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Curvature of the universe and the dark energy potential
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The flatness of an accelerating universe mddkaracterized by a dark energy scalar fig)dis mimicked
from a curved model that is filled with, apart from the cold dark matter component, a quintessencelike scalar
field Q. In this process, we characterize the original scalar potevi{i@l) and the mimicked scalar potential
V(x) associated with the scalar fiel@sand y, respectively. The parameters of the original model are fixed
through the mimicked quantities that we relate to the present astronomical data, such as the equation of state
parametemw, and the dark energy density paramefsy.
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[. INTRODUCTION esting question to ask is whether this flatness is due to a sort
of compensation among different components that enter into
At the moment, we do not precisely know the amount ofthe dynamical equations. In this respect, our main goal in
matter present in the universe, and we do not as yet knowhis paper is to address this sort of question. In the literature,
what the geometry of the universe is. Astronomical observawe have found some descriptions along these lines. For in-
tions conclude that the matter density related to baryonic angtance, closed models with an important matter component
nonbaryonic cold dark matter is much less than the criticalVith equation of state given by = —p/3 have been studied.
density valug1]. However, measurements of anisotropy in Here, the universe expands at constant sp&ejl Other au-
the cosmic microwave background radiation indicate that thd0rs, by using the same properties for the universe, have
total matter present in the universe is very much the same ¢lded a nonrelativistic matter density in whi€ly is less
its critical value[2—5]. These measurements agree with thethan 1'. thus describing an open univefse]. Also, flat de-
theoretical prediction of inflationary universe scenafiék ;:eleratlr}lg] |]:ncr)]dels ha\(/jelbgenh5|mula[é%].hThe common
which predict that our universe should become flat after Ieav-aCt In all of these models is that, even | t € sta.rtlng geom-
ing the inflationary era. In light of these results, it seems tha |gty gpggﬁqeerltrisegu;\t/?gxeréﬂmf? dels are indistinguishable from
there exists an important amount of matter that we are not In this paper, we wish to c,:onsider universe models that

considering. have curvature and are composed of two matter components.
On the other hand, recent measurements of type la SUPESpe of these components is the usual nonrelativistic dust

nova at high redshift indicate that our universe is acceleratmatter; the other corresponds to a sort of quintessence-type

ing [7,8]. The simplest description of this acceleration is thatmatter, described by a scalar field that we designat€®by

it can be characterized as a cosmological constant, whiclthis field is fundamental in the sense that it is introduced

contributes to a negative pressure. Other approaches hai@m a Lagrangian. In order to mimic a flat quintessence

been employed to explain this acceleration. We distinguiskcDM, we introduce a new scalar fiejd such that this field

the one related to the quintessence model. This model ig constrained by recent astronomical data. Therefore, in a

characterized by an evolving scalar figlaand its scalar-field  flat background the scalar fielg together with the CDM

potentialV(x) [9]. component form the basis for th& DM model, a model that
Any cosmological model becomes characterized by thes restricted by the present observations. In this way, it is the

total matter density paramet@ . This parameter is defined scalar fieldy, not theQ field, that is related to the observable

by the ratio between the total mattes+) and the critical —quantities[13]. Thus, we assume that the effective equation

energy pc) densities. For instance, in the case of theof state fory is given byP,=w,p,, wherew, is the ob-

cosmological constantX) cold dark matte(CDM) model,  servable effective equation of state paramé&dr We note

this parameter is given byQr=Qy+Q,, in which that the astronomical observatiofrslated to the type la su-

Qu=pm/pc=(87GI3HY)pY and Q,=(A/87G)llpc  pernovae measuremehtsut an upper limit on the present

= A/3Hj. Here,p}y is the actual value of the nonrelativistic value of this parametewy, < — 3 [8].

matter density andl, is the actual value of the Hubble pa-  We also assume that the scalar fi€lds characterized by

rameter() , is the fraction of the critical energy density con- a similar equation of state,

tained in a smoothly distributed vacuum energy referred to as

A, andQ)y, represents the matter density related to the bary- Po=Wgpq, (1)

onic and nonbaryonic CDM densities. The consi@ris the

Newton constant, and we use=1 for the speed of light. where the parametew,, is, in general, a variable quantity.

From now on, all quantities with upper or lower zero indexesTherefore, our goal in this paper is to investigate the condi-

specify current values. tions under which a scenario with positier negative cur-
Because of measurements and theoretical arguments, viiture may mimic a flat universe at low redshifts. This ap-

seems natural to consider flat universe models, but one inteproach forces us to determine the exact contribution of the
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scalar fieldQ, together with the curvature term, that gives We introduce its average pressi?g by means of
rise to the flat quintessence acceleratipgDM universe.
However, we should comment that absorbing the curvature
term in a redefinition of th€ field is certainly not equivalent

to getting a really flat universe, since the curvature is a geo-
metrical property, which follows directly from the metric These two latter quantities are related by the equation of
tensor and which enters into the Friedmann-Robertsonstate, Eq(1). Thus, expressiofb) becomes

Walker (FRW) line element. As we mentioned above, these .

two models become indistinguishable only for low redshifts pqt3H(pg+Pq)=0, 9

and are similar to the cases studied in REf4,12. We will ) o ]

return to this point later on. Here, we emphasize that oufVhich, similar to the ordinary matter, represents an energy

approach rests on the fact that there is a clear similitug@@l@nce for the scalar fiel@. From now on, we consider the
between the curvature and the flat universe models at lo@rdinary matter to correspond to dust, which becomes char-

1.
Po=5Q7-V(Q). ®

redshift. acterized by the equation of stddg,=0. For this case, we
could solve the energy E€p) analytically, in which case we
-3
Il. THE DYNAMIC FIELD EQUATIONS getpy=a °. o .
Summarizing, we have a combination of two noninteract-
We start with the following effective action: ing perfect fluids: one, a dust matter componeny,X; the

other, the scalar fieldp;) component.

1 1 Equation(4) may be written as
— | gty =4l 2
. . . 2_ 142 Pwm PQ ag)?
whereR is the scalar curvatura/(Q) is the scalar potential H=Hg| Qm| | + Qq| 5 | + Q& L (10
associated to the fiel®, andL,, is related to any ordinary Pm Pq

matter component.

We shall assume that tiigfield is homogeneous, i.e., itis
a time-depending quantity onl@=Q(t), and the spacetime
is isotropic and homogeneous, with the metric correspondin&
to the Friedmann-Robertson-Walker metric

Here, the actual curvature densffy, and the quintessence
density () parameters are defined Wy,=—k(1/ay Ho)?
ndQq=(87G/3H})pQ, respectively.
In the next section, we study the model that arises when
the matter componenty, together with Egs(4), (5), and the
2 equation of state for the fiel@ complement each other in
+r2(d@?+sirfede¢?)|, (3) such a way that a flat CDM accelerated universe originates,
1—kr? specifically theyCDM model.
In order to simulate a flat universe, we assume that the
energy densityq and the curvature term combine so that

ds?=dt>—a(t)?

wherea(t) represents the scale factor and the paramieter
takes the valuek=—1,0,1 corresponding to an open, flat,

closed three-geometry, respectively. With these assumptions, 87G K 87G
the action(2) yields the following field equations: the time- ——po(t)— 5 =——p,(1), (11
time component of the Einstein equation, 3 a%(ty 3
s7G k or equivalently,
H2:T(9M+PQ)__2; 4
a 2
pPQ ao Px
. . ] QQ o +Qk - :QX(_O)’ (12)

the evolution equation for the scalar fie@ PQ Py

.. . aV(Q) where, similar to the definitions d2, and ), we have

Q+3HQ=~— Q ) defined ), = (8G/3H3)pY. This latter quantity is related

to the recent astronomical measurement of distant supernova
and the energy conservation law for the ordinary matter, of type la.
) Note that we can get an explicit expressi@as a function
pm+3H(py+Py)=0. (6)  of time) for the unknown energy density, , if we know
both the scale factoa(t) and the time dependence of te
In these equations, the overdots denote derivatives with retensity,po. Note also that fo2,>0 (open universéswe
spect tat, H=a/a defines the Hubble expansion rate, agd  must haver>(|Qk|/QX)p§’((aO/a)2, sincepg>0. At this
andpg are the effective matter energy density and the averpoint we should comment on the difference between the two
age energy densities, respectively. TQesnergy density is scalar field€Q andy. As we saw, the scalar field is defined
defined by from the fundamental Lagrangian, from which we could de-
fine the stress-energy density tensor with the property of a
=£Q2+V(Q) % perfect fluid behavior, which allows us to introduce the pres-
PQ™3 ' sure Py. However, we could not say the same for The
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definition of the stress-energy density tensor associated with When the quintessence component has a constant equa-
the y field is more subtle, as we can see in Etfl) [or Eq. tion of state parametarv , Which is a negative number
(12)]. We hope to address this problem in subsequent workhat lies in the range- 1<w < 0.3, we could immediately
Here, we just take®, as an effective pressure that follows solve for the density, as a function of the scale factor,

the equation of stat@ =w,p,, Wherew, is determined

from the observat|onal data. ag| 3wy
px(a):pCQX g (17)
I1l. CHARACTERISTICS OF THE MODEL
) ) o o N Thus, Eq.(13) becomes
In this section, we will impose explicit conditions under
which a curved universekE = 1) may look similar to a flat ag| 32 ag| "x
universe k=0) at low redshift. This flat model is defined by H(a) Ho( ) Ou+Qy ;) : (18
expression11) [or (12)], which reduces the time-time Ein-
stein Eq.(10) to The solution of Eq(18) is given by
312
H2=HZ Q,, (pM +0Q, ) 139 =2 (2
Pwm pX 3H0\ QM aO
Equations(12) and (13), along with the evolution equa- 1 1 Qe+ Q0| [ a — 3wy
tions for the scalar fieldy and Q, form the basic set of A it vt Ko vyt R ot )
. . WX WX M Qo
equations that describes our model.
Note that, when Eq(12) is evaluated at the present time, (19
\évttzrts)btaln the following relation among the omega params where ,F; represents the generalized hypergeometric func-

tion. The initial condition that we have used in solving Eq.

Qo=0,- Q. (14) (18) isa=0 att=0.

We use the definition oP, andp, in terms of the scalar
From this relation we observe that, far=1, Qg must be field y, together with the equation of state that relates these
greater tharf), sinceQ,_,;<0. Fork=—1, O,>0, thus quantities, to obtairy as a function of the scale factor. The
Q,>Qq. Notice also that Eq(13) gives the additional ex- result is
pressionQy+,=0;=1 when evaluated at the present
time. From the present observational value<)gf and (),
we could get the actual value of the parametks. Note

also that when Eqg10) and(13) are compared, we observe

x(@)=xo P

; 113 [Q+Q 3wy
that the variablepy andH [and also the scale facter as 2,;1(_ =2 kT25Q) [ & )
we can see from Eqd1) or equivalently Eq.(12)] appear 2'2°2° Qym ag
identicalin the two scenarios. X 113 Qe+ Qg '

In order to see that a curvature model at low redshift is oFil 5,555~

S : 2'2'2 Qum
indistinguishable from a flat one, we could consider the lu-
minosity distanceD, as a function of the redshift or the (20
angular distancgl2]. Let us take the first one. The luminos- o
ity distance between a source at a redshift0 andz=0  Wherexo is given by
related to a curvature model is obtained from the expression

P L (113 (040

Xo=Xx2F1| 5,550~ a0y ||

D0z Fsm J€(2)]. (15)
with X=_\/4_pc/9Hé\/(Qk+QQ)(1+WX)/QMW)2(. _
For a flat universe model, we obtain In a similar way, we get for the scalar potentia]

0 a 3(1+wy)
V@) =V,| =

DI~ %2)x(1+2)&(2). (16)

, (21)

In these expressions, we have defingd) by means of

&(z)=1lagf§dz/H(z), which represents the polar- WhereVO 11— W) pc(Qy+ 0g).

coordinated distance between a source ahd another at Flgure 1 shows the plot of the scalar potentg) as a

=0 in the same line of sight. Fa<1, we could show that function of y, for three different values of the equation of

£(z)=z. Thus, sincdQ,|<1 we observe that the luminosity state parametew,. The parameters),(=Q,+Qg) and

distance in both cases coincides. Qy have been fixed at values 0.65 and 0.35, respectively.
Therefore, we expect that the differences between the cuithis form of potential has been described in the literature

vature and the flat models happen to high enough redshiftd.14]. Note that, in the limitw,——1 the potentialV,
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FIG. 1. This graph shows the scalar potentiglas a function of
the scalar fieldy for w,=—0.7, —0.8, and—0.9. We use(ly 0.0 I ! ! L
=0.35 and(2,=0.65. 00 02 04 06 08 1.0

—constEpc(l,, i.e., the model becomes equivalent to the . .
cold dark matter scenari®]. FIG. 2. This graph represenf3, as a function of(},, for the

During the evolution of this model, we distinguish two range oftoHo:O.94i_O.l4 for three dif‘fereﬂt vr:tjluzla(s of the equation
periods: one, where the regular matter dominates, ( Statedpat‘ramft(i“gg ;r?]'_(i:&_lz.gt.t gl.e arh regtlr?n %Orre' )
>p,); the other, where >p,, . Itis not hard to see that the Sponds tow, == 1.9, The vertical dotled fines show the observa
CPx ) X L tional range for the,, parameter.
time at whichpy becomes equal tp, is given by

2 Q| Y2y of the w, parameter. For completeness, we have chosen
teq=—<—) (5=0.85 and(2,=0.65 in this plot, i.e., we have consid-
3HoVQy | Oy ered a closed model.
1 1 1 The scalar fieldQ results in
XoF1 E'_Z_Wx;l_z_wx;_l)' (22)

3
Notice that the age of the universe in this model is given 1+ EB(1+WX)X*(1+3WX)
by Q(a)=Q dx,
0

Q
X —(1+3w,)
X+ _QM X X
, (29 (25

2 F(l 1 10,
0 3HOI_QM21

2" 2w, 2w, Qy
where, similar tote,, it depends on the observable param-\ hereQ= JUamG([Q]10).

etersQl,, Qy, andw, . ForQy=0.3,Q,=0.7, andw, = The scalar potentiaVo(a), is found to be given b
—0.8, this giveggHy~0.93, which lies in the observational P Vol@), g 4

rangetoHy=0.94+0.14 of the measurement of the age of

the univers¢15]. Figure 2 shows), as a function of2 for 0.0 ' 0.20.85 '
the range oftyH, specified above. The dark region repre- e~
sents the valuev,=—0.9. (,=0.65

We are now going to describe the properties of the scalar -0.5
field Q. Following an approach analogous to that used for the ~
scalar fieldy, we find that the parametevg is given by 3

PR Lo,
o[ 1t8 1_3'8WX(a_o)
wo(a)=—|wg)| 1-3pw, A 3T | -1.5 . .
S P 0 10 20 30
(24) z

0. . FIG. 3. The graph showsg (in unit of |w°Q|) as a function of
whereg=0Q, /|Q,| andwy, is the actual value ofig defined  he redshifiz for three different values of the equation state param-
by wg="PQ/pg. Figure 3 shows its dependence with the eter,w,=—0.7,-0.8,-0.9. We have used the valugy="0.85
redshiftz defined az=ay/a—1, for three different values and(,=0.65, corresponding to a closed mode!.
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20 3la 3la
I a + a +
0 0 o| [ <0
: P(a)=P\|a_| — ta|tapl|l = —1},
I (29)
15F
where the constantﬁg and Pg’( represent the actual energy
2 3 density and pressure, respectively, and are related to an arbi-
e 1or trary integration constant. From these two latter relations, we
- get
5 C a 3la a 3la
I W, la_ | — ‘o, |ta_||— -1
0: I , , W)((a): . @ 3/a++a Wa @ 3/a+_1 ’
0.5 1.0 15 2.0 2.5 * - Xt a
Q (30)

FIG. 4. The graph showgg, (in unit of pc/2) as a function o . 0 o
(in unit of 1\/47G) for three different valuew, = —0.7,-0.8, and ~ Where, just as before, we take,=P)/p, . Note that for

—0.9. We use the value8,=0.85,,=0.65, and},=0.35as- w,=a /a, we getw,(a)=w,=const This case corre-

socialted with a closed model. sponds to usingg=0 in Eq. (27). As we will soon see, this
case allows us to write down an explicit expression for the
a| ~(@+3wy quintessence scalar potenti®l(x). Throughout this paper,
a2 4T3B(L-wy| we will address this case only.
VQ(a)=V%<—O> 0 , We could solve the time-time Einstein equati@iB) to
a 4+36(1-w)) obtain in this case
(26)
where V°Q=[pc99/2(1—wx)][4/_3+ B(1—w,)]. Fi_gure 4 o i 2 a 12 E a 5_ & a 3a_la,
shows the potentia¥y as a function of the scalar fiel@ for Ho \/Q_M a0 2 U2 6 Qylag

three different values ofv, . Again, we have considered a

closed model with(),=0.85, y=0.35, and{},=0.65.

For open models, i.e., fofl, >, these curves are very . .

similar. The quintessence scalar figldn terms of the scale factor
Note that the potential decreases wi@rincreases. We IS given by

observe that this potential asymptotically tends to vanish for

a—oo. This implies that, asymptotically, the effective equa- a a
- : - =Xxo+ inh 8| —V1+6°—\/1+ 6% —
tion of state becomeBy= pq, (for Q+0), corresponding to x(@)=xo+e arcsin a0 a0 ||

a stiff fluid. (32

(31

IV. THE QUINTESSENCE SCALAR POTENTIAL where

One of the possible modifications to the basic idea of

quintessence includes the use of other potentits-18. It 2 2\/9 1 O\ 13w,
. . . . . . . . X X
may be interesting to investigate the situation in which the €= 3H—|w| 0 a +ta. and o= 0. .
scalar potentiaV(y) is of the form[19] ofx x oo M
V(x)=ax?+y (27) Equation(32) allows us to write down an explicit expres-

sion for the dark energy scalar potenti&ly). We get
where @ and y are two constants. We may writg as y

=(a,—a+WX)pg, wherea. =3+ a. S Slay
Combining EQq.(27) with the evolution equation for the V(X)=Vj'({ - — - ] , (33
field y, we gety as a function of the scale factar and thus sinffe™~(x ~xo) T-arcsintid)]
we get
whereV? represents the actual value of this potential. The
0 ag) 3+ o @0 ¥ hyperbolic potentia(33) has been used in the literatyr9—
p(B)=py @y a ta_|ta Py a -1 21]. This potential was studied for getting a tracker solution
(28)  from the corresponding field equations.
One of the characteristics of the scalar fi€lds given by
and the equation of state parameteg(a), which is given by

123513-5



SERGIO del CAMPO PHYSICAL REVIEW D66, 123513(2002

wo(a) For w,<—-1/3(1+Q/Q,), the parameterg, becomes
3 ) negative, in agreement with the observed acceleration of the
ao a4 ao .
(BwWQ+1) (W, +1a_ | — +(w°Q—wX)( g) universe.
= K1 o) 2
0 0
(Bwo+)(wy+1l)a- g) _(WQ+WX)(E) V. CONCLUSIONS

(34 In this paper we have described a curvature universe

Here, the quantities/d are defined by model in which, apart from the usual CDM component, we
Q have included a quintessencelike scalar fi€ldWe have

W0 :wXQX+ 03

Q Q,—Q

10, 1 fine-tuned the energy density, associated with this field, to-
=Wyt 3 Q_Q_g’ (39 gether with the curvature, for mimicking a flat model which
resembles the quintessen@e dark energy yCDM model,

where we have used the relatiéh + Qo= in the latter  which is characterized bf)=Qy+Q,=1. We have as-

expression. _ . sumed forQ an effective equation of staly=wgqpqg, With
~ With x=ala,, the scalar potential associated to e \,<0. We have determined the form of the potential asso-
field is given by ciated with this field, which effectively has the property of a
quintessence potential, i.e\/(Q) decreases whe® in-
ol [@+ta- 2 Oy . .
Vo(X)=pq| | —5— (1+WX)X73’“+—— — X2, creases, approaching zero asymptotically. Under the assump-
2 3y tion that the equation of state parameter was constant, we

(36) could describe explicitly the characteristics of the dark en-
and the corresponding scalar fielis expressed by means €rgy scalar fieldy. Certainly, the basic idea of quintessence

of the following integral: rests on the determination of the scalar potential as a func-
tion of this field.

\/pOQ 1dz Under an appropriate ch_oice for the dark energy scalar

QX =—1"| potential, V(x) (in terms of ), we determine an explicit

0Jx Z . . . . .
expression for this potential as a function yaf In this case,
QO 20 we also gave an expression for the scalar fi@ldand its
X_—3a_la k . . .

(1+WX)Q—Z - +—§Q—Z potential. Here, we determine the deceleration parameter
X Q Q_ which, under an appropriate choice of the parameters that

characterize the model, became positive, in agreement with

Q
1+(1+w)~Xa, z7 3« /o _ _ .
( x) " the acceleration detected by astronomical observations.

Oy
(37
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