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Radiation via tunneling from a de Sitter cosmological horizon
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Hawking radiation can usefully be viewed as a semiclassical tunneling process that originates at the black
hole horizon. The same basic premise should apply to de Sitter background radiation, with the cosmological
horizon of de Sitter space now playing the featured role. In fact, a recent(WbiK. Parikh, hep-th/02041Q7
has gone a long way to verifying the validity of this de Sitter—tunneling picture. In the current paper, we extend
these prior considerations to arbitrary-dimensional de Sitter space, as well as Schwarzschild—de Sitter space-
times. It is shown that the tunneling formalism naturally censors against any black hole with a mass in excess
of the Nariai value, thus enforcing a “third law” of Schwarzschild—de Sitter thermodynamics. We also provide
commentary on the dS/conformal field theory correspondence in the context of this tunneling framework.
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[. INTRODUCTION gram of study that was initiated by Kraus and WilcZ&kV)
[17]* and is central to the current work. The essence of the
In light of recent astronomical observations, it has beerKW methodology is a dynamical treatment of black hole
suggested that our universe will asymptotically approach aadiation. More to the point, KW considered the effects of a
de Sitter spacetimgL]. This realization has sparked a senseself-gravitating matter shell propagating outwards through a
of urgency in resolving the quantum-gravitational mysteriesspherically symmetric black hole horizon. Two particularly
of de Sitter spacf2]. With prompting from the very success- significant points of this work are as follow§) The back-
ful anti-de Sitter/conformal field theor§CFT) correspon- ground geometry is allowed to fluctuate so that the formal-
dence[3-5], much of this work has focused on finding a ism incorporates a black hole of varying mass. In this man-
holographic descriptiof6,7] of de Sitter space. In particular, ner, the total energy of the spacetime is naturally conserved.
there has been much ado about establishing an analogob®tably, energy conservation is often overlooked in other
duality, that is, the so-called dS/CFT correspondef®fe  formal treatments of Hawking radiatidr28]. (i) Boundary
(Also see, for instancd,9—-13].) Although there has been conditions are imposed by foliating the spacetime with
considerable success along this line, the proposed duality somewhat unconventional “Painleve coordinatgg9]. Sig-
still marred by various ambiguities, for example, a dualnificantly, these coordinates are regular at the horizon, as
boundary theory that appears to be a nonunitary[8fiethe  well as stationary but not statice., time-reversal asymme-
conspicuous absence of measurable quanfiiekast those try is manifest. This gauge seems quite appropriate for de-
with operational meaning to a de Sitter obser{2}), and  scribing the geometry of a slowly evaporating black hole.
logistic breakdowng14] that can be attributed to the finite Let us now return the discussion to de Sitter space. As is
entropy of de Sitter spadd5]. well known, there are many similarities between the thermo-
The above issues should probably be viewed as significartynamic properties of a de Sitter cosmological horizon and
philosophical roadblocks as opposed to mere technical diffithose of a black hole horizof80]. Hence, it would seem
culties; which is to say, their resolution will, in all likelihood, natural to extend the tunneling picture and KW treatment to
necessitate dramatic departures from our current ways dhe background radiation associated with de Sitter space. Just
thinking. Hence, it may be an appropriate juncture to “take asuch a study was recently carried out by PariRB] with
step back” and reenforce our understanding of de Sitteconsiderable success. This author, however, focused on the
space at a semiclassical level. With this as our mindset, let usteresting but unphysical case of three-dimensional de Sitter
now proceed to consider the central topic of the paperspace. The main purpose of the current paper is to generalize
namely, de Sitter radiation as a semiclassical tunneling proeonsiderations to a de Sitter spacetime of arbitrary dimen-
cess. sionality. We will also provide some commentary on the dS/
First, let us briefly review the concept of tunneling as it CFT correspondence in the context of this study.
applies to a radiating black hole. According to this interpre- The remainder of the paper is organized as follows. In
tation, Hawking radiatioi16] can be attributed to the spon- Sec. Il, we consider a radiating cosmological horizon in an
taneous creation of particles at a point just inside of the blaclempty, (1+2)-dimensional de Sitter spacetime and, with
hole horizon. One of the particles then tunnels out to theguidance from17,20,25, calculate the semiclassical emis-
opposite side of the horizon, where it emerges with positivesion rate. The consistency of the derived expression is then
energy. Meanwhile, the negative-energy “partner” remainsverified for the case afi=3. We accomplish this by extrapo-
behind and effectively lowers the mass of the black hole. lating the emission spectrum and comparing the lowest-order
The above point of view formed the foundation for a pro-

IFor further developments and generalizations, [48e-25. For
*Email address: amedved@phys.ualberta.ca other perspectives on radiation via tunneling, g&&27).

0556-2821/2002/68.2)/1240097)/$20.00 66 124009-1 ©2002 The American Physical Society



A. J. M. MEDVED PHYSICAL REVIEW D66, 124009 (2002

term with standard de Sitter thermodynamics. In Sec. lll, we t=7+f(r), ®)
further extend the formalism to a Schwarzschild—de Sitter
spacetime. Here, we also comment on thermal stability ando that the static metri€l) takes on the form
touch upon the subject of dS/CFT renormalization-group ) S
flows [31]. In Sec. IV, we take a step towards the ethereal dL2= _( _ r_)d 2_2g 1— r_)

. . . . 2 T 2
and reconsider the tunneling picture from an outside-of-the- I dr I
horizon perspective. The dS/CFT correspondence provides 2 2
the motivating factor for this portion of the analysis. Finally, _( _ r_) (E) }dr2+r2d02 4)
Sec. V contains a brief summary. 12/\dr n

r2
1- I—z)der+

Next, we enforce that constamt-slices reduce to
Il. de SITTER TUNNELING (n+1)-dimensional flat spacg.e., dr?+r2dQ2), so that
Let us begin by considering am{ 2)-dimensional de
Sitter spacetimdwith n=1). There are many different co- ﬂ:
ordinate systems that can be used to provide a local descrip- dr
tion of de Sitter spacgL0], including the following explicitly
static coordinates:

r
+—
[

2\ -1
l—|—2> . (5

Hence, we can rewrite the metrid) as

2

r r
2 -7 drz—2|—d7dr+dr2+r2dﬂﬁ, (6)

r 2
1—T%dﬂ+

-1
r ——
1—|—2) dr2+r2d02. (1) ds’

ds=—

. . ) 3 up to an arbitrary choice of sign in the off-diagonal term.
Here, | is the curvature radius of de Sitter spate., A Clearly, these “new” coordinates exhibit all of the previ-
=n(n+1)/2% is the positive cosmological constant(d;,  oysly discussed features of Painleve coordinates; including
represents am-dimensional spherical hypersurface of unit horizon (=1) regularity and time-reversal asymmetry. The
radius, and the nonangular coordinates range according f@ature of horizon regularity has special significance in de
O=r=I and —»<t<+. Keep in mind that the boundary sijtter space, as the revised coordinates are no longer re-
atr=1I describes a cosmological horizon for an observer l0tricted to the southern causal diamond. In fact, BYcov-
cated atr =0. , . _ers the entire causal fututef an observer at=0), which

The above coordinates fail, of course, to cover the entirgransjates to precisely one-half of the complete de Sitter
de Sitter manifold. Equatiortl) does, however, precisely manifold. Meanwhile, one can describe the remaining half
cover the so-called “southern causal diamorid0], which (or the causal pastoy “flipping” the sign in front of the
is the region of spacetime that is fully accessible to an obyff-diagonal term. In this sense, the Painleve—de Sitter coor-
server at the south pole {0). A particularly attractive fea-  dinate system is closely related to de Sitter planar coordi-
ture of this coordinate gauge is the existence of a timelikgyateq[10], a point which has been elaborated or{25]. Of
Killing vector (dy), thus leading to a sensible notion of time fyrther interest, 9, is a Killing vector throughout the
evolution for a south-pole observer. Note that such a timelikgpainjeve—de Sitter system, although this vector changes
Killing vector is notoriously absent iany global description  character(timelike — spacelik¢ upon passing through the
of de Sitter space. horizon.

As discussed in Sec. |, it is most convenient, in the tun-  For |ater usage, let us evaluate the radial, null geodesics

neling picture, to use stationary coordinates that are manigescriped by Eq(6). Under these conditionsd()2=ds?
festly asymmetric under time reversal. In the case of a.0), we can reexpress this line element as foIIvas:
Schwarzschild black hole, the following Painleve coordi-
nates[29] have been utilized for just this purpoEE7]: . r. r?

(r)2—2|—r—( —|—2)=0, @
ds’=— ( 1- ZTM)dTZ

where a dot denotes differentiation with respectt&olving

v the quadratic, we then have
—2\/Tdrdr+dr2+r2dQ§. 2)

I;=

— =

+1, (8)

Along with the above-mentioned properties, this system has
the distinguishing features of horizon regularity and flatwhere the+(—) sign can be identified with outgoin@n-
constant-time surfaces. Further note that such coordinateoming radial motion.
comply with the perspective of a free-falling observer, who With the de Sitter cosmological horizdatr=1) in mind,
is expected to experience nothing out of the ordinary uponet us now focus on a semiclassical treatment of the associ-
passing through the horizon. ated radiation, as advocated(for instance[17,20,29. First

To obtain an analogous coordinate system for de Sitteof all, we adopt the picture of a pair of particles spontane-
space or “Painleve—de Sitter” coordinateZb], we first em-  ously created just outside of the horizon. The positive-energy
ploy the following transformation: particle tunnels through the horizon to emerge as an inward-
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moving, self-gravitating energy shell, whereas the negativeis always more negative than that of empty de Sitter space.
energy particle remains behind and effectively lowers theThat is to say, the energy of a Schwarzschild—de Sitter
energy of the background spacetime. Because of the infinitspacetime is known to decrease with increasing black hole
blueshift near the horizon, the emerging energy shell can bmass[32]. Although counterintuitive, this inverted corre-
treated as a point particle, meaning that a WKB-type of apspondence can be attributed to a negative binding energy
proximation may be appropriately employed. For the sake obetween a positive-mass object and a de Sitter gravitational
simplicity, we will further invoke an $-wave” approxima- field [33].
tion; in particular, we assume a massless shell and symmetry With the above discussion in mind, let us now consider
with respect to the angular coordinates. Schwarzschild—de Sitter static coordinates,

Given this semiclassical, WKB framework, it has been

shown that the logarithm of the emission rafe) (can be r2 Me,
expressed in terms of the imaginary part of the “totgbar- ds?=—|1- Z7 o dt?
ticle plus gravitationalaction,Z [17]. More specifically, r
~a-2ImZ 2 Me -1
Fme ™™ © +(1—|—2— ) arerzd0?, a9
r

Alternatively, one can reexpress this relation in the following

spectral form: )
P wheree,=167G,,, ,/nV, andM is the conserved mag32].

® (Also, G,., is Newton’s constant an¥, is the volume of
m”z ImZ, (10 the spherical hypersurface described H{2.) It is a
straightforward process to generalize the prior Painleve—de
wherew>0 is the particle energy arit{ w) can be identified ~ Sitter formalism for this black hole spacetime. In particular,
with the effective temperature. Eq. (6) and Eq.(8) should, respectively, be modified as fol-
For a positive-energy wave, the imaginary part of the lows:
action has been found to have a conveniently simple form

[17]: 2 2
d52=—( AL} ISP L M
: re (P 1= yn-t 1< pn-t
ImIzImfdrrprzlmf J’ dp/dr, (12)
ri /0 +r2d02, (15

wherep, is the canonical momentuconjugate ta). Also,
r; andr indicate(roughly) the point of particle creation and . r2 Me,
the classical turning point of motion. =\t rn_li 1. (16)

To proceed with an explicit calculation, it is useful to
apply Hamilton’s equation, . ) ) ) . )
On the basis of our prior discussion, it follows directly

. dH d(E-w) do that the positive-energy shell sees the effective metric of Eq.
r= dp,  dp, _  dp, (12)  (15), although withM replaced byw’. The same substitution

in Eq. (16) yields the desired expression foras a function
Here, E represents the total conserved energy of the systenyf ', [Note that we must choose the negative sign in Eq.
whereasE — w can be regarded as tiearying) gravitational  (16), as the shell is propagating from larger to smalgr

energy stored in the background spacetime. Let us reemphghus, we can now rewrite E¢13) in the following explicit
size that, by keepindt fixed, energy conservation will be manner:

enforced in a natural way.
Substituting Eq(12) into Eqg. (11), we find

I‘f [0} dw’dr
ImI=—Imj f . (17

i (edo'dr v Jo
ImI=—Imj f —. (13 '
ri 0 r

Before evaluating the above integral, we must necessarily

obtain an expression far as a function ofw’. The form of ~ Here, we have also added a small imaginary part to the ef-
this expression depends on the answer to the following quegdective energy(i.e., o' —w’—id with §<1), so that the
tion: what effective metric does the energy shell see as iabove integral can be evaluated via contour techniques. Let
propagates through the background spacetime? Considering further point out thas>0 is to be implied, as this choice
that the de Sitter background loses some of its energy to thensures that the positive-frequency solutione('“") de-
propagating shell, we propose that the effective metric ircays exponentially in time.

question is that of a Schwarzschild—de Sitter geometry. The To explicitly evaluate this integral, let us temporarily treat
reasoning is somewhat subtle and based on the observatioras a constant and make the following change of variables:
that the total energy of a Schwarzschild—de Sitter spacetime= \/(r%/1%) + (e,w'/r"~ ). This leads to
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2 r X() xdx 1
ImI:——Imf fr"*ldrf ——, (19 T(w)~ 51 +0(w). (25)
ri x(0) X—1—id(r) m

— : . . Reassuringly, the leading-order, energy-independent term is

— n._nt -

where 5(r)__|f“5/2r_~0 } Qven that>.< monojconlcally |-n the well-known background temperature of empty de Sitter
creases with’ and >0, it is appropriate to integrate in a space[30]. Meanwhile, the energy-dependent corrections,
counterclockwise direction in the upper half of the complex-\yhich can easily be computed to any desired ordes,irare

x plane. Following this prescription, we obtain indicative of a “greybody” factor in the emission spectrum:;
that is, a deviation from pure thermality. That such devia-
2w (T tions occur for Hawking-like radiation is well knowi.6],
ImMZ=——Imi | r""*dr. (19 ) o . .
€n " but this point is rarely stressed in the relevant literature.

As a further check on our formalistthis time for anyn),

The integration over can now be trivially performed to give we can consider the change in entropy during the process of
emission. The first law of thermodynamics indicates that

27
ImZ= e [ri'=rfl. (20 w 4o
n = — — = — = — —r.
AS T 2Im7Z nEn[rf ril, (26)

Note that, by constructiorr,;>r;, and so the sign of I
comes out positive as required; cf. E¢®. and(10). Gener-  where we have also applied Eq%0) and(20). We can com-
ating the correct sign in de Sitter thermodynamics is not apare this outcome with that predicted by the Bekenstein-
trivial as one may think. Indeed, naive application of the firstHawking “area” law [34,35, which tells us
law of thermodynamics to a cosmological horizon can often
lead to an erroneous negative sigi®,33. Va noon

The above formula is the key quantitative result of this AS=Sf—S=4G +2[rf_ri ]. (27)
paper. We can substantiate its validity by considering a spe- "
cific val_ue ofn_. Itis readi!y shown'thgt the case & 1.(i.e., Since e, =167G,,,/nV,, these two independent formula-
three-dimensional c{e Sitter spade in agreement Wlth.the tions of AS are, indeed, in perfect agreement.
analogous expression found {25]. Another convenient
choice isn=3 (i.e., five-dimensional de Sitter spacas the
Schwarzschild—de Sitter horizon can then be solved for via a

quadratic relation. _ In the discussion to follow, we will consider the implica-
With our attention on then=3 case, it follows[cf. Ed.  tions (on the tunneling pictudewhen the initial state is de-
(14)] that the Schwarzschild—de Sitter cosmological horizonscriped by a Schwarzschild—de Sitter spacetime. Let us once
is described by the largest root of again consider the incoming radiation from the cosmological
horizon and, for the moment, ignore the outgoing radiation
from the black hole horizon. It is readily observed that the
key result of the preceding section, EG0), remains valid,
althoughr; andr; must be appropriately redefined. Recalling
That is, the inverse correspondence between black hole mass and

background energy, we expect a black hole of initial mdss
4M €5 to have a final mass d¥1 +w (where, as beforep is the
1++/1- 1z |
Recalling our prior definitions of; andr;, we haveri2

[ll. SCHWARZSCHILD —de SITTER TUNNELING

4
r
l—?—rﬁﬂweg:o. (21)

|2
M) =~

(22)  energy of the emitted partiglelt follows [cf. Eq. (14)] that
the radii in question correspond to the largest roots of

_ .2 _2 2_ .2 r2 eM
=r5(0)=I1< andri=r;(w). Hence, Eq.(20) can be reex- LI IR A (28)
pressed as |2 Pt
23 dwes 32 2
- |1- _ r e(M+w
ImZ= 5| 1= sl 1+ Vi-—z] | @3 l_f_1+ n " ) o 29
I's

When the particle energy is sméile., w<1?/¢3), the above

expression can be expanded to yield As in the preceding section, let us turn to the case of

=3 as a check on our formalism. In this five-dimensional

Im Z= 7l @+ O( w?) (24)  case, the above equations can be explicitly solved to yield

Incorporating the above expansion into Ef0), we are 14 /l_ 4e3M
I

2_
able to deduce the temperature of radiation: :

r:

; (30

2
2
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|2

4dez(M+
5| 1+ \/1—#.

hole horizon. A formal, complete analysis must consider both
(31)  of these effects, and there would undoubtedly be scattering
taking place between the black hole and cosmological con-
tributions. Even without delving into calculational specifics,
we can still comment on the stability of the total system.

2
f

Substituting these expressions into E20) and expanding,

we find . .
Once again turning to the=3 case, let us take note of the
l?r; following (lowest-ordey expressions for the temperatuees-
ImZ= maﬂro(wz)- (32)  sociated with the cosmological and black hole horizon, re-
! spectively:

From the above result and E¢LO), the corresponding

temperature is found to be - 4e3M
|2
2r?—12 Tey= 36
T~ 7 +0(w). 33 cH ae | (36)
! V2ml|1+/1- 2
It is not difficult to verify that the leading-order term agrees
with the usual Hawking definitiofl6] (translated to a cos-
mological horizon30]), that is, 1— 4esM
|2
1|d r2 M =
IRl rrE il (39 e w80
r=ri \/E’ﬂl

N
&
<

1-\/1-

Furthermore, the change in entropy during emission can

again be shown to agree with that predicted by theHere, we have applied Eq&4) and(30) and again note that
Bekenstein-Hawking area lawSee the end of Sec. Il for the black hole horizon can be found by reversing the explicit
details) + sign in Eq.(30).

There is an intriguing observation that follows from the  With an inspection of the above, it becomes evident that
emission rate]'~e 2'MZ being a measurable and, hence, Tcy<Tgy; With saturation occurring only at the Nariai value
real quantity. Again focusing on the caserof 3 (although  of mass M =1%/4¢3), in which case both temperatures are
the discussion throughout this section is quite geRgrale  vanishing. With this observation, we are able to deduce that

can see from Eqg20), (30), and(31) that the condition the net flow of radiation will always bé&up to insignificant
) 5 quantum fluctuationstowards the cosmological horizon.
M+w<|—= 37l (35 That is to say, the system will inevitably evolve towards
T 4e; 32G; empty de Sitter space. This phenomenon is supported by the

second law of thermodynamics, since the total entropy of a
must always be enforced. It is of interest that this uppeiSchwarzschild—de Sitter spacetiméor virtually any
bound corresponds precisely with the mass of tfiee-  “well-behaved™ asymptotically de Sitter spacetiinds
dimensional Nariai black holg36]. Significantly, the Nariai  known to be bounded from above by the entropy of empty de
solution describes the coincidence of the black hole and cossitter spacé15].
mological horizons[the black hole horizon is located by  The above viewpoint can also be substantiated by way of
changing the explicit- in Eq. (30) to a —], meaning that holographic(or dS/CFT duality considerations. In particu-
this solution represents the most massive black hole in afar, let us take note of Strominger’s realizati@1] (also see
asymptotically de Sitter spacetime. Hence, the tunneling forf32,38)) that time evolution in an asymptotically de Sitter
malism provides a natural mechanism for censoring againgtpacetime is dual to @nvertedrenormalization-group flow.
larger values of mass. Similar observations have been maden this basis, it follows that degrees of freedom will be
with regard to chargedReissner-Nordstrm) black holes, integrated into the system with forward evolution in time.
where the tunneling formalism has been shown to censdvoreover, the maximal entropic stafee., empty de Sitter
against naked singulariti¢48,20. space will naturally correspond with a stable, ultraviolet

The overall picture for Schwarzschild—de Sitter space isfixed point for the flow.
however, much more complicated than we have alluded to On the other hand, because of the vanishing temperature
above. This is because radiation is both propagating inwardsssociated with the Nariai solution, one might expect the
from the cosmological horizon and outwards from the black

3In this context, well-behaved implies no naked singularities and
°The generality of this discussion does not, however, necessarilgnatter that satisfies the standard energy conditias
apply to then=1 case. This is because the three-dimensional “We remind the reader that the renormalization group is normally
Schwarzschild—de Sitter solution describes a conical deficit angleegarded as flowing from the ultraviolg€latively large number of
rather than a black hold.0]. For a related discussion that highlights degrees of freedomto the infrared(relatively small number of
this three-dimensional scenario, §@&. degrees of freedom
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system to stabilize precisely when the horizons coincideso-called “topological” de Sitter spacetimg40,41]. (Also
Such stability would indeed be feasible at a strictly classicabee[42] for a recent discussion and referengésom a dS/
level; however, once quantufor semiclassicaleffects are CFT perspective, the topological de Sitter solution has the
accounted for, it becomes evident that the Nariai solution islesirable property of an(apparently unitary boundary
unstable under the smallest of perturbatidgeee[39] and [41,43. (Conversely, the conventional Schwarzschild—de
references withip In renormalization-group language, this Sitter solution would appear to have a nonunitary dual
Nariai solution can be identified with an infrared fixed point [8,41].) On the other hand, topological de Sitter spacetimes
that is unstabl¢38]. have the detrimental feature of a naked singularity, as there is
no longer a black hole horizoalthough the cosmological
horizon remains intagt The need to universally censor
IV. “THE DARK SIDE OF THE MOON” against such a singularity can, however, be debated. That is
In this section, we will investigate the following question: [©© Sa&y, an observer outside of the cosmological horizon
how would the semiclassical tunneling picture be perceivedvould be causally disconnected from the singularity and
by a hypothetical observer who is trapped outside of thd'€€d not be aware of its eX|stenGce: o
cosmological horizon? Such a query may appear to be of To obtal_n an “out5|de-of-the-hqr|zon" emission rate, we
little relevance, given that a “standard” de Sitter observer jsC@n essentially repeat the calculations of Sec. Il, except using
causally restricted to the interior of his/her horizon. How-Ed- (38 for the effective metiic and a few tivial
ever, here we will argue that this question merits considerModifications. Keeping a very careful track of the signs, we
ation on the basis of dS/CFT holography. find the imaginary part of the action to be as follows:
The dS/CFT duality, as we currently understand it, incor-
porates the entire spacetime into its framework and not just 20
the causal diamond. Indeed, the dually related conformal ImI=E[r?—r{‘], (39
field theory has been conjectured to “live” on the spacelike n
asymptotic boundarig8], these being futureZ{") and past
(Z7) infinity. Significantly, both of these boundaries lie out- that is, the negative of the prior resy®0). However, this
side of an observer’s causal diamond; in fact, an observesign reversal is a most welcome outcome, as now we have
can only access precisely one point at either infinity. Morethat r¢>r;. (This must be the case by construction. It can
over, the only measurablgauge-invariantquantities in de also be verified with an explicit calculation of the horizon
Sitter space would appear to be the elements ofSdike position as a function of particle energy. For instance,
matrix [2] that can be expressed in terms of correlation funcfor n=3, one finds that ri2=|2 and r§=|2/2[1
tions of the dual boundary theofy2,13. To make opera- +./1+ (4e;|w|/1%)].) The positivity of Eq.(39) tells us that
tional sense of such “meta-observablgg] clearly requires  the effective temperature is strictly non-negative, even out-
a “special” observer with a global view of the entire space- side of the horizon, as is necessary for a sensible interpreta-
time. To put it another way, if a quantum theory of de Sittertjon of the tunneling phenomenon.
gravity is to be realized, we may yet have to adapt our intui- \What (if anything have we learned from this section? At
tive ideas of what constitutes a physical observable. the risk of Straying from physics to phi|030phy, we propose
With the above discussion in mind, let us return to thethe following pair of conjectural points.
quantum-tunneling description of de Sitter radiation, as (i) The topological de Sitter geometry should not be re-
elaborated on in Sec. II. From the perspective of som¢one garded as a substitute for its Schwarzschild—de Sitter coun-
somethingp outside of the horizon, a negative-energy shellierpart but, rather, as a complementary description. The
is tunneling outwards. Meanwhile, the positive-energy partthoice one should make depends on the side of the horizon
ner remains behind.e., in the vicinity of the horizonand  nder consideration.
effectively raises the energy of the background spacetime. (ji) The topological de Sitter solution is a necessary ingre-
Hence, the effective metric, as seen by this negative-energyient if one is to take a global view of de Sitter space. Let us

shell, must be one in which the background energy increasegemphasize that such a view is implicitly advocated by the
with increasing '] (i.e., the magnitude of the shell energy, ds/CET correspondence.

which increases from 0 thw|). We can obtain just such an
effective geometry by replacing with —|w’| in the

Schwarzschild—de Sitter metric of E(L4). That is, %In its most general form, the topological de Sitter solution can
allow for a hyperbolic, flat, ofas depicted aboyea spherical ho-
2 , rizon geometry. To obtain the hyperbolitat) topological solution,
d<2=—| 1— r_+ Enl“’ | dt2 one can replace 1 witk-1 (0) in the lapse function of Eq38).
12 pn-1 SAlthough the topological de Sitter solution has recently been the

subject of further criticism(based on string-theoretical consider-
€no’| -t 2 212 ationg [42], this analysis specifically applied to a hyperbolic hori-
1 dre+rodQy. (38 zon geometry and is not of issue in the current discussion.
Specifically, the radial motion is now outgoing so that
=J(r?M1%) —(e,]o'[Ir" ) +1, anddH~ +d|w’]| since the back-
The above metric can readily be identified with that of theground energy increases with increasjag|.

r2

+ 1—|—2+

rn-
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V. CONCLUSION ates from perfect thermality, a well-known but often forgot-
ten resulf16].

In this paper, we have considered de Sitter radiation as a Along the way, we have also touched base with certain
semiclassical tunneling process. Adapting the methodolog@spects of the dS/CFT holographic correspond¢fgeitis
of Kraus, Wilczek[17], and othersiincluding a recent, re- duite possible that there are deep connections between semi-
lated work by Parikii25]), we were able to calculate the rate classical thermodynamics and de Sitter holography that await

of particle emission from a cosmological horizon. We thenP€iNg uncovered. We hope to report progress along these

verified that this calculation agreed, up to higher-order cor/iN€s at a future date.

rections, with the known thermodynamic properties of de
Sitter space, as well as Schwarzschild—de Sitter space.
Meanwhile, these frequency-dependent corrections indicate The author would like to thank V.P. Frolov for helpful
that the emission spectrum of Hawking-like radiation devi-conversations.
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