
PHYSICAL REVIEW D 66, 123511 ~2002!
Degeneracy inherent in the observational determination of the dark energy equation of state
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Using a specific model for the expansion rate of the Universe as a function of scale factor, it is demonstrated
that the equation of state of the dark energy cannot be determined uniquely from observations at redshiftsz
&a few unless the fraction of the mass density of the Universe in nonrelativistic particles,VM , somehow can
be found independently. A phenomenological model is employed to discuss the utility of additional constraints
from the formation of large scale structure and the positions of cosmic microwave background peaks in
breaking the degeneracy among models for the dark energy.
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I. INTRODUCTION

Although observations of acoustic peaks in the cosm
microwave background~CMB! fluctuation spectra are sens
tive to the curvature of spacetime, and appear to req
some form of cosmological dark energy@1–6#, they may be
less useful for discriminating among different equations
state for the dark energy. Various studies~e.g. @7,8#! have
concluded that the signatures of different types of spati
smooth, evolving dark energy on the CMB spectra are re
tively undiscriminating, in part because CMB fluctuatio
were formed at high redshift, when the dark energy was
a prominent constituent, although spatial fluctuations in
dark energy could lift the degeneracy considerably@9#. By
contrast, observations of sources at small to moderate
shifts (z&a few) would probe epochs where the dark ene
is prominent, leading to suggestions that observations of t
Ia supernovae@10–16# or of galaxy counts@17–19# could be
used to determine the nature of the dark energy most ef
tively. However, the efficacy of these observational progra
is controversial, as there is considerable degeneracy am
the predictions of different dark energy models for, for e
ample, the luminosity distance as a function of redshift@20#.

One approach to the analysis of low redshift data wo
be to presume particular classes of models, perhaps pa
etrized by a series expansion ofw(z)5p(z)/r(z), and then
attempt to constrain the model parameters by a likelihood
Bayesian method~e.g. @10,11,20,21#!. A second approach is
to fit the data by a parametric representation of, for exam
the luminosity distance as a function of redshift, and th
analyze the results to constrain the properties of the d
energy indirectly~e.g.@12–16#!. Although the first approach
is preferable~because it generally avoids difficulties asso
ated with differentiating data, and allows a simpler asse
ment of uncertainties in derived parameters, in addition
outlining its implicit assumptions more clearly!, the second
approach is more useful for understanding whether or
such observations can ever yield a unique solution for
dark energy equation of state.

In this paper note, the following question is considere
Suppose one could analyze data fromz&a few to determine
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the expansion rate of the Universe as a function of sc
factor,H(a), exactly. Could one then determine the equatio
of state of the dark energy exactly from these measurem
alone? The answer, as we shall see, isno: a separatedeter-
mination of the fraction of the Universe in the form of no
relativistic particles is needed@22#.

II. A SIMPLE ILLUSTRATIVE MODEL

The necessity of separately determining the density
nonrelativistic particles in order to deduce the equation
state of the dark energy can be demonstrated most easil
constructing a specific example. Suppose the data show
the Universe is expanding according to the simple relati
ship

H25H0
2S V11

V2

a3 D , ~1!

where a[(11z)21. One ~tempting! interpretation of this
result would be that the Universe consists of two comp
nents, nonrelativistic matter contributing a fractionV2 of the
closure density, and a cosmological constant contributin
fraction V1512V2. However, this interpretation is no
unique: there are models involving a scalar fieldf with non-
constant effective potentialsV(f) that can lead to Eq.~1!.

To see this, we can construct an explicit model with bo
a scalar field and nonrelativistic matter, so that

H25
8pGrf

3
1

H0
2VM

a3 ~2!

with VMÞV2 in general. The scalar field energy density
therefore

rf5r0S V11
V22VM

a3 D , ~3!

wherer053H0
2/8pG. Differentiaterf with respect toa to

find

drf

da
52

3r0~V22VM !

a4 52
3~rf1Pf!

a
~4!
©2002 The American Physical Society11-1
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where the second equality follows from conservation
energy for the scalar field. Thus, we find simply thatPf
52r0V1, and

ḟ25rf1Pf5
r0~V22VM !

a3

V~f!5
rf2Pf

2
5r0S V11

~V22VM !

2a3 D . ~5!

Note that the first of Eqs.~5! requires thatV2>VM . We can
determineV(f) by solving the first of Eqs.~5! for f(a),
inverting to finda(f), and substituting into the second o
Eqs.~5!. Combining Eqs.~1! and the first of Eqs.~5! implies

a2S df

daD 2

5
ḟ2

H2
5

3~V22VM !

8pGV2~11V1a3/V2!
. ~6!

Define

x5
V1a3

V2
and fg

25
V22VM

24pGV2
; ~7!

then if c[f/fg ,

x2S dc

dxD 2

5
1

11x
, ~8!

which has the general solution

c5c`62sinh21S 1

Ax
D , ~9!

wherec` is a constant of integration. The sign in this sol
tion can be chosen arbitrarily; choosing the2 sign gives a
solution in whichc increases with increasinga. If we let
c5c0 today, then we find

c5c012 sinh21AV2

V1
22sinh21A V2

V1a3, ~10!

which we may invert to find

1

a3 5FcoshS ĉ

2
D 2A 1

V2
sinhS ĉ

2
D G2

, ~11!

where ĉ[c2c0. The second of Eqs.~5! then determines
the potential to be@23#

V~f!5r0H V11
1

2
~V22VM !

3FcoshS ĉ

2
D 2A 1

V2
sinhS ĉ

2
D G2J . ~12!
12351
fNote thatĉ→2 coth21A1/V2 and V(f)→r0V1 asymptoti-
cally. Also, whenV2512V1→1, the potential becomes ex
ponential:V(f)→ 1

2 r0(12VM)e2ĉ.
The key question here revolves around prior assumptio

The ‘‘simplest’’ interpretation of Eq.~1! is that the energy
density of the Universe is the sum of contributions due
nonrelativistic matter and a cosmological constant. Howe
natural this interpetation may seem to be, it only follows
one assumeseither that the dark energy is in the form of
cosmological constant, or that the mass density in nonr
tivistic form has closure parameterV2. If one is somewhat
more agnostic on either of these points, then a range of p
sibile interpretations accounts for the data equally well. T
degeneracy is not just a property of models for whichH2(a)
is given by Eq.~1!. If the data were to favor a model of th
form

H2~a!5H0
2FV1g~a!1

V2

a3 G , ~13!

with g(a) some function, andV1g(1)1V251, then with-
out additional prior assumptions the most one can say
sure is thatrf5r0@V1g(a)1(V22VM)/a3#, which leaves
open the possibility of a range of different solutions f
V(f).

This model illustrates that if one makes no prior assum
tions about the form of the quintessence potentialV(f), then
it is impossible to fit low redshift data alone to findV(f)
uniquely unlessVM is known independently—in this ex
ample, a range of models, parametrized by the value of
[VM /V2, will fit equally well. Constraints on the value o
f limit the range of acceptable models. Although minima
f <1, we know that this model would be unable to accou
for the formation of large scale structure iff is too small. If
we assume, to get a rough estimate of the allowed value
f, that only the nonrelativistic matter can clump~i.e. that the
dark energy and relativistic matter remain smooth!, then, in
linear theory, the growing mode of dark matter energy p
turbations,D1(a), mainly amplifies perturbations betwee
aeq5V rad /V2 anda15(V2 /V1)1/3. During this phase,H2

}a23, and D1(a)}as1, where ~e.g. @24#! s1( f )
5 1

4 (A1124f 21). The overall linear theory growth factor i
.(a1 /aeq)

s1( f ), so the ratio of the growth factor forf Þ1 to
its value for f 51 is approximately (a1 /aeq)

1/4(A1124f 25)

'(a1 /aeq)
23(12 f )/5, where the approximation assumes

2 f !1. Thus, we estimate that for the growth factor to
within a factor of 2 of its value forf 51, we must have 1
2 f &0.12. More detailed calculations that include the gra
tational effects on the quintessence field and radiation~e.g.
@25,26#! show rigorously that the growth of large scale stru
ture from small perturbations in the early Universe depe
on 12 f sensitively, as we have estimated more crudely he

Thus, primarily from the requirement that linear dens
perturbations can grow substantially from small values in
early Universe, we know that if Eq.~1! were truly exact,f
must be close to 1. Imposing limits on the range of plausi
VM from independent, physical and phenomenological ar
ments amounts to using prior information to restrict the p
1-2
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sibilities to be compared with the data from observations
z&a few. ~The use of prior information from large sca
structure and CMB anisotropies has been discussed in
@14,27–29#; see also@30# for a discussion of the prospec
for measuring the quintessence potential using several di
ent approaches.! This does not eliminate the degeneracy i
plicit in Eq. ~1! altogether, but it does diminish its signifi
cance by constraining the range of acceptable valuesf
severely. However, the fact remains that if one were to try
determine the equation of state of the dark energy from
servations that, hypothetically, yield Eq.~1!, then one could
never hope to find a unique result from an analysis that
nores constraints from the development of large scale st
ture ~or any other considerations that yield independent
formation aboutVM , such as peculiar velocities, CMB
fluctuations and weak lensing!. Moreover, even if such re
strictions are imposed, unlessVM is determinedpreciselyby
them, some degeneracy remains in the construction ofV(f)
from observations atz&a few.

III. CAN VM AND V2 DIFFER SUBSTANTIALLY?

If Eq. ~1! with V2 substantially different fromVM is an
excellent approximation at low to moderate redshifts, it c
never be exact. In this case, there must be a transition
H2(a), so that the component of the density that scales
a23 is predominantly due to nonrelativistic particles for
period sufficient to grow large scale structure. The impli
deviations from Eq.~1! would contain information onVM as
well as V2, and probably additional parameters as well.
this situation, it might be possible to ascertain the equatio
state of the dark energy from measurements at low to m
erate redshifts alone, provided that the imprint ofVM and the
additional parameters inH2(a) can be discerned from thes
12351
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observations. The question is, if Eq.~1! is an accurate~but
inexact! fit at z&a few, andV2 differs substantially from
VM , how well could we determineVM , and hence break the
degeneracy, observationally?

To make these issues more concrete, suppose in re
Eq. ~1! is actually the largea limit of a more general, exac
relationship, say

H2~a!5H.
2 ~a!FS a

at
D1H,

2 ~a!F12FS a

at
D G , ~14!

where F(q)→0 as q→0 and F(q)→1 as q→`, with at

,1 a transition value of the scale factor,H.
2 (a) given by

Eq. ~1!, and, for example,

H,
2 ~a!5H0

2S V,1
VM

a3 D ; ~15!

since the model is flat,

15~V11V2!F01~V,1VM !~12F0!, ~16!

whereF0[F(1/at). Such a model could be consistent wi
the growth of large scale structure, but might still be hard
distinguish from Eq.~1! based on observations at low t
moderate redshift, depending on the value ofat , and the
form of F(a/at). Equation~14!, although admittedly ad hoc
is useful for studying the extent to which observations
various sorts could discern thatV2ÞVM , and pin down the
difference sufficiently to break the degeneracy discus
above.

For a flat cosmology, Eq.~14! implies that the radial co-
ordinate for a source ata5(11z)21 is
-

odels
at probe

rs.
r S~a;VM ,V2 ,F !5h~1!2h~a!5E
a

1 db

b2H~b!

5H0
21E

a

1 db

Ab$Veb
3112Ve1@~V,2V1!b31VM2V2#@F02F~b/at!#%

~17!

whereVe[V1F01V,(12F0), anddh[dt/a5da/a2H(a). @Here, the notationr S(a;VM ,V2 ,F) means the radial coordi
nate as a function ofa given VM andV2>VM , as well as a set of parameters required to defineF(a/at).# If F(a/at) does
not vary much over the range ofa covered by the observations, then the data would only determineVe accurately, and would
yield little useful information onV2 or VM : only the combinationV2F01VM(12F0)512Ve could be deduced. This
situation is possible provided thatat is fairly small, below the range covered by observations, andF(a/at) varies relatively
slowly as a function ofa/at for large values ofa/at . In this case, we cannot expect to eliminate the degeneracy among m
directly from observations of low to moderate redshift sources alone. Constraints from other sorts of observations th
VM directly would be needed to deduce the quintessence model as accurately as possible.

More quantitative statements only can be made in terms of specificF(a/at), and require some exploration of paramete
Let us examine one choice:V11V2515V,1VM , in which case Eq.~16! is satisfied exactly, and Eq.~17! becomes

r S~a;V2 ,VM ,F !5H0
21E

a

1 db

Ab$V21~12V2!b32~V22VM !~12b3!@12F~b/at!#%
. ~18!
1-3
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Equation ~18! may be used to compute magnitude diffe
ences among models with givenV2 , VM and F(a/at); for
illustrative purposes, let us choose 12F(a/at)5e2a/at. Fig-
ure 1 depicts the magnitude difference

Dm~z;V2 ,VM ,at!

55.0log10F r S„~11z!21;VM ,V2 ,at…

r S„~11z!21;V2 ,V2 ,at…
G ~19!

relative to the model withVM5V250.5 as a function ofz
assumingat50.2 ~solid! andat50.5 ~dashed! for ~from top
to bottom in each case! VM50.1,0.2,0.3 and 0.4. Not sur
prisingly, the magnitude differences are smaller for the lar
value of at , and decrease asVM→V2. Nevertheless, the
largestmagnitude difference shown forz<3 is 0.29 mag, for
(z,at ,VM)5(3,0.5,0.1); for (z,at ,VM)5(3,0.2,0.1), the
difference is 0.077 mag.

For comparison, the magnitude differences between
cosmologies with a cosmological constant andVM50.2 and
VM50.3 areDm50.14, 0.21 and 0.25 atz51, 2 and 3,
respectively; the corresponding magnitude differences
tweenVM50.4 andVM50.3 areDm520.12, 20.17 and
20.19. These values ofVM span the'1s ranges reported
in Ref. @31# for data on type Ia supernovae, which are ge
erally atz&1, presuming flat cosmology. Thus, it would b
hard to tell if the Universe is actually a ‘‘kinky’’ cosmolog
like Eq. ~14! from existing type Ia samples.

Figure 2 shows results for

Du

u
~VM ;V2 ,at!

5Uh~1023;VM ,V2 ,at!r S~1023;V2 ,V2 ,at!

r S~1023;VM ,V2 ,at!h~1023;V2 ,V2 ,at!
21U ,

~20!

FIG. 1. Magnitude differences among models withV250.5 for
at50.2 ~solid! andat50.5 ~dashed! as functions ofz for ~from the
top for eachat) VM50.1,0.2,0.3 and 0.4.
12351
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the fractional difference between the angular size of
~sonic! horizon ata51023 as a function ofVM<V2 and its
value for VM5V2 for the two different values ofat . ~De-
viations of the sound speed from 1/A3 have not been in-
cluded.! Larger fractional deviations arise for smallerVM
and at . The largest deviation shown in the two figures
12.7% for (VM ,at)5(0.1,0.2); the largest fractional devia
tion for at50.5 is about 1.3%, and occurs nearVM
50.225.

Although this is only one example, based on a particu
~ad hoc! choice ofF(a/at), it illustrates that while data a
both low to moderatez as well as CMB observations ca
yield information that lifts the degeneracy betweenV2 and
VM , considerable precision may be needed to determine
equation of state of the dark energy accurately. Note tha
attempt has been made to fit simulated data based on
~20! to figure out how wellH(a) could be determined in
practice; the comparisons made in Figs. 1 and 2 are base
exact functions. The observational challenge of distingui
ing among models at these levels could be even greater
these relatively small differences would indicate. On t
other hand, Figs. 1 and 2 were constructed based on a
ticular ~ad hoc! model forH2(a) designed for a phenomeno
logical study of how easily information onVM could be
gleaned from luminosity distances and CMB acoustic pea
The task could be easier or harder in cosmologies base
particular physical theories for the dark energy, depending
the details of the model.

IV. DISCUSSION

To conclude, the point of this paper isnot to suggest that
it is absolutely inconceivable that the equation of state of

FIG. 2. Fractional deviations of the angular size of the~sonic!
horizon ata51023 from theVM5V250.5 model as functions of
VM<V2. The solid line is forat50.2, and the dashed line forat

50.5. For computing the angular sizes,H0570 km s21 Mpc21

was adopted.
1-4
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DEGENERACY INHERENT IN THE OBSERVATIONAL . . . PHYSICAL REVIEW D 66, 123511 ~2002!
dark energy could be measured, but rather to show, v
specific example, how measurements atz&3 admit a con-
tinuum of interpretations in terms of evolving dark ener
fields unlessVM can be determined separately someho
The specific example, Eq.~1!, can be intepreted ‘‘naturally’
in terms of a Universe containing a mixture of nonrelativis
particle dark matter plus a cosmological constant, but can
interpreted equally well in terms of a quintessence mo
with a range of potentials, Eq.~12!. This specific example
sheds some light on why simulated analyses of low to m
dium redshift data appear to allow degenerate interpretati
it is always possible that the component of the total ene
density of the Universe that evolves likea23 is only partially
due to nonrelativistic particles, with the rest arising fro
quintessence. Unique interpretations can only be obtaine
terms of specific models for the quintessence that forbid s
a conspiracya priori, by either specifying the form ofV(f)
or fixing the value ofVM .

Realistically, the extent to which ther}a23 constituent
must be due to nonrelativistic particles is constrained by
requirement that large scale structure formation evolve ‘‘n
mally,’’ that is, unimpeded by the existence of a compon
with density proportional toa23 that is incapable of cluster
ing. If Eq. ~1! were truly exact, thenV2 would have to be
close toVM for large scale structure to grow, but even in th
case, a limited degeneracy remains in the determinatio
V(f). If V2 andVM differ substantially, then Eq.~1! cannot
be exact, raising the question of how well one could disc
the two parameters separately from observations. To exam
this issue, a modified~phenomenological! expansion law, Eq.
~14!, that encodes information on bothV2 andVM was in-
et

ky
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troduced. In the context of a particular model that is cons
tent with large scale structure formation, but reduces to
~1! with V2>VM at large enougha, we have seen that in
formation aboutVM could be gleaned both from measur
ments of the positions of CMB peaks and from luminos
distance determinations. However, the deviations am
models with variousVM<V2 can be quite small, which
would still pose a substantial challenge for programs that
to determine the equation of state of the dark energy.

Of course, in the context ofspecificmodels for the quin-
tessence field, embodied in particular forms forV(f), the
analyses may not encounter pronounced degeneracies
present, though, there is little compelling reason to assu
any particularV(f) a priori. When analyzing data for a
particular form ofV(f), one is primarily engaged in esti
mating the parameters of the model, as well asVM . Thus,
one might be able to find the best fit model of a particu
type @e.g. V(f)5const], without being able to tell if the
underlying model would be favored by the data if other po
sibilities were admitted. If the allowed ranges of paramet
for a particular quintessence model do not shrink with
accumulation of data, one can conclude that the mode
inadequate with confidence. However, there is no guara
that a given model is correct even if the data seem to c
verge on a unique set of parameters, as Eqs.~1! and ~12!
illustrate.
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