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Several numerical relativity groups are using a modified Arnowitt-Deser-MiéhBM ) formulation for
their simulations, which was developed by Nakamura and co-worleerd widely cited as the Baumgarte-
Shapiro-Shibata-Nakamura systerfihis so-called BSSN formulation is shown to be more stable than the
standard ADM formulation in many cases, and there have been many attempts to explain why this reformu-
lation has such an advantage. We try to explain the background mechanism of the BSSN equations by using an
eigenvalue analysis of constraint propagation equations. This analysis has been applied and has succeeded in
explaining other systems in our series of works. We derive the full set of the constraint propagation equations,
and study it in the flat background space-time. We carefully examine how the replacements and adjustments in
the equations change the propagation structure of the constraints, i.e., whether violation of corigtraints
existy will decay or propagate away. We conclude that the better stability of the BSSN system is obtained by
their adjustments in the equations, and that the combination of the adjustments is in a good balance, i.e., a lack
of their adjustments might fail to obtain the present stability. We further propose other adjustments to the
equations, which may offer more stable features than the current BSSN equations.
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[. INTRODUCTION formulation(see the references, e.g.,[6+8]), or (iii) apply
an asymptotically constrained syst¢g-12].

One of the most important current topics in the field of The first refers to using a modified ADM formulation,
numerical relativity is to find a formulation of the Einstein originally proposed by Nakamura in the late 1980s, and sub-
equations which gives us stable and accurate long-term evgequently modified by Nakamura-Oohara and Shibata-
lution. We all know that simulating space-time and matterNakamura[4]. This introduces conformal decomposition of
based on general relativity is the essential research directidf® ADM variables, a new variable for calculating Ricci cur-
to go in the future, but we do not have a definite recipe forvature, and adjusts the equations of motion using constraints.
controlling numerical blow-ups. We concentrate our discus- € advantage of this formulation was reintroduced by
sion on the free evolution of the Einstein equations based ofaumgarte and Shapifé], and therefore this is often cited

the 3+1 (space-time) decomposition of space-time, which as thg BSSN formula_t(ijor;, Whicc:] _wehfolllow . lThe BSS.N |
requires solving the constraints only on the initial hypersur-equat'ons are now widely used in the large-scale numerica

face and monitors the violatioferron of the calculation by computations, including coalescence of binary neutron stars

checking constraints during the evolution [13] and binary black holegL4].
Over the decades, the Arnowitt-Deser-MisfabM) [1] The second and third efforts use similar modifications

. : such as introductions of new variables and/or adjustments of
formulation has been treated as the default by numerical relqhe equations, but differ in their purposes: to construct a

tivists. (More precisely, the version introduced by Smarr andpy herholic formulation or to construct a formulation which

York [2] was taken as the default, which we denote the stanzgnstraints will decay or propagate away. The latter is in-

dard ADM formulation hereafterAlthough the ADM for-  tended to control numerical evolution so that the constrained

mulation mostly works for gravitational collapse or cosmo-manifold is its attractor. While the hyperbolic formulations
logical models in numerical treatments, it does not satisfy thgyave been extensively studied in this direction, we think the
requirement for long-term evolution, e.g., the studies ofworrisome point in the discussion is the treatment of the
gravitational wave sources. nonprincipal part which is ignored in the hyperbolic formu-

As we mentioned in our previous pagdé&], we think we lation. As Kidder, Scheel, and Teukolsk$] reported re-

can classify the current efforts of formulating equations forcently, unless we reduce the effect of the nonprincipal part of
numerical relativity in the following three way$i) apply a the equations we may not gain any advantages from the hy-
modified ADM [Baumgarte-Shapiro-Shibata-Nakamura perbolic formulation for numerical resulf§,15].

(BSSN] formulation[4,5], (ii) apply a first-order hyperbolic Through the series of studi¢8,6,12,16, we propose a
systematic treatment for constructing a robust evolution sys-
tem against perturbative error. We call it an asymptotically

*Electronic address: yoneda@mse.waseda.ac.jp constrainedor asymptotically stablesystem if the error de-
"Electronic address: hshinkai@postman.riken.go.jp cays itself. The idea is to adjust evolution equations using
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constraints(we call this an adjusted syst¢rand to decide II. BSSN EQUATIONS AND THEIR CONSTRAINT
the coefficientgmultipliers) by analyzing constraint propa- PROPAGATION EQUATIONS
gation equations. We propose to apply an eigenvalue analysis A. BSSN equations

of the propagation equations of the constraints, especially in ] )
its Fourier components, so as to include the nonprincipal part e start by presenting the standard ADM formulation,
in the analysis. The characters of eigenvalues will beVhich expresses the space-time with a pair of 3-mefrjc
changed according to the adjustments to the original evolu2nd eXtrinsic curvaturk;; . The evolution equations become

tion equations. We conjecture_d tha_t the c_onstraint violation ﬁ?%,: —20K;;+D,,+D,5, 2.1)
that occurred during the evolution will decéfnegative real
eigs)envalue)sor propagate awagif pure imaginary eigenval- &{AK” - aRﬁDM_F aKKj;—2aK; KX ~DiDa
ues.
This conjecture was confirmed to explain the following +(DiBKyj+(DjBK i+ BDKij, (2.2

numerical behaviors: wave propagation in the Maxwell equa- _ . .
tions[12], in the Ashtekar version of the Einstein equationsVN€ré @.fi are the lapse and shift function amy is the
[12], and in the ADM formulation(flat space-time back- covariant derivative on 3-space. The symisfl means the
ground [16]. The advantage of this construction scheme isiMe derivative defined by these equations, and we distin-
that it can be applied to a formulation which is not a first-guISh them from those of the BSSN equatltﬁﬁs which wil

order hyperbolic form, such as to the ADM formulation be defined in Eqs(2.19—-(2.19. The associated constraints

[3,16]. We think, therefore, that our proposal is an alternative®’® the Hamiltonian constraif and the momentum con-

way to control or predict the violation of constraint®Ve straintsM; :

believe that the idea of the constraint propagation analysis HAPM=RAPM 1 K2 K. K], (2.3
first appeared in Frittellil7], where she derived a hyperbo- .
licity classification for the standard ADM formulation. M iADMz D]-Kji -DiK. (2.4

The purpose of this paper is to apply this constraint propa-
gation analysis to the BSSN formulation, and understand The widely used notatiof4,5] is to introduce the vari-
how each improvement contributes to more stable numericables ¢, , K, A;, T') instead of ¢;; ,K;;), where
evolution. Together with numerical comparisons with the

IR

standard ADM cas¢18,19, this topic has been studied by ¢=(1/12)log(dety;;), (2.9
many groups with different approaches. Using numerical test - 4
evolutions, Alcubierreet al.[20] found that the essential im- vii=€ i, (2.6
provement is in the process of replacing terms by constraints, K= K 2
and that the eigenvalues of the BS®Molution equations =Y R 2.7
have fewer “zero eigenvalues” than those of ADM, and they ~ 4
conjectured that the instability can be caused by “zero eigen- Aij=e K= (113 K], 2.8
values” that violate the “gauge mode.” Millef21] applied o~

gaug i21] app =Tl 2.9

von Neumann'’s stability analysis to the plane-wave propaga-

tion, and reported that BSSN has a wider range of parametersh bl ) ) cul
that give us stable evolution. These studies provide somé"e NeW variablel™ was introduced in order to calculate

support regarding the advantage of BSSN, while it alsdRicci curvature more accuratelj! also contributes to mak-
showed an example of an ill-posed solution in BS@swell  iNg the system reproduce wave equations in its linear limit.
as in ADM) [22]. (Inspired by BSSN's conformal decompo- I the BSSN formulation, Ricci curvature is not calculated as
?rtéoprgsse%\[/ze;a_lzr%l.?ted hyperbolic formulations have also been R{?DM _ (9kF=(j —5iFI|§j+F=jFrk—FLjF|ki , (2.10

We think our analysis will offer a new vantage point on ¢
the topic, and contribute an alternative understanding of its

background. Consequently, we propose a more effective im- RBSSN=R¢ 4+ R.. (2.12)
T i ij o
provement of the BSSN system that has not yet been tried in
numerical S|mulqt|ons. . . . R¢ = _Zbiﬁj(P_Z;ijf)kbk‘P_F‘]'(’DiQD)(Bj(P)
The construction of this paper is as follows. We review
the BSSN system in Sec. I, and also we discuss where the —47,;(D¥*e)(Dye), (2.12
adjustments are applied. In Sec. Ill, we apply our constraint
propagation analysis to show how each improvement works ’ﬁgij = —(1/2);""&076'” +’;,k(i(;j)’fk+’fk’f(ij)k
in the BSSN equations, and in Sec. IV we extend our study e e
to seek a better formulation which might be obtained by + 29T T yem® Y™ il » (2.13

small steps. We only consider the vacuum space-time - . o _ -
throughout the paper, but the inclusion of matter is straightwhereD; is a covariant derivative associated wit . These
forward. are weakly equivalent, biR;>*" does have a wave operator
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apparently in the flat background limit, so that we can expect

more natural wave propagation behavior.

Additionally, BSSN requires us to impose the conformal

factor as

y(:=dety;)=1 (2.14

during the evolution. This is a kind of definition, but can also
be thought of as a constraint. We will return to this point

shortly.

BSSN's improvements are not only the introductions of
new variables, but also the replacement of terms in the evo-
lution equations using the constraints. The purpose of this
paper is to understand and to identify which improvement

works for the stability. Before doing that, we first show the
standard set of the BSSN evolution equations:

I o=—(1/6)aK+(1/6) B'(d;¢) + (i 8), (2.19
5:3;’“ == zaz\ij +3’ik(<71,3k) +;’jk(f7i/3k)
—(213)%i; (B + B (2.19

JPK=—D'D;a+ aA;Al +(1/3)aK?+ ' (5K),
(2.17
JeA;j=—e *(D;Dja) F+e *a(REN T+ aKA;
— 20 A AK + (9 B A+ (9,8 Ay
—(213)(aBHA; + BX( O A, (2.18
IFT'=—2(9;a)Al
+2a[ T, AN - (2/3)y1(9;K) + 6AT(9;)]
—ilBY ") =P (0B — V(9B

+(213 51 (8891. (2.19

PHYSICAL REVIEW D 66, 124003 (2002

H BSSN_ RBSSN+ KZ_ Kl] KI] ,

(2.20

(2.21

where we use the Ricci scalar defined by Ef11). Addi-
tionally, we regard the following three as the constraitite
“algebraic” constraints:

BSSN ADM
M i = M i y

G'=T"—5T,, (2.22
AZ"A”‘;IJ, (223
S=y-1, (2.24

where the first two are from the algebraic definition of the
variables(2.8) and(2.9), and Eq.(2.24) is from the require-
ment of Eq.(2.14). Hereafter, we write+ 35N and A1 BSSN
simply asH and M, respectively.

Taking careful account of these constraints, E@s20
and(2.21) can be expressed directly as

H=e **R—8e **DID;p—8e *(Dl¢)(D;¢)

+(2/3)K2—A;;Al — (2/3) AK, (2.25
M;=6Al(Dje)~2A(Di¢) - (2/3/(DiK)
+ YD Ag). (2.26

In summary, the fundamental dynamical variables in
BSSN are ¢, ,K,A;,I'"), a total of 17. The gauge quan-
tities are @,B'), which is four, and the constraints are
(H,M;,G',A,S), i.e., nine components. As a result, fa@r
by 2) components are left which correspond to two gravita-
tional polarization modes.

B. Adjustments in evolution equations

Next, we show the BSSN evolution equatiofs15—

We next summarize the constraints in this system. Thé2.19 again, identifying where the terms are replaced using

normal Hamiltonian and momentum constraifttse “kine-
matic” constraint$ are naturally written as

dee=dre+(16)ad—(1/12y Y(9;S) 8,
Iy = 0y — (21 ayip A+ (U3 (S By
IeK =K —(5/3)aKA— aH+ae” *¢(D;g)),

IEA; = PR+ (13 ayiK— (2/3)aAy 1A

+[(12) ae™ % (3 yi)) — (1I6)ae™ *¥ Yy (3, S)1G

the constraint$2.20—(2.24).
By a straightforward calculation, we get

(2.27
(2.28
(2.29

+ae (0G5 — (13 ae™*y;(0,GY), (2.30

I = f T +[ = (213)(d;) ' = (213 a(9y") — (U3 2y y 1(9;S) + 4ay (9 ¢) | A~ (213) @y (3 4) + 2a ¥ M,
—(112)(aB) Yy 15,8 + (116)(9;8 Y1y~ X kS) + (L1 (a8 Y Y 1(9;,8) + (5/6) By~ 2y (0 S)(9;S)
+(12) B oy (9;8) + (113 By 19, ¥ (4,S), (2.30)
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whered{* denotes the part of no replacements, i.e., the termgation matrix, respectively. Our guidelines to have “better
only use the standard ADM evolution equations in its timestability” are that(A) if the CAFs have anegative real part
derivatives. (the constraints are forced to be diminishethen we see
From Egs. (2.27—(2.31), we understand that all the more stable evolution than a system which has a positive real
BSSN evolution equations aradjustedusing constraints. part, andB) if the CAFs have aonzero imaginary partthe
This fact will give us the importance of the scaling constraintconstraints are propagating awashen we see more stable
S=0 and the trace-free operatiof=0 during the evolution. evolution than a system which has zero CAFs. We found
As we have pointed out in the case of adjusted ADMheuristically that the system becomes more stable when more
systems[16,3], certain combinations of adjustmentee- A’s satisfy the above criterig6,12. We note that these
placementsin the evolution equations change the eigenval-guidelines are confirmed numerically for wave propagation
ues of constraint propagation equations drastically. For exin the Maxwell system and in the Ashtekar version of the
ample, all negative eigenvalues can be negative real bfzinstein system[12], and also for error propagation in
applying Detweiler’s adjustmeri26] or its simplified ver- Minkowskii space-time using adjusted ADM systeifri$].
sion. One common fact we found is that such a case has éupporting theorems for guideling\) were recently dis-
adjustment which breaks time-reversal parity of the originalcussed31].
equation. That is, with a change of time integration direction The above features of the constraint propagation, Eq.
d— —d,, an adjusted term might become effective if it (3.3, will differ when we modify the original evolution
breaks time-reversal symmetr§This time asymmetric fea- equations. If we addadjus} the evolution equations using
ture was first implemented as a “lambda-system”[Bi.) constraints
Unfortunately, for the case of the BSSN equations, Egs.
(2.27-(2.31), all the above adjustments keep the time- aui=f(u?,gu%, ...)+F(C%gC% ...), (3.9
reversal symmetry, so that we cannot expect direct decays of
constraint violation in the present form. We will give the then Eq.(3.3) will also be modified as
details on this point later.
C*=g(C*g,C% ... )+G(C*a,C ...). (3.6
IIl. CONSTRAINT PROPAGATION ANALYSIS
IN FLAT SPACE-TIME Therefore, the problem is how to adjust the evolution equa-
tions so that their constraint propagation satisfies the above
criteria as much as possible.
We start this section overviewing the procedures and our
goals. In our series of previous work8,12,14, we have B. BSSN constraint propagation equations

concluded that eigenvalue analysis of the constraint propaga- ) . .
tion equations is quite useful for explaining or predicting ©OUr PUrpose in this section is to apply the above proce-

A. Procedures

how the constraint violation grows dure to the BSSN system. The set of the constraint propaga-
- ; i tion equations2,(H,M;,G',A,S)T, turns to be quite lon
Suppose we have a set of dynamical variahlds<',t) a MG A0) q 9
and their evolution equations and not elegan(t is not a first-order hyperbolic and includes
many nonlinear termsand we put them in the Appendix. In
dud=f(udou?, .. .), (3.1)  order to understand the fundamental structure, we hereby

show an analysis on the flat space-time background.

and the(first class constraints For the flat background metrig,,= 7, the first-order

C(ud,q,u?, .. .)~O0. (3.2)  Pperturbation equations of Eq&2.27)—(2.31) can be written
as
For monitoring the violation of constraints, we propose to 0D = — (1/6) DK + (1/6) (k ,— 1) D A 3.7
investigate the evolution equations Gf (constraint propa- t ¢ ' ’
gation, - ~
o My=—2WA; = (213) (x5~ 1) 8;M A, (3.9

C*=g(C*a;,C*, ...). (3.3

) ) WK =—=(9:9.Ba)+ —1)9,Vgi— —1) Dy,
[We do not mean to integrate E¢3.3) numerically, but t (90 ) (k= D)0 = (e = 1) 7M.
rather to evaluate it analytically in advanthn order to ana- (3.9
lyze the contributions of all right-hand-side terms in Eq.

(3.3), we propose to reduce E(.3) in ordinary differential (DR, — (1) RBSSN TF_ (1) ..\ TF

equations by Fourier transformation, A= (R g (DiDja)

+(Ka1—1) 8y(i(d;) NG

3, C*=g(C*)=M“,CP, (3.4)
. —(13)(ka2—1) 8 (aMG"), (3.10
where C(x,t)?= [ C(k,t)” exp(k-x)d°k, and then to analyze
the set of eigenvalues, say,, of the coefficient matrix, &t(l)'fi:_(4/3)((9,(1)}()_(2/3)(,(?1_1)(3‘(1)/4)
M“g, in Eq.(3.4. We call A’s andM“ the constraint am- ' !

plification factors(CAFs) of Eq. (3.3) and constraint propa- +2(kip—1) DM, , (3.11)
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TABLE I. Summary of Sec. Il C: contributions of adjustment terms and effects of introductions of new constraints in the BSSN system.
The center column indicates whether each constraint is taken as a component of constraints in each constraint propagatidnsarialysis
and whether each adjustment is @adj” ). The column “diag?” indicates diagonalizability of the constraint propagation matrix. The right
column shows CAFs, where Im and Re mean pure imaginary and real eigenvalue, respectivel§) Gasedard ADM is shown in[16].

No. Constraintgnumber of componenks diag? CAFs
in text H (1) M; (3) G' (3 A (1) S in Minkowskii background

(0) standard ADM use use yes (0,0,Im,Im)

(i) BSSN no use use use use use yes(0,0,0,0,0,0,0,Im,Im
adjustment

(i) the BSSN use adj usetadj usetadj usetadj usetadj no (0,0,0,Im,Im,Im,Im,Im,Im

(i)  no S adjustment useadj usetadj useradj userad] use no no difference in flat background

(iv)  no A adjustment useadj usetad] userad] use use adj no (0,0,0,Im,Im,Im,Im,Im,Im

(V) nog' usetadj  usetrad] use useadj usetad] no (0,0,0,0,0,0,0,Im,Im
adjustment

(vi) no M; adjustment usead] use use adj usetradj usetradj no (0,0,0,0,0,0,0,Re,Re

(vii) no H adjustment use usead] usetradj usetradj useradj no (0,0,0,Im,Im,Im,Im,Im,Im)

where we introduced parametess, all k=0 reproduce the ments in the BSSN equations, the constraint propagation
no-adjustment case from the standard ADM equations, ansltructure is quite similar to that of the standard ADM formal-
all k=1 correspond to the BSSN equations. We expressm.

them as (i) For the BSSN equations,q= (all 1s),
Kadii=(Kg K5 KK1,KK21 KA1 Kp2 KT 1, KT2) . (3.12) Xears= (0( X 3), = —k?(three pairy),

Constraint propagation equations at the first order in th . . .
flat space—:img tr?er? blecon?: I ! I ?.e., (0(x 3),= pure imaginary(three pairs) The number of
' ' pure imaginary CAFs is increased over that of cageand

3t(1)H:[K;_(2/3) Ki1— (413 K, +2]9; 0’)].(1)_/4 we conclude this is the advantage of adjustments used in the
BSSN equations.
+2(kip—1)(0;MM;), (3.13 (iii ) No S-adjustment case. All the numerical experiments
" so far apply the scaling conditiafi for the conformal factor
K IM=[— (213 k1t (1/2) kpq ¢. The S-originated terms appear many places in the BSSN

_ n 5 Wi+ (D)o equations(2.15—(2.19, so that we suspect nonzefbis a
(13)knz+ (112)]0107G + (112) k997G kind of source of the constraint violation. However, since all

+[(213) ko — (1/2) 10, VA, (3.14  S-originated terms do not appear in the flat space-time back-
_ ground analysi$no adjusted terms in Eq3.7)—(3.11)], our
H MG =2k, DM+ [ — (23 ki1 — (113 k5151 A), analysis is independent of tifconstraint(Note that we do

(3.15 not deny the effect of adjustment in other situations.
' (iv) No A-adjustment case. The trager traceout condi-

5 DS=— ZK}(l)A, (3.16 tior_1 for the variables is al_so considered necesgauy.,[27]).
This can be checked witk,q=(x,x,1,1,1,1,,1), and we
WA= (ka1 kp2) (3,1G)). 31p 9
We will discuss the CAFs of Eq$3.13—(3.17). Xeaps= (0(X 3), + = KkZ(three pair¥),
C. Effect of adjustments independent ofc. Therefore, the effect ofd adjustment is

We check the CAFs of the BSSN equations in detalil. Theu_nimportant according to this analysis, i.e., on flat space-
list of examples is shown also in Table I. Hereafter, we IettIme background(Note that we do not deny the effect of

2 124 124 12 : adjustment in other situations. _
k _.k>f\|+ ky;r_ kztfor Ftourler wive"numbers._rh_ is the start (v) No G'-adjustment case. The introduction bf is the
in g(I[)) oir?t-aolfltjhserztiasr::ucsz?;adjl:] (t?]iszce:;zz). IS1S e start- ey in the BSSN system. If we do not apply adjustments by

G' [Kag=(1,1,0,1,0,0,1,1), then we get
Xears= (0(X7), =\ —k?),

i.e., (0(X7),xpureimaginary(one pai) In the standard .
ADM formulation, which uses %;;,Kj;), CAFs are (0,0, which is the same as caéi¢. That is, adjustments due &
* pure imaginary) 16]. Therefore, if we do not apply adjust- terms are effective to make progress from the ADM method.

XCAFS: (0( X 7)5 * VT k2)1
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(vi) No Mj-adjustment case. This can be checked with Xeaps= (0,2 = K2k p1 k75(2 palirs,
Kag=(1,1,1,1,1,1,%), and we get
+complicated expression,

Xeaps= (0,% V— kk?(two pair9, + complicated expression
+V—Kk3(—1+4k+|1—4k|)l6,

The terms in the first line certainly give four pure imaginary

+V—K¥(—1+4k—|1—4«k|)/6). CAFs (two positive and negative real pairg xaqxi,>0
(<0). Keeping this in mind, by choosingx,g
If «=0, then (0(x7),=\k?3), which is (0(x7), =(1,1,1,1,1x,1,1), we find
+real valug. Interestingly, these real values indicate the ex-
istence of the error-growing mode together with the decaying Xeaps= (0, V—k2(2 pairg,
mode. Alcubierreet al.[20] found that the adjustment due to
the momentum constraint is crucial for obtaining stability. +\=KA(2+ k+|k—4[)/6,

We think that they picked up this error-growing mode. For-
tunately at the BSSN limit{=1), this error-growing mode
disappears and turns into a propagation mode.

(vii)  No H-adjustment case. The setkyg
=(1,1,1,1,1,1,1) gives

+—Kk3(2+ k—|k—4|)16).
Therefore, the adjustmenq=(1,1,1,1,1,4,1,1) gives

Xears= (0,2 V—Kk(4 pairg),

Xears= (0(X3), £\ —k%(3 pairg), o _

which is one step advanced from BSSN’s according our
independently ofk. Therefore the effect of{ adjustment is  guidelines. . _
unimportant according to this analysis, i.e., on a flat space- We note that such a system can be obtained in many
time background(Note again that we do not deny the effect ways, €.9..x,q=(0,0,1,0,2,1,0,1/2) also gives four pairs of
of H adjustment in other situations. pure imaginary CAFs.
These tests are on the effects of adjustments. We will _ _

consider whether much better adjustments are possible in the 2. A system which has negative real CAF

next section. _ . One criterion to obtain a decaying constraint mdte.,
We list the above results in Table (Table | includes a an asymptotically constrained systeis to adjust an evolu-
column of diagonalizability of constraint propagation matrix tjon equation as it breaks time-reversal symméi,3). For

M, the importance of which was pointed out[i81].) The  example, we consider an additional adjustment to the BSSN
most characteristic points of the above @ and (vi),  equation as

which denote the contribution of the momentum constraint

ad!ust_ment and the importance of the new varidblelt is atTYij :&IB;,” +KSDa’;/inv (4.1
quite interesting that the unadjusted BSSN equati@ase
()] does not have apparent advantages from the ADM sys-, . . o : o .
tem. As we showed ifv) and (vi), if we missed a particular which is a similar adjus_tment of the S|mpl|f|ed Detweiler

. " . . type (SD) [26] that was discussed [18]. The first-order con-
adjustment, then the expected stability behavior occasionally,” . !

. traint propagation equations on the flat background space-

gets worse than the starting ADM system. Therefore, W& e become
conclude that the better stability of the BSSN formulations is
obtained by their adjustments in the equations, and the com-
bination of the adjustments is in a good balance. That is, a
lack of their adjustments might fail to bring about the stabil-

MH=9;0; M A~ (312 kspd;0; M H,

ity of their system. FHHM;=(1/6)5; D H+ (1/2)9;9;1G",
IV. PROPOSALS OF IMPROVED BSSN SYSTEMS MG =~ 5N A+ (112 kspdi MH+2DM;
In this section, we consider the possibility of whether we
p y 9D A= — (9, aj(l)a)TF_i_((l)RJBjSSV\})TF’

can obtain a system which has much better properties,

whether more pure imaginary CAFs or negative real CAFs.
0 MS=—2M A+ 3kgpVH,

A. Heuristic examples .
Hnsic examp where we wrote only additional terms to E¢8.13—(3.17).

1. A system which has eight pure imaginary CAFs The CAFs become

One direction is to seek a set of equations which make
fewer zero CAFs than the standard BSSN das®nt (i) in Xcars= (0(X 2), % \—K2(three pair$, (3/2)k?ksp),
the previous sectign Using the same set of adjustments in
Egs.(3.7)—(3.11), CAFs are written in general as in which the last one becomes negative reatdf<<0.
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3. Combination of Secs. IVA1 and IVA2 imaginary (three pairs complex numbers with a negative
Naturally we next consider both adjustments, real part(one paiy), with an appropriate combination &
and Ksp-
d¥ij = ¥ij + ksp Vi H, 4.2
B. Possible adjustments
I A= oA — kgae ¥y g G, (4.3 In order to break time-reversal symmetry of the evolution

equationd3,9,14, the possible simple adjustments éineto
where the second one produces the eight pure imaginaRyyq#, S, or G' terms to the equations of,¢, (95,”_, or
CAFs. The additional terms in the constraint propagauonatl:i’ or (i) to addM; or A terms to3,K or ‘9t’Aij " We write

equations(3.13—-(3.17 are them generally, including the proposal of Sec. IVA2, as

D=9 9.0 g— 9. (1) ~
OCTH= 010 A= (312) kspd0) M, dip= B+ k yrya M+ K ygaD G (4.4
M= (116) g,V H+ (1/2)9;0; G = kg, VG, B 5 B o

' dvyij = ¢ vij + ksp ¥ij H+ kg1 yi; DG

MG = — 9N A+ (1/2) kspd VH+ 2D M; - = - o~

+K;gza”yk(iDj)g +K;Sla”yijS+K';,Sza’DiDjS,

KM A= —3kgd (NGX, (4.5

(Dge — (MW 443 (D) o
9y S= =21 A+ 3ksp N, &tKZ&F’K-i-KKMa'ka(Dij), (4.6
We then obtain - - - - -
f?tAij:ﬁFAij+KAMlaYij(DkMk)+KAMza(D(iMJ'))
XCAFs: (O,i \/_k2(3 paiI’S), ~ ~ o~
+kpm@vijA+ kpasaDiDjA, (4.7)

(314)k?kgp* VK[ — kg + (9/16)k2K3p]),
&tf'i = ﬁ?fi + KfHaBiH—F nglagi
which reproduces Sec. IVA 1 whesp=0, kg=1, and Sec. o o
IVA2 when xg=0. These CAFs can becom@, pure + kigaD'DjG'+ kgzaD'D; G, (4.9

TABLE II. Possible adjustments which make a real-part CAF negd®ee. IV B). The column of adjustments is nonzero multipliers in
terms of Eqs(4.4)—(4.8), which all violate time-reversal symmetry of the equation. The column “diag?” indicates diagonalizability of the
constraint propagation matrix. Neg./Pos. means negative/positive, respectively.

Adjustment CAFs diag? Effect of the adjustment

e KyyaH (0,0, V—K2(*3),8k 4,k?) no k4»<0 makes 1 Neg.

N Kd)gaijkgk (0,0 —KZ(*2),long expressions yes k43<<0 makes 2 Neg. 1 Pos.

ayij Kspavi M (0,0,£ V= K3(*3),(3/2)x 5pk?) yes ksp<<O makes 1 Neg. Sec. IVA2

05’” K;gla}ijijkgk (0,0 —KZ(*2),long expressions yes «5g;>0 makes 1 Neg.

ayij K5eamaD;)G (0,0,(1/4K% K360+ \/k_2(71+ k®K362/16) yes k5, <0 makes 6 Neg. 1 Pos. Sec. IV B2
X(*2),long expressions

075,”. K;Sla}ijs (0,0, \/—kz(*S),SK:/Sl) no k35 <0 makes 1 Neg.

o KsaDiD;S (0,05 V=K%(*3),— k5,5k?) no «3s>0 makes 1 Neg.

K @y (DyM,) (0,00 V=K2(*2), (1/3)kp k> no k<0 makes 2 Neg.
+(1U3)VKA(—9+K3kZ )

ﬁthA'ij KAMla’;/ij(bkMk) (0101i \/_k (*3)1_ KAMlkz) yeS K/-\Ml>0 makes 1 Neg

IR kamea(DaM;) (0.0~ KPkanald® VK2 (= 1+ K kap2/16) yes kan>0 makes 7 Neg Sec. IVB1
X(*2),long expressions

3@” KAAla;’ij-A (0,0 V—K%(*3),3kp 41) yes ka1 <0 makes 1 Neg.

aA; KkasaDD;A 0,0+ V=K%(*3),— ka12k?) yes ka>0 makes 1 Neg.

oI KkfpaD'H 0,0+ V=K%(*3),— ka12k?) no «i;>0 makes 1 Neg.

o ki aG' (0,0,(1/2KFen = [— k2+KF2g1(*2)7|0“9 exp) yes k71 <0 makes 6 Neg. 1 Pos. Sec. IV B2

ol KkfgaDID;g' (0,0~ (1/2)kigo* \/—k2+K§ ¢2(*2),long exp) yes kfg,>0 makes 2 Neg. 1 Pos.

T Kf‘ggaijibjgj (0,0~ (1/2)xf g3+ /—k2+Kf2g3(* 2),long exp) yes ktgz=>0 makes 2 Neg. 1 Pos.
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where’s are possible multipliergall «=0 reduce the sys- the importance of the replacemeatjustmentto the evolu-
tem of the standard BSSN evolution equations tion equation using the momentum constraint, and our analy-
We show the effects of each term in Table II. The CAFs insis clearly explains why they concluded that this is the key.
the table are on the flat space background. We see that seMot only did we find this adjustment, but we also discovered
eral terms produce negative real part in CAFs, which mighthat other adjustments and other introductions of new con-
improve the stability more than the previous systéhable  straints also contribute to making the evolution system more
Il includes again a column of diagonalizability of constraint Stable. We found that if we missed a particular adjustment,
propagation matri¥M. Diagonalizable ones are expected tothen the expected stability behavior occasionally got worse
reflect the predictions from eigenvalue analysis. That is, théhan the ADM system. We further propose other adjustments
eigenvalue analysis with diagonalizable ones definitelyof the set of equations which may have better features for
avoids the diverging possibility in constraint propagationnumerical treatments.
when it includes degenerated CAFs. $8&].) For the read- The discussion in this paper was only in the flat back-

ers’ convenience, we list several of the best candidates herground space-time, and may not be applicable directly to the
general numerical simulations. However, we rather believe

1. A system which has seven negative CAFs that the general fundamental aspects of constraint propaga-
) ) ~ ~ ) tion analysis are already revealed in this paper. This is be-
Simply adding theD ;M) term to thediAjj equation, say  cqse, for the ADM system and its adjusted cases, we found
that the better formulations in the flat background are also
better in the Schwarzschild space-time, while there are dif-
With x>0, the CAFs on the flat background are SeVenferenc_:es in the effective adjusting multipliers or the effective
negative real CAFs. coordinate rangef3,16]. .
We have not shown any numerical tests here. However,
recently, proposalB) in Sec. IV was examined numerically
i ) ) . using linear wave initial data and confirmed to be effective
The below two adjustments will make six negative realfor controlling the violation of the Hamiltonian constraint
CAFs, while they also produce one positive real CA&F \yith our predicted multiplier signaturé28]. Systematic nu-
constraint-violating mode The effectiveness is not clear at yerical comparisons between different formulations are un-
this moment, but we think they are worth testing in ”Ume”'derway[zg], and we expect to have a chance to report them

&t;&ij=&{3SSNAiJ—+KAM2a(E)(iMj)) (49)

2. A system which has six negative CAFs

cal experiments. in the near future. We are also trying to explain the stability
a With «354,<0, of Laguna-Shoemaker’s implemented BSSN sysiaf) us-
~ -~ = ing the constraint propagation analysis.
_ .BSSN - k
OVij=0dc Vi T K502 kPG (4.10 There may not be the ultimate formulation for any models

in numerical relativity, but we believe our guidelines to find

b. With x76,<0, a better formulation in a systematic way will contribute to

Ti_ BSSNRI L L X o progress in this field. We hope the predictions in this paper
o= + ipaDID, G @D il help the community to make further improvements.
Note added in proofRecently, Yoet al.[32] reported that
V. CONCLUDING REMARKS the adjustment of Sec. IV A 2 in this paper is quite effective

for long term stable numerical demonstration of Kerr-Schild

Applying the constraint propagation analysis, we tried to s
ppyIng propag Y space-time.

understand why and how the so-called BS@&umgarte-
Shap|ro-Sh|bata—Nakaml_)reefprmulatlon work; b_etter thap ACKNOWLEDGMENTS
the standard ADM equations in general relativistic numerical
simulations. Our strategy was to evaluate eigenvalues of the H.S. thanks T. Nakamura and M. Shibata for their com-
constraint propagation equations in their Fourier modesments, and he appreciates the hospitality of the Center for
which succeeded to explain the stability properties in manyGravitational Wave Physics, the Pennsylvania State Univer-
other systems in our series of works. sity, where part of this work has been done. H.S. is supported
We have studied step-by-step where the replacements iny the special postdoctoral researchers’ program at RIKEN.
the equations affect and/or newly added constraints work, bfhis work was supported partially by a Grant-in-Aid for Sci-
checking whether the error of constrairiisit exists) will entific Research Fund of Japan Society of the Promotion of
decay or propagate away. Alcubiereeal. [20] pointed out  Science, No. 14740179.

APPENDIX: FULL SET OF BSSN CONSTRAINT PROPAGATION EQUATIONS

The constraint propagation equations of the BSSN system can be written as follows:
dH=[(213)aK + (213) a A+ O JH+[ — 6™ *“a(dyp) Y — 267 *¢(9a) Y¥IM;+[ — 2ae™ **AK 9y — ae ™ *#( ;A ) Y
—e *(g;a) A—e ka0, — (12e * Xy 1(9,S) g+ (1I6)e *¢y 1(9;8 (5 S) — (2/3) e~ *¢(3,,8) ;1G]

+[2ae™ %y YYX(9,0) Adp+ (1I12) ae™ 49y~ 19, 4) Y o, + (112 e 4y~ 1(9,a) y'* Aoy
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+(12)e” %y Y 00,0~ (514 e 4y 2 B Y (9mS) i+ € 4y B (9 Y ) 31k

+(12e ¥y B (0 Y) o+ (31h e ¢y 3B Y (0:9)(9;8) d— (3l4)e ¥y B (Y1) (9,8) ok

+(U3)e ¥y TYPI(9; 8 dpdi— (51126 ¢y YN (0B (6:5) g5+ (L13)e ¥y~ H(ay1) (9,894

—(UB)e*y Y™ (941 B) Im] S+ [ (419) aK A~ (8/9) aK?+ (4/3) e~ *#(d;0;0) Y + (8I3) ae™ **(d0) (9 4'¥)

+ae (Y1) o+ 8ae * Y9, 0) o+ ae” YK, 9+ 8”44 (51a) (9k) Y+ e 44 (5a) (9 )

+2e7 (g a) Y o +e Y (5 10ka)] A, (A1)
GM=[—(13)(dia) + (1/6) 3 JH+ aK M +[ ae™ ¥ ™(30) (9 ymi) — (1/2) e T {Y (9] Ymi)

+(12) e Y™ 90; ymi) + (12 ae™ 4y~ 2(5,8)(9;8) — (L4 ae™**(dyia) (3} Y) + ae ™ ** Y™ (94@) Vi Om

+ae *(3,0) 0 — (L2 ae” *T Yy iom+ ae™ *y™ i o+ (112) ae™ *¢y Ky 0,0, + (1/2) e~ * Y™ 9, ¥im)

X(dga)+(112)e”**(3;a) g+ (12)e~ **y™ ;i () dm] G+ [~ AX(da) + (119 (da) K+ (419) a( d;K)

+(1/9)aK d;— aAX 4 A, (A2)

3G'=2aY I Mj+[— (12 By 2(9,:8) d— (112) BXY (9 Ymn) Y™ v~ 201+ (1/2) B9y 20,0,

—(U2)(9mB) Y™y Lo+ (113)(3,8) Yyt ]S+ +4ay (Dje) — ayld,— (dka) Y*]A, (A3)
0 S=+ BX(9,S) — 2ay A, (A4)
3 A= (aK+ B A. (A5)

The flat background linear order equations, E§s13—(3.17), were obtained from these expressions.
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