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Curvature of the universe and the dark energy potential

Sergio del Campo
Instituto de Fı´sica, Universidad Cato´lica de Valparaı´so, Casilla 4059, Valparaı´so, Chile

~Received 3 July 2002; published 27 December 2002!

The flatness of an accelerating universe model~characterized by a dark energy scalar fieldx) is mimicked
from a curved model that is filled with, apart from the cold dark matter component, a quintessencelike scalar
field Q. In this process, we characterize the original scalar potentialV(Q) and the mimicked scalar potential
V(x) associated with the scalar fieldsQ andx, respectively. The parameters of the original model are fixed
through the mimicked quantities that we relate to the present astronomical data, such as the equation of state
parameterwx and the dark energy density parameterVx .
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I. INTRODUCTION

At the moment, we do not precisely know the amount
matter present in the universe, and we do not as yet kn
what the geometry of the universe is. Astronomical obser
tions conclude that the matter density related to baryonic
nonbaryonic cold dark matter is much less than the crit
density value@1#. However, measurements of anisotropy
the cosmic microwave background radiation indicate that
total matter present in the universe is very much the sam
its critical value@2–5#. These measurements agree with t
theoretical prediction of inflationary universe scenarios@6#,
which predict that our universe should become flat after le
ing the inflationary era. In light of these results, it seems t
there exists an important amount of matter that we are
considering.

On the other hand, recent measurements of type Ia su
nova at high redshift indicate that our universe is accele
ing @7,8#. The simplest description of this acceleration is th
it can be characterized as a cosmological constant, w
contributes to a negative pressure. Other approaches
been employed to explain this acceleration. We distingu
the one related to the quintessence model. This mode
characterized by an evolving scalar fieldx and its scalar-field
potentialV(x) @9#.

Any cosmological model becomes characterized by
total matter density parameterVT . This parameter is define
by the ratio between the total matter (rT) and the critical
energy (rC) densities. For instance, in the case of t
cosmological constant (L) cold dark matter~CDM! model,
this parameter is given byVT5VM1VL , in which
VM5rM

0 /rC5(8pG/3H0
2)rM

0 and VL5(L/8pG)1/rC

5L/3H0
2. Here,rM

0 is the actual value of the nonrelativist
matter density andH0 is the actual value of the Hubble pa
rameter.VL is the fraction of the critical energy density co
tained in a smoothly distributed vacuum energy referred to
L, andVM represents the matter density related to the ba
onic and nonbaryonic CDM densities. The constantG is the
Newton constant, and we usec51 for the speed of light.
From now on, all quantities with upper or lower zero index
specify current values.

Because of measurements and theoretical argumen
seems natural to consider flat universe models, but one in
0556-2821/2002/66~12!/123513~7!/$20.00 66 1235
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esting question to ask is whether this flatness is due to a
of compensation among different components that enter
the dynamical equations. In this respect, our main goa
this paper is to address this sort of question. In the literat
we have found some descriptions along these lines. For
stance, closed models with an important matter compon
with equation of state given byP52r/3 have been studied
Here, the universe expands at constant speed@10#. Other au-
thors, by using the same properties for the universe, h
added a nonrelativistic matter density in whichVT is less
than 1, thus describing an open universe@11#. Also, flat de-
celerating models have been simulated@12#. The common
fact in all of these models is that, even if the starting geo
etry presents curvature, all models are indistinguishable fr
flat geometries at low redshift.

In this paper, we wish to consider universe models t
have curvature and are composed of two matter compone
One of these components is the usual nonrelativistic d
matter; the other corresponds to a sort of quintessence-
matter, described by a scalar field that we designate byQ.
This field is fundamental in the sense that it is introduc
from a Lagrangian. In order to mimic a flat quintessen
CDM, we introduce a new scalar fieldx, such that this field
is constrained by recent astronomical data. Therefore,
flat background the scalar fieldx together with the CDM
component form the basis for thexCDM model, a model that
is restricted by the present observations. In this way, it is
scalar fieldx, not theQ field, that is related to the observab
quantities@13#. Thus, we assume that the effective equat
of state forx is given byPx5wxrx , wherewx is the ob-
servable effective equation of state parameter@9#. We note
that the astronomical observations~related to the type Ia su
pernovae measurements! put an upper limit on the presen
value of this parameter,wx,2 1

3 @8#.
We also assume that the scalar fieldQ is characterized by

a similar equation of state,

PQ5wQrQ , ~1!

where the parameterwQ is, in general, a variable quantity
Therefore, our goal in this paper is to investigate the con
tions under which a scenario with positive~or negative! cur-
vature may mimic a flat universe at low redshifts. This a
proach forces us to determine the exact contribution of
©2002 The American Physical Society13-1
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scalar fieldQ, together with the curvature term, that giv
rise to the flat quintessence acceleratingxCDM universe.
However, we should comment that absorbing the curva
term in a redefinition of theQ field is certainly not equivalen
to getting a really flat universe, since the curvature is a g
metrical property, which follows directly from the metri
tensor and which enters into the Friedmann-Roberts
Walker ~FRW! line element. As we mentioned above, the
two models become indistinguishable only for low redsh
and are similar to the cases studied in Refs.@11,12#. We will
return to this point later on. Here, we emphasize that
approach rests on the fact that there is a clear similit
between the curvature and the flat universe models at
redshift.

II. THE DYNAMIC FIELD EQUATIONS

We start with the following effective action:

S5E d4xA2gF 1

16pG
R1

1

2
~]mQ!22V~Q!1LM G , ~2!

whereR is the scalar curvature,V(Q) is the scalar potentia
associated to the fieldQ, andLM is related to any ordinary
matter component.

We shall assume that theQ field is homogeneous, i.e., it i
a time-depending quantity only,Q5Q(t), and the spacetime
is isotropic and homogeneous, with the metric correspond
to the Friedmann-Robertson-Walker metric

ds25dt22a~ t !2F dr2

12kr2
1r 2~du21sin2udf2!G , ~3!

wherea(t) represents the scale factor and the parametk
takes the valuesk521,0,1 corresponding to an open, fla
closed three-geometry, respectively. With these assumpti
the action~2! yields the following field equations: the time
time component of the Einstein equation,

H25
8pG

3
~rM1rQ!2

k

a2
; ~4!

the evolution equation for the scalar fieldQ,

Q̈13HQ̇52
]V~Q!

]Q
; ~5!

and the energy conservation law for the ordinary matter,

ṙM13H~rM1PM !50. ~6!

In these equations, the overdots denote derivatives with
spect tot, H5ȧ/a defines the Hubble expansion rate, andrM
andrQ are the effective matter energy density and the av
age energy densities, respectively. TheQ-energy density is
defined by

rQ5
1

2
Q̇21V~Q!. ~7!
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We introduce its average pressurePQ by means of

PQ5
1

2
Q̇22V~Q!. ~8!

These two latter quantities are related by the equation
state, Eq.~1!. Thus, expression~5! becomes

ṙQ13H~rQ1PQ!50, ~9!

which, similar to the ordinary matter, represents an ene
balance for the scalar fieldQ. From now on, we consider th
ordinary matter to correspond to dust, which becomes c
acterized by the equation of statePM50. For this case, we
could solve the energy Eq.~6! analytically, in which case we
get rM}a23.

Summarizing, we have a combination of two nonintera
ing perfect fluids: one, a dust matter component (rM); the
other, the scalar field (rQ) component.

Equation~4! may be written as

H25H0
2FVMS rM

rM
0 D 1VQS rQ

rQ
0 D 1VkS a0

a D 2G . ~10!

Here, the actual curvature densityVk and the quintessenc
density VQ parameters are defined byVk52k(1/a0 H0)2

andVQ5(8pG/3H0
2)rQ

0 , respectively.
In the next section, we study the model that arises wh

the matter componentrM together with Eqs.~4!, ~5!, and the
equation of state for the fieldQ complement each other in
such a way that a flat CDM accelerated universe origina
specifically thexCDM model.

In order to simulate a flat universe, we assume that
energy densityrQ and the curvature term combine so tha

8pG

3
rQ~ t !2

k

a2~ t !
5

8pG

3
rx~ t !, ~11!

or equivalently,

VQS rQ

rQ
0 D 1VkS a0

a D 2

5VxS rx

rx
0D , ~12!

where, similar to the definitions ofVM and VQ , we have
definedVx5(8pG/3H0

2)rx
0 . This latter quantity is related

to the recent astronomical measurement of distant supern
of type Ia.

Note that we can get an explicit expression~as a function
of time! for the unknown energy density,rx , if we know
both the scale factora(t) and the time dependence of theQ
density,rQ . Note also that forVk.0 ~open universes! we
must haverx.(uVku/Vx)rx

0(a0 /a)2, sincerQ.0. At this
point we should comment on the difference between the
scalar fieldsQ andx. As we saw, the scalar fieldQ is defined
from the fundamental Lagrangian, from which we could d
fine the stress-energy density tensor with the property o
perfect fluid behavior, which allows us to introduce the pre
sure PQ . However, we could not say the same forx. The
3-2
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CURVATURE OF THE UNIVERSE AND THE DARK . . . PHYSICAL REVIEW D66, 123513 ~2002!
definition of the stress-energy density tensor associated
the x field is more subtle, as we can see in Eq.~11! @or Eq.
~12!#. We hope to address this problem in subsequent w
Here, we just takePx as an effective pressure that follow
the equation of statePx5wxrx , where wx is determined
from the observational data.

III. CHARACTERISTICS OF THE MODEL

In this section, we will impose explicit conditions und
which a curved universe (k561) may look similar to a flat
universe (k50) at low redshift. This flat model is defined b
expression~11! @or ~12!#, which reduces the time-time Ein
stein Eq.~10! to

H25H0
2FVMS rM

rM
0 D 1VxS rx

rx
0D G . ~13!

Equations~12! and ~13!, along with the evolution equa
tions for the scalar fieldsx and Q, form the basic set of
equations that describes our model.

Note that, when Eq.~12! is evaluated at the present tim
we obtain the following relation among the omega para
eters:

VQ5Vx2Vk . ~14!

From this relation we observe that, fork51, VQ must be
greater thanVx , sinceVk51,0. For k521, Vk.0, thus
Vx.VQ . Notice also that Eq.~13! gives the additional ex-
pressionVM1Vx[VT51 when evaluated at the prese
time. From the present observational values ofVx andVk ,
we could get the actual value of the parameterVQ . Note
also that when Eqs.~10! and~13! are compared, we observ
that the variablesrM andH @and also the scale factora, as
we can see from Eq.~11! or equivalently Eq.~12!# appear
identical in the two scenarios.

In order to see that a curvature model at low redshif
indistinguishable from a flat one, we could consider the
minosity distanceDL as a function of the redshiftz or the
angular distance@12#. Let us take the first one. The lumino
ity distance between a source at a redshiftz.0 and z50
related to a curvature model is obtained from the expres

DL
kÞ0~z!}

~11z!

AuVku
sin@AuVkuj~z!#. ~15!

For a flat universe model, we obtain

DL
k50~z!}~11z!j~z!. ~16!

In these expressions, we have definedj(z) by means of
j(z)51/a0*0

zdz/H(z), which represents the pola
coordinated distance between a source atz and another atz
50 in the same line of sight. Forz!1, we could show that
j(z)}z. Thus, sinceuVku!1 we observe that the luminosit
distance in both cases coincides.

Therefore, we expect that the differences between the
vature and the flat models happen to high enough redsh
12351
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When the quintessence component has a constant e
tion of state parameter,wx

0[wx , which is a negative numbe
that lies in the range21,wx,20.3, we could immediately
solve for the densityrx as a function of the scale factor,

rx~a!5rCVxS a0

a D 3(11wx)

. ~17!

Thus, Eq.~13! becomes

H~a!5H0S a0

a D 3/2AVM1VxS a0

a D 3wx

. ~18!

The solution of Eq.~18! is given by

t5
2

3H0AVM
S a

a0
D 3/2

3 2F1S 1

2
,2

1

2wx
;12

1

2wx
;2S Vk1VQ

VM
D S a

a0
D 23wxD ,

~19!

where 2F1 represents the generalized hypergeometric fu
tion. The initial condition that we have used in solving E
~18! is a50 at t50.

We use the definition ofPx andrx in terms of the scalar
field x, together with the equation of state that relates th
quantities, to obtainx as a function of the scale factor. Th
result is

x~a!5x0S a

a0
D 23wx/2

3F 2F1S 1

2
,
1

2
;
3

2
;2S Vk1VQ

VM
D S a

a0
D 23wxD

2F1S 1

2
,
1

2
;
3

2
;2S Vk1VQ

VM
D D G ,

~20!

wherex0 is given by

x05x̃2F1S 1

2
,
1

2
;
3

2
;2S Vk1VQ

VM
D D ,

with x̃5A4rc/9H0
2A(Vk1VQ)(11wx)/VMwx

2.
In a similar way, we get for the scalar potentialVx

Vx~a!5Vx
0S a0

a D 3(11wx)

, ~21!

whereVx
05 1

2 (12wx)rC(Vk1vQ).
Figure 1 shows the plot of the scalar potentialVx as a

function of x, for three different values of the equation o
state parameterwx . The parametersVx(5Vk1VQ) and
VM have been fixed at values 0.65 and 0.35, respectiv
This form of potential has been described in the literat
@14#. Note that, in the limit wx→21 the potentialVx
3-3
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→const[rCVx , i.e., the model becomes equivalent to theL
cold dark matter scenario@9#.

During the evolution of this model, we distinguish tw
periods: one, where the regular matter dominates (rM
@rx); the other, whererx@rM . It is not hard to see that th
time at whichrM becomes equal torx is given by

teq5
2

3H0AVM
S VM

Vx
D 21/2wx

32F1S 1

2
,2

1

2wx
;12

1

2wx
;21D . ~22!

Notice that the age of the universe in this model is giv
by

t05
2

3H0AVM
2F1S 1

2
,2

1

2wx
;12

1

2wx
;2

Vx

VM
D , ~23!

where, similar toteq, it depends on the observable para
etersVx , VM , andwx . For VM50.3, Vx50.7, andwx5
20.8, this givest0H0;0.93, which lies in the observationa
range t0H050.9460.14 of the measurement of the age
the universe@15#. Figure 2 showsVx as a function ofVM for
the range oft0H0 specified above. The dark region repr
sents the valuewx520.9.

We are now going to describe the properties of the sc
field Q. Following an approach analogous to that used for
scalar fieldx, we find that the parameterwQ is given by

wQ~a!52uwQ
0 uS 11b

123bwx
DF 123bwxS a

a0
D 23wx21

11bS a

a0
D 23wx21 G ,

~24!

whereb5Vx /uVku andwQ
0 is the actual value ofwQ defined

by wQ
0 5PQ

0 /rQ
0 . Figure 3 shows its dependence with t

redshift z defined asz[a0 /a21, for three different values

FIG. 1. This graph shows the scalar potentialVx as a function of
the scalar fieldx for wx520.7, 20.8, and20.9. We useVM

50.35 andVx50.65.
12351
n
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of the wx parameter. For completeness, we have cho
VQ50.85 andVx50.65 in this plot, i.e., we have consid
ered a closed model.

The scalar fieldQ results in

Q~a!5Q̄E
0

a/a0A11
3

2
b~11wx!x2(113wx)

x1
Vx

VM
x2(113wx)

dx,

~25!

whereQ̄5A1/4pG(uVku/VM).
The scalar potential,VQ(a), is found to be given by

FIG. 2. This graph representsVx as a function ofVM for the
range oft0H050.9460.14 for three different values of the equatio
state parameter,wx520.7,20.8,20.9. The dark region corre
sponds towx520.9. The vertical dotted lines show the observ
tional range for theVM parameter.

FIG. 3. The graph showswQ ~in unit of uwQ
0 u) as a function of

the redshiftz for three different values of the equation state para
eter, wx520.7,20.8,20.9. We have used the valuesVQ50.85
andVx50.65, corresponding to a closed model.
3-4
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VQ~a!5VQ
0 S a0

a D 2F 413b~12wx!S a

a0
D 2(113wx)

413b~12wx!
G ,

~26!

where VQ
0 5@rCVQ/2(12wx)#@4/31b(12wx)#. Figure 4

shows the potentialVQ as a function of the scalar fieldQ for
three different values ofwx . Again, we have considered
closed model withVQ50.85, VM50.35, andVx50.65.
For open models, i.e., forVx.VQ , these curves are ver
similar.

Note that the potential decreases whenQ increases. We
observe that this potential asymptotically tends to vanish
a→`. This implies that, asymptotically, the effective equ
tion of state becomesPQ5rQ ~for Q̇Þ0), corresponding to
a stiff fluid.

IV. THE QUINTESSENCE SCALAR POTENTIAL

One of the possible modifications to the basic idea
quintessence includes the use of other potentials@16–18#. It
may be interesting to investigate the situation in which
scalar potentialV(x) is of the form@19#

V~x!5aẋ21g, ~27!

where a and g are two constants. We may writeg as g
5(a22a1wx)rx

0 , wherea65 1
2 6a.

Combining Eq.~27! with the evolution equation for the
field x, we getẋ as a function of the scale factora, and thus
we get

rx~a!5rx
0Fa1S a0

a D 3/a1

1a2G1a1Px
0F S a0

a D 3/a1

21G
~28!

and

FIG. 4. The graph showsVQ ~in unit of rC/2) as a function ofQ
~in unit of 1/A4pG) for three different valueswx520.7,20.8, and
20.9. We use the valuesVQ50.85, Vx50.65, andVM50.35 as-
socia!ted with a closed model.
12351
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Px~a!5Px
0Fa2S a0

a D 3/a1

1a1G1a2rx
0F S a0

a D 3/a1

21G ,
~29!

where the constantsrx
0 and Px

0 represent the actual energ
density and pressure, respectively, and are related to an
trary integration constant. From these two latter relations,
get

wx~a!5

wxFa2S a0

a D 3/a1

1a1G1a2F S a0

a D 3/a1

21G
Fa1S a0

a D 3/a1

1a2G1wxa1F S a0

a D 3/a1

21G ,

~30!

where, just as before, we takewx5Px
0/rx

0 . Note that for
wx5a2 /a1 we get wx(a)5wx5const This case corre
sponds to usingg50 in Eq. ~27!. As we will soon see, this
case allows us to write down an explicit expression for
quintessence scalar potential,V(x). Throughout this paper
we will address this case only.

We could solve the time-time Einstein equation~13! to
obtain in this case

t5
1

H0

2

AVM
S a

a0
D 1/2

2F1S 1

2
,
a1

a2
;
5

6
;2

Vx

VM
S a

a0
D 3a2 /a1D .

~31!

The quintessence scalar fieldx in terms of the scale facto
is given by

x~a!5x01« arcsinhFdS a

a0
A11d22A11d2S a

a0
D 2D G ,

~32!

where

«5
2

3H0uwxu
A2Vx

0

Vx

1

a21a1
and d5S Vx

VM
D 1/3uwxu

.

Equation~32! allows us to write down an explicit expres
sion for the dark energy scalar potentialV(x). We get

V~x!5Vx
0H d

sinh@«21~x2x0!1arcsinh~d!#
J 3/a1

, ~33!

whereVx
0 represents the actual value of this potential. T

hyperbolic potential~33! has been used in the literature@19–
21#. This potential was studied for getting a tracker soluti
from the corresponding field equations.

One of the characteristics of the scalar fieldQ is given by
the equation of state parameterwQ(a), which is given by
3-5
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wQ~a!

5

~3wQ
0 11!~wx11!a2S a0

a D 3/a1

1~wQ
0 2wx!S a0

a D 2

~3wQ
0 11!~wx11!a2S a0

a D 3/a1

2~wQ
0 1wx!S a0

a D 2 .

~34!

Here, the quantitieswQ
0 are defined by

wQ
0 5

wxVx1Vk/3

Vx2Vk
5S wx1

1

3D Vx

VQ
2

1

3
, ~35!

where we have used the relationVk1VQ5Vx in the latter
expression.

With x[a/a0, the scalar potential associated to theQ
field is given by

VQ~x!5rQ
0 F S a11a2

2 D ~11wx!x23/a12
2

3

Vk

VM
x22G ,

~36!

and the corresponding scalar fieldQ is expressed by mean
of the following integral:

Q~x!5
ArQ

0

H0
E

x

1dz

z

3A~11wx!
Vx

VQ
z23a2 /a12

2

3

Vk

VQ
z

11~11wx!
Vx

VM
a1z23a2 /a1

.

~37!

A numerical integration shows that this potential presents
same characteristic as that described in the previous c
i.e., V(Q) decreases whenQ increases, reaching the lim
V(Q)→0 for Q→`.

Finally, one interesting parameter to determine in t
kind of model is the deceleration parameter, which is defin
by q52ä/ȧH2, and when evaluated to present time it b
comes

q05
1

2
VM2

1

2
~3uwxu21!~Vk1VQ!. ~38!
ni

12351
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For wx,21/3(11VM /Vx), the parameterq0 becomes
negative, in agreement with the observed acceleration of
universe.

V. CONCLUSIONS

In this paper we have described a curvature unive
model in which, apart from the usual CDM component, w
have included a quintessencelike scalar fieldQ. We have
fine-tuned the energy density, associated with this field,
gether with the curvature, for mimicking a flat model whic
resembles the quintessence~or dark energy! xCDM model,
which is characterized byVT5VM1Vx51. We have as-
sumed forQ an effective equation of statePQ5wQrQ , with
wQ,0. We have determined the form of the potential as
ciated with this field, which effectively has the property of
quintessence potential, i.e.,V(Q) decreases whenQ in-
creases, approaching zero asymptotically. Under the assu
tion that the equation of state parameter was constant,
could describe explicitly the characteristics of the dark e
ergy scalar field,x. Certainly, the basic idea of quintessen
rests on the determination of the scalar potential as a fu
tion of this field.

Under an appropriate choice for the dark energy sca
potential, V(x) ~in terms of ẋ), we determine an explicit
expression for this potential as a function ofx. In this case,
we also gave an expression for the scalar fieldQ and its
potential. Here, we determine the deceleration param
which, under an appropriate choice of the parameters
characterize the model, became positive, in agreement
the acceleration detected by astronomical observations.
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