out that
the problem of which interior solution corresponds
~matches! to the Kerr solution still remains open. Attempts
this direction were accomplished mostly within Petr
type-D stationary axisymmetric spacetimes, in part beca
of the Collinson theorem@9# ~see@8#!.

In 1976, Collinson formulated the following theorem: E
ery conformally flat stationary axisymmetric spacetime
necessarily static. If the source of such spacetime is a pe
fluid, then the spacetime metric can be reduced to the u
Schwarzschild interior metric. The main goal of the pres
work is to establish the existence of a new class of intrin
cally stationary axisymmetric spacetimes, which, at the sa
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time, are conformally flat. The method followed by Collin
son in the demonstration of his proposition, although corre
is incomplete: to prove his assertion, Collinson started w
the equations arising from the vanishing of the conform
Weyl tensor, but he committed an unfortunate mistake at
stage of establishing his Eq.~2.12!, losing the chance to con
sider the existing~as we establish in this work! stationary
axisymmetric branch of metrics between the two possi
ones. Hence, the Collinson theorem fails to be true in its fi
statement. This fact deserves a full and clear demonstra
in its own right. Notice that to establish the conformally fl
character of a metric, one does not need to satisfy the E
stein equations; the first question refers to the geometr
characterization of a given metric in the spirit of the Petr
classification, while the satisfaction of the Einstein equatio
deals with the allowable gravitational content. These asp
concern two different problems, which one can handle se
rately. The existence of a new branch of conformally fl
stationary axisymmetric metrics suggests continuing
search for solutions of this class for relevant sources.

In what follows the complex coefficients associated w
the conformal Weyl tensor for the general stationary axisy
metric metric admitting two-spaces orthogonal to the Killin
vectors are given. Next, in Sec. II the general integrals
conformally flat spaces are presented, and we explicitly po
out the flaw in Collinson’s proof. Section III deals with con
formally flat locally static spaces. As a by-product, we de
onstrate here that one can isolate spacetimes of the f
R 3 Bañados-Teitelboim-Zanelli~BTZ! @10,12#; the results
of @10# suggest the possibility of constructing four dime
sional black holes bound to two-branes. In Sec. IV the g
eral expression for conformally flat stationary axisymmet
metrics is given. Section V is devoted to the presentation
the algebraic classification of the energy-momentum ten
corresponding to the derived metric. Finally, some concl
ing remarks are stated.

The starting point in our study is the general stationa
axisymmetric line element

ds25e22Q(z,z̄)dz dz̄1
e22G(z,z̄)

a1b
@a~z,z̄!ds1dt#

3@b~z,z̄!ds2dt#, ~1!
©2002 The American Physical Society18-1
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where]s and]t are Killing vectors, such that one is spac
like and the second is timelike. Complex conjugation is d
noted by an overbar. Notice that our functiona(z) differs
from that of Collinson,ac(z)→2aour(z).

The easiest way known to derive the Einstein equati
and the expressions for the curvature is based on the a
cation of the Newman-Penrose formalism. In this appro
the spacetime metric is given by

g52e1
^ e222e3

^ e4, ~2!

where the null tetrad basis for the studied spacetime is

e15
1

A2
e2Qdz, e35

1

A2

e2G

Aa1b
~dt2b ds!,

e25
1

A2
e2Qdz̄, e45

1

A2

e2G

Aa1b
~dt1a ds!.

~3!

The evaluation of the Newman-Penrose curvat
coefficients-Weyl complex components-yields the followi
nonvanishing quantities:

C05
e2Q

a1b F2
]a

]z

]P

]z
1

]2a

]z2
2

2

a1b S ]a

]zD 2G ,

C̄45
e2Q

a1b F2
]b

]z

]P

]z
1

]2b

]z2
2

2

a1b S ]b

]zD 2G ,

6C25
e2Q

~a1b!2 F2~a1b!2
]2P

]z] z̄
15

]a

]z

]b

] z̄
2

]a

] z̄

]b

]zG ,

~4!

whereP5P(z,z̄)ªQ2G.
Incidentally, the above metric structure describes Pet

type-I gravitational fields for generalC ’s, Petrov type-D
fields when the conditionC0C459C2

2 is satisfied, and con
formally flat spaces for vanishingC ’s.

II. STATIONARY AXISYMMETRIC METRICS: GENERAL
CASE ­aÕ­zÅ­bÕ­zÅ0

As we stated in the previous section, the demonstratio
incorrectness of the Collinson theorem has to be done
very clear and complete manner to avoid further misund
standings, although this proof is time consuming and w
involve lengthy mathematics. To start with, we shall find t
general integrals of the equations arising from conforma
flat conditions, i.e., we shall demand the vanishing of
Weyl tensor components. In the middle of the method,
shall explicitly notice where Collinson failed in his argume
of assigning only one definite sign to an integration consta
According to our results, this constant can assume any
value. This gives room for the existence of stationary spa
times in contrast to Collinson’s conclusion about the sta
property of the considered spaces. To establish whethe
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derived metric is diagonalizable or not, we accomplish
Sec. II B linear transformations of the Killingian coordinate
and arrive at the conclusion that there exists a class of n
diagonal metrics, namely, the metric for conformally flat s
tionary axisymmetric spaces. Moreover, at the end of t
section we derive the static metric.

Requiring the spacetime to be conformally flat, the We
tensor has to vanish, which is equivalent to satisfying
conditionsC05C45C250. Accordingly, one has

C050⇒2
]a

]z

]P

]z
1

]2a

]z2
2

2

a1b S ]a

]zD 2

50 ~5!

and

C450⇒2
]b

]z

]P

]z
1

]2b

]z2
2

2

a1b S ]b

]zD 2

50. ~6!

Subtracting Eqs.~5! and ~6!, and dividing by ]a/]z
2]b/]zÞ0, one obtains

]

]z
lnF e2P

~a1b!2 S ]a

]z
2

]b

]zD G50; ~7!

its integration yields

]a

]z
2

]b

]z
5ḡ~ z̄!~a1b!2e22P. ~8!

Next, dividing Eq.~5! by ]a/]z and Eq.~6! by ]b/]z, and
subsequently adding the resulting equations, one gets

]

]z
lnF e4P

~a1b!2

]a

]z

]b

]zG50; ~9!

thus

]a

]z

]b

]z
5h̄~ z̄!~a1b!2e24P. ~10!

Sincea, b, andP are real functions, then from Eq.~8! one
has

g~z!
]

]z
~a2b!5ḡ~ z̄!

]

] z̄
~a2b!. ~11!

Using the freedom in the choice of the variablez, by intro-
ducing a newz, such thatg(z)]/]z→]/]z, one can set
g(z)51. Consequently Eq.~7! becomes

S ]

]z
2

]

] z̄
D ~a2b!50. ~12!

Hencea2b5F(z1 z̄).
The vanishing ofC2, namely, of its imaginary part, yields
8-2
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]a

]z

]b

] z̄
5

]a

] z̄

]b

]z
. ~13!

Introducing the real coordinatesx and y through z5x
1 iy , denoting with overdots the derivatives with respect
x, and substitutinga5b1F(x) into Eq. ~13!, one obtains

ḞS ]

]z
2

]

] z̄
D b50. ~14!

Therefore, two cases emerge from this condition: the gen
case withḞÞ0→b5b(z1 z̄), a5a(z1 z̄) and the branch
Ḟ50 which is static.

A. Metric for ḞÅ0, bÄb„z¿ z̄…, and aÄa„z¿ z̄…

To our mind this is the main core of our work. We sha
carry out the integration of theC equations in the mos
general caseb5b(x)Þa5a(x) with all generality. Some
particular branches arising from the metric obtained will
treated in detail.

Without loss of generality, Eq.~8! rewrites

ȧ2ḃ5~a1b!2e22P, ~15!

while Eq. ~10!, because of the real character of its left ha
side, impliesh(z)5h̄( z̄); henceh(z)5const. Therefore, in
general one arrives ath(z)5ek2, where e561, and k
5const. There are neither mathematical reasons nor phy
ones to restrict oneself to only one of the signs ofe as was
done by Collinson, who chosee51 in our terminology. Re-
call that the functiona of the Collinson work differs from
our functiona. It is just at this point where our general dem
onstration procedure and the proof by Collinson~restricted to
only one possibility! take different courses of action.

Continuing with the general integration process, Eq.~10!
amounts to

ȧḃ5ek2~a1b!2e24P, ~16!

where the parametere561. Introducing new dependen
functionsX5X(x) andY5Y(x) on the variablex according
to

a1b52kY, a5k~Y1X!,

a2b52kX, b5k~Y2X!, ~17!

Eq. ~15! becomes

Ẋ5
dX

dx
52kY2e22P→dx5

dX

2kY2
e2P, ~18!

while Eq. ~16! amounts to

Ẏ22Ẋ254ek2Y2e24P. ~19!

Substitutinge22P from Eq. ~18! into Eq. ~19! one obtains
12401
al
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Ẏ22Ẋ25e
Ẋ2

Y2
~20!

or, equivalently, dividing byẊ2Þ0, one has

S dY

dXD 2

511
e

Y2
→ dY

dX
5n

AY21e

Y
, n561, ~21!

with the general integral

n~X2X0!5AY21e,→Y25~X2X0!22e, ~22!

whereX0 is an integration constant.
Up to this stage, we have integrated the equations aris

from C050, C450, and one of the conditions, namely, E
~13!, arising from the vanishing ofC2. Thus, it remains to
integrate the equation

6C25
e2Q

Y2 F2Y2P̈1e
Ẋ2

Y2G50. ~23!

Since the integral ofY is given through the variableX by Eq.
~22!, it is more convenient to proceed further with this ne
variable X. In relations of the formd/dx5Ẋd/dX, Ṗ

5ẊP,X5:ẊP8, and P̈5Ẋ2P91ẌP8, the derivativeẊ has
to be taken from Eq.~18!; primes stand for derivatives with
respect toX. Moreover, the second derivativeẌ(x) with re-
spect tox yields Ẍ52Ẋ2(Y8/Y2P8). Replacing all perti-
nent quantities in Eq.~23! one arrives at

P922P8212
Y8

Y
P81

e

2Y4
50. ~24!

Introducing the functionK5exp(22P), using Y8 from Eq.
~21! andY from Eq. ~22!, Eq. ~24! becomes

@~X2X0!22e#2 K912@~X2X0!22e#~X2X0!K82eK50.
~25!

To obtain the general solution of the above equation, o
accomplishes the changeK(X)5M (X)@(X2X0)22e#21/2,
which yieldsM 950→M (X)5C01C1X. Therefore

e22P5~C01C1X!/A~X2X0!22e. ~26!

In terms of the new coordinatesX, after trivial scaling and
coordinate translations:X2X0→X, A2(t1kX0s)→t,
A2ks→s, together with a redefinition of the functionG,
G→G2 1

4 ln(X22e)2lnu2ku, the studied metric amounts to

ds25e22G(X,y)F dX2

~C01C1X!~X22e!
1~C01C1X!dy2

1k~2eds222Xdsdt2dt2!G . ~27!
8-3
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From this expression one sees that only the sign ofk might
have some relevance; by additional scaling transformat
of the Killingian coordinatest and s one can achieve tha
k561. The choice of the sign ofk determines the~timelike
or spacelike! character of the Killing vectors.

B. Are these metrics diagonalizable?

To establish whether this metric can be diagonalized
not, one accomplishes in the Killingian metric sector

dS2
ªk~2eds222Xdsdt2dt2! ~28!

linear transformations of the Killingian variablest ands of
the form

dt5adt81bds8,

ds5gdt81dds8,ad2bgÞ0,
~29!

for real constantsa, b, g, andd. The gt8s8 component of
the metric sectordS2 amounts to

gt8s852k@egd1X~bg1ad!1ab#; ~30!

thus,gt8s8 may vanish if there exists a real solution of th
equations

bg1ad50,

ab1egd50. ~31!

The general solution of this system is given by

a56gAe, g5g,

b57dAe, d5d; ~32!

therefore these constants are real parameters only in the
e51. Accordingly, the metric-sector componentsgt8t8 and
gs8s8 acquire the form

gt8t8522kg2~e6AeX!,

gs8s8522kd2~e7AeX!, ~33!

where the choice of the upper~lower! sign ingt8t8 has to be
accompanied by the choice of the upper~lower! sign in
gs8s8 .

Only in the branch of metrics withe51 can one carry ou
real linear transformations of the Killingian coordinates su
that the metric sectordS2 becomes diagonal, which in it
turn implies the diagonal character of the whole metricds2.

The casee521 deserves special attention; the transf
mations~29! are purely imaginary ones, and the correspo
ing metric tensor components become complex, a fact wh
is forbidden in real Einstein relativity. This case correspon
to a completely new branch of metrics.
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C. Conformally flat static metric

For completeness, we derive in this subsection the me
for conformally flat static spacetimes. SinceḞ50→F5F0
5const, thena(z)5b(z)1F0. By linear transformations of
the (t,s) variables, one achieves thata(z)5b(z); therefore
the resulting metric is static. Since this is the case, one ha
return to theC equations, and to substitute therea(z)
5b(z). From C05C450, assuming]a/]zÞ0, and using
freedom in the choice of thez coordinate, without loss of
generality, one concludes thata5a(z1 z̄)5a(x), and P
5P(x) which are constrained to satisfy

e22P5
ȧ

a
, ~34!

where the overdot denotes the derivative with respect tox.
Replacing ȧ/a into the expression forC2, one obtains
6C25exp(2Q)@2P̈1exp(24P)#50, which, multiplied byṖ
[dP/dx, integrates as (dP/dx)22 1

4 exp(24P)5K5const.
This equation gives rise to a relation between thex variable
and an auxiliary variableXªe22P/2, namely,

dx56
1

2X

dX

AK1X2
. ~35!

In terms of this variableX Eq. ~34! becomes

da

a
56

dX

AK1X2
, ~36!

with general integrals

ba~X!5@X6AK1X2#,

2X~a!5
1

a
~K/b2ba2!. ~37!

Using a instead of x as a new coordinate,dx
51/(2X)d ln a, and changingK and b correspondingly by
new constants according toK/b→a andb→2b, the con-
formally flat static metric amounts to

ds25e22G(a,y)F da2

a~a1ba2!
1

a1ba2

a
dy21ads22

dt2

a G .

~38!

In the derivation of this metric it has been assumed t
]a/]zÞ0. In the case]a/]z50, the function P(z,z̄)
5 f (z)1 f̄ ( z̄) and the corresponding metric can be given
rectly as a product of a conformal factor function with th
Minkowski metric.

III. METRIC FOR CONFORMALLY FLAT LOCALLY
STATIC SPACETIMES, eÄ1

In the previous section, it was established that conf
mally flat stationary axisymmetric spacetimes fore51 can
8-4
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be brought into the diagonal form. We shall give here a
nonical representation corresponding to thee51 static
branch of the metric~27!, and relate it to the metric~38!.
Moreover, we devote a subsection to an interesting local
resentation of the metric~27! with e51, namely, the IR
3BTZ representation, which can be achieved when a ne
tive cosmological constant is present. With respect to
form of the metric, an analysis about the existence of bl
holes is provided. These remarks on the possible existenc
horizons are extended to the general metric~27!. The exis-
tence of spacetimes locally equivalent to static spacetime
noteworthy to point out, but they are such that the coordin
transformations that would relate them are not globally w
defined; in terms of symmetries, one may characterize
feature by saying that under transformations and identifi
tions of coordinates from all local symmetries only the Ki
ing vectors corresponding to stationarity and axial symme
remain, in the present context, as such in the whole spa

For e51—the only case in which conformally flat sta
tionary axisymmetric spacetimes can be loca
diagonalized—with an additional scaling transformation
the form A2gt8→t and A2ds8→s, (X→x), the corre-
sponding metric becomes

ds25e22G(x,y)F dx2

~C01C1x!~x221!

1~C01C1x!dy22~17x!ds22~16x!dt2G .

~39!

This branch corresponds to the choicek51; the casek5
21 yields similar final results. Considering the Killingia
metric sector

dS2
ª2~11x!ds22~12x!dt2, ~40!

one is faced with two possibilities:~A! x,21, ]t timelike
Killing vector, and]s spacelike Killing vector;~B! x.1, ]t
spacelike Killing vector, and]s timelike Killing vector.

Case A.Introducing a new coordinateA,

A252
11x

12x
, 11x,0,

x52
A211

12A2
, 12A2.0, ~41!

identifying s→f, t→t, C02C1→2a, C01C1→22b,
and G(x,y)2 1

2 ln(C01C1x)→G(A,y), one arrives at the ex
pression

ds25e22G(A,y)F dA2

~a1b A2!2
1dy21

A2

a1bA2
df2

2
dt2

a1bA2G . ~42!
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Case B.Similarly to the treatment of the previous cas
one introduces a new variableA, namely,

A25
x21

x11
, x21.0,

x5
11A2

12A2
, 12A2.0, ~43!

identifying s→t, t→f, C01C1→2a, C12C0→2b, and
G(x,y)2 1

2 ln(C01C1x)→G(A,y), one arrives at the expres
sion ~42!.

This metric~42! reduces, by replacingG→G1 1
2 ln@A/(a

1bA2)# andA→a, to the conformally static metric~38!.
The interior Schwarzschild perfect fluid solution is d

scribed by the above metric witha51, b521, and the
function G(A,y)5F(A)1H(y), such that F(A)5p/(1
2A2), andH(y)5q cosy, wherep andq are constants. One
distinguishes two branches of solutions satisfying the ene
conditions; for details see@3,9#.

Metric for conformally flat locally static spacetimes, eÄ1,
a RÃBTZ representation

We would like to point out an alternative formulation o
the above metric~27! when a negative cosmological consta
is present,l;1/l 2. One achieves anR3BTZ representation
of the quoted metric by subjecting the Killingian coordinat
to linear transformations accompanied with a transformat
of the X coordinate.

For this purpose, we first replace in the metric~27! X
→x, G(X,y)→G(x,y)1 1

2 ln(C01C1x), e51, and k51.
Secondly, in the resulting metric one accomplishes
SL(2,IR) transformation of the Killingian coordinates of th
form

dt5adt1bdf,

ds5gdt1ddf, ad2bgÞ0,
~44!

where

a52
1

A2l
~b0r 11a0r 2!, b5

1

A2
~a0r 11b0r 2!,

g5
1

A2l
~b0r 12a0r 2!, d5

1

A2
~a0r 12b0r 2!,

r 65A l

2
AMl 6AM2l 22J2. ~45!

Moreover, the constantsC0 andC1 satisfy the relations

C01C1522a0
2 , C02C1522b0

2 . ~46!
8-5
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The parametersl, M, andJ stand, respectively, for the invers
of the cosmological constant, the global mass, and the t
angular momentum of the BTZ solution.

Finally, subjecting thex coordinate to the transformation

x5
b0

2~r 22r 2
2 !1a0

2~r 22r 1
2 !

b0
2~r 22r 2

2 !2a0
2~r 22r 1

2 !
, ~47!

one arrives at anR3BTZ representation of the studied me
ric, namely,

ds25e22G(r ,y)~dy21ds2
BTZ!

5e22G(r ,y)Fdy21S J2

4r 2
2M1

r 2

l 2 D 21

dr2

1r 2S df2
J

2r 2
dtD 2

2S J2

4r 2
2M1

r 2

l 2 D dt2G . ~48!

As was demonstrated in@10#, the Weyl zero Pleban´ski-
Demiański ~W0PD! metric @see Eq.~5.5! in @10## with nega-
tive cosmological constant can be thought of as a rota
BTZ black string. One reproduces the W0PD metric of@10#,
if in our Eq. ~48! the functionG is replaced byG52 ln R,
and the coordinatey is transformed according toy
51/AlarctanAR2/ l 4

22l, where R has been introduced in
stead of ther coordinate used in@11# to avoid confusion,l is
related to ourl throughl51/l 2, and l 4

2523/L4, whereL4

denotes the corresponding cosmological constant of (311)
gravity. The results of@10# suggest the possibility of con
structing four dimensional black holes bound to two-bran

Following @10# ~see also@11#!, a brane can be introduce
in the spacetime if there exists a surface whose extrin
curvatureKab is proportional to the intrinsic metricgab ,
Kab;gab , where the italic subscriptsa, b run values denot-
ing coordinates defined on the surface. Introducing the n
mal to the surface unit vectornm, the extrinsic curvature can
be evaluated according toKab5¹anb . For the spacetime
~48!, the slices at constanty with normal vector nm

52dy
mexpG satisfy

Kab52
1

2
eG

]gab

]y
5eG

]G

]y
gab ; ~49!

therefore, one has the possibility of constructing solutio
describing black holes on a two-brane. The comment on
construction of branes holds also for our general metric~27!;
for slices y5const with normal vector nm

52dy
m/AC01C1XexpG, the extrinsic curvature is propor

tional to the intrinsic metric of the surface, namely,

Kab5
eG

AC01C1X

]G

]y
gab ; ~50!

hence, in principle, by using this metric one might constr
two-branes.

As is well known the BTZ solution has outer and inn
event horizons respectively atr 5r 1 and r 5r 2 . Substitut-
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ing these values in Eq.~47!, one obtainsx51 for the black
hole horizon, while for the inner horizon one getsx521.

Therefore, one might ask oneself if the existence of ho
zons is a generic feature of our metric~27!. Assuming in the
metric ~27! that the functionG(X,y) is smooth in the ranges
of definition of the X and y variables, singularities could
emerge in the metric componentgXX. In fact, let us consider
the normal vectorn, nm5dm

X , to the hypersurfaceX
5const, Its norm nmnm5gXX5exp(2G)(C01C1X)(X22e)
could vanish atX22e50 or for C01C1X50. Conse-
quently, the metric becomes singular on these hypersurfa
For e51, one might have inner and outer horizons atX5
21 and X51, respectively. The singularity atX5
2C0 /C1 can be thought of as a coordinate singularity at
origin of the x coordinatexªC01C1X. For e521 there
are no horizons. Incidentally, one arrives at the above c
clusions on the existence of horizons, if any, by establish
the existence of null hypersurfacesS(xm)5const, satisfying
the equationgmn(]mS)(]nS)50.

On the other hand, the Weyl zero Pleban´ski-Carter @A#
metric with negative cosmological constant@12# allows for a
coordinate transformation to a locally anti–de Sitter rep
sentation. However, the Jacobian of this transformat
blows up at the same set of points at which the Jacobia
the transformation from the BTZ solution to the locally (
11) anti–de Sitter space becomes singular, namely, alo

r 65A l

2
AMl 6AM2 l 22J2,

i.e., just at the horizons of the metrics. The same beha
under transformation is exhibited by the W0PD metr
Therefore, one can consider that at each surfacey5const the
Penrose diagram for BTZ space occurs in our metric~48!.

IV. GENERAL METRIC FOR CONFORMALLY FLAT
STATIONARY AXISYMMETRIC SPACETIMES

From the metric~27! whene521, one arrives at a new
result: there is no way to carry out a diagonalization of t
whole metricds2; it remainslocally stationary axisymmet
ric. This conclusion contradicts the theorem by Collinso
which asserts that ‘‘every conformally flat stationary axisy
metric spacetime is necessarily static.’’ Introducin
$x,y,f,t% typing in the metric~27! such that for positivek
Akt→t, Aks→f, while for k negative,k52k, Akt→f,
Aks→2t, one arrives at the canonical form of conformal
flat stationary axisymmetric spacetimes:

ds25e22G(x,y)F dx2

~C01C1x!~x211!

1~C01C1x!dy21~x211!df22~dt1xdf!2G .

~51!

Since we started with a general form for the metric
stationary axisymmetric spacetimes, and arrived at the ab
8-6
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CONFORMALLY FLAT STATIONARY AXISYMMETRI C . . . PHYSICAL REVIEW D 66, 124018 ~2002!
expression in the case of conformal flatness through the
termination of the general solution of the zero Weyl ten
equations, the above metric is the more general form
conformally flat stationary axisymmetric spacetimes.
course, one can give other representations of this metric
using coordinate transformations of the variablex andy; for
instance, representations in terms of trigonometric or hyp
bolic functions. The explicit expression for the factor fun
tion G(x,y) depends on the matter-field content, i.e., on
energy-momentum tensor for different kinds of fields in t
Einstein equations; different energy tensors will give rise
different G(x,y).

V. ALGEBRAIC STRUCTURE OF THE
ENERGY-MOMENTUM TENSOR

In this section the algebraic structure of the ener
momentum tensor for our general metric is presented.
corresponding classification yields the best insight about p
sible sources which could be coupled to the studied me
~27!. For definiteness we assume thatk51, and that the
coordinateX has been replaced byx. For k521 the treat-
ment will give similar results. We use the orthonormal tetr
formalism, in which the metric is given byg5v12

1v22

1v32
2v42

, where the orthonormal tetradva, a51, . . . ,4,
is given by

v15e2G(x,y)AC01C1xdy,

v25e2G(x,y)
dx

AC01C1xAx22e
,

v35e2G(x,y)Ax22eds,

v45e2G(x,y)~dt1xds!. ~52!

The evaluation, with respect to the abovev tetrad, of the
energy-momentum tensorTab by means of the Einstein equa
tions, namely,Gab58p Tab , yields the following energy
matrix:

~Ta
b!ªF T11 T12 0 0

T12 T22 0 0

0 0 T33 T34

0 0 2T34 2T44

G . ~53!

The eigenvaluesn associated with this matrix, satisfying th
secular equation, amount to

n1,25
1

2
~T111T22!6

1

2
A~T112T22!

214T12
2 ,

n3,45
1

2
~T332T44!6

1

2
A~T331T44!

224T34
2 .

~54!

We shall follow the Pleban´ski notation@13#, in which for real
eigenvalues one denotes the eigenvectors throughT, S, andN
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in correspondence with their timelike, spacelike, or null ch
acter, while for the single complex eigenvalue, the cor
sponding eigenvectors are denoted byZ and Z̄. If multiplic-
ity of eigenvalues occurs, a number corresponding to
multiplicity will appear in front of the eigenvector symbols

For the studied metric, the energy-momentum tensor
lows for the following algebraic general types:

A15@S12S22S32T#,

A25@S12S22Z2Z̄#,

A35@S12S222N#. ~55!

Energy-momentum tensors of typeA1 describe matter
whose movement velocity is less than the velocity of light;
consequence they could be used to represent the usual
ter. Energy-momentum tensors of typeA2 and its degenera
tion @2S2Z2Z̄# do not represent standard matter since th
do not satisfy energy conditions. The class of tensors of t
A3 are associated with radiation processes.

The subtypes ofA1 are given by@S12S222T#, @2S1
2S22T#, @2S22T#, @S23T#, @3S2T#, @4T#. Commonly
one deals with fields described by tensors of the clas
@2S22T#, @3S2T#, and @4T#, which physically describe
general electromagnetic fields, perfect fluids, and the cos
logical constant term, respectively. Of course, within type-A1
tensors, one might search for gravitational solutions coup
to different tensor combinations, for instance, charged p
fect fluids in the presence of the cosmological constant
charged@S12S22S32T# anisotropic fluids.

It is clear then that our conformally flat stationary axisym
metric metric and its static subclass do not allow solutio
for a strict vacuum~the irreducible decomposition of the Rie
mann tensor involves the Weyl tensor and the Ricci and s
lar curvatures, since in this case they are all zero; then
space reduces to the flat Minkowski space!. In the case of a
pure cosmological constant term the solution correspond
locally ~anti–!de Sitter spaces. For perfect fluids with co
mological constant one obtains three classes
Schwarszchild-like solutions, from which, in the stat
spherical subclass, one recognizes the Schwarszchild int
solutions with lambda. A detailed analysis of solutions b
longing to tensor typeA1 will be given elsewhere.

VI. CONCLUSIONS

In the light of the present results, we conclude that
Collinson theorem is wrong. In addition to the locally sta
class, there exists a branch of spacetimes which are con
mally flat and, at the same time, are stationary and axis
metric. The conformal factor functionG(x,y) of both classes
of metrics is a function of the non-Killingian variablesx and
y; its explicit expression depends on the sources of the E
stein equations. The family of spacetimes withe521 does
not allow for black hole solutions. On the contrary, th
8-7
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locally static branch permits the existence of black hol
Moreover, since for both classes of metrics one can de
mine a surface possessing an extrinsic curvature tensor
portional to its intrinsic metric, one comes to a conclusi
about the possibility of constructing domain walls.
s

12401
.
r-
ro-

ACKNOWLEDGMENTS

The authors thank E. Ayo´n-Beato for useful discussions
This work was partially supported by CONACyT Gra
38495E.
gy

gy

:

@1# A.Z. Petrov,Einstein Spaces~Pergamon Press, Oxford, 1969!.
@2# H. Takeno, S.R.R.I.T.P. Hiroshima University5, 32 ~1966!.
@3# M. Gurses and Y. Gursey, Nuovo Cimento Soc. Ital. Fis., B25,

786 ~1975!.
@4# R.P. Kerr, Phys. Rev. Lett.11, 237 ~1963!.
@5# H.D. Wahlquist, Phys. Rev.172, 1291~1968!.
@6# J. Wainwright, Gen. Relativ. Gravit.8, 797 ~1977!.
@7# J.M.M. Senovilla, Phys. Lett. A123, 211 ~1987!.
@8# J.M.M. Senovilla,In Rotating Objects and Relativistic Physic,

Lecture Notes in Physics Vol. 73, edited by F.J. Chineaet al.
~Springer-Verlag, Berlin, 1993!.
@9# C.D. Collinson, Gen. Relativ. Gravit.7, 419 ~1976!.

@10# R. Emparan, G.T. Horowitz, and R.C. Myers, J. High Ener
Phys.01, 021 ~2000!.

@11# R. Emparan, G.T. Horowitz, and R.C. Myers, J. High Ener
Phys.01, 007 ~2000!.

@12# A.A. Garcı́a, in Exact Solutions and Scalar Fields in Gravity
Recent Developments, edited by A. Maciaset al. ~Kluwer
Academic/Plenum Publishers, New York, 2001!.

@13# J.F. Pleban´ski, Acta Phys. Pol.26, 963 ~1964!.
8-8


