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Quasinormal modes of near extremal black branes
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We find quasinormal modes of near extremal black branes by solving a singular boundary value problem for
the Heun equation. The corresponding eigenvalues determine the dispersion law for the collective excitations
in the dual strongly coupled/=4 supersymmetric Yang-Mills theory at finite temperature.
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I. INTRODUCTION 2( w?+k?)?
GR(O),k)—TQ—Um 2+k2|

The gauge-theory—gravity corresponderidg2,3] pro-
vides useful insights into the properties of a strongly coupled —imh(w?—k?)sgnw). (1.2
supersymmetric Yang-Mill§SYM) theory at nonzero tem- ] o
perature. A well-known example is the finite-temperatyfe N the high temperature limio/T<1, |k|/T<1, the propa-
=4 SU(N) SYM theory in 4D which in the largé\, large 't ~ 9ator is analytic in the complex plane,
Hooft coupling limit is dual to the gravitational background N2T2
of N parallel near extremal three-branes, with temperature GR(w,k)=— T(iZWT(H'}' k?). 1.3
related to the parameter of nonextremality. For this theory, a

number of quantities such_ as the free enddyp|, the Wil- However, for generic values of andk, we expecGR(w,k)

son loop(6,7], the shear viscosit},9], the R-charge diffu- {5 have poles corresponding to the spectrum of collective

sion constanf9], and the Chern-Simons diffusion rdt#0]  excitations of the SYM plasma.

have been computed using the methods of gauge-theory— One can compare the situation to the simpler case of the

gravity duality. Since supersymmetry is broken at finite tem-2D CFT dual to the Baados-Teitelboim-ZanelliBTZ) black

perature and thus no nonrenormalization theorem is expectétble background. There, the retarded Green’s functions can

to hold, quantities computed in the strong coupling regimebe computed exactly. For illustration, consider the case of the

using a gravity dual differ from their analogues obtained atconformal dimensiom\ =2. Then

weak coupling via perturbation theory. The results of a grav- s o

ity calculation are then regarded as a prediction for the SYM GR (k)= w =K '/’( 1— o=k " l/f( otk

theory, assuming that the AdS conformal field thet@FT) 2D 472 ' 4nT "anT

correspondence is valid at finite temperathire. (1.4
Dynamical properties of a thermal gauge theory are en-

coded in its Green’s functions. In the context of AdS/CFT, where we have puf, =T, and ignored the constant prefac-

Minkowski space Green’s functions can be computed fromtor for simplicity. The high temperature limit of EqL.4) is

gravity using the recipe given ifiL0]. Unfortunately, for a an analytic function o. In general, howeveGZD(w k) has

nonextremal background, only approximate expressions foffinitely many poles located at

the correlators are usually obtained. For example, the re- L _

tarded propagator of the gauge invariant local oper&tor on==k=i4mT(n+1), n=01,.. €9

(dual to the dilatondefined by WhenT—0, the poles merge, forming branch cuts. One can
use the asymptotic expansiaf(z) ~logz—1/2z+--- (valid
for |argZ<m/2) to find the zero-temperature limit of Eq.
GRlw k)= _if dt dx e~ 1) ([ F2(x),F2(0) ) (1.4) (ignoring the contact terms

1.1 w2—k2 w2_k2
(D Gio~ —g—z~loglw®—k?| i

6( 0% —k?)sgnw.
(1.6

can be explicitly computed only at zero or very highith

respect to the absolute value of momentuemperature. At  For spacelike momenta| <k, the imaginary part oGZD is

zero temperature, the retarded propagétot) has a branch exponentially suppressed.

cut singularity for|w|>1K|, Even though the retarded Green’s function in 4D cannot
be found explicitly, the location of its singularities and thus
the “dispersion law” of thermal excitations at strong cou-

*Email address: starina@phys.washington.edu pling can be determined precisely. As shown[iD], this
A nontrivial check of the validity of the correspondence at finite amounts to finding the quasinormal frequencies of the dila-
temperature was made recently[ 8. ton’s fluctuation in the dual near extremal black brane back-
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ground as functions of the spatial momenttirRecently, 1+(1—2)? A2

there has been considerable inter@sspired by the AdS/ i+ 1—2)(2— kT 22(1—2)(2— 7 Pk

CFT duality conjecturgin studying quasinormal modes of 21=-2)(2-2) z(1-9(2~2)
Schwarzschild-AdS  black holés[12,13,14,15,16,17,18 2

Here, we consider the noncompact case directly. This corre- T aZi-7(2=2) =0, (2.3

sponds to finding quasinormal frequencies for an infinitely

large AdS black hole. where\ = w/ 7T, q=|k|/=T. Equation(2.3) has four regu-

Computing the scalar quasinormal frequencies in thEfar singularities atz=0,1,2¢0, the corresponding pairs of

black brane.background is equivalent to solving the tW.O'characteristic exponents being, respectivély,iN/4,iN/4};
parameter singular spectral problem for an equation Wltqo 2 [—\AN4AY: 10,0}
four regular singularitiesHeun equation In this paper, we = RN

; ) Quasinormal modes are defined as solutions of (B
solve this problem by using an elegant method based OBbeying the “incoming wave” boundary condition at the ho-

rlprgher][e S ;{;ﬁor%n;; Tgenelgirgjvalllj\(/a gci]uant]lo:: 'S”W”Afteirr;i'r}izon z=0 and the vanishing Dirichlet boundary condition at
Igr as c;o;cc):h wgs usea(;; bo §a?ﬂ9] |Sr? 1333 t% fiidctarzey.s esc- “spatial infinityz= 1. The first condition singles out the expo-
PP y b nentv{!=—iN/4 atz=0.

trum of the hydrogen molecular ion. Later, it was applied to Th ¢ straiahtf q to find . | mod
the problem of quasinormal modes in asymptotically flat € most straightiorward way 1o Tind quasinormal modes
spacetimes by Leavé20] would be to construct a local series solutipg.(z,\) to Eq.
The paper is organized as follows. In the next section, wé2-3 With the exponent/’) near the origin, prove its con-
formulate the problem of finding the quasinormal modes of &/érgence az=1, and determine the eigenfrequencig$q)
near extremal black three-brane in terms of the singulaPy Solving the equatiorpo(11)=0 numerically. This ap-
boundary value problem for the Heun equation. In Sec. lIIlProach works quite well for the low-level eigenfrequencies,
this boundary value problem is solved by analyzing the as@nd in fact it has been successfully used in a number of
sociated linear difference equation and applying Pincherle’@ublications on quasinormal modes in asymptotically AdS
theorem. The resultfguasinormal frequencies, and the SPace. Here we would like to solve the above eigenvalue

“dispersion law” (k)] are presented in Sec. IV. The discus- Problem in a somewnhat different way which, in our opinion,
sion follows in Sec. V. is more appealing both analytically and numerically.

By making a transformation of the dependent variable

Il. QUASINORMAL MODES AND THE BOUNDARY b(2)=2"Mi(z—2) N4y (2) 2.4
VALUE PROBLEM FOR THE HEUN EQUATION

The metric corresponding to the collection Mfparallel Eq. (2.'3) can be reduced to the standard form of the Heun
equation[21,27,

nonextremal three-branes in the near horizon limit is given

by 0% ) € aBz—Q
(2 R2 Yzt 1 2 T n—2)Y 7 °
dszzﬁ(—fdt2+dx2)+r7(f*1dr2+r2d9§), (2.5
(2.1 wherea,B,y,e depend on,
where f(r)zl—ré/r“. According to the gauge-theory— MN1+0) ix
gravity correspondence, this background with the parametert=8=——7—, y=1-%, d=-1, e=1-\/2,
of nonextremalityr, is dual to theA’=4 SUN) SYM at (2.6)
finite temperatureT=r,/7R? in the limit N—oo, g%MN
—00, and Q is the so-called “accessory parameter” given in our
Using the new coordinat(a=1—r(2)/r2 and the Fourier case by
decomposition

9> N1-i) N?%2-i)
44 T8 @7

d*%k
¢(Z,t,X):f (277)4e—|wt+lk~X¢k(Z)' (22)

We would like to determine values afandq for which Eg.

the equation for the minimally coupled massless scalar in thé€2-5 on the interva[0, 1] has solutions obeying the bound-
background2.1) reads ary conditionsy(0)=1, y(1)=0.
Before turning to the solution, let us remark that E2}3)
with A =0 has received some attention previously in connec-
2Note that the pole$l.5) of GRy(w,k) coincide with the quasi- tion with the so calleq “glueball mass spectrl_Jm" in QgD
normal frequencies of a BTZ black hdl&1]. [23,24,25,26 Approximate analytic expressions for the
SReferences to the early works on quasinormal modes in asymp:glueball” masses squaret ;= —q7 were found either via
totically AdS spacetime as well as to works considering bulk di-a “brute force” WKB calculation[26] or by appealing to
mension other than five can be found[i0,12. the unpublished results of the RIMS gro{@3] (both ap-
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proaches give satisfactory agreement with the results obwhere A,B are independent ot. The vanishing Dirichlet

tained by numerical integratipnintroducing a nonzeroa

boundary condition for quasinormal modeszat1 implies

and using the “incoming wave” boundary condition makes B=0, which is the equation for eigenfrequencies. If A
the problem considerably more complicated, as is evident\,, Yo(2) is proportional toy;(z), and thus it is simulta-

from Egs.(2.5 and(2.6).

IIl. SOLVING THE BOUNDARY VALUE PROBLEM

A. Local solutions

neously a Frobenius solution abat 0 (with exponent O
and a Frobenius solution abaut 1 (with exponent 2 Such

a solution is called a Heun functig27]. We learn that qua-
sinormal modes of black branes are Heun functions. Unfor-
tunately, the connection problem for the Heun equation re-

The Frobenius set of local solutions near each of the sintains unsolved, and explicit expressions for the coefficients

gularities can be easily constructed.

A,B are unavailable, with the exception of some special

At z=0, the local series solution corresponding to thecaseé‘.There is, however, an indirect way of determining for

index v=0 and normalized to 1 is given by

©

Yo(2)= 2, a,(\,k)zZ",

n=0

(3.9

whereay=1, a;=Q/2v, and the coefficients,, with n=2
obey the three-term recursion relation

an+2+An()\)an+1+Bn(}\)anzoy (3-2)
where
(n+1)[26+e+3(n+7y)]+Q
A= - iy 89
(n+a)(n+pB)
BN = S 2y ins it ) (3.4

The serieg3.1) is absolutely convergent fde|<1 and, in
general, is divergent fofz|>1. The condition for conver-

which values of\ and q the connection coefficien van-
ishes. This is achieved through an analysis of convergence.

C. The analysis of convergence

The convergence of the seri€3.1) can be analyzed by
studying the largen asymptotic behavior of the linear differ-
ence equatiori3.2). One finds that Eq.(3.2) possesses two
linearly independent asymptotic solutions of the form

a(nl)sznnflf)\/Zzo ns , (38)
5=

) C(SZ)
agz)~n*3§,0 . (3.9

where the coefficients{? can be found recursively using
the asymptotic expansion @(n),B(n). In particular, we
have c{V=[g?—N2+\(1+i)+2\2(1+i)]/4, cP=[12
— 2+ \2—3(1+i)\]/4. Equation(3.9) is called aminimal
solution to Eq.(3.2), and Eq.(3.9 represents alominant

gence atz|=1 involves parameters of the equation and will one. This distinction reflects the property

be investigated below.

At z=1, the difference of the exponents has an integer
value, and we expect the local solution there to contain loga-

rithms. Indeed, the set of local solutions is given by

yi(2)=(1-2)1+bP(1-2)+ bV (1-2)%+--],
(3.9
y2(2)=1+bP(1-2)+hyy(2)log(1-2)
+0bS?(1-2)%+---, (3.6

where  bf=[gq?=A2+3\(1-i)]/12, bPP=[-g?+\?

e
lim T 0,

n—o An

(3.10

and will be useful later on. Using Eg&.9), (3.9), we obtain

CI 2+Re)\+ 1 a1
al| 2 2n n?) |’ 3.19
(2)

ani1 3 1

@ =1 ﬁ‘FO(F . (3.12

Equations(3.11), (3.12 imply® that generically the series

+N(1-i)]/4, h=—(g?—\??32, and the coefficients (3.1) converges absolutely foz|<1 for anyvalue of\. This
b{+?), n=2, can be found recursively from the relation simi- proves that the equation

lar to the one in Eq(3.2). Solving the differential equation

(2.5 essentially means finding the connection between the

sets of local solutions.

B. The connection problem

4Schdke and Schmidf28] give the connection coefficients in
terms of then—oo limit of a, obeying Eq.(3.2). Although the
asymptotic behavior o&, nearn= can be studied by means of
local analysis, it only determines, up to ax-dependent coefficient

From the general theory of linear differential equations, itwhich is essentially the very quantity we are looking for.

follows that three solutionyq(2), yi(z), y»(z) are con-
nected o0, 1] by the linear relation

Yo(2)=A(N,q)y1(2) + B(N,Q)y2(2), (3.7)

SNecessary information about second order linear difference equa-
tions can be found, for example, in the excellent review paper by
Wong and Li[29].

6See[30], Sec. 2.37.
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TABLE I. The lowest quasinormal frequencigg for q=0. 25 BRI
Re A Leleniani

n Re\, Im\, 2ol -":::::E:E:::.

1 +3.119452 —2.746676 Tt

2 +5.169521 —4.763570 15} sertaetleslenis

3 +7.187931 —6.769565 LA

4 +9.197199 —8.772481 10_--":::.--::.-::-;I:"

5 +11.202676 —10.774162 T et

6 +13.206247 ~12.775239 T et

7 +15.208736 —14.775979 5Pt

8 +17.210558 —16.776515 *

9 +£19.211943 —18.776919 4
10 +21.213025 —20.777232 > 10 1> 20 25
11 +23.213896 —22.777489 FIG. 2. Re\ vsq (with the intervalAq=0.5) for the lowest five
12 +25.213896 —24.777489 quasinormal frequencies. The zeros approach the link=Rpas
13 +27.213896 —26.777489 gq—°.

14 +29.213896 —28.777489
15 +31.213896 —30.777489
an+1__ Bn()\) Bn+1()\) Bn+2()\)
a, An()\)_ An+1()\)_ An+2()\)_
” (3.15
20 a,(\,k)=0 (3.13
=

The right hand side of Eq3.15 is generated by a simple
_algorithm. Definer,=a,,,/a,. Then Eq.(3.2) can be writ-

can indeed be used to compute the quasinormal frequencigs, as
numerically. What is more interesting, however, is that in

some cases the radius of convergence increases. It happens
when the minimal solutiol3.8) exists. In that case the series r=
(3.1) converges absolutely fde| <2 and thus represents an

analytic function(the Heun functiohin that region.

Thus, even though the connection coeffici#ih,q) in
Eq. (3.7 remains unknown, finding zeros dB(\,q) is

Bn(M)

TR Ty (316

Applying Eq. (3.16 repeatedly, one gets E¢B.15. Now,
settingn=0 in Eqg.(3.15 we have

equivalent to finding a condition under which the minimal

solution to Eq.(3.2) exists. Such a condition is conveniently Q
supplied by Pincherle’s theoref31] which states that the
minimal solution exists if and only if the continued fraction

converges. Moreover, in case of convergence one has

Bo(N)

Bi(N)

Bo(A)

Ao = A(N) = Ay(N)—

(3.19

~ Bo(A) Bi(A) By(n)
2—iN Ag(M)— Ai(N)— Ay(\) -

(3.17

This is the transcendental eigenvalue equation which deter-
mines the quasinormal frequencies. Equati8rl?) can be
solved numerically with great efficiency using a variety of
methods(see[32], which also includes a discussion of the
error analysis Here we use a nonlinear backward recursion
which amounts to breaking the continued fracti@l6 by

30 20
Re A

-10

_25 F

-30f ImA

20 30

settingr, to zerd for some largen, and computing back-
ward to getr; . Stability can be checked by choosing a larger
value ofn, and repeating the calculation.

IV. QUASINORMAL FREQUENCIES

For =0, the lowest 15 quasinormal frequencies ob-
tained by solving Eq(3.17) numerically are listed in Table |
and shown in Fig. 1. The results suggest that the number of
frequencies is infinite, and that their largeasymptotic be-
havior is given by the simple formula

"To improve the convergence of continued fractions, one can in-

FIG. 1. The lowest 15 quasinormal frequencies in the complex stead set, to its asymptotic value at, , r,=21/2—(2+\)/4n,

plane forg=0.

+---, as suggested by Nollef83].
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100 12f_
80t 10k
60} 8t
6 L
40t
4 \
20t
5 \
q q
20 40 60 80 100 20 40 60 80 100
FIG. 3. Re\ vs g (with the intervalAg=1) for the lowest five FIG. 4. —Im X\ vs g (with the intervalAq=1) for the lowest five
guasinormal frequencies. quasinormal frequencies.
Ap =\g£2n(17i), (4.0 V. DISCUSSION OF RESULTS

. o ) The results are compatible with expectations outlined in
wherexg ~+1.2139-0.7775. In terms of the original vari-  he |ntroduction. The retarded Green’s function has infinitely

able w, Eq. (4.1) is written as many poles in the complex plane whose location depends
on the spatial momentum. There is a “mass gap:” for small
wi=w; *27Tn(1Fi), (4.2  enough values ok the propagatoiGR(w,k) is analytic in

agreement with Eq(1.3. In the low-temperature limi
. ) . —o, g—o singularities merge, forming branch cuts of the
where the coefficient in front of the pgrentheses is thezero-temperature propagatdf1.2) as in the BTZ case.
bosonic Matsubara frequency ang = 7T\ . The distribution of quasinormal frequencies in the com-
The lowest eigenfrequency in Table | can be compareglex w plane for an asymptotically AdS background appears
with the result of Horowitz and HuberjyL2] for a large 5D  to follow a much simpler pattern than the one corresponding
Schwarzschild-AdS black hole. Normalizing the =100 to the asymptotically flat caseeompare Fig. 1 irf20]). In
entry in Table | of[12] appropriately k=wR?/r, ,R=1),  particular, Chandrasekhar’s “algebraically special” solution
we have\ (109)~3.119627- 2.746655, which is fairly close IS absent: there are no frequencies with\R&. Obviously,
to our result\(®)~3.119452- 2.746667. all statements about the behavior of higher-order modes are
The dependence of the lowest five quasinormal frequengOnjectural. It would be very desirable to confirm the
cies onq for qe[0,100 is shown in Figs. 2—4. All five asymptotic formula4.1) analytically, possibly by using the
branches stay above the line Req(Rew=|K|), slowly ap- complex WKB method. We remark, however, that the analo-

proaching it in the low-temperature limit—cc. The imagi-  9°US problem remains unsolved even in the much studied

nary part of the branches tends to zero in the same limit®@S€ of a Schwar;schlld plack hole in fIaF space.
Spectra of excitations in more realistic theories can be

Figures 2—4 bear resemblance to the dispersion law of ther-

mal excitations in a weakly coupled Yang-Mills plasfha. Elmllarly s';_udtlled ItprOVI?dedl the;r _g;aVItatt_lona;I gu?ls _anrg
All quasinormal frequencies have negative imaginary. nown explicitly. It would also be Interesting to determi

parts. This fact can be proven rigorously using an argumentf1e poles Qf _the current and energy-momentum t.en_so_r corr-
based on the “energy-type” integr&B4] or by writing Eq. elators at finite temperature, whose hydrodynamic limit has

(2.3 in the Regge-Wheeler form and essentially repeatindece.mIy been cpmputeq [@]_ :

the proofs for AdS black holes given recently[it2,14. It . Finally, _stu_dylng _gra\_/ltat|onal qua_1§|normal modes may be

reflects the stability of the near extremal metric against mportant in investigating the stability of the nonextremal

scalar perturbation. On the field theory side, the negativ lack brane background.

sign corresponds to the damping of the plasma excitations.
The computed frequencies appear to be symmetric with

respect to the imaginary axis, i.e., the eigenvalue equation  Itis a pleasure to thank P. K. Kovtun, D. T. Son, and L. G.

(3.17) seems to give complex-conjugate pairs of solutions inYaffe for discussions. | would also like to thank A. Nest

terms of the variablé\. This symmetry does not seem to be Nikitin and A. V. Shchepetilov for valuable comments on the

explicit in Eq.(3.17.° manuscript. This work is supported in part by DOE Grant

No. DOE-ER-41132.
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