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Signatures of short distance physics in the cosmic microwave background
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We systematically investigate the effect of short distance physics on the spectrum of temperature anisotro-
pies in the cosmic microwave background produced during inflation. We present a general argument—
assuming only low-energy locality—that the size of such effects is of drféM?, whereH is the Hubble
parameter during inflation anil is the scale of the high-energy physics. We evaluate the strength of such
effects in a number of specific string and M theory models. In weakly coupled field theory and string theory
models, the effects are far too small to be observed. In phenomenologically attractaeabitten compac-
tifications, the effects are much larger but still unobservable. In certain M theory models, for which the
fundamental Planck scale is several orders of magnitude below the conventional scale of grand unification, the
effects may be on the threshold of detectability. However, observations of both the scalar and tensor fluctuation
contributions to the cosmic microwave background power spectrum—uwith a precision near the cosmic vari-
ance limit—are necessary in order to demonstrate unambiguously the existence of these signatures of high-
energy physics. This is a formidable experimental challenge.

DOI: 10.1103/PhysRevD.66.123510 PACS nuni$er98.80.Cq, 98.70.Vc

[. INTRODUCTION We should stress at this point that it is by no means nec-
essary for the scale of inflation to be as high Hs
The enormous disparity in scales between the observed 10*~10 GeV. Other inflationary models, e.g., hybrid
Planck mass-10'° GeV and the energy of current accelera- models[5], exist whereH can be much lower, for example
tors (1¢ GeV) stands as the main barrier to connecting theH~10° GeV. Fortunately, the scale of inflation can be ex-
oretical work in quantum gravity to experiment. There are aperimentally tested. Since gravity couples to mass energy,
few exceptions to this difficult situation. Proton decay ex-the amount of gravitational radiation produced during infla-
periments overcome this immense disparity by examiningion is directly related to the energy available during infla-
decays in kilotons of protons for millions of seconds. Inves-tion. This gravitational radiation imprints itself as a polarized
tigations of coupling constant unification use the slow, loga-component of the CMBR, whose power is proportional to
rithmic variation of couplings combined with the assumption(H/m4)2, where m, is the (reduced four-dimensional
of a desert to extract information about the nature and scalBlanck length. So measurements of this power give a direct
of unification. But such bright spots are few and far betweenmeasurement oH. Cosmic Background ExplorgiCOBE)
Observational cosmology provides a window into very[6] data already provide the interesting upper boutd
early times and hence, most think, into very high-energy pro<<10** GeV, which corresponds to vacuum energies
cesses. This possible high-energy probe has received mueh10'® GeV, the supersymmetric unification scale. Intensive
more attention recently because of the new data availabl&fforts are underway to improve this measurement.
the experiments being done, and the experiments being In this paper, we will concentrate on the “high scale”
planned to study the cosmic microwave background radiapossibility forH since this gives the largest range for discov-
tion (CMBR). The benchmark theory that explains the fluc-ering new physics via inflation. There have been a number of
tuations in the CMBR is inflatioh,which traces them to investigations of the signature of high-energy scale physics
“thermal” quanta of a scalar inflation field during a time of in the CMBR. Heavy particles produced by parametric reso-
exponential expansion of the universe. In the simplest modrance have been studied[ifi. Several group§8—12] have
els of inflation, the scale of vacuum energy during this periodstudied the effect that simple phenomenological models of
of exponential expansion was 10'® GeV and the rate of stringy corrections to gravity would have on the inflationary
exponential expansiod ~ 10— 10" GeV. These enormous fluctuation spectrum in the CMBR. This work shares many
energies suggest that during the inflationary epoch, varioukeatures with the results we will present. These groups found
kinds of high-energy processes were activated, and furthethat the size of these imprints on the CMBR is controlled by
that they could have left their imprint on the CMBR. the natural dimensionless ratio= H2/m§, wheremg is the
Many authors have drawn attention to this exciting pros-string mass. For conventional weakly coupled string theories
pect. The first piece of high-energy physics to be unravele@¢ontaining gravityms is approximately the same as the four-
could well be the dynamics of inflation itself. Much work has dimensional Planck mass 10'° GeV sor~10"1L. The ac-
gone into how to reconstruct the potential of the inflationtual size of the effects in these models depends on some
field from CMBR data4]. delicate issues of boundary conditions at short distances that
are not completely specified by the model. These groups
have surveyed the range of possible long-distance behaviors
For textbook introductions, sé@—3]. allowed by different boundary conditions. The authors of
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[10] have focused on boundary conditions that yield imprintsorder 1, and hence potentially observable. In these models,
of size~r while the authors of12] have focused on bound- the fundamental 11-dimensional Planck massmig~H
ary conditions yielding effects of size-r", n~0.5. The ~7x10" GeV. We also consider the early cosmology of
analysis we present below shows that the effects are of siz@odels with low unification scale, ~TeV. In these mod-
~r in any theory that is local on momentum scatesi, an  €ls, the size of extra dimensions varies in the course of cos-
apparently sensible physical requirement. Such an effect igological evolution, but the size of the imprints of the type
far too small to observe for~10 ' In fact, the ultimate ~We consider remains small.
statistical limit of cosmic variance, the number of indepen- In Sec. V, we discuss in detail the requirements necessary
dent sky samples available, excludes it from being observetp observe these effects and distinguish them from other phe-
even in principle. nomena. It turns out that corrections of this type over the
It is important to note, though, how great an improvement’ange of wavelengths accessible in scalar CMBR observa-
this ratio is over the suppression that accelerator-baseldPns look like a change in the power law, or “tilt” of the
physicists must confront. The energies accessible to them afdserved power. Such a change can be mimicked by a
of order 16 GeV so their suppressions are of orderchange in the inflationary potential. What cannot be mim-
(10°/10*9)2~ 10732 But the fact that ~10 1!is a vast im-  icked is the differential effect in the scalar and tensor fluc-

provement is cold comfort to an experimentalist waiting fortuations due to short distance physics. This point was first
counts in an apparatus. made in[16]. Ordinary inflationary fluctuations, without new

But, as pointed out if11], modern string and M theory physics, obey “inflationary consistency conditions” connect-
models allow for the possibility of lower values of the fun- ing scalar and tensor quantities. New heavy physics predicts
damental mass scales, raising the possibility of more favora Violation of these conditionsi6].

able ratios'. Much of this paper will be devoted to exploring ~ We then show that the difference inherent in the inflation-
this question in detail. ary consistency conditions means that the actual signal is not

In Sec. I, we will briefly review the framework of slow- of the size~r as discussed above, but is further suppressed

roll inflation, explaining the basic observable quantities inPy what is called an inflationary “slow-roll parameter”
both scalar and tensor fluctuations. We emphasize that th&hich can range from-0.001 to 0.06 in various models. So
size of inflationary perturbations is fully determined by phys-the size of the measurable effect is somewhat smaller than
ics at the scaleH which is much below the Planck scale. initial estimates suggest.
Therefore, the locality of effective theory used to compute Finally, we point out that this signal is very challenging to
the fluctuations implies that these perturbations are indeperineasure. First, it not only requires precision data for the
dent of the details of Planck scale physics. scalar fluctuations, which are rapidly accumulating, but it
In Sec. 111, we will explain the basic mechanism by which @lso requires precision data for the tensor fluctuations, which
high-energy physics leaves an imprint on CMBR fluctua-have not even been observed yet. Forthcoming experiments
tions. We analyze this effect by assuming that string theory afnay, however, be able to observe the tensor fluctuations if
energies~H is approximately local. Therefore, by integrat- inflation occurred at a high scale by observing Bienode
ing out heavy degrees of freedc(mf characteristic magm), polarization component of the CMBR. We argue that cosmic
we can write a local effective action for the inflation field at variance limited measurements over a substantial range in
momentum scalél. We identify which terms contribute the Wave number of this quantity will be necessary to detect
largest effect for largeM (the leading irrelevant operators these signals. This is a formidable experimental challenge.

and recover the bastd?/M?2 estimate for the imprint on the ~ In Sec. VI, we conclude.
CMBR. We then show that all weakly coupled string models,
and in fact all Ordinary field-theoretic models in the absence 1I. SLOW-ROLL INFLATION

of fine tuning, give unobservably small effects.

In Sec. IV, we turn to strongly coupled string theory in a  We begin with a review of the basic tenets of inflation. We
search for lower fundamental mass scales which may lead till parametrize the inflationary potenti® by a scaleM*
larger effects. We analyze M theory models of the'al@a=  and a dimensionless functian V=M*V. We will work in a
Witten type using the phenomenologically appealing grandpatially flat Friedmann-Robertson-WalkéfRW) universe
unified compactifications discussed [ih3]. We show that with the metric
these models give effects of size10™’, too small to be
observed, but larger than the weakly coupled string models ds?= —dt?+a?(t)dx (2.1
because the f(;Jleamental 11-dimensional Planck scale here is
lower, ~5x10° GeV. We go on to discuss, compactifi- . . .
cations of M theory. Here, rather than having, roughly speak:rhe independent background field equations then reduce to
ing, one large dimension as in the Tdea-Witten case, we

can have four large dimensions, as the singularities support- , 1 @2 4

ing gauge dynamics are codimensiofl4,15. If we aban- 3H :m_i 7+ M™VI,

don the requirement of precision grand unification and allow 2.2
our compactification manifold to get as large as possible, '
while remaining consistent with the four-dimensional char- d+3HG+ M“&—V:O

acter of inflation, we can make the imprint on the CMBR ap
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where H=a/a is the Hubble parameter, m,
~2.4x10"® GeV is the reduced four-dimensional Planck
mass, and dots denote time derivatives. The main feature of
inflationary dynamics in the slow-roll approximation is that
we can ignore the acceleration of the scalar field, because the
cosmological expansion has the effect of friction and nearly
freezes the scalar on the potential slope. The universe is
dominated by the scalar field potential energy and undergoes
a period of rapid expansion. The usual parameters which
characterize the validity of the slow-roll approximation are

¢
= —"s
Ho
: 2.3
3¢?
€= S A,
2M*Y
The slow-roll approximation is then formally defined as the
regime| 7|, e|<1. The relative importance of these param-
eters depends on the model of inflation. For example, as we
will see below in the case of natural inflatibh7] or modular
inflation [18], e< 5. Thus the deviations from slow roll are
mainly coded in the parameter In contrast, in the simplest
model of chaotic inflation driven by a mass term,
~m?/H?> =0 in the slow-roll regime.
In the slow-roll approximation, Eq$2.2) become
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FIG. 1. Causal diagram of an inflationary model. The dashed
past null line is the true particle horizon, but it could also be a null

4 singularity. The future null line is the future infinity. The shaded

3H2=—2V, area denotes the region of exit from inflation and reheating. The

my thin solid line is a worldline of any spacelike separated object from
(2.9 an observer at the center of the space. The bold solid line is the

3H¢+ M4ﬂ}=0 apparent horizon. Its shape is characteristic of inflation in the past,

203 ' and radiation domination followed by matter domination in the fu-

ture.
Using these equations, one readily finds the slow-roll param-

eters in terms of the potential functior geometry is approximated by a future half of de Sitter space
5 during this period. Eventually, however, the change of the

7= e_mziév inflaton VEV accumulates enough for the inflaton to depart
MRV the slow-roll regime, and the potential becomes steeper. The

(2.5 inflaton approaches the minimum of the potential, begins to
2[&¢V]2 oscillate around it, and produce matter particles, reheating

=My >y the inflated universe back to temperatures which will even-

tually produce the universe we inhabit.

Equations(2.4) can now be integrated; they yield

de, (2.6

2~ My

1 f¢od %
a=agex mi . ¢a¢v

Let us imagine that at late times the vacuum energy van-
ishes and inflation terminates such that there are no cosmo-
da 1 V logical event horizons. This avoids conceptual difficulties
a with quantum gravity in space-times with cosmological ho-
rizons, but suffices to illustrate the main features of inflation-
which separates variables for any potentiallhe solution is  ary dynamics in the space-time language. The causal struc-
ture of the universe is then given by the Penrose diagram of
Fig. 1.

In the diagram, the region of geometry below the particle

horizon(dashed lingis irrelevant for the future evolution as

Vel )

=4ag EXF{W (2.7
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long as the period of inflation was sufficiently long. The
future infinity appears as a consequence of our requirement
for global exit from inflation. The space-time below the re-
in the slow-roll regime. Hence, the universe will undergoheating regime is the inflationary region, while that above it
rapid expansion while the vacuum expectation vaMEV) is the postinflationary, decelerating FRW universe. The thin
of the inflaton may change only minutely. The space-timesolid line denotes any object spacelike separated from us; for
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example, for the worldline a distant galaxy follows after it flationary cosmology. The functioér is the time delay im-
forms. The bold solid line represents the apparent horizorprinted by the fluctuations on the VEV in different regions of
which plays a central role for controlling the dynamics of space. Combining these equations, one finds

inflation, as we will now elaborate. During inflation, it starts

out almost null and “outward” directed, and then it flips Sp H
“inward.” This reflects thatH ~ const during inflation. It en- —=C—6¢ (2.8
sures that the apparent horizon plays the role of the causal p ¢

censor, limiting the amount of information which can fit in-
side an inflating region. The space-time will therefore obeyand then one needs to compute the rms fluctuation of the
the cosmic no-hair theorem, and inflation will succeed ininflaton 8¢. As we will discuss in more detail below, fluc-
getting rid of initial inhomogeneities. This may be viewed astuations of the transverse traceless modes of the graviton
another example of the cosmological variant of the holo{(which obey free scalar field equatioraso contribute to the
graphic principle[19,20. The structure of the space-time is density variations.
fully coded on the preferred screen, i.e., the apparent hori- In order to determine precisely how the quantum fluctua-
zon. Its area is small during inflation becaudemust be tions of these fields evolve into temperature anisotropies in
large, and hence the Hubble region is censored from exceshe sky today, one must first compute their effect on the
sive outside influence, because only a limited amount of ineurvature, and then use gauge-invariant gravitational pertur-
formation can fit in the interior. Moreover, most of the ob- bation theory to evolve the perturbation forward to the
jects inside the Hubble region are in the thermal bath ofpresent era. One can define a gauge-invariant varigble
fluctuations located in the region when the apparent horizomwhich is well approximated by the right-hand side of Eq.
is almost null[21], with the cosmological Hawking tempera- (2.8) as modes exit from the de Sitter horizon during infla-
ture Ty=H/27. Since the inflation is much lighter than the tion, and which is approximately constant between this time,
Hubble scale during inflation, the interactions with the ther-and when the mode reenters the cosmological horizon later.
mal quanta cause its VEV and the background metric to flucAt this later time,( is well approximated bysp/p, establish-
tuate. ing Eq. (2.8 [24]. This stage in the process is purely classi-
Because of these quantum fluctuations, the inflaton is natal, because energy scales beldworrespond to scales out-
exactly frozen to its slowly varying background VEV. In- side the causal horizon, and so coherent quantum fluctuations
stead it hops on the potential around the background valuelo not contribute at these wavelengths. The correct proce-
Thus inside of some regions of the universe, inflation maydure is therefore to compute the quantum fluctuation of the
terminate a little later, because quantum effects push the innflaton field in de Sitter space, and then use it to evalgate
flaton a little farther up the plateau. These regions end up at the time the fluctuation exits the horizon; i.e., at momen-
fraction denser than their surroundings, and the matter itum p=H.
them begins to condense sooner, attracting additional matter As pointed out in[25], if the slow-roll approximation
from the neighborhood and eventually forming clusters andreaks down, this procedure will not be accurgtewever,
galaxies due to the classical Jeans instability. The fluctuasee[26]). For the sake of simplicity, we will restrict our-
tions therefore induce small inhomogeneities on the perfectlgelves to models where this is not a concern.
smooth geometry left by inflation, which is measured experi- To compute the quantum fluctuation itself, one treats the
mentally via its imprint on the cosmic microwave back- fluctuating field as a perturbation around the de Sitter back-
ground radiation,ép/p~ 6T/T, thanks to the Sachs-Wolfe ground and computes the mean-square variance a@fhe
effect. This is directly measured by the COB& satellite, propriately normalizedFourier component of an equal-time
and by the BOOMERANG22] and MAXIMA [23] experi-  two-point function evaluated at 3-momentyrs=H,
ments, which set the normalization for the inhomogeneities
at arounddp/p~10"°. They further observe that the spec- (8¢)2~((P)d(—P))|p= (2.9
trum of inhomogeneities is nearly scale-independent.

To determine the Imprlnt Of the f|UCtuati0nS quantitatively, Where¢ represents either the inﬂaton or a physica| mode Of
we can use perturbation theory. In perturbation theory, thehe graviton. The normalization is determined by the more
fluctuations can be decomposed with respect to their transgetailed computation we perform below. In standard infla-
formation properties relative to the residual diffeomorphisms;jon, this is done assuming the inflaton is a free, minimally
into scalar, vector, and tensor modes. The vector modes d@pupled scalar. As we will demonstrate in Sec. IIl, interac-
couple during inflation. Thus only the scalar and tensofijons with massive particles will modify the two-point func-
modes are produced. The scalar modes cause de®sith tion and affect the spectrum of fluctuations. As long as the
therefore  CMBR  temperaturefluctuations. The tensor self-interactions of the inflatofeither in the classical poten-
modes are primordial graVitational waves produced by |nf|a't|a| or induced by quantum Correctidnare weak at energy
tion, and affect the polarization of CMBR. scaleH, so that a perturbative expansion is valid at this scale,

A heuristic derivation of the scalar density contrast is ashis procedure is well defined. Of course, more general theo-
follows: the rms ﬂUCtua'Fion of the field induced by the ther- ries will involve strong Coup"ng' but generica“y will also
mal fluctuations isf¢p= ¢ 57, and that of energy density is violate the observed constraints ép/p.
op=CpHd7, whereC is a numerical coefficient of order Before considering such complications, we review the
unity, whose precise value depends on the details of postirstandard calculation. We begin by approximating the geom-
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etry by a future portion of de Sitter space. Wita the mean-square spectrum of fluctuations (&5¢|%)

=ag expHt) in Eq. (2.1), the inflaton field equation is =P,(H). From Eq.(2.19, we see that
. . - 2 2
¢+3H¢_872Ht(3’2¢) 1 j dk [k H_
(P(x) (X)) = 2 K\t (2.16

=H2(9?3 p—2793,6— 1?5 $)=0, (2.10

where we have transformed to the conformal time= 5
—H e Mt We can quantizep by considering the general 5|2 = H 1
solution (16915 = : (2.1

s0, neglecting the first term as explained above, we obtain

This givesdd=H/2, finally yieldin
¢p<ﬂ>=gHnS’Z[Ang%(anBngfgkm]. givess=H/2m, finally yielding

(2.1 sp_CH

—. (2.18
p 27T )

Choosing the vacuum which matches the flat-space case in
the infinite pastyp—o and in the high-frequency limik
—oo, we find that positive frequency modes akg=0, By
= —1. Then the mode expansion in Minkowski space is

At this point, it is clear how to incorporate interactions
into the calculation. If the theory contains a massive field
(with massM>H) which couples to the inflation, we can

. integrate it out using standard field theory techniques and
¢()?,t)=(2'n')_3/2f d3k[ a] ¢y (t) ek X obtain an effective potential for the inflaton. As can be seen
from the two-point function(2.14), such a procedure
yields—in addition to the ordinary flat space terms—terms
proportional toH?/M?, p?H?/M*, etc. It is important to note
that no cutoff or Planck scale comes into these corrections.
The highest probe energy available in inflation and later vis-
ik ible in the CMB isH. As discussed in Sec. lll, it is these
e‘H‘) ex;{ﬁe‘m). (2.13 contributions we are primarily concerned with in this paper.
We can reexpress E@2.18 in terms of the inflationary
potential using the slow-roll equatiori®.4). It is

+at (e k], (2.12

where

()= \/—(

The positive frequency two-point function is
5p C M2 V3/2

G (xX)=(0]6(x) $(x)|0)= 75 =3 f Pk e *E P 2ve M GV 219
H2 e Ht+t) iy ) This is the familiar formula for scalar fluctuations in infla-

Xz@t 2 Taele me ) tion. We note that the so-called scalar power spectsgrs
related to the density contrast 8= (2/5C)?(Sp/p)?, and

ik , using Eq.(2.19 we can express it as

xex;{—ﬁ(em—e”‘ )). (2.14 9= P

1 M4 Y3
; ; S=oe2 s (2.20

To evaluate the fluctuations of the inflaton at lowest order, 751" m, [d4V]

we compute the quantity
The causal structure of the inflationary space-time de-

1 3 (€ picted in Fig. 1 provides a straightforward understanding of
(¢(X)b(x))= (27 )Sfd Kl Zr Kk o3 the emergence of @early scale-invariant spectrum of fluc-
tuations. A quantum fluctuation which seeds a galaxy is cre-
1 d®p(1 H? ated just before its worldline intersects the apparent horizon.
" (2m)3 f P §+ 2p?) (219 At that instant, it is as big as the Hubble horizon. Then it is
expelled outside of the apparent horizon, where it freezes,
wherep=e "'k is the physical momentum conjugate to the and remains frozen until horizon reentry in the distant future.
proper distanc&=e"'x. After reentry, the fluctuation becomes dynamical and evolves
The first term, which gives a uv-divergent contribution, is as dictated by gravitational instability. Scale invariance then
identical to the flat-space result and should therefore be igfollows from causal evolution iH =const, because the fluc-
nored. In other words, we are interested only in effects protuations of very different wavelengths are produced with the
portional toH, not in flat-space fluctuations which can be same amplitude. The evolution of the fluctuations can ini-
renormalized away. The second term is peculiar to de Sittetially be described well by linear perturbation theory. How-
space and requires more careful treatment. ever, nonlinearities eventually develop because of nontrivial
The magnitude of the fluctuations is determined by theirinteractions with the environment. In the matter-dominated
power P ,(k), defined by ((x)?)=f(d KIK)P (k). Then era, the fluctuations evolve differently before decoupling

—2Ht HZ
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than after it. Before decoupling, the universe is opaque and The specifics of modular inflation

therefore the baryonic matter is influenced by radiation pres- 14 proceed, we need to determine more closely the form
sure, which competes with gravitational collapse. This re¢ the inflaton potential. For definiteness, we approximate

sults in the emergence of acoustic oscillations, with characpare the potential functiol by an inverted parabola
teristic peaks imprinted on the CMBR. The peaks appear '
)

because the perturbations whose wavelengths are half-integer

divisors of the sound horizofi.e., the largest distance sound V=1- (—
can travel within the time of recombinatip@at decoupling H
can Complete full oscillation CyCleS. The location and theTh|S approximation is generica”y valid in at least some re-
heights of the peaks measure very accurately the cosmologiion of the primordial universe which begins to inflate if the

cal parameters, in particular the Hubble parameter at decoynflaton is a modulus. The modulus begins near the maxi-

2

(2.29

pling. mum of the potential. Then the slow-roll conditions yield
Before turning to the specifics of modular inflation, we

briefly review the mechanism for generating tensor fluctua- M2 é\?

tions during inflation. These are just the gravitational waves, H= 1- (—) '

and correspond to the transverse-traceless metric fluctuations vam, K

hy,. They obey the linearized field equatilvﬁhl‘zo, where ) (2.29

the covariant derivatives and raising and lowering of in- Y 2M“m, ¢

dices are defined relative to the background megig, V3u? ‘/1_(4,/#)?

=diag(— 1,a%(t) 5,,). Therefore, each of the two graviton
polarizations obeys the free massless scalar equation, andTihe slow-roll parameters for E@2.24) are initially
is straightforward to quantize them in de Sitter space, in

precisely the same way as in Eq2.10—(2.17). In particu- 2 é’?ﬁv 2mjg
lar, the root-mean-square fluctuation of the graviton is nEeTMiym =T T
(6hy)=H/27. However, the formula for the tensor power (2.26
spectrum is different from that for the scalar. It is directly mi [0¢V]2 2m§¢2
proportional to the fluctuation of the metric, €=— ;= <,
1% 2
, 1 H* 1 m* : : :
e 5= —V (2.21) and hence the parameteru®/ which we introduced in the
2w my 67" my potential (2.24) is equal to I3 multiplied by a small pa-

) rametery/2. This guarantees that the potential is sufficiently
by slow-roll equations2.4). The tensor nature of these fluc- fiat to support inflation.
tuations induces oscillations in the plasma during decoupling \we could now solve these equations directly. However,
which polarize the CMB photons in an observable W2Y].  rather than integrating to find the time dependence, it is more
The ratioR = 67/ 8% is a characteristic of the inflationary instructive to solve Eq(2.6). We will use the number of

model, and is given by e-folds before the end of inflation, or equivalently, the value
) of the scale factoa, as the cosmic clock. First, we define the
25 m4[z9¢V]2 number ofe-folds that the universe has expanded by to be
== ——. (2.22
2 vV
a t ¢ H
It is straightforward to verify that in terms of the slow-roll N=In a_o B ftodt H= L)Od(ﬁ;' (229
parametersR is given as
Then using Eqs2.25 we can explicitly integrate this to find
o (2.23 g Eqe2.29 plicitly integ
1 ¢ 1 2_ 42
The fluctuation spectra produced in inflation are not ex- N= P In %) T 2_M2(¢0_¢ )|- (2.28

actly scale-invariant. If the background inflaton VEV were

exactly frozen, and the geometry precisely de Sitter, the preriere ¢, is the initial value of the inflaton. In modular infla-
diction for fluctuations(2.18 and (2.21) would have been tjon, ¢, would typically be near the top of the potential, in
time-independent, and therefore exactly scale-invariant. Ifhis case near zero. Such initial conditions produce a huge
reality, there is weak time dependence in 2118 because amount of inflation, as is clear from E.27, which di-

the inflaton is sliding down the plateag. This time depe”'verges in the limitp,— 0. Of all that expansion, we can only
dence, manifest in the variation &f and ¢, translates into  observe the final 6@-folds or so, during which the universe
scale dependence of fluctuations, and produces a spectruerpands by a factor of about 20Any indications of expan-
which is not exactly scale-invariant. This departure fromsion beyond that would be completely outside of the current
scale invariance is a function of the specifics of the inflation-size of the universe, and hence not accessible to our obser-
ary model as defined by the potential. Below we will con-vations. Because we are only interested in the las-&ds,
sider the details in the case of modular inflation. we can takep, to be near its value at the end of inflation.
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Inflation ends when the slow-roll conditions cease to beThus C,uMZ/m}—va 10 4. Taking nowC=0(1) and
valid, i.e., wheny,e~1. This occurs when the VEV o = ./140m, [Eq. (2.26)], we obtain
grows toafﬁv~H2, which in the case of modular potential
(2.249 happens wherp~ w. Because a small change in the M s
value of ¢, of order~e, yieldsN~ 5~ ! e-folds of inflation, m_4_8'2>< 10°% (233
we require thaty~ 55, which is enough to solve the horizon
and flatness problems. In that case, the latter two terms il this case, the Hubble scale at inflation is, using the first of
Eq. (2.29 are essentially negligible compared to the loga-Egs.(2.29,
rithm, and we will drop them hereafter. We note that in this
case the other slow-roll parameteres: 2m3/ u2e’= 7/ €?.

We now define\V=N, —N as the number oéfolds left = .. is within the bound allowed by COBE and large-scale
before the end of inflation. This variable is convenient to
make contact with large-scale structure and CMB 0bserva€’trlJCture measurements, @8]' :
tions. In terms of it, we can write down the solutions as The scale dependence is conveniently represented by de-

: ’ fining the spectral inderg (or the tilY) and its gradient as

H=5.2x 10" GeV, (2.39

1] (m)  ¢*—u? s
Sl P p

N 7 In ¢ + 2M2 y dln7
M2 (ZS 2 nS:1+2 dlnk ’

H= 1—(—) ) (2.29 (2.39
vam g @2

N dnS P
a=afina® " VST qink 2 dink?

Inflation now lasts from whetV~60 or larger to aboutV’

=0, at which point the higher-order terms in the modular

potential, ignored for clarity in Eq2.24), become important 67

and reverse the sign of the effective-mass terng.of ng=1-27n— m
Because the rolling of the scalar down the potential is 0

slow, the Hubble parameter and the scalar field change Ve'Numerically, using Eq(2.36), we find the tilt (at the scales

little, and hence the amplitude of fluctuations remains nearl orresponding to 5@-folds before the end of inflatiorto be
constant throughout inflation. Therefore, the fluctuations ar?]szo_95 andve= — 24x 102,

being incessantly produced with an almost constant value, ; —
and deployed outside of the horizon. They stay there until 7 gg)ea;ednéogjg?mirégicztg? \l/?/goﬁunr:jd by substituting Egs.
long time into the future, when the Hubble horizon eventu-"" ' e

For the modular inflation model we find

(2.36

ally grows large enough, and they cross back inside, and start 1 M? k\27
to collapse. These are the fluctuations we observe on the sky. 5-2r=§2 1 (k_ } (2.37
4 0

The weak time dependence fand ¢ implies thatdp/p is
weakly scale-dependent. We trade the time dependence ofherefore, the ratio of tensor to scalar spectrum of fluctua-
for the scale dependence by the horizon crossing matchingons s, usinge= 7/€?, precisely

defining the comoving momentuknof the fluctuation at ho-

rizon crossing by R=25¢€, (2.38

k=aH. (2.30  which numerically iSR=4.8x 10 2.
Above we have focused on the most familiar case, where
For modular inflation solutiori2.29 this enables us to ex- the departure from the slow-roll regime is dominated by the
plicitly evaluate Eq(2.18 as a function ok. First, we note  quadratic terms in the potential. It may, however, happen that
that the inflaton mass scales are smaller than the scales set by the
Y VEYV, such that the termination of inflationary conditions is
k=koe ", (2.31 controlled by higher polynomial contribution to the inflaton
potential. The numerical values we have obtained for Egs.
(2.33 and(2.34) clearly are sensitive to the precise form of
the inflationary potential during the last @folds, and it is
| 277302 of interest to determine the range of these parameters. To do
_( ) } . (232 S0, one can parametrize different modular inflationary mod-

where kg is the comoving momentum leaving the Hubble
horizon at the end of inflation. In terms of it, we find

op(k) 2CuM? (ko)”

P 877\/§m3 k k_o els by the potential function
At 50 e-folds before the end of inflation, the COBE measure- V=1— f " (2.39
ments set the overall normalization &p/p|so~5%10°. 7 ’
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which yields, in the slow-roll regime, the field equations

M2 n
H= 1- (f ,
vim, o
(2.40
) nM2m4 ¢n—l
¢: n n ’
V3u ¢
1_ —
)73
It is straightforward to find the solution
a=agne
. ) (2.4)
n—4)
e e ( M

n(n—2)m;¢" 2 2n(n—2)m;’

and determine the density contrast. It is

M ny3/2
1—(m—H . (2.42

4

2

sp C (M
3 m,

Zi(ﬁ
My

¢

P 2nm3

From the COBE normalizatiodp/p|sq~5x 10 ° we can

derive an estimate of the scale of inflation. While there is

some sensitivity to the initial condition, we find
~4x10°nY(n—2)Ym,, or

H~fewx 10n\n—2 GeV. (2.43

But in light of the boundH<7x 10" GeV on the Hubble
scale of inflatior{ 28], we see that the modular inflation mod-
els withn>2 are excluded already, and we can ignore the

henceforth.

m
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Sp NN

p _2771/§n3’2 mi

n/2+1
&

, (2.47

and using the COBE normalization we can straightforwardly
determineH during inflation. It is

H=4m7x10 %/nm,, (2.48
which is a factor of\/n/2 higher than the corresponding
value in the case of quadratisubleading potential. It is
straightforward to determine the spectral index for scalar per-
turbations. It is

n+2

N (2.49

n5=1—

Hence, in general, chaotic inflationary models driven by
higher polynomial terms tend to yield a higher valuetbf
during inflation, but they also give steeper potentials and
therefore will yield larger values of the spectral index. The
slow-roll parameters for chaotic inflation are

n(n—2) m;
K R
n2 m?2 (2.50
€= 7 ?’V n.

The ratio of tensor to scalar perturbation power obeys Eq.
(2.22), R=25¢, by virtue of Eqs.(2.20, (2.21), and(2.50.

For low powersn, the parametee now determines the dura-
tion of inflation, which therefore means that the raRois
only weakly sensitive to the specifics of the potential, giving
similar tensor power for different forms &f.

In some cases, most of the late inflationary expansion can

occur during the final approach of the inflaton to the mini-
mum of the potential; this is the scenario of chaotic inflation

[29]. In these cases, the potential is
N
V= E ¢n, (244)

whereV is the dimensionful quantity=M#*V. In the slow-
roll approximation, the field equations reduce to

)\ n/2
H= —¢ ,

3n my

(2.45
¢: — /%m4¢n/2—l.
The slow-roll solution is
a=agae ",
L g2 (2.46
A= ﬁ(@) -

The density contrast is

lIl. IMPRINT OF HEAVY STATES

We now turn to the heart of our work—finding the imprint
of new, heavy physics on the fluctuations discussed in the
previous section. We will assume that the scale of inflation
is much smaller than the Planck mas$<m,, so that a
field-theoretic treatment of gravity is appropriate. Further, we
will assume that the mass scale of new phyditss much
larger tharH, M>H, and then assume that we can represent
the effects of this new physics at the schlldy “integrating
it out” and writing an effective field theory for the inflaton
field. These assumptions—which rely on low-energy locality
and renormalization-group ideas—are obviously correct in a
field-theoretic context, are obviously correct within string
perturbation theory around supersymmetric vacua, and are
correct in the known nonperturbative definitions of string
and M theory in supersymmetric backgrounds. The enduring
mystery of the cosmological constant, and the associated
mysteries of string theory in de Sitter space, make these as-
sumptions plausible, but not ironclad, in the present context.
We make them anywdy.

2For an example of a speculation on how locality might break
down in de Sitter space string theory, $86].
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We can then encode all the new physics by writing aneral boundary condition and then focus on a special,
effective field theory for¢ at the scaleH. The scaleH is  differenf boundary condition that results in effects of size
appropriate since, as we see in ER.9), that is where we ~(r)", n=0.5. This effect is inconsistent with our effective
evaluate inflaton correlation functions to compute the size ofction result and so presumably this boundary condition vio-
oplp. lates locality in some way. We should also note that an effect

Instead of writing a fully covariant effective action fgt  of this functional form would imply a nonanalytic depen-

let us just note that the curvature of de Sitter space is progence ong? and ona’, which would signal the breakdown
portional toH?, and so we use this as an additional dimen- ° ’

onful tor i rueting t The int " f perturbation theory at weak coupling. All in all it seems
sionful parameter in constructing terms. The interactions o ikely to us that the special boundary condition chosen in
the inflaton must always be very weak to give phenomeno

logically acceptable values @i/, This is usually enforced [11,17 is unphysical. The subtleties mentioned at the begin-

in specific models by some combination of fine-tuning, dy—nmtg of ;h's secltt|orr]1 make it impossible to definitively rule
namics, and supersymmettgroken at scaléd). So we will ouTiuc ba regﬁ ’t o;/ve\/t(ra]r. irt f the effecti .
ignore inflaton interactions. Given these considerations, the € above lflustrates the virtue ot the efiective action ap-

most general Euclidean local action one can write down is Oproach we are using here. Equati@h9) shows that the rel-

the form (we have assumep>H and used flat-space nota- evant momentum scale for these processds, inotm,. If
tion for simplicity) there is a large hierarchy between these scales—which is the

situation we are envisioning—then there should be no reason
to consider Planckian dynamics at all, e.g., short distance

Seff[¢]=f d*p ¢(p) d(—p){p?/2+H2/2+ coHZ(HZ/M?) boundary conditions, in studying the fluctuation problem.
One simply encapsulates all the unknown short distance

+¢1p?(HZIM?) + c,p* M2+ c3p*/ M2(H2/M?) physics in an effective action. All the subtlety of choice of
- the boundary condition is buried in the assumption of the
+Cgp /M7 (8.1 existence of a local effective action. Given that our world

appears to be local, this seems an excellent assumption.
Perhaps we should phrase things in a more optimistic
way. If experiments detect imprints in the CMBR of strength

r%5 as predicted if11,17, it would imply a breakdown of

locality in low-energy string theory, which might be a crucial

f clue in solving the cosmological constant problem. Alterna-

tively, such results could also indicate that physics other than
inflation may be responsible for the origin of structure in the
_ —H2 2(H2/M 2 2042/ 2 universe.

(S(P) o p)>|p=H H7+ CoHAHTM®) + ¢ HA(HTM®) We now turn to the evaluation of the parameters in the
+CoHY M2+ cgH?(H2/M?)2 effective action(3.1) in some specific physical situations.
+CH2(H2M?) 2+ (3.2 F-irst imagine a.heavy f-ermiOE fielgt coupled to the inflaton

via a Yukawa interactiol\ ¢4y A one-loop graph in de
The largeM corrections to{$(p) ¢(— p))| -+ organize Sitter'space ofy particles clearly induces irjteractions of the
themselves into a power series in the dimensionless ratio form in Eq. (3-1)-2 T2hes§ produce effects in the propagator

—H?/M2. We have assumed that this ratio is small, so thd3-2) of size ~A"H“/M* with M=m,, the fermion mass.

only terms that are potentially observable are the ones witdYypically my~N(¢)~Am,. (We Ignozre slow-roll param-

coefficientsc; andc,. The term with coefficient, is justa  eters herg.So these effects are H*/m;~10"** and hence
renormalization of the potentia|7 which we can ignore_ unobservable. This result is quite general. A partiCle renor-
On very general grounds the effect of new physicsmalizably coupled to the inflaton wilgenerically have a
whether field-theoretic, string-theoretic, M-theoretic, etc., ismass~(¢)~m, and so the virtual effects of this particle
proportional tor = H2/M?2. The coefficients; must be com- will be of orderHZ/mﬁ, unobservably smaﬂ.Exceptions to
puted, however, and can be much smaller than 1, giving efthis result can occur if counterterms are fine-tuned to make
fects much smaller than the naive expectation. the particle masses unnaturally small. Then the virtual effects
Several groupf8—12] have previously analyzed a special can be very large and certainly observable. An extreme case
case of this situation. They have added an irrelevant operat@f this limit has been studied i7] where a fermion becomes
to Einstein gravity and directly computed its effect on infla- massless for a certain value of the inflaton field VEV. When
tionary fluctuations by solving the linearized wave equationsthis VEV is reached during the slow roll, fermions are pro-

This requires specifying new boundary conditions at highduced copiously, sharply reducing and so, by Eq(2.19,

momentum on the higher-order differential equation. These

boundary conditions are not determined by the model itself————

The authors ir{10] impose the constraint that the solutions 3The authors if10] speculated that this boundary condition was

rapidly relax to the “adiabatic” vacuum shortly after they are the same as their adiabatic condition. The resultslaf show this

created. They find imprints of size~H?/M?, consistent is not the case.

with our general result. 111,172, the authors study the gen-  “We thank S. Thomas for pointing this out to us.

This structure follows from the fact that only even powers
of momenta are allowed, and that the curvature~isi2.
Therefore, no odd powers & can appear.

Information about new physics is contained in the coeffi-
cientsc; and in the scaleM. From Eq.(2.9) we see that
measurements ofdp/p help determine the value o
(p(p)d(—p)) atp=H. From Eq.(3.1), it follows that
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creating a sharp increase #p/p for a short time. This trans- ments, and large-scale structure dataHis-7x 10" GeV
lates into a sharp peak in momentum space in the fluctuatiofpg]. In 4D grand unified theoryGUT) models,M=m,,
spectrum. X<1, and the correction is unobservabldowever, in most
These phenomena require an additional level of finephenomenologically viable string and M-theory models, the
tuning on top of any fine-tuning required to make the inflatonfundamental scals ;—either the higher-dimensional Planck
potential well behaved. scale or the string scale—is lower than the 4D Planck scale
Next we turn to weakly coupled heterotic string theory m, by up to two orders of magnitudé3,31,32. If we com-
models of the ‘“traditional” type: g2~0.1, mg~m,  pactify ad-dimensional theory with Planck scald; on a
~10' GeV. The Calabi-YaCY) compactification radii are (d—4)-dimensional manifolX,_ 4 with volumeV,_,, then
hence also of order @i;. It will be useful to be able to vary m421=M?_2Vd—4- The high scalem, is not a dynamical
this scale independently, so we will denote ig( . We do  scale, but rather an artifact of the large volume of the com-
not understand inflation in string theory, or string theory inpactification manifold.
de Sitter space. If we assume the existence of an effective |n these models we might expebt=M;. However, as

action in these environments, though, we can compute bjpng as the Hubble scale is lower than the compactification
evaluating terms in the effective action from the string theoryscale, 4D effective field theory still applies. The effect on Eq.
S matrix in flat spaceH =0). (4.1) of integrating out a given four-dimensional field still
These models have four real supercharges and hence hagﬁ,esM =m,, X<1.
no constraints on the kinetic term in the four-dimensional” Byt higher-dimensional models have several new features
effective action. On the other hand, 16 or more supercharg&ghich can significantly enhance the corrections to @al).
would require no renormalization of the kinetic term. So aSFirst, the corrections in Ec(41) arise from nonrenormaliz-
mcy—0 and flat ten-dimensional space is recovered, theple gravitational couplings which become large at high en-
higher—derivative terms In the effective action must \./aniShergieS' Thus high_sca|e physics_in particu|ar the |arge num-
So we expect effects in the propagat@®.2) of size pers of particles above the Kaluza-Klein threshold—
m&yH#mg. For mey~mg this becomesH?/mi~10"".  contributes significantly in loops. Secondly, the existence of
This is unobservable. tensor fields in 10- and 11-dimensional models leads to a
To find effects closer to the threshold of detectability, welarge factor X from summing over polarizations of these
must enter the realm of strongly coupled string theory, wheréields.

the fundamental mass scale can be much lessran In almost all of the models we are interested in, the domi-
nant effects arise from supergravity modes. The loop inte-
IV. LARGE EFFECTS IN STRING AND M THEORY grals appear highly divergent, but for the effects we are cal-

. culating they are cut off by either the restoration of maximal
We have shown that new physics at a sddleeads to the  gypersymmetryto 16 or 32 unbroken superchargesr by
following expression for quantum fluctuations of the infla- the soft ultraviolet behavior of the fundamental theory. The
ton: result is highly model-dependent, and the numbers we arrive
at by no means constitute a precise prediction. Nonetheless,

H?2 H?2 - o -
(64D = —5| 1+ X—p+--]. (4.1) we can estimate whether the cor_rectu_)n in I§41.’L) is ob_—
4 M servable. To that end, we will begin this section by estimat-

ing AH2/M? as a function of the compactification radii and
The second term in the parentheses is the leading correctiqRe cutoff. We will then analyze a variety of supersymmetric
to the standard, free-field expression used in inflationary cosy=1d=4 models in string and M theory and estimate the
mology. X' is a model-dependent, dimensionless number resjze of the one-loop contribution to Et.1) in each. Read-
lated to the coefficients in the effective acti@1). It may  ers who are less theoretically inclingor simply impatient
get contributions from phase-space factors in loop integralsiill find the results of this section in the paragraphs follow-

sums over heavy particles coupling to the inflaton, and so onpg Sec. IVA1; they may then skip to Sec. V, where the
As we will argue in the next section, this correction is experimenta] consequences are discussed.

potentially observable as a correction to a well-known con-
sistency condition on the tensor and scalar fluctuations of the
CMBR. We believe such an effect is measurable in principle Summary of results

if Our strategy will be as follows. The first two models we
analyze—M theory orX,=Xgx S'/7, [33], also known as

4.2) Horava-Witten theory, and M theory on a manifold Gf,
holonomy—can be made consistent with the unification pre-
diction of [34], by keeping all scales including the 11-

It is hard to be more precise with this number, as it depends

on the measurability of thB-mode polarization, which is not

yet well understood. >Models for which the particle coupling to the inflaton becomes

The Hubble constarii? can be calculated, or hopefully light someg= ¢, during the inflationary epocf7] lead to an ob-
measured in polarization experiments. The current uppeservable effect at a particular angular scale on the sky; this will be
bound from COBE, current degree-scale anisotropy experiebservationally distinct from the effects we discuss here.

2

H
XW~O.1—1.
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dimensional Planck scale to within an order of magnitude obecome observable. It is easy to imagine these effects chang-

the unification scaleM g,7=2X 10 GeV. In this case we ing our estimates by an order of magnitude in more precise

will find that XH?/M?~10"7, which is unobservably small. calculations. For this reason we parametrize our results in
However, if we give up perturbative unification, we can terms ofH?/M? and X separately.

increase the volume of the compactification manifold and

decrease the fundamental Planck scale. We examine such

models under three constraints. First, the inflationary dynam- First we specify our notation: the dimensionful gravita-

ics must remain four-dimensional. This puts an upper limittional couplingk, is the coefficient of the Einstein term,

on the size of the compactification manifold, on the order of

_1/H. _Sec_ondly, if we assume that the energy density during = iz ddx\/aR_ 4.3

inflation is constant ird dimensions, then it must be lower 2Kg J x4

than mg, wheremy is the d-dimensional(reduced Planck ] ] o

scale. We will find that this also places an upper limit on the?Ve define two versions of the Planck masiffering by a

compactification volume. numerical factor,
Finally, the four-dimensional gauge coupling must remain

a~ 3 in order that the standard model couplings are roughly

correct at a TeV. The origin of gauge dynamics in a giveMynhen we compactify on a manifol&y_, with volume

model, combined with the constraint an affects how many V4_4, the four-dimensional Planck scale is

dimensions can be made large. In M- and F-theory models,

1. Notation

2k3=2m)83=15, My=1lty, my=1/l4. (4.9

gauge dynamics arises on singularities or on branes, both at mﬁzng’ZVd,4. (4.5
finite codimension in the compactification manifold. If the
singularity or brane lies on &-dimensional submanifold ~In ten-dimensional string theories, the gravitational cou-
3 CX, a=VsM¥ and Vs is fixed. The number of dimen- Pling can be written via the string scale as
sions which may be made large is then the codimendion 2 -
—k of the brane or singularity, so the models with the great- 213=g2a’ 4= 9s §(2w)7€§=g§%. (4.6)

S

est chance of giving rise to observable corrections in Eq. Hf 9
(4.1) are those with the highesit—k. ) o ) )
In M theory onXgX SY/7,, the gauge dynamics occurs on The_strmg tension i3 =1/2wa’ and a string oscillator mode

the boundaries o8'/7Z, which have codimension 1. The vol- Carriers energy Vo'
ume ofXg is constrained, and we cannot decrease the size of ) o ) ) )
the intervalSt/Z, low enough to make the correction term in 2. Corrections to the propagator in higher-dimensional theories
Eq. (4.1 observable. Manifolds wittG, holonomy are in Ideally we could choose a string model and simply calcu-
much better shape. The gauge dynamics lies on singularitidate the one-loop corrections to E.1) in perturbative
of codimension 415]. We can increase the volume of the string theory. However, string theory in approximately de
transverse manifold such that the 1l-dimensional PlancKitter backgrounds is poorly understood. Furthermore, we
scale ism;;~H. will find that the effects of high-scale physics are closest to
We then move to ten-dimensional type | models. In theobservability in M- and F-theory models.
simplest such models the gauge degrees of freedom propa- However, supergravity remains a good approximation in
gate in ten dimensions. The compactification manifold carthe calculations we are interested in. We will begin by simply
be made large consistently with= 3= by adjusting the string  studying a scalar field coupled todadimensional graviton
coupling. But this coupling is weak, so that ten-dimensionalon a (d—4)-dimensional torus. This may seem nonsensical
physics is controlled by very soft string physics and the coras the loop integrals will be badly divergent. However, the
rection in Eq.(4.1) is unobservable. corrections to th@? andp* terms in the propagator vanish in
One may also study models for which the gauge degreesupersymmetric theories when 16 or 32 supercharges are un-
of freedom propagate on branes. Two such models consistebtoken, at energies above the compactification scale. There-
with AN'=1 supersymmetry in four dimensions are Biea-  fore, supersymmetry cuts off the otherwise highly divergent
Witten models with the gauge dynamics arising on M5-amplitudes without our needing to appeal to the ultraviolet
branes wrapped on Riemann surfaces, and F-theory modelysics of M or F theory. The scale of the cutoff will be set
with the gauge dynamics arising on D3-branes. For both oby the scale at which the full supersymmetry of the underly-
these models, the strongest constraint is that imposed by suing theory is restorefl.
Planckian energy densities. Up to the model-dependent fac- Because the loop integrals are dominated by energies near
tor &, the constraints on the corrections in K4.1) lead to  the cutoff, well above the compactification scale, we can
estimates fortH2/M? that are within a factor of a few of the ignore the effects of the curvature and topologyXgf. We
estimate for manifolds o6, holonomy, so we will not dis-
cuss these other models further.
All of these estimates are model-dependent and imprecise f0f course, supersymmetry is also broken by the vacuum energy.
In particular, we will argue below that the loop expansion iSsHowever, it is restored for momenka>H. The corrections we will
starting to break down as the corrections in Egl) start to  discuss will arise from momenta much larger thén
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tion terms ang*/ A? corrections to the propagator, while the
right-hand diagram will give further wave-function renor-
malization corrections.

We are interested in the divergent part of the loops with
loop momenta of ordek>H. Therefore, we can approxi-

FIG. 2. Two one-loop diagrams important for the computation. Mate theH dependence of the propagators at tree level via

will therefore estimate the correction in E4.1) by coupling

the first two terms in Eq(3.1), which amounts to shifting all
of the masses byn®>— m?—2H?2. At the end we will take the

the inflation to thed-dimensional graviton on a rectangular leading correction irH?/A?. _
(d—4)-dimensional torus. For our purposes, the effects of The left-hand diagram leads to the correction

the actual geometry can be summarized in terms of th

model dependence of in Eq. (4.1).

the d-dimensional graviton is

S=% f dx\O(g™ daddpd+mig?).  (4.7)

The metricg can be written in terms of the background met-

ric » (which we take to be flatand a small fluctuation,
Gab= 7abT Nap - (4.8
Scan be expanded in powers lofusing the formulas

8vg=399%°5g.p,

5q@P= — gacqbds (4.9
g 979" 90pq-

This will lead to nonrenormalizable couplings of the form

h(d¢)? andh?(9¢)?,

5S=1% f dO%(TE™ Ny n b

+ TZdemnhabhcdam¢an¢+ M gbhabd’z

+ Mibc abhcd¢2)v (4'1()
where
b,mn_
Tg mn_%ﬂabnmn_ 7]mar]nb,
b
TZ cdmn_ _%nabnmcnnd_,_%nabncdnmn
_ % 77acnbdnmn_,_ % 77m(377a1d7]nb
+ % ﬂmaﬂncnbd' (4_1])

ab_ 1.2 _ab
M3 =zm"7"",

abcd_ 1,2, ab_cd_ 1.2 _ac,_bd
M3 =M ™™ = am =y ™"

The propagator foh is, in the de Donder gauge,

2
<habhcd>: W Nacbd T NadMoc— ﬁ MNabMcd | -

(4.12

PDl(D)

The Lagrangian for a massive scalar minimally coupled to 1

B d*k  p?(p—kn)?+p-(p—ky)m?+m?
T mpF ) 2m)* (KG+m?—2H?)[(p—k,)2—2H?]’
(4.13

and the right-hand diagram leads to the correction

1 2 1
Dy(p)=—3z(d +d—8)W
4

d*k (p?+m?)
X f—4ﬁ
n (27T) kn 2H

The sum ovem is over Kaluza-Klein momenta, arlg, de-
notes the full 11-dimensional momentum of the internal
graviton propagator.

The four-dimensional integrals in Eq&t.13 and (4.14
are already quadratically divergent, and the Kaluza-Klein
sum only increases the degree of divergence. So long as the
cutoff is more than a few times the Kaluza-Klein scale, we
can approximate this sum by an integral,

(4.19

Va4

; T (2mo

dd4k, (4.15

whereVy_, is the radius of thér? 4. The 11-dimensional
momentum integrals are highly divergent and dominated by
the uv end of the integral, near the cutaft>=H. We can
therefore expand the integrand in powerstof/k?. After
subtracting theH-independent wave-function renormaliza-
tion correction, the most divergent terms in this expansion
are

D( )__ndVd_4H2(p2+m2)J’ ddk 1
)= m? 2m° K
Vg_ap* [ d% 1 (4.16
m2 (2m9k* '

The first term leads to aH-dependent wave-function renor-
malization, and the second topd term in the propagator.
The factorny arises from the sum over graviton polariza-
tions. Since the de Donder gauge is not complete, we must
subtract off the ghosts. The result should be the number of
physical graviton polarizationsd(1)(d—2)/2— 1. In theo-

The two one-loop diagrams are shown in Fig. 2. The diagranties with 32 unbroken supercharges before compactification,
on the left will contribute both wave-function renormaliza- the graviton supermultiplet contains additional scalars, gauge
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fields, and tensors, so that when we include all of the bosonic The remainder of this section will amount to estimates of
degrees of freedom we will findy=128. the magnitude of Eqg.(4.1) in a variety of string and

The size of Eq.(4.16 depends strongly on the cutoff. M-theory models, with these caveats firmly in mind.
Naively one expects this cutoff to bd;. If M;=my, then

3. Physical constraints on compactifications
2

V., ,mi-4= my (4.17 In the minimal supersymmetric standard model, the run-
d-4 W ' ning strong, weak, and electromagnetic couplings unify at
and so we can writtl =my in Eq. (4.1). However, the rela- 9> 1
tion betweenA and M; is model-dependent, and may in- AeUTT 1 7 55 (4.22

volve factors of Zr and other dimensionless numbers. Be-

cause these factors are raised to high powers, they can have 6 .
a significant effect on the size of the correction in Eg1). ata scale of OrdeMGUT_N_ZX 10'° GeV [34]. This is strong .
For now we will set evidence for grand unification at that scale. Nonetheless, it

still indicates a small hierarchy betweéhg,r andm,.
A=cmy (4.18 In traditional string phenomenology, one starts with ten-
’ dimensional type | or heterotic string theories, which have 16
with c~O(1) parametrizing the model dependence. unbrol'<en supergharge;. One then choosiaes a sig—dimensional
After performing the momentum integrals in E@.16), Calabi-Yau manifoloX with volumeVy~Mgyr, Wh"?h pre-
we find servesN=1 supersymmetrySUSY) at the compactification
scale.Mgyt, @gur, and m, are computable functions of
ongmdPcd—4  H2 Vy, the_ string scaleng, a_\r)d the string couplin_gs, and one
— (p?+m?) may adjust the compactification parameters in order to match
M the unification predictions df34].
For type | models, the measured valuesf;r, Mgy,
and m, can be achieved in models with weak string cou-
(4.19 pling. For heterotic models, the observed couplings and
(d—4)(2m)°T 9) scales are incompatible with weak string coupljd§]. One
2 may try to work at strong heterotic coupling, but it is not
clear that the expressions for the gauge couplings are correct.
Sincenyg~ 100, the wave-function renormalization term will Instead we can appeal to string duality3]. The strong
dominate, and we will find that the coefficieatin Eq.(4.1)  coupling limit of the SO(32) string is weakly coupled type |
will take the value string theory[35]. The strong-coupling limit of thé&gX Eg
heterotic string compactified onX is M theory on
2ngmd2cd—4 XX SYZ, [33]. In this latter limit, gauge coupling unification
x= qr (420 is compatible with a background well described by 11-
(d—4)(277)dF(—) dimensional supergravity13].
2 We will also study M theory on a manifold d&, ho-
. lonomy, and weakly coupled type | string models. We will
while M =M . y find that Homva-Witten theorywith the standard model as a
These estimates are hardly' precise. In addition to th%ubgroup ofEgX Eg) and weakly coupled type | models do
model dependence we have discussed, the loop expansinn, give rise to observable corrections in E4.1), in any

\IIEVIII t;e%m to blreak dov‘én in mg?elsther:e the correcltn_)ns Nreasonable regimes of parameter space. It appears that for
g.(4.1) are close to observapility. For these modsis1 in such corrections to be observable, the dynamics must be

Eq.(4.18. If the fundamental scale M =my, wheremy i gyongly coupled and the standard model should live on a
the Q—d!mensmnal_ Planck s_cale, then the. d|men3|0nles%rane or singularity with high codimension.
gravitational coupling governing loop corrections will be In the remainder of this section, we will discuss a variety
of models which have low-energy gauge dynamics and a
(4.21) fundamental scale lower than,, and estimate the size of
corrections to Eq(4.1). We will spend the most time on
Horava-Witten models. We will then discuss M theory on
OnceA~my, ggra\,~ 1. Nonetheless, we will assume that the manifolds ofG, holonomy and Haava-Witten theory type |
one-loop answer gives a rough estimate of the size of thenodels.
corrections in Eq(4.1). In models consistent with coupling unification, the correc-
We will still try to be careful about numerical factors. tion to Eq.(4.1) will turn out to be too small to be observed.
This may seem perverse given the above discussion. HowA/e will therefore examine a wider class of models under the
ever, these factors are often raised to high powers, so th&llowing constraints. First, the four-dimensional Planck
they contribute appreciably to our order-of-magnitude estiscale must be that given by experiment. Second, although we
mates. have given up coupling unification, the gauge coupling at

D(p)=— d
(d—4)(27r)d1“(§)

+

2 7Td/2Cdf 4 p4
2
d

) A d-2
ggrav: m_d :
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the fundamental scale must be on the orderef;: to get 4. The Horava-Witten model
roughly the correct standard model couplings at a TeV. Third, Compactifications of M theory ok;;=X;0X SY/Z, were

we will demand that inflationary dynamics be truly four- ¢ first known M-theory models with chiral gauge dynamics
dimensional. The upper limit on the compactification volume[33]_ These models can be described relatively explicitly, so
is set by demanding that the Kaluza-Klein momenta be largejye il spend the greatest amount of time on them. In addi-
than.the de Sitter temperatuﬂédS:H/bT, so that the dy- tion, in models which realiz& =1 supersymmetry, the ex-

namics of quantum inflaton fluctuations remains four-pjicit pattern of supersymmetry breaking means that moduli

dimensional. If we imagine compactification on a circle with of the compactification manifold are good inflaton candidates
circumference., this condition means that<(27)</H. For [38,39, as we will review below.

a manifold X, with volumeV,, we take this to mean that If Xy0=R*XXs and X is the Calabi-Yau space, the
2K theory has four unbroken supercharges in four dimensions.
- (2m) 4.2 One Eg gauge multiplet is localized on each end of the in-
H terval. The gauge couplings are

Finally, we demand that thé-dimensional energy density 2 1
be sub-Planckian. Let us assume that the energy density re- 2 mf \/§F.2 (4.27
sponsible for inflation is constant over the compactification =1 8m(AmK1) ™ Iy,
manifold X4_,. Denoting thek-dimensional energy density

by K where the sum is over the two boundary components. Upon
(k)

compactification onX, anomaly cancellation will require
gauge field configurations which break this gauge group fur-
ther; generally one breaks one of thg groups to the GUT
group and then to the standard model gauge group, while the
otherEg is the gauge symmetry of a hidden sector.

)d Without going into great detail, we can see that these

Eyy=3H?m;=E{ Vq_4, (4.24

which implies

(4.25 models can match the predicted coupling unification in a
regime where all scales, including the fundamental scale, are
close toM gyt and supergravity is valid.

Therefore, we demarid The GUT group is broken to the standard model gauge

Ho2 group by visible sector gauge field configuraﬂgns)ﬁr\ff.
(_) <1 4.26 [40] for a discussion. Therefore, we IEt:Y_=VX =Mgur-
My Newton’s constanGy and the GUT couplingrgyt can be
written as[13]

My

H 2_1 Eq)
my) 3

Sincem, is fixed, Eq.(4.5) ties a lower limit onmy to an
upper limit onVy4_,. Depending on the model at hand, this 1 Vylqq
bound may be more or less stringent than &g23.

In our study of perturbative type | models, we will also
demand that the energy densify,,<m.". At higher- 2 2203
ener i ; A Oour  (47kiy)

gy densities, stringy physics is not understood. aguT= = ]

We will find that for models which give measureable cor- 4m 2Vx
rection terms in Eq.(4.1, the fundamental scaleng~H . ]
~7x10" GeV. With such a low scale we have to worry With the above values okgyr andMgyr, we find
again about proton decay. In GUT models, dimension-6 op-
erators suppressed byME,,; lead to proton lifetimes close
to the experimental lower bound, close enough to model-
dependent factors to rule out models. Dimension-6 operators M1~ 10Mgyr, (4.29
suppressed by #? will lead to proton decay which is 10 or
11 orders of magnitude more rapid than if they were sup- 1 0.0M
pressed by M2 ;. If one is able to forbid operators below Ly, o oeur
dimension 7, then higher-dimensional operators suppressed
by powers of 1H will lead to phenomenologically accept- Therefore, although the heterotic coupling is strong, this
able lifetimes. One could achieve this, for example, if somecompactification is well described by 11D supergravity. Note
discrete subgroup of the() baryon number symmetry was that we do not have to postulate large hierarchies between
gauged, along the lines 86,37). Since we are not studying the GUT and fundamental scales. The largest hierarchy is
our models in detail, we will leave this issue aside. betweenM,; and 1L,;. If we take the ratio betweeN ;;

and the mass gap of the Kaluza-KI¢KK) excitations with
momentum along*/Z,,

3

87Gy Kzll

(4.28

my;~2Mgyr,

"We ignore the factor o%; it disappears if we allow, e.gE g
=1.2my4, which we cannot rule out at this crude level. M1/ Mg =mq4L 44/ 7~ 60, (4.30
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so the Kaluza-Klein scale is about an order of magnitude offnoduli are simply components of the metricXnThis is just
from the GUT scale. the “reduced” 4D Planck mass,.

The expansion parameter in these models iégzm/vx. The canonically normalized scalar fields in four dimen-
The assumption that the geometry is a simple producsions are
XX S7, holds only at lowest order. To next order in our _
expansion parameter the product is warpég:depends on Pr=my ", (4.33
the coordinate;; alongS*/Z, [13]. A natural size for_,; is , o ) )
that for which the volume vanishes at the end of the interval? N=1 language( is the derivative of the Keler potential,
where the hidden sector gauge group resides. One can then Gaoe 3
imagine strong-coupling effects leading to supersymmetry As= IadeK, (4.34
breaking and the stabilization of moduili3,41]. L4, deter-
mined this way depends on the topology of tBgXEg
gauge field configurations oxiand on the Khler moduli of
X. For reasonable choices of both,, is consistent with Eq.
(4.29.

In this model, maximal supersymmetry is broken No
=1 in ten dimensions at the fixed points 8f/Z,, and then
to N=1 in d=4 by the compactification oXg. The cutoff
in Eq. (4.15 should be roughlyvy ¢, so we might expect
the cutoff to be on the order of I}°~Mgyr. Again, the Gag=05K, (4.36
precise value ofA is highly model-dependent. In a suffi-
ciently anisotropic Calabi-Yau space we can raise this scal§ynhere? is a derivative with respect té.

We will take it to be the fundamental uv cutoff that quantum-  N—2 SUSY is broken toN=1 by the boundaries of

mechanical M theory is expected to provide. S'7,. Fundamental physics on these boundaries is still con-

This cutoff can be estimated by studying four-gravitonygjied by m,,, so that the superpotential will have the form
scattering at one loop42]; since the amplitude is protected

by supersymmetry, it can be calculated in string theory and 5 - -

extrapolated to strong coupling. The computation is cutoff- Lsuper mllf d<ed"x w(¢)+H.c. (4.37)
dependent in supergravity. If we define the cutdff; by

matching the supergravity result to the finite M-theory result,The bosonic potential ifN=1 supergravity arising from this
then[42] superpotential is

where the derivatives are with respect to the canonically nor-
malized fields. The fact thab is dimensionless and of order
1 means that we can writ in terms of a dimensionless

order-1 potentiak,
K=m2K, (4.39

so that

All: 24/97711/9m11~5m11. (43]) ~ m?l —_ -
V() =€ (G**DwDgw - 3w/?)
a. Inflaton dynamics in the Hawa-Witten model. In the 4

Horava-Witten models, the moduli of; are natural inflaton mS, [ ¢ o

candidates. A simple argument due to Baf®8,39°® shows = Fﬁ (m_4 =M"V, (4.39
that the pattern of supersymmetry breaking in &l@-Witten

models can lead to an inflaton potential with the right prop-where

erties. M theory compactified on a Calabi-Yau threefild

has eight supercharges, and the modulKadre exactly flat Daw=daW+ daKw.

directions, protected by supersymmetry. Upon further com-

pactification onS'/Z,, supersymmetry is broken té=1 in For a successful model of inflatiogh, must roll slowly for

four dimensionsat the boundaries of the intervaSuperpo- ~ approximately 6Ce-foldings, and the fluctuations i must
tentials for the moduli oX can arise only on the boundaries. 9enerate the density perturbations measured by COBE,
Let ¢* be the(complex moduli of X in M theory, de- 3p/p~5x10°. We can use this requirement to compite
scribing sizes of various cycles afin units of M ;. In four [18].1Ne will choose our coordinates so that a single coordi-
dimensions, the kinetic term is nate ¢ parametrizes the trajectory in the moduli space trav-
eled during the inflationary epoch.
We rewrite Eq.(2.27) in the present context,

1 (¢ V
ez—zf — ~60, (4.39
whereG,g is the dimensionless metric on the moduli space 2my J g9V

of X. The factor in front of the integral also multiplies the i
four-dimensional Einstein term, which is expected since thé/Sing the slow-roll expression

V

1 4 — SN A5 GB
5kin:2 7 VxLi1 | d*X Gag(@)dd"dd=, (4.32
K11

H2=—.
8Wwith many caveats, extensively discussed38l]. 3m;

123510-15



KALOPER, KLEBAN, LAWRENCE, AND SHENKER PHYSICAL REVIEW D66, 123510 (2002

Here ¢, is the VEV of the inflaton at the end of inflation, and H2 (2523 4m)*° | H\*8
¢ the VEV 60e-foldings prior to that. Assuminy does not T 2 m, (4.49
change much during inflation, we can approximate (9 1 4
by Assuming alsoy=1/(2m)? and H=7x 10 GeV, we find
that
¢_ ¢e V
mz  dyV mp~6X10° GeV, 1L,;~10"2 GeV, (4.47)
If we let (¢— ¢e) ~m, and solve fonV/d,V, we can use Eq. so that
(2.18 to solve forM andM;,
H 2
M~3x10 3m,=7x10" GeV, W~10—4, X~0.1. (4.48

(4.4

~ 6 .. . . L .
my;~5X10'° GeV. This is a considerable improvement, but it is still unobserv-

. . able. We will find below that if the gauge dynamics are re-
Miis cIo;e o the umﬂcatlon scaM GUT: and thg V?'“e of stricted to a lower-dimensional brane, more directions trans-
my, predicted here IS clc_Jse to that in E(q,..29).. Within our  yerse to the brane may be made large, and the fundamental
crude s_et of approximations, we can take this as an estimalggje can be lowered further still, while keeping the four-
of my, independent of Eq4.29. _ _ dimensional Planck scale fixed.

Since these numbers are rough estimates, we will use the

experimentally determined upper boukdin our estimates 5. G, manifolds

of H2/M?2, B , ,
b. Corrections to the inflaton propagator.Equation M theory compactified on seven manifolds wiBy ho-
(4.3 implies thatc= 249719 in Eq. (4.20. The correction lonomy also providesi=4, N=1 vacua. Few compact ex-
in Eq. (4.1) is determined byhered=11, n,=128) amples are known but one may appeal to heterotic—M theory
’ duality in seven dimensions to make some arguments about
M2~m§1, X~0.1. (4.42) agﬁr structurg[14,15. For another related construction, see

Calabi-Yau threefolds with geometric mirror partners are

Using th i tal bound Bnand i ) - .
SIng e experimental Upper bound Brandma, as given ) lieved to beT? fibrations over ars? base[44]. Now het-

in Eq. (4.2
a. (429, erotic string theory off® is dual to M theory orK 3, so if the
2 base is large and we stay away from the singular fibers, we
W~10‘6, (4.43  can claim that the heterotic string on a Calabi-Yau threefold

is dual to M theory on somK ;-fibered manifold with ars®
. . base, and hope that the story continues when the singdlar

. Wh||§ this is better thaf‘ 'the result expected from four-gpe o 400 included14,15. Indeed, noncompact examples
dlmens.|o_nal GU.T models_, .'t |s.not close to observgble_ If WEwhich realize gauge theory with chiral matter take the form
were willing to give up unification a gur and require 'Only of an asymptotically Locally EuclideulALE) space(a non-
that the gauge couplings satisfy~1/25 and that the infla- compactKs) fibered overS® or over S¥/7, [15]. We will

tionary dynamics be four-dimensional, we can have a Sma"eéssume that sensible comp&t's exist which areK; fibra-
value ofm;; and the corrections in Ed4.1) will be larger. tions overs3/7, 8
n-

(If we push these constraints to their limits, the 11- Begin with M theory on a singulaK; surface with vol-
dimensional energy density is still sub-Planckjadote that ume Vy_. The GUT group in such moadels arises from the
for such models, the arguments[88,39 will cease to gen- Kg: 770 i ) _

erate inflaton potentials withi~Mgy7, as we must push singularities in theK 5 fiber, and so one begins with a seven-

m;,< Mgy for corrections in Eq(4.1) to be observable. We dizrrlengsional gauge theory with dimensionful gauge coupling
will have to assume that such potentials are generated b = €11 If we fiber this overS;/7, with volume Vs, then

four-dimensional gauge theory effects. iscrete Wilson lines can break the GUT group to the stan-
The correct four-dimensional Planck scale dard model at the scaM gyr=Vg .
The four-dimensional GUT coupling is
m3=a Y(4m)23Lym3,. (4.44 . .
The co.nstrai.nt that the inflaton fluctuations remain four- aGUT:2_5:477V53m311’ (4.49
dimensional is
1 1 while the four-dimensional Planck mass is
Li<—, > , (4.45
11 ')’h Y (277)2 VKBVSS
mi=——p—. (4.50
while @~ 7z constrains the Calabi-Yau volume. Then 2K1y
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Again we can use these to fix the 11-dimensional Planck 6. Type | models

mass and the volume of tfte; fiber, In type | models, supersymmetric coupling unification is

consistent with weak string coupling. As discussed in Sec.

M1~Meur, lll, the corrections in Eq(4.1) should be computable via
M~ 6M (4.51) string perturbation .theory. Thgsg corrections are un_observ—
H GuT able as long as string theory is in a computable regime. To
VoY 0 AM e EM e see this, we will estimate the maximum size of the tree level

Ks euT - reuUT and one-loop contributions to E¢.1) regardless of unifica-

, , .. _.._tion constraints.
The 11-dimensional Planck scale and the compactification ™, ¢\ 4io0cionaN=1 supersymmetric model arises in

T e e s, P | Sy theony fom compacifcaion on @ s
the qaude d nF;mics are localized on sinaularities with Co(’ji_dimensional Calabi-Yau manifolX. Tree-level corrections

gauge dy . 9 . : tocy,in Eq.(3.1) are the result of compactification. No such
mension 4. One can have several singular regions irkthe :

. terms exist in theories with 16 supercharges. However
/4 ’
fibers separate by a length of ord¢k3>1/M cut: 1My higher-derivative terms such & terms do exist, suppressed

The singularities give rise to 7D gauge dynamics and theby powers of a’. Upon compactification, such higher-
different gauge sectors will be “hidden” from each other, gerivative terms will lead to

communicating via 11D gravity. Furthermore, the chiral mat-
. . o . . 5 4
ter also resides on singularities which are pointsSdf15]. m2, (9( mé,

In the K3 directions, maximal supersymmetry will be most Cio~ 2 + 7 ) M ~mg (4.55
S

strongly broken at the singularities on which the gauge dy- s m

namics reside. One can imagine an argument similar to that _ 106 )
in [38,39 for the existence of inflation candidates. We leavell Ed- (3.1), wheremcy~V, " is the radius of curvature of

this for future work. X. These terms lead to corrections in E4.1) with M =mg
a. Corrections to the propagatorFor G, manifolds, the ~and x a function ofmé,/m.
correction in Eq(4.1) is still given by Eq.(4.42). Using the The scales and couplings are constrained by
value of my; given by Eq.(4.5]), the effect is only slightly
larger, roughly by a factor of 2. Again, we can ask what = 9s
happens if we give up grand unification. Here the constraint 47-rm§V6’
on my, is simply (4.56
) , 2mgVe
L 452 =g
M7 50m V- @. s

Combined, these impl
The volume of theS®/Z,, base is restricted by~ =. The Py

constraint , gam2
(2m)8 S 8wa’
Ks™ TRHE (4.53 (4.57
and the constraint that the 11-dimensional energy density be gs=4ma Moy

sub-Planckian, lead to the same lower limitrog, to within

a factor of. Using the(tighten constraint(4.53, we find,  |f the ten-dimensional coupling is weak, them.,>m; and
usingH=7x10" GeV, the o’ expansion breaks dowi81]. If the @’ expansion is
good, the ten-dimensional string coupling is strong and Eq.
(4.57) implies mg=m,. In the scenario which is closest to
computable,mcy~mg~m,. The correction terms in Eq.

M~m,;~8X% 10" GeV,

V—11/'K4”2>< 102 GeV, (4.54 (4.2) will appear as

3 H2
12 M~mg~my, W~3><10*8, (4.58
vz~ x~01

which is unobservable; a largein Eq. (4.1) would be un-
M theory in this limit could have an observable effect onnatural. For some type | compactifications withy~mg,
CMBR anisotropies, via the corrections in E4.1). We em-  such as orbifolds or Gepner models, or marginal perturba-
phasize again the imprecision of our estimateepit is easy  tions of them, there is hope of doing a controllable calcula-
to imagine gaining or losing an order of magnitude in antion; indeed, ifmcy=2mg, gs~10 2. However, unless such
explicit model. models deliver an extremely large value yafwhich seems
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unlikely, the constraints in Eq4.57) requiremegy to be an ) \%
order of magnitude larger thang beforeXHzlm§ is observ- Ha= 3b|”m2+7’ (4.59
able.

We conclude that for corrections in E@.1) to be observ- wheren is the number of extra dimensions a¥dthe infla-
able in a string model, either the 2®dmodel coupling oigg tionary potential. The COBE normalization of the density

must be large. contrast at 5@&-folds before the end of inflation requires
. . 168 WV
7. Models with TeV scale gravity Tm: ~ S (4.60

*

We can take the Hawa-Witten philosophy regarding the
four-dimensional Planck scale to a more extreme conclusiomand we find after simple algebra
If we assume fewer extra dimensions, with the standard

model particles still confined to a (31)-dimensional sub- H?2 s W
manifold, we may substantially reduce the fundamental scale mZ = 3000m2 (4.61)
* *

of quantum gravity, as low as, =1 TeV, while keeping the

four-dimensional Planck scale at its known val8§]. In ingependently of the number of extra dimensions. The pre-

particular, if there are two extra dimensions, the compactifixise value ofV and S is clearly model-dependent; in prin-

cation volume could be as large ésmm)?. ciple, V, which is supported by the branes, can be as high as
In this class of models, the vacuum energy cannot exceegh? and S<0.02. Thus the maximal value of the imprint of

the fundamental scate, . Hence after the extra dimensions |arge extra dimensions in the sky is

are stabilized, and the effective 4D Planck scale is given by

its low-energy valuem,=2x 10'® GeV, if the vacuum en- H?2 e

ergy is localized to the branes the Hubble scafe oz <6.6x107°. (4.62

=mi/3mp,,4 is incredibly small[45], and the mass of the *

inflation must be tiny 45,46}, 16 orders of magnitude below Thjs s several orders of magnitude too small to be detect-
m,. . In addition the effect, which is a correction on the ordergpje. We should stress that this formula is quite general, be-
of H%/mZ ~m3/mj, ,to the inflation fluctuationd¢, is unob-  cause it does not depend on the number of extra dimensions
servable. However, it is inconsistent to search for inflationnor the details of the potential, but holds merely as a conse-
after such large extra dimensions are stabilized, because dfuence of a very basic slow-roll requirement. The only as-
the fundamental scale is low, inflationary dynamics after thesumption which this is based on is that the radius modulus is
stabilization of extra dimensions fails to solve the age probthe inflaton. In those cases, rapid asymmetric inflation erases
lem and does not reproduce the spectrum of primordial flucany short distance physics imprints on the sky very effi-
tuations[46]. ciently. These conclusions might be altered by the construc-
These problems are ameliorated if the extra dimensiong§on of more complex scenarios where the inflaton is differ-
play an active dynamical role in the early universe. Specifient from a radius modulus, or where the potential is
cally, if the compactification volume was much smaller at thedistributed throughout the bulk. However, in the case of TeV
time of inflation[47], the instantaneous Planck scale at thegravity models, direct searches for signatures of the new
time of inflation was much smaller than its later value afterphysics in colliders would be much more promising than the
the stabilization, implying that inflation at times before the surveys of the sky anyway.
extra dimensions are stabilized can address both the age and
Fhe fl_uctuatlon pro.blems. The details of the prestab|I|_zat|on V. MODIFICATION OF INFLATIONARY CONSISTENCY
inflationary dynamics are given [47]. The simplest realiza-
tion of the scenario proposed [@47] is if the modulus pa- A useful test of inflationary dynamics is the so-called
rametrizing the size of the extra dimensions itself is the in““consistency condition,” which relates the ratio of ampli-
flation. In that case the slow-roll condition can be restated asudes of the tensor and scalar modes to the tensaffdilta
a bound on the ratio of the expansion rate of the dimensiongeview of potential reconstruction and the consistency con-
transverse to the branextra dimensionsto the expansion dition, see[4]). In standard inflation modekassuming Ein-
rate of the dimensions longitudinal to the braneacroscopic  stein gravity, the spectrum of scalar fluctuatiods; deter-
dimensions Representing the former by a scale fadi@nd  mines the inflaton potential, and one can then, in principle,
the latter bya, it is convenient to quantify the slow-roll con- use the potential reconstructed from these data to predict the
dition H,/H,<1 (whereH,=ala, etc) by the parameters tensor spectrumd;. In practice, if one expands lA§ and
S T, defined byHy,/H,=S+T(b/br—1)2+---. Hereb, is  In(A;) in a power series in the momentumHKp(one can only
the initial size of extra dimensions. Then the slow-roll con-determine the first few coefficients in the series. However,
ditions (i.e., the requirement to get a sufficient number ofthese are enough to provide at least a lowest-otaethe
e-foldings =70) and the scale invariance of the spectrum ofslow-roll parametesscheck of consistency. As we will dem-
fluctuations requireT<S<0.002 [47]. Since the Planck onstrate, if the effects of high-scale physics are included, the
scale at the time of inflation imiearlyz m?*2pb}, the Hubble usual relations for inflation in Einstein gravity will not be
rate can be expressed as satisfied.
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A. Consistency in standard inflation A%() A$O A%{)
We define thelunmodified by high-scale physicscalar Nryt2 a7 =257 | 2z~ (1 Ns,)
and tensor spectr@.20 and(2.21) So So\ "o
2 = —2ey(270+ 3€p), (5.10

where 7 was defined in Eq(2.3) andng_ is the unmodified

and scalar tilt. As is manifest, this correction is determined by the
slow-roll parameters, which in turn can be determined via
H the measured scalar and tensor power and tilt.
(K =——="—. (5.2 It will therefore be possible to observe the violation of the
\/2_07Tm4 consistency condition due to high-scale physics if the mea-
o surements of the scalar and tensor power and tilts are precise
Recall that thek dependence is implicit ii. Then enough. This accuracy is limited by cosmic variance, instru-
2 mental noise, and backgrounds. Since the tensor fluctuations
(At /ASO)Zzzmi_ZEEO_ (5.3  have not yet been detected, it is not known what the back-
0 H grounds will be, and therefore how many independent data
points will ultimately be available.

The tensor tilt is Let us assume optimistically that in a region where the

(N A2 ) signal is within a factor of 3 of the maximum, we will be
S To able to measure thB mode of the CMB polarization to an
To g(Ink) accuracy limited only by cosmic variance. This gives a base-
_ line in the spherical harmonicfrom, say,| =50 to 150(see,
-9 dp oH 4m;H = 26, (5.4 e.g.,[48]). Given that the cosmic variance error in each point

d(Ink) d¢ H? is ~1~10, and we have-100 points, we expect a preci-
sion of ~*=1%. We should emphasize again that this esti-
to lowest order iney. Hence the lowest-order prediction of mate is close to a best-case scenario. Many other factors
inflationary consistency is could stand in the way of making cosmic variance limited
measurements of this quantity, which we must bear in mind
has not even been detected yet.

Assuming 1% precision, we can continue our discussion
B. High-scale modifications to consistency of observability. The violation of the consistency condition is

_ _ _ 2eoxsHAM? [Eq. (5.9]. If we assume ey~: and
When we include the effects of high-scale physics, the)(SH2/M2~0.1, the effect will be on the edge of observabil-
observed scalar and tensor spectra will be modified,

ity. Note that this value 0§, is about the largest allowed by
Ag= Aso(1+XsH2/|V|2), current experiment. From the standpoint of chaotic inflation

models, it requires that the potential near the minimum be
(5.6 controlled by a fairly high-order monomiap”, which re-
quires significant fine-tuning. A large discrete symmetry
group at the minimum would be required to make this tech-
nically natural.

While the corrections in Eq4.1) lead to violations of Eq.
(5.10, they are not the only possible source of such an ef-
fect. In particular, they are possible in theories with multiple
scalar fields in addition to the inflatdd9,50. Upon exam-
ining these models, we find that appreciable effects require
fine-tuning of the scalar potential and the initial conditions

a(In A%)/a(ln K)=—2¢€5(1+2x7H2/M?), (5.9) for the scalar fields. In generalz these additional eff_ects are
probably unobservable even with our generous estimate of
and therefore the accuracy of future experiments.

ny,+ 2(AT0/ASO)2=O. (5.5

AT:AT0(1+XTH2/M 2,

where xg and yt are numerical constants in the effective
action, andM is the scale of the new physics. The ratio of the
observed tensor and scalar power spectra is

(ArlAg)*=€o[1+2(x1—xs)HYM?]=e. (5.7

However, the tensor tilb; is now

N+ 2(Ar/Ag)®=—2eqxsH?/M?#0. (5.9 VI. CONCLUSIONS

Hence we can parametrize the predicted effect of the high- Let us summarize the main points we have made. We
scale physics in a way that is independent of the modificatiomeviewed the basics of slow-roll inflation, emphasizing in
to the graviton kinetic term. particular that the size of CMB fluctuations is determined by
Of course, in standard inflationary models the consistencynflaton fluctuations at momentum scaleH. The experi-
relation (5.5 is modified at higher order in the slow-roll mentally important regime i$i<m,. It is very plausible,
parameters, then, that one can express the inflaton dynamics at stale
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an effective local field-theoretic action where all unknowntheoretic models that produce potentially observable signals.
short-distance physics will be encapsulated in the coeffiThe comments in Sec. V indicate that we will need cosmic
cients of irrelevant operators. There are just two leading irvariance limited observations of tensor fluctuations—a very
relevant operatorgsee Eq.(3.1)] which produce corrections challenging, long-term experimental goal—to see such sig-
to dplp of size yH2/M?2, whereM is the mass scale of the nals. However, there may be other ways to probe these ef-
short distance physics angdis a numerical constant that is fects in the future. Direct detection of relic gravitational
calculable if the short distance physics is under calculationalvaves[by more sensitive successors to the Laser Interferom-
control. This is one of the major results of our work. eter Space Antenn@.ISA), for examplé would probe short
We then turn to evaluating the size of these corrections invavelengths and so would not be limited by cosmic variance
various contexts. For all renormalizable field theories, thesésee, e.g.[51]). Millisecond pulsar timing measurements
corrections are generically of si#¢?/m2~10"*!, too small  would have the same advantalge].’
to observe (although fine-tuning can make them much Perhaps the most important lesson we have drawn from
largen. Weakly coupled string theories of conventional typeour work is a qualitative one: the idea of probing short dis-
display corrections of similar size. Regions of parametetance physics using cosmological observations looks fea-
space that display larger corrections clearly must involvesible, possibly even at energies as high a8100" GeV.
smaller fundamental mass scales. #&@-Witten theory The challenge now is to open the window wider.
compactified with scales appropriate to grand unification
[13] has a fundamental mass scale—the 11-dimensional
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