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Radiation via tunneling from a de Sitter cosmological horizon
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Department of Physics and Theoretical Physics Institute, University of Alberta, Edmonton, Canada T6G 2J1

~Received 25 August 2002; published 20 December 2002!

Hawking radiation can usefully be viewed as a semiclassical tunneling process that originates at the black
hole horizon. The same basic premise should apply to de Sitter background radiation, with the cosmological
horizon of de Sitter space now playing the featured role. In fact, a recent work~M. K. Parikh, hep-th/0204107!
has gone a long way to verifying the validity of this de Sitter–tunneling picture. In the current paper, we extend
these prior considerations to arbitrary-dimensional de Sitter space, as well as Schwarzschild–de Sitter space-
times. It is shown that the tunneling formalism naturally censors against any black hole with a mass in excess
of the Nariai value, thus enforcing a ‘‘third law’’ of Schwarzschild–de Sitter thermodynamics. We also provide
commentary on the dS/conformal field theory correspondence in the context of this tunneling framework.
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I. INTRODUCTION

In light of recent astronomical observations, it has be
suggested that our universe will asymptotically approac
de Sitter spacetime@1#. This realization has sparked a sen
of urgency in resolving the quantum-gravitational myster
of de Sitter space@2#. With prompting from the very success
ful anti–de Sitter/conformal field theory~CFT! correspon-
dence@3–5#, much of this work has focused on finding
holographic description@6,7# of de Sitter space. In particula
there has been much ado about establishing an analo
duality, that is, the so-called dS/CFT correspondence@8#.
~Also see, for instance,@9–13#.! Although there has bee
considerable success along this line, the proposed duali
still marred by various ambiguities, for example, a du
boundary theory that appears to be a nonunitary one@8#, the
conspicuous absence of measurable quantities~at least those
with operational meaning to a de Sitter observer@2#!, and
logistic breakdowns@14# that can be attributed to the finit
entropy of de Sitter space@15#.

The above issues should probably be viewed as signifi
philosophical roadblocks as opposed to mere technical d
culties; which is to say, their resolution will, in all likelihood
necessitate dramatic departures from our current way
thinking. Hence, it may be an appropriate juncture to ‘‘tak
step back’’ and reenforce our understanding of de Si
space at a semiclassical level. With this as our mindset, le
now proceed to consider the central topic of the pap
namely, de Sitter radiation as a semiclassical tunneling p
cess.

First, let us briefly review the concept of tunneling as
applies to a radiating black hole. According to this interp
tation, Hawking radiation@16# can be attributed to the spon
taneous creation of particles at a point just inside of the bl
hole horizon. One of the particles then tunnels out to
opposite side of the horizon, where it emerges with posit
energy. Meanwhile, the negative-energy ‘‘partner’’ rema
behind and effectively lowers the mass of the black hole

The above point of view formed the foundation for a pr

*Email address: amedved@phys.ualberta.ca
0556-2821/2002/66~12!/124009~7!/$20.00 66 1240
n
a

s

us

is
l

nt
-

of
a
r

us
r,
o-

t
-

k
e
e
s

gram of study that was initiated by Kraus and Wilczek~KW!
@17#1 and is central to the current work. The essence of
KW methodology is a dynamical treatment of black ho
radiation. More to the point, KW considered the effects o
self-gravitating matter shell propagating outwards throug
spherically symmetric black hole horizon. Two particular
significant points of this work are as follows.~i! The back-
ground geometry is allowed to fluctuate so that the form
ism incorporates a black hole of varying mass. In this m
ner, the total energy of the spacetime is naturally conserv
Notably, energy conservation is often overlooked in oth
formal treatments of Hawking radiation@28#. ~ii ! Boundary
conditions are imposed by foliating the spacetime w
somewhat unconventional ‘‘Painleve coordinates’’@29#. Sig-
nificantly, these coordinates are regular at the horizon,
well as stationary but not static~i.e., time-reversal asymme
try is manifest!. This gauge seems quite appropriate for d
scribing the geometry of a slowly evaporating black hole

Let us now return the discussion to de Sitter space. A
well known, there are many similarities between the therm
dynamic properties of a de Sitter cosmological horizon a
those of a black hole horizon@30#. Hence, it would seem
natural to extend the tunneling picture and KW treatmen
the background radiation associated with de Sitter space.
such a study was recently carried out by Parikh@25# with
considerable success. This author, however, focused on
interesting but unphysical case of three-dimensional de S
space. The main purpose of the current paper is to gener
considerations to a de Sitter spacetime of arbitrary dim
sionality. We will also provide some commentary on the d
CFT correspondence in the context of this study.

The remainder of the paper is organized as follows.
Sec. II, we consider a radiating cosmological horizon in
empty, (n12)-dimensional de Sitter spacetime and, w
guidance from@17,20,25#, calculate the semiclassical emi
sion rate. The consistency of the derived expression is t
verified for the case ofn53. We accomplish this by extrapo
lating the emission spectrum and comparing the lowest-o

1For further developments and generalizations, see@18–25#. For
other perspectives on radiation via tunneling, see@26,27#.
©2002 The American Physical Society09-1
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term with standard de Sitter thermodynamics. In Sec. III,
further extend the formalism to a Schwarzschild–de Si
spacetime. Here, we also comment on thermal stability
touch upon the subject of dS/CFT renormalization-gro
flows @31#. In Sec. IV, we take a step towards the ether
and reconsider the tunneling picture from an outside-of-t
horizon perspective. The dS/CFT correspondence prov
the motivating factor for this portion of the analysis. Final
Sec. V contains a brief summary.

II. de SITTER TUNNELING

Let us begin by considering an (n12)-dimensional de
Sitter spacetime~with n>1). There are many different co
ordinate systems that can be used to provide a local des
tion of de Sitter space@10#, including the following explicitly
static coordinates:

ds252S 12
r 2

l 2 Ddt21S 12
r 2

l 2 D 21

dr21r 2dVn
2 . ~1!

Here, l is the curvature radius of de Sitter space@i.e., L
5n(n11)/2l 2 is the positive cosmological constant#, dVn

2

represents ann-dimensional spherical hypersurface of un
radius, and the nonangular coordinates range accordin
0<r< l and2`<t<1`. Keep in mind that the boundar
at r 5 l describes a cosmological horizon for an observer
cated atr 50.

The above coordinates fail, of course, to cover the en
de Sitter manifold. Equation~1! does, however, precisel
cover the so-called ‘‘southern causal diamond’’@10#, which
is the region of spacetime that is fully accessible to an
server at the south pole (r 50). A particularly attractive fea-
ture of this coordinate gauge is the existence of a time
Killing vector (] t), thus leading to a sensible notion of tim
evolution for a south-pole observer. Note that such a time
Killing vector is notoriously absent inanyglobal description
of de Sitter space.

As discussed in Sec. I, it is most convenient, in the tu
neling picture, to use stationary coordinates that are m
festly asymmetric under time reversal. In the case o
Schwarzschild black hole, the following Painleve coor
nates@29# have been utilized for just this purpose@17#:

ds252S 12
2M

r Ddt2

22A2M

r
dtdr1dr21r 2dV2

2 . ~2!

Along with the above-mentioned properties, this system
the distinguishing features of horizon regularity and fl
constant-time surfaces. Further note that such coordin
comply with the perspective of a free-falling observer, w
is expected to experience nothing out of the ordinary up
passing through the horizon.

To obtain an analogous coordinate system for de S
space or ‘‘Painleve–de Sitter’’ coordinates@25#, we first em-
ploy the following transformation:
12400
e
r
d

p
l
-

es

ip-

to

-

e

-

e

e

-
i-
a
-

s
t
es

n

r

t5t1 f ~r !, ~3!

so that the static metric~1! takes on the form

ds252S 12
r 2

l 2 Ddt222
d f

drS 12
r 2

l 2 Ddtdr1F S 12
r 2

l 2 D 21

2S 12
r 2

l 2 D S d f

dr D
2Gdr21r 2dVn

2 . ~4!

Next, we enforce that constant-t slices reduce to
(n11)-dimensional flat space~i.e., dr21r 2dVn

2), so that

d f

dr
56

r

l S 12
r 2

l 2 D 21

. ~5!

Hence, we can rewrite the metric~4! as

ds252S 12
r 2

l 2 Ddt222
r

l
dtdr1dr21r 2dVn

2 , ~6!

up to an arbitrary choice of sign in the off-diagonal term.
Clearly, these ‘‘new’’ coordinates exhibit all of the prev

ously discussed features of Painleve coordinates; includ
horizon (r 5 l ) regularity and time-reversal asymmetry. Th
feature of horizon regularity has special significance in
Sitter space, as the revised coordinates are no longer
stricted to the southern causal diamond. In fact, Eq.~6! cov-
ers the entire causal future~of an observer atr 50), which
translates to precisely one-half of the complete de Si
manifold. Meanwhile, one can describe the remaining h
~or the causal past! by ‘‘flipping’’ the sign in front of the
off-diagonal term. In this sense, the Painleve–de Sitter co
dinate system is closely related to de Sitter planar coo
nates@10#, a point which has been elaborated on in@25#. Of
further interest, ]t is a Killing vector throughout the
Painleve–de Sitter system, although this vector chan
character~timelike → spacelike! upon passing through th
horizon.

For later usage, let us evaluate the radial, null geode
described by Eq.~6!. Under these conditions (dVn

25ds2

50), we can reexpress this line element as follows:

~ ṙ !222
r

l
ṙ 2S 12

r 2

l 2 D50, ~7!

where a dot denotes differentiation with respect tot. Solving
the quadratic, we then have

ṙ 5
r

l
61, ~8!

where the1(2) sign can be identified with outgoing~in-
coming! radial motion.

With the de Sitter cosmological horizon~at r 5 l ) in mind,
let us now focus on a semiclassical treatment of the ass
ated radiation, as advocated in~for instance! @17,20,25#. First
of all, we adopt the picture of a pair of particles spontan
ously created just outside of the horizon. The positive-ene
particle tunnels through the horizon to emerge as an inwa
9-2
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moving, self-gravitating energy shell, whereas the negat
energy particle remains behind and effectively lowers
energy of the background spacetime. Because of the infi
blueshift near the horizon, the emerging energy shell can
treated as a point particle, meaning that a WKB-type of
proximation may be appropriately employed. For the sake
simplicity, we will further invoke an ‘‘s-wave’’ approxima-
tion; in particular, we assume a massless shell and symm
with respect to the angular coordinates.

Given this semiclassical, WKB framework, it has be
shown that the logarithm of the emission rate (G) can be
expressed in terms of the imaginary part of the ‘‘total’’~par-
ticle plus gravitational! action,I @17#. More specifically,

G'e22 Im I. ~9!

Alternatively, one can reexpress this relation in the followi
spectral form:

v

T~v!
'2 ImI, ~10!

wherev.0 is the particle energy andT(v) can be identified
with the effective temperature.

For a positive-energys wave, the imaginary part of the
action has been found to have a conveniently simple fo
@17#:

Im I5Im E dt ṙ pr5ImE
r i

r f E
0

pr
dpr8dr, ~11!

wherepr is the canonical momentum~conjugate tor ). Also,
r i andr f indicate~roughly! the point of particle creation an
the classical turning point of motion.

To proceed with an explicit calculation, it is useful
apply Hamilton’s equation,

ṙ 5
dH

dpr
5

d~E2v!

dpr
52

dv

dpr
. ~12!

Here,E represents the total conserved energy of the syst
whereasE2v can be regarded as the~varying! gravitational
energy stored in the background spacetime. Let us reem
size that, by keepingE fixed, energy conservation will be
enforced in a natural way.

Substituting Eq.~12! into Eq. ~11!, we find

Im I52ImE
r i

r f E
0

vdv8dr

ṙ
. ~13!

Before evaluating the above integral, we must necessa
obtain an expression forṙ as a function ofv8. The form of
this expression depends on the answer to the following q
tion: what effective metric does the energy shell see a
propagates through the background spacetime? Consid
that the de Sitter background loses some of its energy to
propagating shell, we propose that the effective metric
question is that of a Schwarzschild–de Sitter geometry.
reasoning is somewhat subtle and based on the observ
that the total energy of a Schwarzschild–de Sitter space
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is always more negative than that of empty de Sitter spa
That is to say, the energy of a Schwarzschild–de Si
spacetime is known to decrease with increasing black h
mass @32#. Although counterintuitive, this inverted corre
spondence can be attributed to a negative binding ene
between a positive-mass object and a de Sitter gravitatio
field @33#.

With the above discussion in mind, let us now consid
Schwarzschild–de Sitter static coordinates,

ds252S 12
r 2

l 2 2
Men

r n21D dt2

1S 12
r 2

l 2 2
Men

r n21D 21

dr21r 2dVn
2 , ~14!

whereen[16pGn12 /nVn andM is the conserved mass@32#.
~Also, Gn12 is Newton’s constant andVn is the volume of
the spherical hypersurface described bydVn

2 .! It is a
straightforward process to generalize the prior Painleve
Sitter formalism for this black hole spacetime. In particul
Eq. ~6! and Eq.~8! should, respectively, be modified as fo
lows:

ds252S 12
r 2

l 2 2
Men

r n21D dt222Ar 2

l 2 1
Men

r n21
dtdr1dr2

1r 2dVn
2 , ~15!

ṙ 5Ar 2

l 2 1
Men

r n21
61. ~16!

On the basis of our prior discussion, it follows direct
that the positive-energy shell sees the effective metric of
~15!, although withM replaced byv8. The same substitution
in Eq. ~16! yields the desired expression forṙ as a function
of v8. @Note that we must choose the negative sign in E
~16!, as the shell is propagating from larger to smallerr.#
Thus, we can now rewrite Eq.~13! in the following explicit
manner:

Im I52ImE
r i

r f E
0

v dv8dr

Ar 2

l 2 1
en~v82 id!

r n21
21

. ~17!

Here, we have also added a small imaginary part to the
fective energy~i.e., v8→v82 id with d!1), so that the
above integral can be evaluated via contour techniques.
us further point out thatd.0 is to be implied, as this choice
ensures that the positive-frequency solution (;e2 ivt) de-
cays exponentially in time.

To explicitly evaluate this integral, let us temporarily tre
r as a constant and make the following change of variab
x5A(r 2/ l 2)1(env8/r n21). This leads to
9-3
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Im I52
2

en
ImE

r i

r f
r n21drE

x(0)

x(v) xdx

x212 i d̄~r !
, ~18!

whered̄(r )5 l end/2r n'01. Given thatx monotonically in-
creases withv8 and d̄.0, it is appropriate to integrate in
counterclockwise direction in the upper half of the comple
x plane. Following this prescription, we obtain

Im I52
2p

en
Im i E

r i

r f
r n21dr. ~19!

The integration overr can now be trivially performed to give

Im I5
2p

nen
@r i

n2r f
n#. ~20!

Note that, by construction,r i.r f , and so the sign of ImI
comes out positive as required; cf. Eqs.~9! and~10!. Gener-
ating the correct sign in de Sitter thermodynamics is not
trivial as one may think. Indeed, naive application of the fi
law of thermodynamics to a cosmological horizon can of
lead to an erroneous negative sign@10,33#.

The above formula is the key quantitative result of th
paper. We can substantiate its validity by considering a s
cific value ofn. It is readily shown that the case ofn51 ~i.e.,
three-dimensional de Sitter space! is in agreement with the
analogous expression found in@25#. Another convenient
choice isn53 ~i.e., five-dimensional de Sitter space!, as the
Schwarzschild–de Sitter horizon can then be solved for v
quadratic relation.

With our attention on then53 case, it follows@cf. Eq.
~14!# that the Schwarzschild–de Sitter cosmological horiz
is described by the largest root of

r H
4

l 2 2r H
2 1Me350. ~21!

That is,

r H
2 ~M !5

l 2

2 F11A12
4Me3

l 2 G . ~22!

Recalling our prior definitions ofr i and r f , we haver i
2

5r H
2 (0)5 l 2 and r f

25r H
2 (v). Hence, Eq.~20! can be reex-

pressed as

Im I5
2p l 3

3e3
F12

1

23/2S 11A12
4ve3

l 2 D 3/2G . ~23!

When the particle energy is small~i.e., v! l 2/e3), the above
expression can be expanded to yield

Im I5p lv1O~v2!. ~24!

Incorporating the above expansion into Eq.~10!, we are
able to deduce the temperature of radiation:
12400
-
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n

T~v!'
1

2p l
1O~v!. ~25!

Reassuringly, the leading-order, energy-independent term
the well-known background temperature of empty de Si
space@30#. Meanwhile, the energy-dependent correctio
which can easily be computed to any desired order inv, are
indicative of a ‘‘greybody’’ factor in the emission spectrum
that is, a deviation from pure thermality. That such dev
tions occur for Hawking-like radiation is well known@16#,
but this point is rarely stressed in the relevant literature.

As a further check on our formalism~this time for anyn),
we can consider the change in entropy during the proces
emission. The first law of thermodynamics indicates that

DS52
v

T
'22 ImI5

4p

nen
@r f

n2r i
n#, ~26!

where we have also applied Eqs.~10! and~20!. We can com-
pare this outcome with that predicted by the Bekenste
Hawking ‘‘area’’ law @34,35#, which tells us

DS5Sf2Si5
Vn

4Gn12
@r f

n2r i
n#. ~27!

Sinceen516pGn12 /nVn , these two independent formula
tions of DS are, indeed, in perfect agreement.

III. SCHWARZSCHILD –de SITTER TUNNELING

In the discussion to follow, we will consider the implica
tions ~on the tunneling picture! when the initial state is de
scribed by a Schwarzschild–de Sitter spacetime. Let us o
again consider the incoming radiation from the cosmologi
horizon and, for the moment, ignore the outgoing radiat
from the black hole horizon. It is readily observed that t
key result of the preceding section, Eq.~20!, remains valid,
althoughr i andr f must be appropriately redefined. Recallin
the inverse correspondence between black hole mass
background energy, we expect a black hole of initial massM
to have a final mass ofM1v ~where, as before,v is the
energy of the emitted particle!. It follows @cf. Eq. ~14!# that
the radii in question correspond to the largest roots of

r i
2

l 2 211
enM

r i
n21

50, ~28!

r f
2

l 2 211
en~M1v!

r f
n21

50. ~29!

As in the preceding section, let us turn to the case on
53 as a check on our formalism. In this five-dimension
case, the above equations can be explicitly solved to yie

r i
25

l 2

2 F11A12
4e3M

l 2 G , ~30!
9-4
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r f
25

l 2

2 F11A12
4e3~M1v!

l 2 G . ~31!

Substituting these expressions into Eq.~20! and expanding,
we find

Im I5
p l 2r i

2r i
22 l 2 v1O~v2!. ~32!

From the above result and Eq.~10!, the corresponding
temperature is found to be

T'
2r i

22 l 2

2pr i l
2 1O~v!. ~33!

It is not difficult to verify that the leading-order term agre
with the usual Hawking definition@16# ~translated to a cos
mological horizon@30#!, that is,

T5
1

4p U d

dr F12
r 2

l 2 2
e3M

r 2 GU
r 5r i

. ~34!

Furthermore, the change in entropy during emission
again be shown to agree with that predicted by
Bekenstein-Hawking area law.~See the end of Sec. II fo
details.!

There is an intriguing observation that follows from th
emission rate,G'e22 Im I, being a measurable and, henc
real quantity. Again focusing on the case ofn53 ~although
the discussion throughout this section is quite general2!, we
can see from Eqs.~20!, ~30!, and~31! that the condition

M1v<
l 2

4e3
5

3p l 2

32G5
~35!

must always be enforced. It is of interest that this up
bound corresponds precisely with the mass of the~five-
dimensional! Nariai black hole@36#. Significantly, the Nariai
solution describes the coincidence of the black hole and
mological horizons@the black hole horizon is located b
changing the explicit1 in Eq. ~30! to a 2], meaning that
this solution represents the most massive black hole in
asymptotically de Sitter spacetime. Hence, the tunneling
malism provides a natural mechanism for censoring aga
larger values of mass. Similar observations have been m
with regard to charged~Reissner-Nordstro¨m! black holes,
where the tunneling formalism has been shown to cen
against naked singularities@18,20#.

The overall picture for Schwarzschild–de Sitter space
however, much more complicated than we have alluded
above. This is because radiation is both propagating inwa
from the cosmological horizon and outwards from the bla

2The generality of this discussion does not, however, necess
apply to the n51 case. This is because the three-dimensio
Schwarzschild–de Sitter solution describes a conical deficit a
rather than a black hole@10#. For a related discussion that highligh
this three-dimensional scenario, see@25#.
12400
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hole horizon. A formal, complete analysis must consider b
of these effects, and there would undoubtedly be scatte
taking place between the black hole and cosmological c
tributions. Even without delving into calculational specific
we can still comment on the stability of the total syste
Once again turning to then53 case, let us take note of th
following ~lowest-order! expressions for the temperature~as-
sociated with the cosmological and black hole horizon,
spectively!:

TCH5

A12
4e3M

l 2

A2p l F11A12
4e3M

l 2 G 1/2, ~36!

TBH5

A12
4e3M

l 2

A2p l F12A12
4e3M

l 2 G 1/2. ~37!

Here, we have applied Eqs.~34! and~30! and again note tha
the black hole horizon can be found by reversing the expl
1 sign in Eq.~30!.

With an inspection of the above, it becomes evident t
TCH<TBH ; with saturation occurring only at the Nariai valu
of mass (M5 l 2/4e3), in which case both temperatures a
vanishing. With this observation, we are able to deduce
the net flow of radiation will always be~up to insignificant
quantum fluctuations! towards the cosmological horizon
That is to say, the system will inevitably evolve towar
empty de Sitter space. This phenomenon is supported by
second law of thermodynamics, since the total entropy o
Schwarzschild–de Sitter spacetime~or virtually any
‘‘well-behaved’’3 asymptotically de Sitter spacetime! is
known to be bounded from above by the entropy of empty
Sitter space@15#.

The above viewpoint can also be substantiated by way
holographic~or dS/CFT duality! considerations. In particu
lar, let us take note of Strominger’s realization@31# ~also see
@32,38#! that time evolution in an asymptotically de Sitte
spacetime is dual to aninvertedrenormalization-group flow.4

On this basis, it follows that degrees of freedom will b
integrated into the system with forward evolution in tim
Moreover, the maximal entropic state~i.e., empty de Sitter
space! will naturally correspond with a stable, ultraviole
fixed point for the flow.

On the other hand, because of the vanishing tempera
associated with the Nariai solution, one might expect

ily
l
le

3In this context, well-behaved implies no naked singularities a
matter that satisfies the standard energy conditions@37#.

4We remind the reader that the renormalization group is norm
regarded as flowing from the ultraviolet~relatively large number of
degrees of freedom! to the infrared~relatively small number of
degrees of freedom!.
9-5
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system to stabilize precisely when the horizons coinci
Such stability would indeed be feasible at a strictly class
level; however, once quantum~or semiclassical! effects are
accounted for, it becomes evident that the Nariai solution
unstable under the smallest of perturbations~see @39# and
references within!. In renormalization-group language, th
Nariai solution can be identified with an infrared fixed po
that is unstable@38#.

IV. ‘‘THE DARK SIDE OF THE MOON’’

In this section, we will investigate the following questio
how would the semiclassical tunneling picture be percei
by a hypothetical observer who is trapped outside of
cosmological horizon? Such a query may appear to be
little relevance, given that a ‘‘standard’’ de Sitter observer
causally restricted to the interior of his/her horizon. Ho
ever, here we will argue that this question merits consid
ation on the basis of dS/CFT holography.

The dS/CFT duality, as we currently understand it, inc
porates the entire spacetime into its framework and not
the causal diamond. Indeed, the dually related confor
field theory has been conjectured to ‘‘live’’ on the spaceli
asymptotic boundaries@8#, these being future (I 1) and past
(I 2) infinity. Significantly, both of these boundaries lie ou
side of an observer’s causal diamond; in fact, an obse
can only access precisely one point at either infinity. Mo
over, the only measurable~gauge-invariant! quantities in de
Sitter space would appear to be the elements of anS-like
matrix @2# that can be expressed in terms of correlation fu
tions of the dual boundary theory@12,13#. To make opera-
tional sense of such ‘‘meta-observables’’@2# clearly requires
a ‘‘special’’ observer with a global view of the entire spac
time. To put it another way, if a quantum theory of de Sit
gravity is to be realized, we may yet have to adapt our in
tive ideas of what constitutes a physical observable.

With the above discussion in mind, let us return to t
quantum-tunneling description of de Sitter radiation,
elaborated on in Sec. II. From the perspective of someone~or
something?! outside of the horizon, a negative-energy sh
is tunneling outwards. Meanwhile, the positive-energy pa
ner remains behind~i.e., in the vicinity of the horizon! and
effectively raises the energy of the background spaceti
Hence, the effective metric, as seen by this negative-en
shell, must be one in which the background energy increa
with increasinguv8u ~i.e., the magnitude of the shell energ
which increases from 0 touvu). We can obtain just such a
effective geometry by replacingM with 2uv8u in the
Schwarzschild–de Sitter metric of Eq.~14!. That is,

ds252S 12
r 2

l 21
enuv8u

r n21 D dt2

1S 12
r 2

l 2 1
enuv8u

r n21 D 21

dr21r 2dVn
2 . ~38!

The above metric can readily be identified with that of t
12400
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so-called ‘‘topological’’ de Sitter spacetime5 @40,41#. ~Also
see@42# for a recent discussion and references.! From a dS/
CFT perspective, the topological de Sitter solution has
desirable property of an~apparently! unitary boundary
@41,43#. ~Conversely, the conventional Schwarzschild–
Sitter solution would appear to have a nonunitary d
@8,41#.! On the other hand, topological de Sitter spacetim
have the detrimental feature of a naked singularity, as the
no longer a black hole horizon~although the cosmologica
horizon remains intact!. The need to universally censo
against such a singularity can, however, be debated. Th
to say, an observer outside of the cosmological horiz
would be causally disconnected from the singularity a
need not be aware of its existence.6

To obtain an ‘‘outside-of-the-horizon’’ emission rate, w
can essentially repeat the calculations of Sec. II, except u
Eq. ~38! for the effective metric and a few trivia
modifications.7 Keeping a very careful track of the signs, w
find the imaginary part of the action to be as follows:

Im I5
2p

nen
@r f

n2r i
n#, ~39!

that is, the negative of the prior result~20!. However, this
sign reversal is a most welcome outcome, as now we h
that r f.r i . „This must be the case by construction. It c
also be verified with an explicit calculation of the horizo
position as a function of particle energy. For instan
for n53, one finds that r i

25 l 2 and r f
25 l 2/2@1

1A11(4e3uvu/ l 2)#.… The positivity of Eq.~39! tells us that
the effective temperature is strictly non-negative, even o
side of the horizon, as is necessary for a sensible interpr
tion of the tunneling phenomenon.

What ~if anything! have we learned from this section? A
the risk of straying from physics to philosophy, we propo
the following pair of conjectural points.

~i! The topological de Sitter geometry should not be
garded as a substitute for its Schwarzschild–de Sitter co
terpart but, rather, as a complementary description. T
choice one should make depends on the side of the hor
under consideration.

~ii ! The topological de Sitter solution is a necessary ing
dient if one is to take a global view of de Sitter space. Let
reemphasize that such a view is implicitly advocated by
dS/CFT correspondence.

5In its most general form, the topological de Sitter solution c
allow for a hyperbolic, flat, or~as depicted above! a spherical ho-
rizon geometry. To obtain the hyperbolic~flat! topological solution,
one can replace 1 with21 (0) in the lapse function of Eq.~38!.

6Although the topological de Sitter solution has recently been
subject of further criticism~based on string-theoretical conside
ations! @42#, this analysis specifically applied to a hyperbolic ho
zon geometry and is not of issue in the current discussion.

7Specifically, the radial motion is now outgoing so thatṙ
5A(r 2/ l 2)2(enuv8u/r n21)11, anddH;1duv8u since the back-
ground energy increases with increasinguv8u.
9-6



s
og

te
en
o
d
ac
ca
vi

t-

ain

emi-
wait
ese

l

RADIATION VIA TUNNELING FROM A de SITTER . . . PHYSICAL REVIEW D 66, 124009 ~2002!
V. CONCLUSION

In this paper, we have considered de Sitter radiation a
semiclassical tunneling process. Adapting the methodol
of Kraus, Wilczek@17#, and others~including a recent, re-
lated work by Parikh@25#!, we were able to calculate the ra
of particle emission from a cosmological horizon. We th
verified that this calculation agreed, up to higher-order c
rections, with the known thermodynamic properties of
Sitter space, as well as Schwarzschild–de Sitter sp
Meanwhile, these frequency-dependent corrections indi
that the emission spectrum of Hawking-like radiation de
an
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ates from perfect thermality, a well-known but often forgo
ten result@16#.

Along the way, we have also touched base with cert
aspects of the dS/CFT holographic correspondence@8#. It is
quite possible that there are deep connections between s
classical thermodynamics and de Sitter holography that a
being uncovered. We hope to report progress along th
lines at a future date.
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