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Advantages of a modified ADM formulation: Constraint propagation analysis of the
Baumgarte-Shapiro-Shibata-Nakamura system
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Several numerical relativity groups are using a modified Arnowitt-Deser-Misner~ADM ! formulation for
their simulations, which was developed by Nakamura and co-workers~and widely cited as the Baumgarte-
Shapiro-Shibata-Nakamura system!. This so-called BSSN formulation is shown to be more stable than the
standard ADM formulation in many cases, and there have been many attempts to explain why this reformu-
lation has such an advantage. We try to explain the background mechanism of the BSSN equations by using an
eigenvalue analysis of constraint propagation equations. This analysis has been applied and has succeeded in
explaining other systems in our series of works. We derive the full set of the constraint propagation equations,
and study it in the flat background space-time. We carefully examine how the replacements and adjustments in
the equations change the propagation structure of the constraints, i.e., whether violation of constraints~if it
exists! will decay or propagate away. We conclude that the better stability of the BSSN system is obtained by
their adjustments in the equations, and that the combination of the adjustments is in a good balance, i.e., a lack
of their adjustments might fail to obtain the present stability. We further propose other adjustments to the
equations, which may offer more stable features than the current BSSN equations.

DOI: 10.1103/PhysRevD.66.124003 PACS number~s!: 04.25.Dm, 04.20.Fy
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I. INTRODUCTION

One of the most important current topics in the field
numerical relativity is to find a formulation of the Einste
equations which gives us stable and accurate long-term
lution. We all know that simulating space-time and mat
based on general relativity is the essential research direc
to go in the future, but we do not have a definite recipe
controlling numerical blow-ups. We concentrate our disc
sion on the free evolution of the Einstein equations based
the 311 ~space1time! decomposition of space-time, whic
requires solving the constraints only on the initial hypers
face and monitors the violation~error! of the calculation by
checking constraints during the evolution.

Over the decades, the Arnowitt-Deser-Misner~ADM ! @1#
formulation has been treated as the default by numerical r
tivists. ~More precisely, the version introduced by Smarr a
York @2# was taken as the default, which we denote the st
dard ADM formulation hereafter.! Although the ADM for-
mulation mostly works for gravitational collapse or cosm
logical models in numerical treatments, it does not satisfy
requirement for long-term evolution, e.g., the studies
gravitational wave sources.

As we mentioned in our previous paper@3#, we think we
can classify the current efforts of formulating equations
numerical relativity in the following three ways:~i! apply a
modified ADM @Baumgarte-Shapiro-Shibata-Nakamu
~BSSN!# formulation@4,5#, ~ii ! apply a first-order hyperbolic

*Electronic address: yoneda@mse.waseda.ac.jp
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formulation~see the references, e.g., in@6–8#!, or ~iii ! apply
an asymptotically constrained system@9–12#.

The first refers to using a modified ADM formulation
originally proposed by Nakamura in the late 1980s, and s
sequently modified by Nakamura-Oohara and Shiba
Nakamura@4#. This introduces conformal decomposition
the ADM variables, a new variable for calculating Ricci cu
vature, and adjusts the equations of motion using constra
The advantage of this formulation was reintroduced
Baumgarte and Shapiro@5#, and therefore this is often cite
as the BSSN formulation, which we follow also. The BSS
equations are now widely used in the large-scale numer
computations, including coalescence of binary neutron s
@13# and binary black holes@14#.

The second and third efforts use similar modificatio
such as introductions of new variables and/or adjustment
the equations, but differ in their purposes: to construc
hyperbolic formulation or to construct a formulation whic
constraints will decay or propagate away. The latter is
tended to control numerical evolution so that the constrai
manifold is its attractor. While the hyperbolic formulation
have been extensively studied in this direction, we think
worrisome point in the discussion is the treatment of
nonprincipal part which is ignored in the hyperbolic form
lation. As Kidder, Scheel, and Teukolsky@8# reported re-
cently, unless we reduce the effect of the nonprincipal par
the equations we may not gain any advantages from the
perbolic formulation for numerical results@6,15#.

Through the series of studies@3,6,12,16#, we propose a
systematic treatment for constructing a robust evolution s
tem against perturbative error. We call it an asymptotica
constrained~or asymptotically stable! system if the error de-
cays itself. The idea is to adjust evolution equations us
©2002 The American Physical Society03-1
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constraints~we call this an adjusted system! and to decide
the coefficients~multipliers! by analyzing constraint propa
gation equations. We propose to apply an eigenvalue ana
of the propagation equations of the constraints, especiall
its Fourier components, so as to include the nonprincipal
in the analysis. The characters of eigenvalues will
changed according to the adjustments to the original ev
tion equations. We conjectured that the constraint violat
that occurred during the evolution will decay~if negative real
eigenvalues! or propagate away~if pure imaginary eigenval-
ues!.

This conjecture was confirmed to explain the followin
numerical behaviors: wave propagation in the Maxwell eq
tions @12#, in the Ashtekar version of the Einstein equatio
@12#, and in the ADM formulation~flat space-time back
ground! @16#. The advantage of this construction scheme
that it can be applied to a formulation which is not a fir
order hyperbolic form, such as to the ADM formulatio
@3,16#. We think, therefore, that our proposal is an alternat
way to control or predict the violation of constraints.~We
believe that the idea of the constraint propagation anal
first appeared in Frittelli@17#, where she derived a hyperbo
licity classification for the standard ADM formulation.!

The purpose of this paper is to apply this constraint pro
gation analysis to the BSSN formulation, and understa
how each improvement contributes to more stable numer
evolution. Together with numerical comparisons with t
standard ADM case@18,19#, this topic has been studied b
many groups with different approaches. Using numerical
evolutions, Alcubierreet al. @20# found that the essential im
provement is in the process of replacing terms by constra
and that the eigenvalues of the BSSNevolution equations
have fewer ‘‘zero eigenvalues’’ than those of ADM, and th
conjectured that the instability can be caused by ‘‘zero eig
values’’ that violate the ‘‘gauge mode.’’ Miller@21# applied
von Neumann’s stability analysis to the plane-wave propa
tion, and reported that BSSN has a wider range of parame
that give us stable evolution. These studies provide so
support regarding the advantage of BSSN, while it a
showed an example of an ill-posed solution in BSSN~as well
as in ADM! @22#. ~Inspired by BSSN’s conformal decompo
sition, several related hyperbolic formulations have also b
proposed@23–25#.!

We think our analysis will offer a new vantage point o
the topic, and contribute an alternative understanding o
background. Consequently, we propose a more effective
provement of the BSSN system that has not yet been trie
numerical simulations.

The construction of this paper is as follows. We revie
the BSSN system in Sec. II, and also we discuss where
adjustments are applied. In Sec. III, we apply our constra
propagation analysis to show how each improvement wo
in the BSSN equations, and in Sec. IV we extend our st
to seek a better formulation which might be obtained
small steps. We only consider the vacuum space-t
throughout the paper, but the inclusion of matter is straig
forward.
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II. BSSN EQUATIONS AND THEIR CONSTRAINT
PROPAGATION EQUATIONS

A. BSSN equations

We start by presenting the standard ADM formulatio
which expresses the space-time with a pair of 3-metricg i j
and extrinsic curvatureKi j . The evolution equations becom

] t
Ag i j 522aKi j 1Dib j1D jb i , ~2.1!

] t
AKi j 5aRi j

ADM1aKKi j 22aKikKk
j2DiD ja

1~Dib
k!Kk j1~D jb

k!Kki1bkDkKi j , ~2.2!

where a,b i are the lapse and shift function andDi is the
covariant derivative on 3-space. The symbol] t

A means the
time derivative defined by these equations, and we dis
guish them from those of the BSSN equations] t

B , which will
be defined in Eqs.~2.15!–~2.19!. The associated constrain
are the Hamiltonian constraintH and the momentum con
straintsMi :

H ADM5RADM1K22Ki j K
i j , ~2.3!

M i
ADM5D jK

j
i2DiK. ~2.4!

The widely used notation@4,5# is to introduce the vari-
ables (w,g̃ i j , K, Ãi j , G̃ i) instead of (g i j ,Ki j ), where

w5~1/12!log~detg i j !, ~2.5!

g̃ i j 5e24wg i j , ~2.6!

K5g i j Ki j , ~2.7!

Ãi j 5e24w@Ki j 2~1/3!g i j K#, ~2.8!

G̃ i5G̃ jk
i g̃ jk. ~2.9!

The new variableG̃ i was introduced in order to calculat
Ricci curvature more accurately.G̃ i also contributes to mak
ing the system reproduce wave equations in its linear lim
In the BSSN formulation, Ricci curvature is not calculated

Ri j
ADM5]kG i j

k 2] iGk j
k 1G i j

l G lk
k 2Gk j

l G l i
k , ~2.10!

but

Ri j
BSSN5Ri j

w 1R̃i j , ~2.11!

Ri j
w 522D̃ i D̃ jw22g̃ i j D̃

kD̃kw14~D̃ iw!~D̃ jw!

24g̃ i j ~D̃kw!~D̃kw!, ~2.12!

R̃i j 52~1/2!g̃ lk] l]kg̃ i j 1g̃k( i] j )G̃
k1G̃kG̃ ( i j )k

12g̃ lmG̃ l ( i
k G̃ j )km1g̃ lmG̃ im

k G̃kl j , ~2.13!

whereD̃ i is a covariant derivative associated withg̃ i j . These
are weakly equivalent, butRi j

BSSN does have a wave operato
3-2
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apparently in the flat background limit, so that we can exp
more natural wave propagation behavior.

Additionally, BSSN requires us to impose the conform
factor as

g̃~ªdetg̃ i j !51 ~2.14!

during the evolution. This is a kind of definition, but can al
be thought of as a constraint. We will return to this po
shortly.

BSSN’s improvements are not only the introductions
new variables, but also the replacement of terms in the e
lution equations using the constraints. The purpose of
paper is to understand and to identify which improvem
works for the stability. Before doing that, we first show t
standard set of the BSSN evolution equations:

] t
Bw52~1/6!aK1~1/6!b i~] iw!1~] ib

i !, ~2.15!

] t
Bg̃ i j 522aÃi j 1g̃ ik~] jb

k!1g̃ jk~] ib
k!

2~2/3!g̃ i j ~]kb
k!1bk~]kg̃ i j !, ~2.16!

] t
BK52DiDia1aÃi j Ã

i j 1~1/3!aK21b i~] iK !,
~2.17!

] t
BÃi j 52e24w~DiD ja!TF1e24wa~Ri j

BSSN!TF1aKÃi j

22aÃikÃk
j1~] ib

k!Ãk j1~] jb
k!Ãki

2~2/3!~]kb
k!Ãi j 1bk~]kÃi j !, ~2.18!

] t
BG̃ i522~] ja!Ãi j

12a@G̃ jk
i Ãk j2~2/3!g̃ i j ~] jK !16Ãi j ~] jw!#

2] j@bk~]kg̃
i j !2g̃k j~]kb

i !2g̃ki~]kb
j !

1~2/3!g̃ i j ~]kb
k!#. ~2.19!

We next summarize the constraints in this system. T
normal Hamiltonian and momentum constraints~the ‘‘kine-
matic’’ constraints! are naturally written as
12400
ct
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H BSSN5RBSSN1K22Ki j K
i j , ~2.20!

M i
BSSN5M i

ADM , ~2.21!

where we use the Ricci scalar defined by Eq.~2.11!. Addi-
tionally, we regard the following three as the constraints~the
‘‘algebraic’’ constraints!:

G i5G̃ i2g̃ jkG̃ jk
i , ~2.22!

A5Ãi j g̃
i j , ~2.23!

S5g̃21, ~2.24!

where the first two are from the algebraic definition of t
variables~2.8! and ~2.9!, and Eq.~2.24! is from the require-
ment of Eq.~2.14!. Hereafter, we writeH BSSN andM BSSN

simply asH andM, respectively.
Taking careful account of these constraints, Eqs.~2.20!

and ~2.21! can be expressed directly as

H5e24wR̃28e24wD̃ j D̃ jw28e24w~D̃ jw!~D̃ jw!

1~2/3!K22Ãi j Ã
i j 2~2/3!AK, ~2.25!

Mi56Ãj
i~D̃ jw!22A~D̃ iw!2~2/3!~D̃ iK !

1g̃k j~D̃ j Ãki!. ~2.26!

In summary, the fundamental dynamical variables
BSSN are (w,g̃ i j ,K,Ãi j ,G̃ i), a total of 17. The gauge quan
tities are (a,b i), which is four, and the constraints ar
(H,Mi ,G i ,A,S), i.e., nine components. As a result, four~2
by 2! components are left which correspond to two gravi
tional polarization modes.

B. Adjustments in evolution equations

Next, we show the BSSN evolution equations~2.15!–
~2.19! again, identifying where the terms are replaced us
the constraints~2.20!–~2.24!.

By a straightforward calculation, we get
] t
Bw5] t

Aw1~1/6!aA2~1/12!g̃21~] jS!b j , ~2.27!

] t
Bg̃ i j 5] t

Ag̃ i j 2~2/3!ag̃ i j A1~1/3!g̃21~]kS!bkg̃ i j , ~2.28!

] t
BK5] t

AK2~5/3!aKA2aH1ae24w~D̃ jG j !, ~2.29!

] t
BÃi j 5] t

AÃi j 1@~1/3!ag̃ i j K2~2/3!aÃi j #A
1@~1/2!ae24w~]kg̃ i j !2~1/6!ae24wg̃ i j g̃

21~]kS!#G k1ae24wg̃k( i~] j )G k!2~1/3!ae24wg̃ i j ~]kG k!, ~2.30!

] t
BG̃ i5] t

AG̃ i1@2~2/3!~] ja!g̃ j i 2~2/3!a~] j g̃
j i !2~1/3!ag̃ j i g̃21~] jS!14ag̃ i j ~] jw!#A2~2/3!ag̃ j i ~] jA!12ag̃ i j Mj

2~1/2!~]kb
i !g̃k jg̃21~] jS!1~1/6!~] jb

k!g̃ i j g̃21~]kS!1~1/3!~]kb
k!g̃ i j g̃21~] jS!1~5/6!bkg̃22g̃ i j ~]kS!~] jS!

1~1/2!bkg̃21~]kg̃
i j !~] jS!1~1/3!bkg̃21~] j g̃

j i !~]kS!, ~2.31!
3-3
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where] t
A denotes the part of no replacements, i.e., the te

only use the standard ADM evolution equations in its tim
derivatives.

From Eqs. ~2.27!–~2.31!, we understand that all th
BSSN evolution equations areadjustedusing constraints.
This fact will give us the importance of the scaling constra
S50 and the trace-free operationA50 during the evolution.

As we have pointed out in the case of adjusted AD
systems @16,3#, certain combinations of adjustments~re-
placements! in the evolution equations change the eigenv
ues of constraint propagation equations drastically. For
ample, all negative eigenvalues can be negative real
applying Detweiler’s adjustment@26# or its simplified ver-
sion. One common fact we found is that such a case ha
adjustment which breaks time-reversal parity of the origi
equation. That is, with a change of time integration direct
] t→2] t , an adjusted term might become effective if
breaks time-reversal symmetry.~This time asymmetric fea
ture was first implemented as a ‘‘lambda-system’’ in@9#.!
Unfortunately, for the case of the BSSN equations, E
~2.27!–~2.31!, all the above adjustments keep the tim
reversal symmetry, so that we cannot expect direct decay
constraint violation in the present form. We will give th
details on this point later.

III. CONSTRAINT PROPAGATION ANALYSIS
IN FLAT SPACE-TIME

A. Procedures

We start this section overviewing the procedures and
goals. In our series of previous works@3,12,16#, we have
concluded that eigenvalue analysis of the constraint prop
tion equations is quite useful for explaining or predicti
how the constraint violation grows.

Suppose we have a set of dynamical variablesua(xi ,t)
and their evolution equations

] tu
a5 f ~ua,] iu

a, . . . !, ~3.1!

and the~first class! constraints

Ca~ua,] iu
a, . . . !'0. ~3.2!

For monitoring the violation of constraints, we propose
investigate the evolution equations ofCa ~constraint propa-
gation!,

] tC
a5g~Ca,] iC

a, . . . !. ~3.3!

@We do not mean to integrate Eq.~3.3! numerically, but
rather to evaluate it analytically in advance.# In order to ana-
lyze the contributions of all right-hand-side terms in E
~3.3!, we propose to reduce Eq.~3.3! in ordinary differential
equations by Fourier transformation,

] tĈ
a5ĝ~Ĉa!5Ma

bĈb, ~3.4!

whereC(x,t)r5*Ĉ(k,t)r exp(ik•x)d3k, and then to analyze
the set of eigenvalues, sayLa , of the coefficient matrix,
Ma

b , in Eq. ~3.4!. We callL ’s andMa
b the constraint am-

plification factors~CAFs! of Eq. ~3.3! and constraint propa
12400
s

t

-
x-
y

an
l

n

s.
-
of

r

a-

.

gation matrix, respectively. Our guidelines to have ‘‘bet
stability’’ are that~A! if the CAFs have anegative real part
~the constraints are forced to be diminished!, then we see
more stable evolution than a system which has a positive
part, and~B! if the CAFs have anonzero imaginary part~the
constraints are propagating away!, then we see more stabl
evolution than a system which has zero CAFs. We fou
heuristically that the system becomes more stable when m
L ’s satisfy the above criteria@6,12#. We note that these
guidelines are confirmed numerically for wave propagat
in the Maxwell system and in the Ashtekar version of t
Einstein system@12#, and also for error propagation i
Minkowskii space-time using adjusted ADM systems@16#.
Supporting theorems for guideline~A! were recently dis-
cussed@31#.

The above features of the constraint propagation,
~3.3!, will differ when we modify the original evolution
equations. If we add~adjust! the evolution equations usin
constraints

] tu
a5 f ~ua,] iu

a, . . . !1F~Ca,] iC
a, . . . !, ~3.5!

then Eq.~3.3! will also be modified as

] tC
a5g~Ca,] iC

a, . . . !1G~Ca,] iC
a, . . . !. ~3.6!

Therefore, the problem is how to adjust the evolution eq
tions so that their constraint propagation satisfies the ab
criteria as much as possible.

B. BSSN constraint propagation equations

Our purpose in this section is to apply the above pro
dure to the BSSN system. The set of the constraint propa
tion equations,] t(H,Mi ,G i ,A,S)T, turns to be quite long
and not elegant~it is not a first-order hyperbolic and include
many nonlinear terms!, and we put them in the Appendix. I
order to understand the fundamental structure, we her
show an analysis on the flat space-time background.

For the flat background metricgmn5hmn , the first-order
perturbation equations of Eqs.~2.27!–~2.31! can be written
as

] t
(1)f52~1/6! (1)K1~1/6!~kf21! (1)A, ~3.7!

] t
(1)g̃ i j 522 (1)Ãi j 2~2/3!~kg̃21!d i j

(1)A, ~3.8!

] t
(1)K52~] j] j

(1)a!1~kK121!] j
(1)G j2~kK221! (1)H,

~3.9!

] t
(1)Ãi j 5

(1)~Ri j
BSSN! TF2 (1)~D̃ i D̃ ja! TF

1~kA121!dk( i~] j )
(1)G k!

2~1/3!~kA221!d i j ~]k
(1)G k!, ~3.10!

] t
(1)G̃ i52~4/3!~] i

(1)K !2~2/3!~kG̃121!~] i
(1)A!

12~kG̃221! (1)Mi , ~3.11!
3-4
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TABLE I. Summary of Sec. III C: contributions of adjustment terms and effects of introductions of new constraints in the BSSN
The center column indicates whether each constraint is taken as a component of constraints in each constraint propagation analys~‘‘use’’ !,
and whether each adjustment is on~‘‘adj’’ !. The column ‘‘diag?’’ indicates diagonalizability of the constraint propagation matrix. The r
column shows CAFs, where Im and Re mean pure imaginary and real eigenvalue, respectively. Case~0! ~standard ADM! is shown in@16#.

No. Constraints~number of components! diag? CAFs
in text H ~1! Mi ~3! G i ~3! A ~1! S ~1! in Minkowskii background

~0! standard ADM use use yes ~0,0,Im,Im!

~i! BSSN no
adjustment

use use use use use yes~0,0,0,0,0,0,0,Im,Im!

~ii ! the BSSN use1adj use1adj use1adj use1adj use1adj no ~0,0,0,Im,Im,Im,Im,Im,Im!

~iii ! no S adjustment use1adj use1adj use1adj use1adj use no no difference in flat background
~iv! no A adjustment use1adj use1adj use1adj use use1adj no ~0,0,0,Im,Im,Im,Im,Im,Im!

~v! no G i

adjustment
use1adj use1adj use use1adj use1adj no ~0,0,0,0,0,0,0,Im,Im!

~vi! no Mi adjustment use1adj use use1adj use1adj use1adj no ~0,0,0,0,0,0,0,Re,Re!
~vii ! no H adjustment use use1adj use1adj use1adj use1adj no (0,0,0,Im,Im,Im,Im,Im,Im)
an
es

th

h
le

-

t-

tion
l-

the

ts

SN

all
ck-

ce-

by

od.
where we introduced parametersk ’s, all k50 reproduce the
no-adjustment case from the standard ADM equations,
all k51 correspond to the BSSN equations. We expr
them as

kadjª~kw ,kg̃ ,kK1 ,kK2 ,kA1 ,kA2 ,kG̃1 ,kG̃2!. ~3.12!

Constraint propagation equations at the first order in
flat space-time, then, become

] t
(1)H5@kg̃2~2/3!kG̃12~4/3!kw12#] j] j

(1)A
12~kG̃221!~] j

(1)Mj !, ~3.13!

] t
(1)Mi5@2~2/3!kK11~1/2!kA1

2~1/3!kA21~1/2!#] i] j
(1)G j1~1/2!kA1] j] j

(1)G i

1@~2/3!kK22~1/2!#] i
(1)H, ~3.14!

] t
(1)G i52kG̃2

(1)Mi1@2~2/3!kG̃12~1/3!kg̃#~] i
(1)A!,

~3.15!

] t
(1)S522kg̃

(1)A, ~3.16!

] t
(1)A5~kA12kA2!~] j

(1)G j !. ~3.17!

We will discuss the CAFs of Eqs.~3.13!–~3.17!.

C. Effect of adjustments

We check the CAFs of the BSSN equations in detail. T
list of examples is shown also in Table I. Hereafter, we
k25kx

21ky
21kz

2 for Fourier wave numbers.
~i! No-adjustment case,kadj5(all zeros). This is the start

ing point of the discussion. In this case,

XCAFs5„0~37!,6A2k2
…,

i.e., „0(37),6pure imaginary(one pair)…. In the standard
ADM formulation, which uses (g i j ,Ki j ), CAFs are (0,0,
6pure imaginary)@16#. Therefore, if we do not apply adjus
12400
d
s

e

e
t

ments in the BSSN equations, the constraint propaga
structure is quite similar to that of the standard ADM forma
ism.

~ii ! For the BSSN equations,kadj5(all 1s),

XCAFs5„0~33!,6A2k2~ three pairs!…,

i.e., „0(33),6pure imaginary(three pairs)…. The number of
pure imaginary CAFs is increased over that of case~i!, and
we conclude this is the advantage of adjustments used in
BSSN equations.

~iii ! No S-adjustment case. All the numerical experimen
so far apply the scaling conditionS for the conformal factor
w. TheS-originated terms appear many places in the BS
equations~2.15!–~2.19!, so that we suspect nonzeroS is a
kind of source of the constraint violation. However, since
S-originated terms do not appear in the flat space-time ba
ground analysis@no adjusted terms in Eqs.~3.7!–~3.11!#, our
analysis is independent of theS constraint.~Note that we do
not deny the effect ofS adjustment in other situations.!

~iv! No A-adjustment case. The trace~or traceout! condi-
tion for the variables is also considered necessary~e.g.,@27#!.
This can be checked withkadj5(k,k,1,1,1,1,k,1), and we
get

XCAFs5„0~33!,6A2k2~ three pairs!…,

independent ofk. Therefore, the effect ofA adjustment is
unimportant according to this analysis, i.e., on flat spa
time background.~Note that we do not deny the effect ofA
adjustment in other situations.!

~v! No G i-adjustment case. The introduction ofG i is the
key in the BSSN system. If we do not apply adjustments
G i @kadj5(1,1,0,1,0,0,1,1)#, then we get

XCAFs5„0~37!,6A2k2
…,

which is the same as case~i!. That is, adjustments due toG i

terms are effective to make progress from the ADM meth
3-5
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~vi! No Mi-adjustment case. This can be checked w
kadj5(1,1,1,1,1,1,1,k), and we get

XCAFs5„0,6A2kk2~ two pairs…,

6A2k2~2114k1u124ku!/6,

6A2k2~2114k2u124ku!/6!.

If k50, then „0(37),6Ak2/3…, which is „0(37),
6real value…. Interestingly, these real values indicate the e
istence of the error-growing mode together with the decay
mode. Alcubierreet al. @20# found that the adjustment due t
the momentum constraint is crucial for obtaining stabili
We think that they picked up this error-growing mode. F
tunately at the BSSN limit (k51), this error-growing mode
disappears and turns into a propagation mode.

~vii ! No H-adjustment case. The set kadj
5(1,1,1,k,1,1,1,1) gives

XCAFs5„0~33!,6A2k2~3 pairs!…,

independently ofk. Therefore the effect ofH adjustment is
unimportant according to this analysis, i.e., on a flat spa
time background.~Note again that we do not deny the effe
of H adjustment in other situations.!

These tests are on the effects of adjustments. We
consider whether much better adjustments are possible in
next section.

We list the above results in Table I.~Table I includes a
column of diagonalizability of constraint propagation mat
M, the importance of which was pointed out in@31#.! The
most characteristic points of the above are~v! and ~vi!,
which denote the contribution of the momentum constra
adjustment and the importance of the new variableG̃ i . It is
quite interesting that the unadjusted BSSN equations@case
~i!# does not have apparent advantages from the ADM s
tem. As we showed in~v! and~vi!, if we missed a particular
adjustment, then the expected stability behavior occasion
gets worse than the starting ADM system. Therefore,
conclude that the better stability of the BSSN formulations
obtained by their adjustments in the equations, and the c
bination of the adjustments is in a good balance. That i
lack of their adjustments might fail to bring about the stab
ity of their system.

IV. PROPOSALS OF IMPROVED BSSN SYSTEMS

In this section, we consider the possibility of whether w
can obtain a system which has much better propert
whether more pure imaginary CAFs or negative real CAF

A. Heuristic examples

1. A system which has eight pure imaginary CAFs

One direction is to seek a set of equations which m
fewer zero CAFs than the standard BSSN case@point ~ii ! in
the previous section#. Using the same set of adjustments
Eqs.~3.7!–~3.11!, CAFs are written in general as
12400
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XCAFs5„0,6A2k2kA1kG̃2~2 pairs!,

6complicated expression,

6complicated expression….

The terms in the first line certainly give four pure imagina
CAFs ~two positive and negative real pairs! if kA1kG̃2.0
(,0). Keeping this in mind, by choosingkadj
5(1,1,1,1,1,k,1,1), we find

XCAFs5„0,6A2k2~2 pairs!,

6A2k2~21k1uk24u!/6,

6A2k2~21k2uk24u!/6….

Therefore, the adjustmentkadj5(1,1,1,1,1,4,1,1) gives

XCAFs5„0,6A2k2~4 pairs!…,

which is one step advanced from BSSN’s according
guidelines.

We note that such a system can be obtained in m
ways, e.g.,kadj5(0,0,1,0,2,1,0,1/2) also gives four pairs
pure imaginary CAFs.

2. A system which has negative real CAF

One criterion to obtain a decaying constraint mode~i.e.,
an asymptotically constrained system! is to adjust an evolu-
tion equation as it breaks time-reversal symmetry@16,3#. For
example, we consider an additional adjustment to the BS
equation as

] tg̃ i j 5] t
Bg̃ i j 1kSDag̃ i j H, ~4.1!

which is a similar adjustment of the simplified Detweil
type ~SD! @26# that was discussed in@3#. The first-order con-
straint propagation equations on the flat background sp
time become

] t
(1)H5] j] j

(1)A2~3/2!kSD] j] j
(1)H,

] t
(1)Mi5~1/6!] i

(1)H1~1/2!] j] j
(1)G i ,

] t
(1)G i52] i

(1)A1~1/2!kSD] i
(1)H12 (1)Mi ,

] t
(1)A52~] j] j

(1)a!TF1~ (1)Rj j
BSSN!TF,

] t
(1)S522 (1)A13kSD

(1)H,

where we wrote only additional terms to Eqs.~3.13!–~3.17!.
The CAFs become

XCAFs5„0~32!,6A2k2~ three pairs!,~3/2!k2kSD…,

in which the last one becomes negative real ifkSD,0.
3-6
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3. Combination of Secs. IV A 1 and IV A 2

Naturally we next consider both adjustments,

] tg̃ i j 5] t
Bg̃ i j 1kSDag̃ i j H, ~4.2!

] tÃi j 5] t
BÃi j 2k8ae24wg̃ i j ]kG k, ~4.3!

where the second one produces the eight pure imagi
CAFs. The additional terms in the constraint propagat
equations~3.13!–~3.17! are

] t
(1)H5] j] j

(1)A2~3/2!kSD] j] j
(1)H,

] t
(1)Mi5~1/6!] i

(1)H1~1/2!] j] j
(1)G i2k8] i]k

(1)G k,

] t
(1)G i52] i

(1)A1~1/2!kSD] i
(1)H12 (1)Mi ,

] t
(1)A523k8]k

(1)G k,

] t
(1)S522 (1)A13kSD

(1)H.

We then obtain

XCAFs5„0,6A2k2~3 pairs!,

~3/4!k2kSD6Ak2@2k81~9/16!k2kSD
2 #…,

which reproduces Sec. IV A 1 whenkSD50, k851, and Sec.
IV A 2 when k850. These CAFs can become„0, pure
12400
ry
n

imaginary ~three pairs!, complex numbers with a negativ
real part~one pair!…, with an appropriate combination ofk8
andkSD.

B. Possible adjustments

In order to break time-reversal symmetry of the evoluti
equations@3,9,16#, the possible simple adjustments are~i! to
add H, S, or G i terms to the equations of] tf, ] tg̃ i j , or
] tG̃

i , or ~ii ! to addMi or A terms to] tK or ] tÃi j . We write
them generally, including the proposal of Sec. IV A 2, as

] tf5] t
Bf1kfHaH1kfGaD̃kG k, ~4.4!

] tg̃ i j 5] t
Bg̃ i j 1kSDag̃ i j H1kg̃G1ag̃ i j D̃kG k

1kg̃G2ag̃k( i D̃ j )G k1kg̃S1ag̃ i j S1kg̃S2aD̃ i D̃ jS,

~4.5!

] tK5] t
BK1kKMag̃ jk~D̃ jMk!, ~4.6!

] tÃi j 5] t
BÃi j 1kAM1ag̃ i j ~D̃kMk!1kAM2a~D̃ ( iMj )!

1kAA1ag̃ i j A1kAA2aD̃ i D̃ jA, ~4.7!

] tG̃
i5] t

BG̃ i1kG̃HaD̃ iH1kG̃G1aG i

1kG̃G2aD̃ j D̃ jG i1kG̃G3aD̃ i D̃ jG j , ~4.8!
in
f the
TABLE II. Possible adjustments which make a real-part CAF negative~Sec. IV B!. The column of adjustments is nonzero multipliers
terms of Eqs.~4.4!–~4.8!, which all violate time-reversal symmetry of the equation. The column ‘‘diag?’’ indicates diagonalizability o
constraint propagation matrix. Neg./Pos. means negative/positive, respectively.

Adjustment CAFs diag? Effect of the adjustment

] tf kfHaH „0,0,6A2k2(* 3),8kfHk2
… no kfH,0 makes 1 Neg.

] tf kfGaD̃kG k
„0,0,6A2k2(* 2),long expressions… yes kfG,0 makes 2 Neg. 1 Pos.

] tg̃ i j kSDag̃ i j H „0,0,6A2k2(* 3),(3/2)kSDk2
… yes kSD,0 makes 1 Neg. Sec. IV A 2

] tg̃ i j kg̃G1ag̃ i j D̃kG k
„0,0,6A2k2(* 2),long expressions… yes kg̃G1.0 makes 1 Neg.

] tg̃ i j kg̃G2ag̃k( i D̃ j )G k
„0,0,(1/4)k2kg̃G26Ak2(211k2kg̃G2/16)
3(* 2),long expressions…

yes kg̃G2,0 makes 6 Neg. 1 Pos. Sec. IV B 2a

] tg̃ i j kg̃S1ag̃ i j S „0,0,6A2k2(* 3),3kg̃S1… no kg̃S1,0 makes 1 Neg.

] tg̃ i j kg̃S2aD̃ i D̃ jS „0,0,6A2k2(* 3),2kg̃S2k2
… no kg̃S2.0 makes 1 Neg.

] tK kKMag̃ jk(D̃ jMk) „0,0,0,6A2k2(* 2), (1/3)kKMk2

6(1/3)Ak2(291k2kKM
2 )…

no kKM,0 makes 2 Neg.

] tÃi j kAM1ag̃ i j (D̃
kMk) „0,0,6A2k2(* 3),2kAM1k2

… yes kAM1.0 makes 1 Neg.

] tÃi j kAM2a(D̃ ( iMj )) „0,0,2k2kAM2/46Ak2(211k2kAM2/16)
3(* 2),long expressions…

yes kAM2.0 makes 7 Neg Sec. IV B 1

] tÃi j kAA1ag̃ i j A „0,0,6A2k2(* 3),3kAA1… yes kAA1,0 makes 1 Neg.

] tÃi j kAA2aD̃ i D̃ jA „0,0,6A2k2(* 3),2kAA2k2
… yes kAA2.0 makes 1 Neg.

] tG̃
i kG̃HaD̃ iH „0,0,6A2k2(* 3),2kAA2k2

… no kG̃H.0 makes 1 Neg.

] tG̃
i kG̃G1aG i

„0,0,(1/2)kG̃G16A2k21kG̃G1
2 (* 2),long exp.… yes kG̃G1,0 makes 6 Neg. 1 Pos. Sec. IV B 2b

] tG̃
i kG̃G2aD̃ j D̃ jG i

„0,0,2(1/2)kG̃G26A2k21kG̃G2
2 (* 2),long exp.… yes kG̃G2.0 makes 2 Neg. 1 Pos.

] tG̃
i kG̃G3aD̃ i D̃ jG j

„0,0,2(1/2)kG̃G36A2k21kG̃G3
2 (* 2),long exp.… yes kG̃G3.0 makes 2 Neg. 1 Pos.
3-7
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wherek ’s are possible multipliers~all k50 reduce the sys
tem of the standard BSSN evolution equations!.

We show the effects of each term in Table II. The CAFs
the table are on the flat space background. We see that
eral terms produce negative real part in CAFs, which mi
improve the stability more than the previous system.~Table
II includes again a column of diagonalizability of constra
propagation matrixM. Diagonalizable ones are expected
reflect the predictions from eigenvalue analysis. That is,
eigenvalue analysis with diagonalizable ones definit
avoids the diverging possibility in constraint propagati
when it includes degenerated CAFs. See@31#.! For the read-
ers’ convenience, we list several of the best candidates h

1. A system which has seven negative CAFs

Simply adding theD̃ ( iMj ) term to the] tÃi j equation, say

] tÃi j 5] t
BSSNÃi j 1kAM2a~D̃ ( iMj )! ~4.9!

with kAM2.0, the CAFs on the flat background are sev
negative real CAFs.

2. A system which has six negative CAFs

The below two adjustments will make six negative re
CAFs, while they also produce one positive real CAF~a
constraint-violating mode!. The effectiveness is not clear a
this moment, but we think they are worth testing in nume
cal experiments.

a. With kg̃G2,0,

] tg̃ i j 5] t
BSSNg̃ i j 1kg̃G2ag̃k( i D̃ j )G k. ~4.10!

b. With kG̃G2,0,

] tG̃
i5] t

BSSNG̃ i1kG̃G2aD̃ j D̃ jG i . ~4.11!

V. CONCLUDING REMARKS

Applying the constraint propagation analysis, we tried
understand why and how the so-called BSSN~Baumgarte-
Shapiro-Shibata-Nakamura! reformulation works better than
the standard ADM equations in general relativistic numeri
simulations. Our strategy was to evaluate eigenvalues of
constraint propagation equations in their Fourier mod
which succeeded to explain the stability properties in ma
other systems in our series of works.

We have studied step-by-step where the replacemen
the equations affect and/or newly added constraints work
checking whether the error of constraints~if it exists! will
decay or propagate away. Alcubierreet al. @20# pointed out
12400
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the importance of the replacement~adjustment! to the evolu-
tion equation using the momentum constraint, and our an
sis clearly explains why they concluded that this is the k
Not only did we find this adjustment, but we also discover
that other adjustments and other introductions of new c
straints also contribute to making the evolution system m
stable. We found that if we missed a particular adjustme
then the expected stability behavior occasionally got wo
than the ADM system. We further propose other adjustme
of the set of equations which may have better features
numerical treatments.

The discussion in this paper was only in the flat bac
ground space-time, and may not be applicable directly to
general numerical simulations. However, we rather belie
that the general fundamental aspects of constraint prop
tion analysis are already revealed in this paper. This is
cause, for the ADM system and its adjusted cases, we fo
that the better formulations in the flat background are a
better in the Schwarzschild space-time, while there are
ferences in the effective adjusting multipliers or the effect
coordinate ranges@3,16#.

We have not shown any numerical tests here. Howe
recently, proposal~B! in Sec. IV was examined numericall
using linear wave initial data and confirmed to be effect
for controlling the violation of the Hamiltonian constrain
with our predicted multiplier signature@28#. Systematic nu-
merical comparisons between different formulations are
derway@29#, and we expect to have a chance to report th
in the near future. We are also trying to explain the stabi
of Laguna-Shoemaker’s implemented BSSN system@30# us-
ing the constraint propagation analysis.

There may not be the ultimate formulation for any mod
in numerical relativity, but we believe our guidelines to fin
a better formulation in a systematic way will contribute
progress in this field. We hope the predictions in this pa
will help the community to make further improvements.

Note added in proof.Recently, Yoet al. @32# reported that
the adjustment of Sec. IV A 2 in this paper is quite effecti
for long term stable numerical demonstration of Kerr-Sch
space-time.

ACKNOWLEDGMENTS

H.S. thanks T. Nakamura and M. Shibata for their co
ments, and he appreciates the hospitality of the Center
Gravitational Wave Physics, the Pennsylvania State Univ
sity, where part of this work has been done. H.S. is suppo
by the special postdoctoral researchers’ program at RIKE
This work was supported partially by a Grant-in-Aid for Sc
entific Research Fund of Japan Society of the Promotion
Science, No. 14740179.
APPENDIX: FULL SET OF BSSN CONSTRAINT PROPAGATION EQUATIONS

The constraint propagation equations of the BSSN system can be written as follows:

] tH5@~2/3!aK1~2/3!aA1bk]k#H1@24e24wa~]kw!g̃k j22e24w~]ka!g̃ jk#Mj1@22ae24wÃk
j]k2ae24w~] j Ãkl!g̃

kl

2e24w~] ja!A2e24wbk]k] j2~1/2!e24wbkg̃21~] jS!]k1~1/6!e24wg̃21~] jb
k!~]kS!2~2/3!e24w~]kb

k!] j #G j

1@2ae24wg̃21g̃ lk~] lw!A]k1~1/2!ae24wg̃21~] lA!g̃ lk]k1~1/2!e24wg̃21~] la!g̃ lkA]k
3-8
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1~1/2!e24wg̃21bmg̃ lk]m] l]k2~5/4!e24wg̃22bmg̃ lk~]mS!] l]k1e24wg̃21bm~]mg̃ lk!] l]k

1~1/2!e24wg̃21b i~] j] i g̃
jk!]k1~3/4!e24wg̃23b i g̃ jk~] iS!~] jS!]k2~3/4!e24wg̃22b i~] i g̃

jk!~] jS!]k

1~1/3!e24wg̃21g̃p j~] jb
k!]p]k2~5/12!e24wg̃22g̃ jk~]kb

i !~] iS!] j1~1/3!e24wg̃21~]kg̃
i j !~] jb

k!] i

2~1/6!e24wg̃21g̃mk~]k] lb
l !]m#S1@~4/9!aKA2~8/9!aK21~4/3!ae24w~] i] jw!g̃ i j 1~8/3!ae24w~]kw!~] l g̃

lk!

1ae24w~] j g̃
jk!]k18ae24wg̃ jk~] jw!]k1ae24wg̃ jk] j]k18e24w~] la!~]kw!g̃ lk1e24w~] la!~]kg̃

lk!

12e24w~] la!g̃ lk]k1e24wg̃ lk~] l]ka!#A, ~A1!

] tMi5@2~1/3!~] ia!1~1/6!] i #H1aKMi1@ae24wg̃km~]kw!~] j g̃mi!2~1/2!ae24wG̃kl
mg̃kl~] j g̃mi!

1~1/2!ae24wg̃mk~]k] j g̃mi!1~1/2!ae24wg̃22~] iS!~] jS!2~1/4!ae24w~] i g̃kl!~] j g̃
kl!1ae24wg̃km~]kw!g̃ j i ]m

1ae24w~] jw!] i2~1/2!ae24wG̃kl
mg̃klg̃ j i ]m1ae24wg̃mkG̃ i jk]m1~1/2!ae24wg̃ lkg̃ j i ]k] l1~1/2!e24wg̃mk~] j g̃ im!

3~]ka!1~1/2!e24w~] ja!] i1~1/2!e24wg̃mkg̃ j i ~]ka!]m#G j1@2Ãk
i~]ka!1~1/9!~] ia!K1~4/9!a~] iK !

1~1/9!aK] i2aÃk
i]k#A, ~A2!

] tG i52ag̃ i j Mj1@2~1/2!bkg̃ i l g̃22~] lS!]k2~1/2!bkg̃ in~]kg̃mn!g̃
mlg̃21] l1~1/2!bkg̃ i l g̃21] l]k

2~1/2!~]mb i !g̃mkg̃21]k1~1/3!~] lb
l !g̃ ikg̃21]k#S1@14ag̃ i j ~D̃ jw!2ag̃ i j ] j2~]ka!g̃ ik#A, ~A3!

] tS51bk~]kS!22ag̃A, ~A4!

] tA5~aK1bk]k!A. ~A5!

The flat background linear order equations, Eqs.~3.13!–~3.17!, were obtained from these expressions.
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