
PHYSICAL REVIEW D 66, 124013 ~2002!
Quasinormal modes of near extremal black branes

Andrei O. Starinets*
Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195
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We find quasinormal modes of near extremal black branes by solving a singular boundary value problem for
the Heun equation. The corresponding eigenvalues determine the dispersion law for the collective excitations
in the dual strongly coupledN54 supersymmetric Yang-Mills theory at finite temperature.
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I. INTRODUCTION

The gauge-theory–gravity correspondence@1,2,3# pro-
vides useful insights into the properties of a strongly coup
supersymmetric Yang-Mills~SYM! theory at nonzero tem
perature. A well-known example is the finite-temperatureN
54 SU(N) SYM theory in 4D which in the largeN, large ’t
Hooft coupling limit is dual to the gravitational backgroun
of N parallel near extremal three-branes, with temperat
related to the parameter of nonextremality. For this theor
number of quantities such as the free energy@4,5#, the Wil-
son loop@6,7#, the shear viscosity@8,9#, the R-charge diffu-
sion constant@9#, and the Chern-Simons diffusion rate@10#
have been computed using the methods of gauge-the
gravity duality. Since supersymmetry is broken at finite te
perature and thus no nonrenormalization theorem is expe
to hold, quantities computed in the strong coupling regi
using a gravity dual differ from their analogues obtained
weak coupling via perturbation theory. The results of a gr
ity calculation are then regarded as a prediction for the S
theory, assuming that the AdS conformal field theory~CFT!
correspondence is valid at finite temperature.1

Dynamical properties of a thermal gauge theory are
coded in its Green’s functions. In the context of AdS/CF
Minkowski space Green’s functions can be computed fr
gravity using the recipe given in@10#. Unfortunately, for a
nonextremal background, only approximate expressions
the correlators are usually obtained. For example, the
tarded propagator of the gauge invariant local operatorF2

~dual to the dilaton! defined by

GR~v,k!52 i E dt d3x e2 ivt1 ikxu~ t !^@F2~x!,F2~0!#&

~1.1!

can be explicitly computed only at zero or very high~with
respect to the absolute value of momentum! temperature. At
zero temperature, the retarded propagator~1.1! has a branch
cut singularity foruvu.uku,

*Email address: starina@phys.washington.edu
1A nontrivial check of the validity of the correspondence at fin

temperature was made recently in@9#.
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GR~v,k!5
N2~2v21k2!2

64p2 ~ lnu2v21k2u

2 ipu~v22k2!sgnv!. ~1.2!

In the high temperature limitv/T!1, uku/T!1, the propa-
gator is analytic in the complexv plane,

GR~v,k!52
N2T2

16
~ i2pTv1k2!. ~1.3!

However, for generic values ofv andk, we expectGR(v,k)
to have poles corresponding to the spectrum of collec
excitations of the SYM plasma.

One can compare the situation to the simpler case of
2D CFT dual to the Ban˜ados-Teitelboim-Zanelli~BTZ! black
hole background. There, the retarded Green’s functions
be computed exactly. For illustration, consider the case of
conformal dimensionD52. Then

G2D
R ~v,k!5

v22k2

4p2 FcS 12 i
v2k

4pT D1cS 12 i
v1k

4pT D G ,
~1.4!

where we have putTL5TR and ignored the constant prefa
tor for simplicity. The high temperature limit of Eq.~1.4! is
an analytic function ofv. In general, however,G2D

R (v,k) has
infinitely many poles located at

vn56k2 i4pT~n11!, n50,1,... . ~1.5!

WhenT→0, the poles merge, forming branch cuts. One c
use the asymptotic expansionc(z); logz21/2z1¯ ~valid
for uargzu,p/2) to find the zero-temperature limit of Eq
~1.4! ~ignoring the contact terms!:

G2D
R ;

v22k2

4p2 loguv22k2u2 i
v22k2

4p
u~v22k2!sgnv.

~1.6!

For spacelike momentauvu,k, the imaginary part ofG2D
R is

exponentially suppressed.
Even though the retarded Green’s function in 4D can

be found explicitly, the location of its singularities and th
the ‘‘dispersion law’’ of thermal excitations at strong co
pling can be determined precisely. As shown in@10#, this
amounts to finding the quasinormal frequencies of the d
ton’s fluctuation in the dual near extremal black brane ba
©2002 The American Physical Society13-1
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ground as functions of the spatial momentum.2 Recently,
there has been considerable interest~inspired by the AdS/
CFT duality conjecture! in studying quasinormal modes o
Schwarzschild-AdS black holes3 @12,13,14,15,16,17,18#.
Here, we consider the noncompact case directly. This co
sponds to finding quasinormal frequencies for an infinit
large AdS black hole.

Computing the scalar quasinormal frequencies in
black brane background is equivalent to solving the tw
parameter singular spectral problem for an equation w
four regular singularities~Heun equation!. In this paper, we
solve this problem by using an elegant method based
Pincherle’s theorem. The eigenvalue equation is written
terms of continued fractions and solved numerically. A sim
lar approach was used by Jaffe´ @19# in 1933 to find the spec
trum of the hydrogen molecular ion. Later, it was applied
the problem of quasinormal modes in asymptotically fl
spacetimes by Leaver@20#.

The paper is organized as follows. In the next section,
formulate the problem of finding the quasinormal modes o
near extremal black three-brane in terms of the singu
boundary value problem for the Heun equation. In Sec.
this boundary value problem is solved by analyzing the
sociated linear difference equation and applying Pincher
theorem. The results@quasinormal frequenciesvn and the
‘‘dispersion law’’ v~k!# are presented in Sec. IV. The discu
sion follows in Sec. V.

II. QUASINORMAL MODES AND THE BOUNDARY
VALUE PROBLEM FOR THE HEUN EQUATION

The metric corresponding to the collection ofN parallel
nonextremal three-branes in the near horizon limit is giv
by

ds25
r 2

R2 ~2 f dt21dx2!1
R2

r 2 ~ f 21dr21r 2dV5
2!,

~2.1!

where f (r )512r 0
4/r 4. According to the gauge-theory

gravity correspondence, this background with the param
of nonextremalityr 0 is dual to theN54 SU(N) SYM at
finite temperatureT5r 0 /pR2 in the limit N→`, gYM

2 N
→`.

Using the new coordinatez512r 0
2/r 2 and the Fourier

decomposition

f~z,t,x!5E d4k

~2p!4 e2 ivt1 ik•xfk~z!, ~2.2!

the equation for the minimally coupled massless scalar in
background~2.1! reads

2Note that the poles~1.5! of G2D
R (v,k) coincide with the quasi-

normal frequencies of a BTZ black hole@11#.
3References to the early works on quasinormal modes in asy

totically AdS spacetime as well as to works considering bulk
mension other than five can be found in@10,12#.
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11~12z!2

z~12z!~22z!
fk81

l2

4z2~12z!~22z!2 fk

2
q2

4z~12z!~22z!
fk50, ~2.3!

wherel5v/pT, q5ukW u/pT. Equation~2.3! has four regu-
lar singularities atz50,1,2,̀ , the corresponding pairs o
characteristic exponents being, respectively,$2 il/4,il/4%;
$0,2%; $2l/4,l/4%; $0,0%.

Quasinormal modes are defined as solutions of Eq.~2.3!
obeying the ‘‘incoming wave’’ boundary condition at the h
rizon z50 and the vanishing Dirichlet boundary condition
spatial infinityz51. The first condition singles out the expo
nentn0

(1)52 il/4 at z50.
The most straightforward way to find quasinormal mod

would be to construct a local series solutionw loc(z,l) to Eq.
~2.3! with the exponentn0

(1) near the origin, prove its con
vergence atz51, and determine the eigenfrequenciesln(q)
by solving the equationw loc(1,l)50 numerically. This ap-
proach works quite well for the low-level eigenfrequencie
and in fact it has been successfully used in a number
publications on quasinormal modes in asymptotically A
space. Here we would like to solve the above eigenva
problem in a somewhat different way which, in our opinio
is more appealing both analytically and numerically.

By making a transformation of the dependent variable

f~z!5z2 il/4~z22!2l/4y~z!, ~2.4!

Eq. ~2.3! can be reduced to the standard form of the He
equation@21,22#,

y91Fgz 1
d

z21
1

e

z22Gy81
abz2Q

z~z21!~z22!
y50,

~2.5!

wherea,b,g,e depend onl,

a5b52
l~11 i !

4
, g512

il

2
, d521, e512l/2,

~2.6!

and Q is the so-called ‘‘accessory parameter’’ given in o
case by

Q5
q2

4
2

l~12 i !

4
2

l2~22 i !

8
. ~2.7!

We would like to determine values ofl andq for which Eq.
~2.5! on the interval@0, 1# has solutions obeying the bound
ary conditionsy(0)51, y(1)50.

Before turning to the solution, let us remark that Eq.~2.3!
with l50 has received some attention previously in conn
tion with the so called ‘‘glueball mass spectrum’’ in QCD3
@23,24,25,26#. Approximate analytic expressions for th
‘‘glueball’’ masses squaredMn

252qn
2 were found either via

a ‘‘brute force’’ WKB calculation @26# or by appealing to
the unpublished results of the RIMS group@23# ~both ap-

p-
-

3-2
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QUASINORMAL MODES OF NEAR EXTREMAL BLACK BRANES PHYSICAL REVIEW D66, 124013 ~2002!
proaches give satisfactory agreement with the results
tained by numerical integration!. Introducing a nonzerol
and using the ‘‘incoming wave’’ boundary condition mak
the problem considerably more complicated, as is evid
from Eqs.~2.5! and ~2.6!.

III. SOLVING THE BOUNDARY VALUE PROBLEM

A. Local solutions

The Frobenius set of local solutions near each of the
gularities can be easily constructed.

At z50, the local series solution corresponding to t
index n50 and normalized to 1 is given by

y0~z!5 (
n50

`

an~l,k!zn, ~3.1!

wherea051, a15Q/2g, and the coefficientsan with n>2
obey the three-term recursion relation

an121An~l!an111Bn~l!an50, ~3.2!

where

An~l!52
~n11!@2d1e13~n1g!#1Q

2~n12!~n111g!
, ~3.3!

Bn~l!5
~n1a!~n1b!

2~n12!~n111g!
. ~3.4!

The series~3.1! is absolutely convergent foruzu,1 and, in
general, is divergent foruzu.1. The condition for conver-
gence atuzu51 involves parameters of the equation and w
be investigated below.

At z51, the difference of the exponents has an inte
value, and we expect the local solution there to contain lo
rithms. Indeed, the set of local solutions is given by

y1~z!5~12z!2@11b1
~1!~12z!1b2

~1!~12z!21¯#,
~3.5!

y2~z!511b1
~2!~12z!1hy1~z!log~12z!

1b2
~2!~12z!21¯ , ~3.6!

where b1
(1)5@q22l213l(12 i )#/12, b1

(2)5@2q21l2

1l(12 i )#/4, h52(q22l2)2/32, and the coefficients
bn

(1,2) , n>2, can be found recursively from the relation sim
lar to the one in Eq.~3.2!. Solving the differential equation
~2.5! essentially means finding the connection between
sets of local solutions.

B. The connection problem

From the general theory of linear differential equations
follows that three solutionsy0(z), y1(z), y2(z) are con-
nected on@0, 1# by the linear relation

y0~z!5A~l,q!y1~z!1B~l,q!y2~z!, ~3.7!
12401
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where A,B are independent ofz. The vanishing Dirichlet
boundary condition for quasinormal modes atz51 implies
B50, which is the equation for eigenfrequenciesln . If l
5ln , y0(z) is proportional toy1(z), and thus it is simulta-
neously a Frobenius solution aboutz50 ~with exponent 0!
and a Frobenius solution aboutz51 ~with exponent 2!. Such
a solution is called a Heun function@27#. We learn that qua-
sinormal modes of black branes are Heun functions. Un
tunately, the connection problem for the Heun equation
mains unsolved, and explicit expressions for the coefficie
A,B are unavailable, with the exception of some spec
cases.4 There is, however, an indirect way of determining f
which values ofl and q the connection coefficientB van-
ishes. This is achieved through an analysis of convergen

C. The analysis of convergence

The convergence of the series~3.1! can be analyzed by
studying the largen asymptotic behavior of the linear differ
ence equation~3.2!. One finds5 that Eq.~3.2! possesses two
linearly independent asymptotic solutions of the form

an
~1!;22nn212l/2(

s50

` cs
~1!

ns , ~3.8!

an
~2!;n23(

s50

` cs
~2!

ns , ~3.9!

where the coefficientscs
(1,2) can be found recursively usin

the asymptotic expansion ofA(n),B(n). In particular, we
have c1

(1)5@q22l21l(11 i )12l2(11 i )#/4, c1
(2)5@12

2q21l223(11 i )l#/4. Equation~3.8! is called aminimal
solution to Eq.~3.2!, and Eq.~3.9! represents adominant
one. This distinction reflects the property

lim
n→`

an
~1!

an
~2! 50, ~3.10!

and will be useful later on. Using Eqs.~3.8!, ~3.9!, we obtain

Uan11
~1!

an
~1! U5 1

2 F12
21Rel

2n
1OS 1

n2D G , ~3.11!

Uan11
~2!

an
~2! U512

3

n
1OS 1

n2D . ~3.12!

Equations~3.11!, ~3.12! imply6 that generically the serie
~3.1! converges absolutely foruzu<1 for anyvalue ofl. This
proves that the equation

4Schäfke and Schmidt@28# give the connection coefficients in
terms of then→` limit of an obeying Eq.~3.2!. Although the
asymptotic behavior ofan nearn5` can be studied by means o
local analysis, it only determinesan up to al-dependent coefficien
which is essentially the very quantity we are looking for.

5Necessary information about second order linear difference e
tions can be found, for example, in the excellent review paper
Wong and Li@29#.

6See@30#, Sec. 2.37.
3-3
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(
n50

`

an~l,k!50 ~3.13!

can indeed be used to compute the quasinormal frequen
numerically. What is more interesting, however, is that
some cases the radius of convergence increases. It hap
when the minimal solution~3.8! exists. In that case the serie
~3.1! converges absolutely foruzu,2 and thus represents a
analytic function~the Heun function! in that region.

Thus, even though the connection coefficientB(l,q) in
Eq. ~3.7! remains unknown, finding zeros ofB(l,q) is
equivalent to finding a condition under which the minim
solution to Eq.~3.2! exists. Such a condition is convenient
supplied by Pincherle’s theorem@31# which states that the
minimal solution exists if and only if the continued fractio

2
B0~l!

A0~l!2

B1~l!

A1~l!2

B2~l!

A2~l!2
¯ ~3.14!

converges. Moreover, in case of convergence one has

FIG. 1. The lowest 15 quasinormal frequencies in the complel
plane forq50.

TABLE I. The lowest quasinormal frequenciesln for q50.

n Reln Im ln

1 63.119452 22.746676
2 65.169521 24.763570
3 67.187931 26.769565
4 69.197199 28.772481
5 611.202676 210.774162
6 613.206247 212.775239
7 615.208736 214.775979
8 617.210558 216.776515
9 619.211943 218.776919

10 621.213025 220.777232
11 623.213896 222.777489
12 625.213896 224.777489
13 627.213896 226.777489
14 629.213896 228.777489
15 631.213896 230.777489
12401
ies

ens

l

an11

an
52

Bn~l!

An~l!2

Bn11~l!

An11~l!2

Bn12~l!

An12~l!2
¯ .

~3.15!

The right hand side of Eq.~3.15! is generated by a simple
algorithm. Definer n5an11 /an . Then Eq.~3.2! can be writ-
ten as

r n52
Bn~l!

An~l!1r n11
. ~3.16!

Applying Eq. ~3.16! repeatedly, one gets Eq.~3.15!. Now,
settingn50 in Eq. ~3.15! we have

Q

22 il
52

B0~l!

A0~l!2

B1~l!

A1~l!2

B2~l!

A2~l!2
¯ . ~3.17!

This is the transcendental eigenvalue equation which de
mines the quasinormal frequencies. Equation~3.17! can be
solved numerically with great efficiency using a variety
methods~see@32#, which also includes a discussion of th
error analysis!. Here we use a nonlinear backward recursi
which amounts to breaking the continued fraction~3.16! by
setting r n to zero7 for some largen* and computing back-
ward to getr 1 . Stability can be checked by choosing a larg
value ofn* and repeating the calculation.

IV. QUASINORMAL FREQUENCIES

For q50, the lowest 15 quasinormal frequenciesln ob-
tained by solving Eq.~3.17! numerically are listed in Table
and shown in Fig. 1. The results suggest that the numbe
frequencies is infinite, and that their largen asymptotic be-
havior is given by the simple formula

7To improve the convergence of continued fractions, one can
stead setr n to its asymptotic value atn* , r n51/22(21l)/4n*
1¯ , as suggested by Nollert@33#.

FIG. 2. Rel vs q ~with the intervalDq50.5) for the lowest five
quasinormal frequencies. The zeros approach the line Rel5q as
q→`.
3-4
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ln
65l0

662n~17 i !, ~4.1!

wherel0
6'61.213920.7775i . In terms of the original vari-

ablev, Eq. ~4.1! is written as

vn
65v0

662pTn~17 i !, ~4.2!

where the coefficient in front of the parentheses is
bosonic Matsubara frequency andv0

65pTl0
6 .

The lowest eigenfrequency in Table I can be compa
with the result of Horowitz and Hubeny@12# for a large 5D
Schwarzschild-AdS black hole. Normalizing ther 15100
entry in Table I of@12# appropriately (l5vR2/r 1 ,R51),
we havel (100)'3.11962722.746655i , which is fairly close
to our resultl (`)'3.11945222.746667i .

The dependence of the lowest five quasinormal frequ
cies onq for qP@0,100# is shown in Figs. 2–4. All five
branches stay above the line Rel5q(Rev5uku), slowly ap-
proaching it in the low-temperature limitq→`. The imagi-
nary part of the branches tends to zero in the same li
Figures 2–4 bear resemblance to the dispersion law of t
mal excitations in a weakly coupled Yang-Mills plasma.8

All quasinormal frequencies have negative imagina
parts. This fact can be proven rigorously using an argum
based on the ‘‘energy-type’’ integral@34# or by writing Eq.
~2.3! in the Regge-Wheeler form and essentially repeat
the proofs for AdS black holes given recently in@12,14#. It
reflects the stability of the near extremal metric agains
scalar perturbation. On the field theory side, the nega
sign corresponds to the damping of the plasma excitatio

The computed frequencies appear to be symmetric w
respect to the imaginaryl axis, i.e., the eigenvalue equatio
~3.17! seems to give complex-conjugate pairs of solutions
terms of the variableil. This symmetry does not seem to b
explicit in Eq. ~3.17!.9

8Note, however, that in this paper we consider correlators of
gauge-invariant operators rather than the gluon propagator.

9The symmetry, however, is obvious in the original form of E
~2.3!. I thank A. V. Shchepetilov for pointing this out to me.

FIG. 3. Rel vs q ~with the intervalDq51) for the lowest five
quasinormal frequencies.
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V. DISCUSSION OF RESULTS

The results are compatible with expectations outlined
the Introduction. The retarded Green’s function has infinit
many poles in the complexv plane whose location depend
on the spatial momentum. There is a ‘‘mass gap:’’ for sm
enough values ofl the propagatorGR(v,k) is analytic in
agreement with Eq.~1.3!. In the low-temperature limitl
→`, q→` singularities merge, forming branch cuts of th
zero-temperature propagator10 ~1.2! as in the BTZ case.

The distribution of quasinormal frequencies in the co
plex v plane for an asymptotically AdS background appe
to follow a much simpler pattern than the one correspond
to the asymptotically flat case~compare Fig. 1 in@20#!. In
particular, Chandrasekhar’s ‘‘algebraically special’’ solutio
is absent: there are no frequencies with Rel50. Obviously,
all statements about the behavior of higher-order modes
conjectural. It would be very desirable to confirm th
asymptotic formula~4.1! analytically, possibly by using the
complex WKB method. We remark, however, that the ana
gous problem remains unsolved even in the much stud
case of a Schwarzschild black hole in flat space.

Spectra of excitations in more realistic theories can
similarly studied provided their gravitational duals a
known explicitly. It would also be interesting to determin
the poles of the current and energy-momentum tensor c
elators at finite temperature, whose hydrodynamic limit h
recently been computed in@9#.

Finally, studying gravitational quasinormal modes may
important in investigating the stability of the nonextrem
black brane background.
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e
10The zero-temperature limit~1.2! of GR(v,k) can be obtained

from the Heun equation using the Langer-Olver asymptotic exp
sion ~see@10#!.

FIG. 4. 2Im l vsq ~with the intervalDq51) for the lowest five
quasinormal frequencies.
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