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Degeneracy inherent in the observational determination of the dark energy equation of state
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Using a specific model for the expansion rate of the Universe as a function of scale factor, it is demonstrated
that the equation of state of the dark energy cannot be determined uniquely from observations at medshifts
=<a few unless the fraction of the mass density of the Universe in nonrelativistic parfiglessomehow can
be found independently. A phenomenological model is employed to discuss the utility of additional constraints
from the formation of large scale structure and the positions of cosmic microwave background peaks in
breaking the degeneracy among models for the dark energy.
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[. INTRODUCTION the expansion rate of the Universe as a function of scale
factor,H(a), exactly Could one then determine the equation
Although observations of acoustic peaks in the cosmi®f state of the dark energy exactly from these measurements
microwave backgroundCMB) fluctuation spectra are sensi- alone? The answer, as we shall seendsa separatedeter-
tive to the curvature of spacetime, and appear to requirglination of the fraction of the Universe in the form of non-
some form of cosmological dark enerfiy—6], they may be relativistic particles is needd@2].
less useful for discriminating among different equations of
state for the dark energy. Various studigsg. [7,8]) have Il. A SIMPLE ILLUSTRATIVE MODEL
concluded that the signatures of different types of spatially
smooth, evolving dark energy on the CMB spectra are rela- The necessity of separately determining the density of
tive|y undiscriminating' in part because CMB fluctuations nonrelativistic partiCIeS in order to deduce the equation of
were formed at high redshift, when the dark energy was nostate of the dark energy can be demonstrated most easily by
a prominent constituent, although spatial fluctuations in th&onstructing a specific example. Suppose the data show that
dark energy could lift the degeneracy considerdlsfy By thg Universe is expanding according to the simple relation-
contrast, observations of sources at small to moderate reghip
shifts (z<a few) would probe epochs where the dark energy
is prominent, leading to suggestions that observations of type
la supernovagl0-1§ or of galaxy count$17-19 could be
used to determine the nature of the dark energy most effec-
tively. However, the efficacy of these observational programsvhere a=(1+2) 1. One (tempting interpretation of this
is controversial, as there is considerable degeneracy amomgsult would be that the Universe consists of two compo-
the predictions of different dark energy models for, for ex-nents, nonrelativistic matter contributing a fracti@n of the
ample, the luminosity distance as a function of reddI2i. closure density, and a cosmological constant contributing a
One approach to the analysis of low redshift data wouldfraction ;=1—-,. However, this interpretation is not
be to presume particular classes of models, perhaps paramnique: there are models involving a scalar figlavith non-
etrized by a series expansionw{z) =p(z)/p(z), and then constant effective potentialé(¢) that can lead to Eq.d).
attempt to constrain the model parameters by a likelihood or To see this, we can construct an explicit model with both
Bayesian methode.g.[10,11,20,2]). A second approach is a scalar field and nonrelativistic matter, so that
to fit the data by a parametric representation of, for example,
the luminosity distance as a function of redshift, and then 8mGp, H%QM
analyze the results to constrain the properties of the dark H?= 3 3 2
energy indirectly(e.g.[12—16). Although the first approach
s prefgrablg(becagsg it generally avoids diﬁiqulties assoCl- ik Qu#Q, in general. The scalar field energy density is
ated with differentiating data, and allows a simpler asseSSarefore
ment of uncertainties in derived parameters, in addition to
outlining its implicit assumptions more cleay)ythe second
approach is more useful for understanding whether or not Ps=Po
such observations can ever yield a unique solution for the
dark energy equation of state. 5 ] ] ]
In this paper note, the following question is considered:Wherepo=3Hg/8wG. Differentiatep,, with respect toa to
Suppose one could analyze data frama few to determine find
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where the second equality follows from conservation ofNote thatf/;—>2 coth 1\/1/Q, and V(¢)— po€; asymptoti-
energy for the scalar field. Thus, we find simply t&}  cally. Also, when2,=1—Q,—1, the potential becomes ex-
=~ pofly, and ponential:V($)— £ po(1—Qpy)e 7.
(Qy—Oy) The key question here revolves around prior assumptions.
poz—a'\" The “simplest” interpretation of Eq(1) is that the energy
a density of the Universe is the sum of contributions due to
nonrelativistic matter and a cosmological constant. However
natural this interpetation may seem to be, it only follows if
) one assumesither that the dark energy is in the form of a
cosmological constant, or that the mass density in nonrela-
Note that the first of Eqg5) requires thaf),=Q,,. We can tivistic form has closure parametél,. If one is somewhat
determineV(¢) by solving the first of Eqs(5) for ¢(a), more agnostic on either of these points, then a range of pos-
inverting to finda(¢), and substituting into the second of sibile interpretations accounts for the data equally well. The
Egs.(5). Combining Eqs(1) and the first of Eqs(5) implies  degeneracy is not just a property of models for wHitt(a)
is given by Eq.(2). If the data were to favor a model of the

Pop— (2= Qpn)

Vid)=—" ¢=Po<91+—2a3—-

A8\ ¢*  3(Q,-Qy) g o
¥\ 9al Th2_smG0,ar0,%0, O 0
H2(a)=H3 Q,9(a)+ —3 |, (13)
Define 2
0,a8 , Q-Qy with g(a) some function, and),g(1)+Q,=1, then with-
=0 and %Zm; (7) out additional prior assumptions the most one can say for
2 2 sure is thaip ,= po[219(a) + (22— Qy)/a%], which leaves
then if Y=g/ &, i)/p()gebr)].the possibility of a range of different solutions for
dy\? 1 This model illustrates that if one makes no prior assump-
) = 8 tions about the form of the quintessence pote , then
2 ix i’ (8) i b he f f th i iab), th

it is impossible to fit low redshift data alone to find ¢)
uniquely unlessQ)y, is known independently—in this ex-
ample, a range of models, parametrized by the valué of
=QO\ /1Q,, will fit equally well. Constraints on the value of

f limit the range of acceptable models. Although minimally
f<1, we know that this model would be unable to account
for the formation of large scale structurefifs too small. If

where ., is a constant of integration. The sign in this solu- We assume, to get a rough estimate of the allowed values of
tion can be chosen arbitrarily; choosing thesign gives a . that only the nonrelativistic matter can clurfig. that the

solution in whichy increases with increasing. If we let ~ dark energy and relativistic matter remain smopthen, in
= i, today, then we find linear theory, the growing mode of dark matter energy per-

turbations,D , (a), mainly amplifies perturbations between
Aeq= Qraa/Q, anda; = (Q,/Q,)3. During this phaseH?

. Q. [ Q2 xa 3 and D,(a)xa’s, where (e.g. [24]) o.(f)
= gt =1 /272 =1 [ _"72 ) + ) . -g. T _
Y=ot 2sinh 0, 2sinh 0,a% (10 =2X(J1+24f—1). The overall linear theory growth factor is
~(a1/a0¢) "+, so the ratio of the growth factor fdr~ 1 to

which has the general solution

=i *+2sinh ! x , 9
Jx

which we may invert to find its value for f=1 is approximately §;/aqq)Y*727 %)
~(a;/agy) "3~ "5 where the approximation assumes 1
1 i 1 o 2 —f<1. Thus, we estimate that for the growth factor to be
—== cosr( —) - \/—sinr(—” , (11  Wwithin a factor of 2 of its value fof =1, we must have 1
a 2 Q; 2 —f=0.12. More detailed calculations that include the gravi-

R tational effects on the quintessence field and radiatég.
where /= — 5. The second of Eq95) then determines [25,26])) show rigorously that the growth of large scale struc-
the potential to bé¢23] ture from small perturbations in the early Universe depends

on 1—f sensitively, as we have estimated more crudely here.
Thus, primarily from the requirement that linear density
Q.+ E(QZ_QM) perturbations can grow substantially from small values in the
2 early Universe, we know that if Eq1) were truly exactf

V(d)=po

must be close to 1. Imposing limits on the range of plausible

A A 2
[1 i i i -
cos)‘( f) Vg sin)*(%” ] (12) Q from independent, physical and phenomenological argu
2
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2 ments amounts to using prior information to restrict the pos-
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sibilities to be compared with the data from observations abbservations. The question is, if E(.) is an accuratébut
z=<afew. (The use of prior information from large scale inexac} fit at zsafew, and(}, differs substantially from
structure and CMB anisotropies has been discussed in e.@ ), , how well could we determin@,, and hence break the
[14,27-29; see alsd 30] for a discussion of the prospects degeneracy, observationally?

for measuring the quintessence potential using several differ- To make these issues more concrete, suppose in reality
ent approachesThis does not eliminate the degeneracy im-Eqg. (1) is actually the large limit of a more general, exact
plicit in Eq. (1) altogether, but it does diminish its signifi- relationship, say
cance by constraining the range of acceptable valuek of

severely. However, the fact remains that if one were to try to a
determine the equation of state of the dark energy from ob- H?(a)=H2(a)F 1- F(—”, (14
servations that, hypothetically, yield E(L.), then one could a

never hope to find a unique result from an analysis that igYNhereF(q)HO asq—0 andF(q)—1 asq—=, with a
nores constraints from Fhe dgvelopment' of Igrge scale str.uci1 a transition value of the scale factetZ (a) given by
ture (or any other considerations that yield independent ing

formation about(),,, such as peculiar velocities, CMB
fluctuations and weak lensingMoreover, even if such re-

) 2
a ~(a)

g. (1), and, for example,

strictions are imposed, unle$k, is determinedreciselyby H2(a)=H2 Q_+ % : (15)
them, some degeneracy remains in the construction( ¢ = ot =" ad )
from observations at<a few. . )
since the model is flat,
. CAN Q,, AND Q, DIFFER SUBSTANTIALLY?
1=(Q1+Q5)Fo+(Q+Qy)(1-Fy), (16)

If Eq. (1) with Q, substantially different fron{,, is an
excellent approximation at low to moderate redshifts, it canwhereFy=F(1/a;). Such a model could be consistent with
neverbe exact. In this case, there must be a transition irthe growth of large scale structure, but might still be hard to
H2(a), so that the component of the density that scales likadistinguish from Eq.(1) based on observations at low to
a~ % is predominantly due to nonrelativistic particles for a moderate redshift, depending on the valueapf and the
period sufficient to grow large scale structure. The implicitform of F(a/a,). Equation(14), although admittedly ad hoc,
deviations from Eq(1) would contain information of,, as  is useful for studying the extent to which observations of
well as),, and probably additional parameters as well. Invarious sorts could discern th@t,# (), and pin down the
this situation, it might be possible to ascertain the equation oflifference sufficiently to break the degeneracy discussed
state of the dark energy from measurements at low to modabove.
erate redshifts alone, provided that the imprinfkyj and the For a flat cosmology, Eq14) implies that the radial co-
additional parameters iH?(a) can be discerned from these ordinate for a source a@=(1+2) !is

1 db
r«(a;Qy,Q,,F)=n(1)—n(a)= Lm

db
e (17)
2 b{Qeb® + 1= Qe +[(2 -~ Q)%+ 0y~ Q][ Fo—F(b/ay) ]}

whereQ.=Q,F,+Q_(1-F,), anddy=dt/a=da/a’H(a). [Here, the notatiomg(a;Qy, ,Q,,F) means the radial coordi-
nate as a function od givenQ ), andQ,=0,,, as well as a set of parameters required to deffi(@ a;).] If F(a/a;) does
not vary much over the range afcovered by the observations, then the data would only deterthjreccurately, and would
yield little useful information on(), or ), : only the combinationQ),Fo+Qu(1—Fg)=1—Q, could be deduced. This
situation is possible provided that is fairly small, below the range covered by observations, R(ala,) varies relatively
slowly as a function o&/a; for large values o&/a; . In this case, we cannot expect to eliminate the degeneracy among models
directly from observations of low to moderate redshift sources alone. Constraints from other sorts of observations that probe
Q) directly would be needed to deduce the quintessence model as accurately as possible.

More quantitative statements only can be made in terms of spé&difita;), and require some exploration of parameters.
Let us examine one choic€;+Q,=1=0_+Q,,, in which case Eq(16) is satisfied exactly, and E¢L7) becomes

H_1J‘1 db
° Ja Vb{Q,+ (1-Q,)b3— (Q,— Q) (1—-b3)[1—F(b/ay) 1}

rq(a;0s,0y,F)= . (18
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FIG. 1. Magnitude differences among models with=0.5 for
tat:?.Z (3022 argathOiSO(dzaghSeai as I)uzctlons otz for (from the horizon ata=10"2 from the Q,,=Q,=0.5 model as functions of
op for eacha,) (y=0.1,0.2,0.3 and 0.4. Qu=<Q,. The solid line is fora;=0.2, and the dashed line fey
Equation (18) may be used to compute magnitude differ- =0.5. For computing the angular sizeldo=70 kms'* Mpc™*
ences among models with gived,, O, andF(a/a,); for =~ Wwas adopted.

illustrative purposes, let us choose E(a/a,) =e~ ¥?. Fig-
ure 1 depicts the magnitude difference the fractional difference between the angular size of the

_ (sonig horizon ata=10"2 as a function of) <, and its
Am(z,Q2, 0,2 value forQ\=Q, for the two different values o&,. (De-

FIG. 2. Fractional deviations of the angular size of tkenig

re(1+2) 10y ,0Q,,a) viations of the sound speed from\B have not been in-
:5.0|ogw{ S _1' Motz (199  cluded) Larger fractional deviations arise for small€xy
rs((1+2)5Q,,Q5,a) and a,. The largest deviation shown in the two figures is

relative to the model witf),=Q,=0.5 as a function of 12.7% for @ ,a;) =(0.1,0.2); the largest fractional devia-

assuminga,= 0.2 (solid) anda,= 0.5 (dashed for (from top tlon for =05 is about 1.3%, and occurs nefly
to bottom in each cas«,,=0.1,0.2,0.3 and 0.4. Not sur- =0.225. L )
prisingly, the magnitude differences are smaller for the larger Although this is only one example, based on a particular
value ofa,, and decrease a@y— Q,. Nevertheless, the (ad hod choice ofF(a/a,), it illustrates that while data at
largestmagnitude difference shown fa<3 is 0.29 mag, for Poth low to moderate as well as CMB observations can
(z,a;,Qy)=(3,0.5,0.1); for ga,,Qy)=(3,0.2,0.1), the yield information that lifts the degeneracy betwe@n and
difference is 0.077 mag. Qu, considerable precision may be needed to determine the
For comparison, the magnitude differences between flagduation of state of the dark energy accurately. Note that no
cosmologies with a cosmological constant &hg=0.2 and  attempt has been made to fit simulated data based on Eq.
Qy=0.3 areAm=0.14, 0.21 and 0.25 &=1, 2 and 3, (20) to figure out how wellH(a) could be determined in
respectively; the corresponding magnitude differences beRractice; the comparisons made in Figs. 1 and 2 are based on
tweenQ,,=0.4 andQ),=0.3 areAm=—0.12, —0.17 and  €Xact functions. The observational challenge of distinguish-
—0.19. These values @?,, span the~ 1o ranges reported ing among models at these levels could be even greater than
in Ref. [31] for data on type la supernovae, which are gen_these relatively small differences would indicate. On the
erally atz=1, presuming flat cosmology. Thus, it would be Other hand, Figs. 1 and 2 were constructed based on a par-
hard to tell if the Universe is actually a “kinky” cosmology ticular (ad hog model forH*(a) designed for a phenomeno-

like Eq. (14) from existing type la samples. logical study of how easily information ofl,, could be

Figure 2 shows results for gleaned from luminosity distances and CMB acoustic peaks.

The task could be easier or harder in cosmologies based on

Ao _ particular physical theories for the dark energy, depending on
7 (2.8 the details of the model.

_[7(107%0y,Q2,8)15(10 %05 Q5.3) IV. DISCUSSION
rs(10°% 0y, 0z,a) 7(10 %0, 0z,8) |

To conclude, the point of this papern®t to suggest that
(20) it is absolutely inconceivable that the equation of state of the
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dark energy could be measured, but rather to show, via goduced. In the context of a particular model that is consis-
specific example, how measurementszat3 admit a con- tent with large scale structure formation, but reduces to Eq.
tinuum of interpretations in terms of evolving dark energy (1) with Q,=Q,, at large enougla, we have seen that in-
fields unless(),, can be determined separately somehowformation about(},, could be gleaned both from measure-
The specific example, Eql), can be intepreted “naturally” ments of the positions of CMB peaks and from luminosity
in terms of a Universe containing a mixture of nonrelativisticdistance determinations. However, the deviations among
particle dark matter plus a cosmological constant, but can bmodels with variousQ,,; <), can be quite small, which
interpreted equally well in terms of a quintessence modelwould still pose a substantial challenge for programs that aim
with a range of potentials, Eq12). This specific example to determine the equation of state of the dark energy.
sheds some light on why simulated analyses of low to me- Of course, in the context afpecificmodels for the quin-
dium redshift data appear to allow degenerate interpretationsessence field, embodied in particular forms Yt¢), the
it is always possible that the component of the total energynalyses may not encounter pronounced degeneracies. At
density of the Universe that evolves likg 3 is only partially ~ present, though, there is little compelling reason to assume
due to nonrelativistic particles, with the rest arising fromany particularV(¢) a priori. When analyzing data for a
quintessence. Unique interpretations can only be obtained iparticular form ofV(¢), one is primarily engaged in esti-
terms of specific models for the quintessence that forbid suchating the parameters of the model, as wellhs. Thus,
a conspiracya priori, by either specifying the form of(¢) one might be able to find the best fit model of a particular
or fixing the value ofQ), . type [e.g. V(¢)=const], without being able to tell if the
Realistically, the extent to which thexa 3 constituent  underlying model would be favored by the data if other pos-
must be due to nonrelativistic particles is constrained by thaibilities were admitted. If the allowed ranges of parameters
requirement that large scale structure formation evolve “norfor a particular quintessence model do not shrink with the
mally,” that is, unimpeded by the existence of a componentaccumulation of data, one can conclude that the model is
with density proportional t@ 3 that is incapable of cluster- inadequate with confidence. However, there is no guarantee
ing. If Eqg. (1) were truly exact, thef), would have to be that a given model is correct even if the data seem to con-
close to), for large scale structure to grow, but even in thisverge on a unique set of parameters, as Efjsand (12)
case, a limited degeneracy remains in the determination dflustrate.
V(). If O, andQy, differ substantially, then Eq1) cannot

be exact, raising the question of how well one could discern ACKNOWLEDGMENTS
the two parameters separately from observations. To examine
this issue, a modifie¢phenomenologicalexpansion law, Eq. | thank Eanna Flanagan, Daniel Holz, and Paul Steinhardt

(14), that encodes information on bofh, and,, was in-  for helpful comments on this paper.
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