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Signatures of short distance physics in the cosmic microwave background
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We systematically investigate the effect of short distance physics on the spectrum of temperature anisotro-
pies in the cosmic microwave background produced during inflation. We present a general argument—
assuming only low-energy locality—that the size of such effects is of orderH2/M2, whereH is the Hubble
parameter during inflation andM is the scale of the high-energy physics. We evaluate the strength of such
effects in a number of specific string and M theory models. In weakly coupled field theory and string theory
models, the effects are far too small to be observed. In phenomenologically attractive Horˇava-Witten compac-
tifications, the effects are much larger but still unobservable. In certain M theory models, for which the
fundamental Planck scale is several orders of magnitude below the conventional scale of grand unification, the
effects may be on the threshold of detectability. However, observations of both the scalar and tensor fluctuation
contributions to the cosmic microwave background power spectrum—with a precision near the cosmic vari-
ance limit—are necessary in order to demonstrate unambiguously the existence of these signatures of high-
energy physics. This is a formidable experimental challenge.
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I. INTRODUCTION

The enormous disparity in scales between the obse
Planck mass;1019 GeV and the energy of current acceler
tors (103 GeV) stands as the main barrier to connecting t
oretical work in quantum gravity to experiment. There are
few exceptions to this difficult situation. Proton decay e
periments overcome this immense disparity by examin
decays in kilotons of protons for millions of seconds. Inve
tigations of coupling constant unification use the slow, log
rithmic variation of couplings combined with the assumpti
of a desert to extract information about the nature and s
of unification. But such bright spots are few and far betwe

Observational cosmology provides a window into ve
early times and hence, most think, into very high-energy p
cesses. This possible high-energy probe has received m
more attention recently because of the new data availa
the experiments being done, and the experiments b
planned to study the cosmic microwave background ra
tion ~CMBR!. The benchmark theory that explains the flu
tuations in the CMBR is inflation,1 which traces them to
‘‘thermal’’ quanta of a scalar inflation field during a time o
exponential expansion of the universe. In the simplest m
els of inflation, the scale of vacuum energy during this per
of exponential expansion was;1016 GeV and the rate of
exponential expansionH;1013– 1014 GeV. These enormou
energies suggest that during the inflationary epoch, var
kinds of high-energy processes were activated, and furt
that they could have left their imprint on the CMBR.

Many authors have drawn attention to this exciting pr
pect. The first piece of high-energy physics to be unrave
could well be the dynamics of inflation itself. Much work ha
gone into how to reconstruct the potential of the inflati
field from CMBR data@4#.

1For textbook introductions, see@1–3#.
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We should stress at this point that it is by no means n
essary for the scale of inflation to be as high asH
;1013– 1014 GeV. Other inflationary models, e.g., hybri
models@5#, exist whereH can be much lower, for exampl
H;103 GeV. Fortunately, the scale of inflation can be e
perimentally tested. Since gravity couples to mass ene
the amount of gravitational radiation produced during infl
tion is directly related to the energy available during infl
tion. This gravitational radiation imprints itself as a polariz
component of the CMBR, whose power is proportional
(H/m4)2, where m4 is the ~reduced! four-dimensional
Planck length. So measurements of this power give a di
measurement ofH. Cosmic Background Explorer~COBE!
@6# data already provide the interesting upper boundH
,1014 GeV, which corresponds to vacuum energi
;1016 GeV, the supersymmetric unification scale. Intens
efforts are underway to improve this measurement.

In this paper, we will concentrate on the ‘‘high scale
possibility forH since this gives the largest range for disco
ering new physics via inflation. There have been a numbe
investigations of the signature of high-energy scale phys
in the CMBR. Heavy particles produced by parametric re
nance have been studied in@7#. Several groups@8–12# have
studied the effect that simple phenomenological models
stringy corrections to gravity would have on the inflationa
fluctuation spectrum in the CMBR. This work shares ma
features with the results we will present. These groups fo
that the size of these imprints on the CMBR is controlled
the natural dimensionless ratior 5H2/ms

2, wherems is the
string mass. For conventional weakly coupled string theo
containing gravity,ms is approximately the same as the fou
dimensional Planck mass;1019 GeV sor;10211. The ac-
tual size of the effects in these models depends on s
delicate issues of boundary conditions at short distances
are not completely specified by the model. These gro
have surveyed the range of possible long-distance behav
allowed by different boundary conditions. The authors
©2002 The American Physical Society10-1
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@10# have focused on boundary conditions that yield impri
of size;r while the authors of@12# have focused on bound
ary conditions yielding effects of size;r n, n;0.5. The
analysis we present below shows that the effects are of
;r in any theory that is local on momentum scales<H, an
apparently sensible physical requirement. Such an effec
far too small to observe forr;10211. In fact, the ultimate
statistical limit of cosmic variance, the number of indepe
dent sky samples available, excludes it from being obser
even in principle.

It is important to note, though, how great an improvem
this ratio is over the suppression that accelerator-ba
physicists must confront. The energies accessible to them
of order 103 GeV so their suppressions are of ord
(103/1019)2;10232. But the fact thatr;10211 is a vast im-
provement is cold comfort to an experimentalist waiting
counts in an apparatus.

But, as pointed out in@11#, modern string and M theory
models allow for the possibility of lower values of the fu
damental mass scales, raising the possibility of more fa
able ratiosr. Much of this paper will be devoted to explorin
this question in detail.

In Sec. II, we will briefly review the framework of slow
roll inflation, explaining the basic observable quantities
both scalar and tensor fluctuations. We emphasize that
size of inflationary perturbations is fully determined by phy
ics at the scaleH which is much below the Planck scal
Therefore, the locality of effective theory used to compu
the fluctuations implies that these perturbations are indep
dent of the details of Planck scale physics.

In Sec. III, we will explain the basic mechanism by whic
high-energy physics leaves an imprint on CMBR fluctu
tions. We analyze this effect by assuming that string theor
energies;H is approximately local. Therefore, by integra
ing out heavy degrees of freedom~of characteristic massM!,
we can write a local effective action for the inflation field
momentum scaleH. We identify which terms contribute th
largest effect for largeM ~the leading irrelevant operators!
and recover the basicH2/M2 estimate for the imprint on the
CMBR. We then show that all weakly coupled string mode
and in fact all ordinary field-theoretic models in the absen
of fine tuning, give unobservably small effects.

In Sec. IV, we turn to strongly coupled string theory in
search for lower fundamental mass scales which may lea
larger effects. We analyze M theory models of the Horˇava-
Witten type using the phenomenologically appealing gra
unified compactifications discussed in@13#. We show that
these models give effects of size<1027, too small to be
observed, but larger than the weakly coupled string mod
because the fundamental 11-dimensional Planck scale he
lower, ;531016 GeV. We go on to discussG2 compactifi-
cations of M theory. Here, rather than having, roughly spe
ing, one large dimension as in the Horˇava-Witten case, we
can have four large dimensions, as the singularities supp
ing gauge dynamics are codimension 4@14,15#. If we aban-
don the requirement of precision grand unification and all
our compactification manifold to get as large as possib
while remaining consistent with the four-dimensional ch
acter of inflation, we can make the imprint on the CMB
12351
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order 1, and hence potentially observable. In these mod
the fundamental 11-dimensional Planck mass ism11;H
;731013 GeV. We also consider the early cosmology
models with low unification scalem* ;TeV. In these mod-
els, the size of extra dimensions varies in the course of c
mological evolution, but the size of the imprints of the typ
we consider remains small.

In Sec. V, we discuss in detail the requirements neces
to observe these effects and distinguish them from other p
nomena. It turns out that corrections of this type over
range of wavelengths accessible in scalar CMBR obse
tions look like a change in the power law, or ‘‘tilt’’ of the
observed power. Such a change can be mimicked b
change in the inflationary potential. What cannot be mi
icked is the differential effect in the scalar and tensor flu
tuations due to short distance physics. This point was fi
made in@16#. Ordinary inflationary fluctuations, without new
physics, obey ‘‘inflationary consistency conditions’’ connec
ing scalar and tensor quantities. New heavy physics pred
a violation of these conditions@16#.

We then show that the difference inherent in the inflatio
ary consistency conditions means that the actual signal is
of the size;r as discussed above, but is further suppres
by what is called an inflationary ‘‘slow-roll parameter
which can range from;0.001 to 0.06 in various models. S
the size of the measurable effect is somewhat smaller t
initial estimates suggest.

Finally, we point out that this signal is very challenging
measure. First, it not only requires precision data for
scalar fluctuations, which are rapidly accumulating, but
also requires precision data for the tensor fluctuations, wh
have not even been observed yet. Forthcoming experim
may, however, be able to observe the tensor fluctuation
inflation occurred at a high scale by observing theB-mode
polarization component of the CMBR. We argue that cosm
variance limited measurements over a substantial rang
wave number of this quantity will be necessary to det
these signals. This is a formidable experimental challeng

In Sec. VI, we conclude.

II. SLOW-ROLL INFLATION

We begin with a review of the basic tenets of inflation. W
will parametrize the inflationary potentialV by a scaleM4

and a dimensionless functionV; V5M4V. We will work in a
spatially flat Friedmann-Robertson-Walker~FRW! universe
with the metric

ds252dt21a2~ t !dxW2. ~2.1!

The independent background field equations then reduce

3H25
1

m4
2 F ḟ2

2
1M4VG ,

~2.2!

f̈13Hḟ1M4
]V
]f

50,
0-2
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where H5ȧ/a is the Hubble parameter, m4
;2.431018 GeV is the reduced four-dimensional Plan
mass, and dots denote time derivatives. The main featur
inflationary dynamics in the slow-roll approximation is th
we can ignore the acceleration of the scalar field, because
cosmological expansion has the effect of friction and nea
freezes the scalar on the potential slope. The univers
dominated by the scalar field potential energy and underg
a period of rapid expansion. The usual parameters wh
characterize the validity of the slow-roll approximation ar

h5
f̈

Hḟ
,

~2.3!

e5
3ḟ2

2M4V .

The slow-roll approximation is then formally defined as t
regime uhu,ueu!1. The relative importance of these param
eters depends on the model of inflation. For example, as
will see below in the case of natural inflation@17# or modular
inflation @18#, e!h. Thus the deviations from slow roll ar
mainly coded in the parameterh. In contrast, in the simples
model of chaotic inflation driven by a mass term,e
;m2/H2@h50 in the slow-roll regime.

In the slow-roll approximation, Eqs.~2.2! become

3H25
M4

m4
2 V,

~2.4!

3Hḟ1M4
]V
]f

50.

Using these equations, one readily finds the slow-roll para
eters in terms of the potential functionV,

h5e2m4
2

]f
2 V
V ,

~2.5!

e5m4
2 @]fV#2

2V2 .

Equations~2.4! can now be integrated; they yield

da

a
52

1

m4
2

V
]fV df, ~2.6!

which separates variables for any potentialV. The solution is

a.a0 expF 1

m4
2 E

f

f0
df

V
]fVG

.a0 expFV0~f02f!

m4
2]fV0

1¯G ~2.7!

in the slow-roll regime. Hence, the universe will under
rapid expansion while the vacuum expectation value~VEV!
of the inflaton may change only minutely. The space-ti
12351
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geometry is approximated by a future half of de Sitter sp
during this period. Eventually, however, the change of
inflaton VEV accumulates enough for the inflaton to dep
the slow-roll regime, and the potential becomes steeper.
inflaton approaches the minimum of the potential, begins
oscillate around it, and produce matter particles, rehea
the inflated universe back to temperatures which will ev
tually produce the universe we inhabit.

Let us imagine that at late times the vacuum energy v
ishes and inflation terminates such that there are no cos
logical event horizons. This avoids conceptual difficulti
with quantum gravity in space-times with cosmological h
rizons, but suffices to illustrate the main features of inflatio
ary dynamics in the space-time language. The causal st
ture of the universe is then given by the Penrose diagram
Fig. 1.

In the diagram, the region of geometry below the parti
horizon~dashed line! is irrelevant for the future evolution a
long as the period of inflation was sufficiently long. Th
future infinity appears as a consequence of our requirem
for global exit from inflation. The space-time below the r
heating regime is the inflationary region, while that above
is the postinflationary, decelerating FRW universe. The t
solid line denotes any object spacelike separated from us

FIG. 1. Causal diagram of an inflationary model. The dash
past null line is the true particle horizon, but it could also be a n
singularity. The future null line is the future infinity. The shade
area denotes the region of exit from inflation and reheating. T
thin solid line is a worldline of any spacelike separated object fr
an observer at the center of the space. The bold solid line is
apparent horizon. Its shape is characteristic of inflation in the p
and radiation domination followed by matter domination in the
ture.
0-3
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example, for the worldline a distant galaxy follows after
forms. The bold solid line represents the apparent horiz
which plays a central role for controlling the dynamics
inflation, as we will now elaborate. During inflation, it star
out almost null and ‘‘outward’’ directed, and then it flip
‘‘inward.’’ This reflects thatH;const during inflation. It en-
sures that the apparent horizon plays the role of the ca
censor, limiting the amount of information which can fit in
side an inflating region. The space-time will therefore ob
the cosmic no-hair theorem, and inflation will succeed
getting rid of initial inhomogeneities. This may be viewed
another example of the cosmological variant of the ho
graphic principle@19,20#. The structure of the space-time
fully coded on the preferred screen, i.e., the apparent h
zon. Its area is small during inflation becauseH must be
large, and hence the Hubble region is censored from ex
sive outside influence, because only a limited amount of
formation can fit in the interior. Moreover, most of the o
jects inside the Hubble region are in the thermal bath
fluctuations located in the region when the apparent hori
is almost null@21#, with the cosmological Hawking tempera
ture TH5H/2p. Since the inflation is much lighter than th
Hubble scale during inflation, the interactions with the th
mal quanta cause its VEV and the background metric to fl
tuate.

Because of these quantum fluctuations, the inflaton is
exactly frozen to its slowly varying background VEV. In
stead it hops on the potential around the background va
Thus inside of some regions of the universe, inflation m
terminate a little later, because quantum effects push the
flaton a little farther up the plateau. These regions end u
fraction denser than their surroundings, and the matte
them begins to condense sooner, attracting additional m
from the neighborhood and eventually forming clusters a
galaxies due to the classical Jeans instability. The fluc
tions therefore induce small inhomogeneities on the perfe
smooth geometry left by inflation, which is measured expe
mentally via its imprint on the cosmic microwave bac
ground radiation,dr/r;dT/T, thanks to the Sachs-Wolf
effect. This is directly measured by the COBE@6# satellite,
and by the BOOMERANG@22# and MAXIMA @23# experi-
ments, which set the normalization for the inhomogenei
at arounddr/r;1025. They further observe that the spe
trum of inhomogeneities is nearly scale-independent.

To determine the imprint of the fluctuations quantitative
we can use perturbation theory. In perturbation theory,
fluctuations can be decomposed with respect to their tra
formation properties relative to the residual diffeomorphis
into scalar, vector, and tensor modes. The vector modes
couple during inflation. Thus only the scalar and ten
modes are produced. The scalar modes cause density~and
therefore CMBR temperature! fluctuations. The tenso
modes are primordial gravitational waves produced by in
tion, and affect the polarization of CMBR.

A heuristic derivation of the scalar density contrast is
follows: the rms fluctuation of the field induced by the the
mal fluctuations isdf5ḟdt, and that of energy density i
dr5CrHdt, where C is a numerical coefficient of orde
unity, whose precise value depends on the details of pos
12351
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flationary cosmology. The functiondt is the time delay im-
printed by the fluctuations on the VEV in different regions
space. Combining these equations, one finds

dr

r
5C

H

ḟ
df ~2.8!

and then one needs to compute the rms fluctuation of
inflaton df. As we will discuss in more detail below, fluc
tuations of the transverse traceless modes of the grav
~which obey free scalar field equations! also contribute to the
density variations.

In order to determine precisely how the quantum fluctu
tions of these fields evolve into temperature anisotropies
the sky today, one must first compute their effect on
curvature, and then use gauge-invariant gravitational per
bation theory to evolve the perturbation forward to t
present era. One can define a gauge-invariant variablz,
which is well approximated by the right-hand side of E
~2.8! as modes exit from the de Sitter horizon during infl
tion, and which is approximately constant between this tim
and when the mode reenters the cosmological horizon la
At this later time,z is well approximated bydr/r, establish-
ing Eq. ~2.8! @24#. This stage in the process is purely clas
cal, because energy scales belowH correspond to scales ou
side the causal horizon, and so coherent quantum fluctuat
do not contribute at these wavelengths. The correct pro
dure is therefore to compute the quantum fluctuation of
inflaton field in de Sitter space, and then use it to evaluaz
at the time the fluctuation exits the horizon; i.e., at mome
tum p5H.

As pointed out in@25#, if the slow-roll approximation
breaks down, this procedure will not be accurate~however,
see @26#!. For the sake of simplicity, we will restrict our
selves to models where this is not a concern.

To compute the quantum fluctuation itself, one treats
fluctuating field as a perturbation around the de Sitter ba
ground and computes the mean-square variance as the~ap-
propriately normalized! Fourier component of an equal-tim
two-point function evaluated at 3-momentump5H,

~df!2;^f~p!f~2p!&up5H , ~2.9!

wheref represents either the inflaton or a physical mode
the graviton. The normalization is determined by the mo
detailed computation we perform below. In standard infl
tion, this is done assuming the inflaton is a free, minima
coupled scalar. As we will demonstrate in Sec. III, intera
tions with massive particles will modify the two-point func
tion and affect the spectrum of fluctuations. As long as
self-interactions of the inflaton~either in the classical poten
tial or induced by quantum corrections! are weak at energy
scaleH, so that a perturbative expansion is valid at this sca
this procedure is well defined. Of course, more general th
ries will involve strong coupling, but generically will als
violate the observed constraints ondr/r.

Before considering such complications, we review t
standard calculation. We begin by approximating the geo
0-4
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etry by a future portion of de Sitter space. Witha
5a0 exp(Ht) in Eq. ~2.1!, the inflaton field equation is

f̈13Hḟ2e22Ht]W2f

5H2~h2]h
2f22h]hf2h2]W2f!50, ~2.10!

where we have transformed to the conformal timeh[
2H21e2Ht. We can quantizef by considering the genera
solution

fp~h!5
Ap

2
Hh3/2@AkH3/2

~1!~kh!1BkH3/2
~2!~kh!#.

~2.11!

Choosing the vacuum which matches the flat-space cas
the infinite pasth→` and in the high-frequency limitk
→`, we find that positive frequency modes areAk50, Bk
521. Then the mode expansion in Minkowski space is

f~xW ,t !5~2p!23/2E d3k@ak
†fk~ t !eikW•xW

1akfk* ~ t !e2 ikW•xW#, ~2.12!

where

fk~ t !5
iH

kA2k
S 11

k

iH
e2HtDexpS ik

H
e2HtD . ~2.13!

The positive frequency two-point function is

G1~x,x8![^0uf~x!f~x8!u0&5
1

~2p!3 E d3k e2 ikW~xW2xW8!

3F H2

2k3 1
e2H~ t1t8!

2k
1

iH

2k2 ~e2Ht2e2Ht8!G
3expS 2

ik

H
~e2Ht2eHt8! D . ~2.14!

To evaluate the fluctuations of the inflaton at lowest ord
we compute the quantity

^f~x!f~x!&5
1

~2p!3 E d3kS e22Ht

2k
1

H2

2k3D
5

1

~2p!3 E d3p

p S 1

2
1

H2

2p2D , ~2.15!

wherep5e2Htk is the physical momentum conjugate to t
proper distancex̃5eHtx.

The first term, which gives a uv-divergent contribution,
identical to the flat-space result and should therefore be
nored. In other words, we are interested only in effects p
portional to H, not in flat-space fluctuations which can b
renormalized away. The second term is peculiar to de S
space and requires more careful treatment.

The magnitude of the fluctuations is determined by th
power Pf(k), defined by ^f(x)2&5*(dk/k)Pf(k). Then
12351
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the mean-square spectrum of fluctuations is^udfu2&
5Pf(H). From Eq.~2.15!, we see that

^f~x!f~x!&5
1

2p2 E dk

k S k2

2
1

H2

2 D , ~2.16!

so, neglecting the first term as explained above, we obta

^udfu2&5
H2

4p2 . ~2.17!

This givesdf5H/2p, finally yielding

dr

r
5

C

2p

H2

ḟ
. ~2.18!

At this point, it is clear how to incorporate interaction
into the calculation. If the theory contains a massive fie
~with massM@H) which couples to the inflation, we ca
integrate it out using standard field theory techniques
obtain an effective potential for the inflaton. As can be se
from the two-point function ~2.14!, such a procedure
yields—in addition to the ordinary flat space terms—ter
proportional toH2/M2, p2H2/M4, etc. It is important to note
that no cutoff or Planck scale comes into these correctio
The highest probe energy available in inflation and later v
ible in the CMB isH. As discussed in Sec. III, it is thes
contributions we are primarily concerned with in this pap

We can reexpress Eq.~2.18! in terms of the inflationary
potential using the slow-roll equations~2.4!. It is

dr

r
5

C

2)p

M2

m4
3

V 3/2

]fV . ~2.19!

This is the familiar formula for scalar fluctuations in infla
tion. We note that the so-called scalar power spectrumdS

2 is
related to the density contrast bydS

25(2/5C)2(dr/r)2, and
using Eq.~2.19! we can express it as

dS
25

1

75p2

M4

m4
6

V 3

@]fV#2 . ~2.20!

The causal structure of the inflationary space-time
picted in Fig. 1 provides a straightforward understanding
the emergence of a~nearly! scale-invariant spectrum of fluc
tuations. A quantum fluctuation which seeds a galaxy is c
ated just before its worldline intersects the apparent horiz
At that instant, it is as big as the Hubble horizon. Then it
expelled outside of the apparent horizon, where it freez
and remains frozen until horizon reentry in the distant futu
After reentry, the fluctuation becomes dynamical and evol
as dictated by gravitational instability. Scale invariance th
follows from causal evolution ifH.const, because the fluc
tuations of very different wavelengths are produced with
same amplitude. The evolution of the fluctuations can i
tially be described well by linear perturbation theory. How
ever, nonlinearities eventually develop because of nontri
interactions with the environment. In the matter-domina
era, the fluctuations evolve differently before decoupli
0-5
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than after it. Before decoupling, the universe is opaque
therefore the baryonic matter is influenced by radiation pr
sure, which competes with gravitational collapse. This
sults in the emergence of acoustic oscillations, with char
teristic peaks imprinted on the CMBR. The peaks app
because the perturbations whose wavelengths are half-in
divisors of the sound horizon~i.e., the largest distance soun
can travel within the time of recombination! at decoupling
can complete full oscillation cycles. The location and t
heights of the peaks measure very accurately the cosmo
cal parameters, in particular the Hubble parameter at de
pling.

Before turning to the specifics of modular inflation, w
briefly review the mechanism for generating tensor fluct
tions during inflation. These are just the gravitational wav
and correspond to the transverse-traceless metric fluctua
hkl . They obey the linearized field equation¹2hl

k50, where
the covariant derivatives and raising and lowering of
dices are defined relative to the background metricgmn

5diag„21,a2(t)dkl…. Therefore, each of the two gravito
polarizations obeys the free massless scalar equation, a
is straightforward to quantize them in de Sitter space,
precisely the same way as in Eqs.~2.10!–~2.17!. In particu-
lar, the root-mean-square fluctuation of the graviton
^dhkl&.H/2p. However, the formula for the tensor pow
spectrum is different from that for the scalar. It is direc
proportional to the fluctuation of the metric,

dT
25

1

2p2

H2

m4
2 5

1

6p2

M4

m4
4 V ~2.21!

by slow-roll equations~2.4!. The tensor nature of these fluc
tuations induces oscillations in the plasma during decoup
which polarize the CMB photons in an observable way@27#.

The ratioR5dT
2/dS

2 is a characteristic of the inflationar
model, and is given by

R5
25

2

m4
2@]fV#2

V2 . ~2.22!

It is straightforward to verify that in terms of the slow-ro
parameters,R is given as

R525e. ~2.23!

The fluctuation spectra produced in inflation are not
actly scale-invariant. If the background inflaton VEV we
exactly frozen, and the geometry precisely de Sitter, the
diction for fluctuations~2.18! and ~2.21! would have been
time-independent, and therefore exactly scale-invariant
reality, there is weak time dependence in Eq.~2.18! because
the inflaton is sliding down the plateau. This time depe
dence, manifest in the variation ofH and ḟ, translates into
scale dependence of fluctuations, and produces a spec
which is not exactly scale-invariant. This departure fro
scale invariance is a function of the specifics of the inflatio
ary model as defined by the potential. Below we will co
sider the details in the case of modular inflation.
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The specifics of modular inflation

To proceed, we need to determine more closely the fo
of the inflaton potential. For definiteness, we approxim
here the potential functionV by an inverted parabola,

V512S f

m D 2

. ~2.24!

This approximation is generically valid in at least some
gion of the primordial universe which begins to inflate if th
inflaton is a modulus. The modulus begins near the ma
mum of the potential. Then the slow-roll conditions yield

H5
M2

)m4

A12S f

m D 2

,

~2.25!

ḟ5
2M2m4

)m2

f

A12~f/m!2
.

The slow-roll parameters for Eq.~2.24! are initially

h.e2m4
2

]f
2 V
V .

2m4
2

m2 ,

~2.26!

e.
m4

2

2

@]fV #2

V 2
.

2m4
2f2

m4 ,h,

and hence the parameter 1/m2 which we introduced in the
potential ~2.24! is equal to 1/m4

2 multiplied by a small pa-
rameterh/2. This guarantees that the potential is sufficien
flat to support inflation.

We could now solve these equations directly. Howev
rather than integrating to find the time dependence, it is m
instructive to solve Eq.~2.6!. We will use the number of
e-folds before the end of inflation, or equivalently, the val
of the scale factora, as the cosmic clock. First, we define th
number ofe-folds that the universe has expanded by to b

N5 lnS a

a0
D 5E

t0

t

dt H5E
f0

f

df
H

ḟ
. ~2.27!

Then using Eqs.~2.25! we can explicitly integrate this to find

N5
1

h F lnS f

f0
D1

1

2m2 ~f0
22f2!G . ~2.28!

Heref0 is the initial value of the inflaton. In modular infla
tion, f0 would typically be near the top of the potential,
this case near zero. Such initial conditions produce a h
amount of inflation, as is clear from Eq.~2.27!, which di-
verges in the limitf0→0. Of all that expansion, we can onl
observe the final 60e-folds or so, during which the univers
expands by a factor of about 1026. Any indications of expan-
sion beyond that would be completely outside of the curr
size of the universe, and hence not accessible to our ob
vations. Because we are only interested in the last 60e-folds,
we can takef0 to be near its value at the end of inflatio
0-6
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Inflation ends when the slow-roll conditions cease to
valid, i.e., whenh,e;1. This occurs when the VEV off
grows to]f

2 V;H2, which in the case of modular potentia
~2.24! happens whenf;m. Because a small change in th
value off, of order;e, yieldsN;h21 e-folds of inflation,
we require thath; 1

70 , which is enough to solve the horizo
and flatness problems. In that case, the latter two term
Eq. ~2.28! are essentially negligible compared to the log
rithm, and we will drop them hereafter. We note that in th
case the other slow-roll parameter ise.2m4

2/m2e2.h/e2.
We now defineN5N* 2N as the number ofe-folds left

before the end of inflation. This variable is convenient
make contact with large-scale structure and CMB obse
tions. In terms of it, we can write down the solutions as

N5
1

h F lnS m

f D1
f22m2

2m2 G ,
H5

M2

)m4

A12S f

m D 2

, ~2.29!

a5afinale
2N.

Inflation now lasts from whenN;60 or larger to aboutN
50, at which point the higher-order terms in the modu
potential, ignored for clarity in Eq.~2.24!, become important
and reverse the sign of the effective-mass term off.

Because the rolling of the scalar down the potential
slow, the Hubble parameter and the scalar field change
little, and hence the amplitude of fluctuations remains nea
constant throughout inflation. Therefore, the fluctuations
being incessantly produced with an almost constant va
and deployed outside of the horizon. They stay there un
long time into the future, when the Hubble horizon even
ally grows large enough, and they cross back inside, and
to collapse. These are the fluctuations we observe on the
The weak time dependence ofH and ḟ implies thatdr/r is
weakly scale-dependent. We trade the time dependence
for the scale dependence by the horizon crossing match
defining the comoving momentumk of the fluctuation at ho-
rizon crossing by

k5aH. ~2.30!

For modular inflation solution~2.29! this enables us to ex
plicitly evaluate Eq.~2.18! as a function ofk. First, we note
that

k.k0e2N, ~2.31!

where k0 is the comoving momentum leaving the Hubb
horizon at the end of inflation. In terms of it, we find

dr~k!

r
.

2CmM2

8p)m4
3 S k0

k D hF12S k

k0
D 2hG3/2

. ~2.32!

At 50 e-folds before the end of inflation, the COBE measu
ments set the overall normalization todr/ru50;531025.
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Thus CmM2/m4
3.831024. Taking now C5O(1) and m

.A140m4 @Eq. ~2.26!#, we obtain

M

m4
.8.231023. ~2.33!

In this case, the Hubble scale at inflation is, using the firs
Eqs.~2.25!,

H.5.231013 GeV, ~2.34!

which is within the bound allowed by COBE and large-sca
structure measurements, cf.@28#.

The scale dependence is conveniently represented by
fining the spectral indexnS ~or the tilt! and its gradient as

nS5112

d ln
dr

r

d ln k
,

~2.35!

nS5
dnS

d ln k
52

d2 ln
dr

r

d ln k2 .

For the modular inflation model we find

nS5122h2
6h

~k0 /k!2h21
. ~2.36!

Numerically, using Eq.~2.36!, we find the tilt~at the scales
corresponding to 50e-folds before the end of inflation! to be
nS.0.95 andnS.22431023.

The tensor power spectrum is found by substituting E
~2.29! and ~2.31! into Eq. ~2.21!. We find

dT
25

1

6p2

M4

m4
4 F12S k

k0
D 2hG . ~2.37!

Therefore, the ratio of tensor to scalar spectrum of fluct
tions is, usinge5h/e2, precisely

R525e, ~2.38!

which numerically isR.4.831022.
Above we have focused on the most familiar case, wh

the departure from the slow-roll regime is dominated by
quadratic terms in the potential. It may, however, happen
the inflaton mass scales are smaller than the scales set b
VEV, such that the termination of inflationary conditions
controlled by higher polynomial contribution to the inflato
potential. The numerical values we have obtained for E
~2.33! and ~2.34! clearly are sensitive to the precise form
the inflationary potential during the last 60e-folds, and it is
of interest to determine the range of these parameters. T
so, one can parametrize different modular inflationary m
els by the potential function

V512S f

m D n

, ~2.39!
0-7
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which yields, in the slow-roll regime, the field equations

H5
M2

)m4

A12S f

m D n

,

~2.40!

ḟ5
nM2m4

)mn

fn21

A12S f

m
D n

.

It is straightforward to find the solution

a5afinale
2N,

~2.41!

N.
mn

n~n22!m4
2fn22 1

~n24!m2

2n~n22!m4
2 ,

and determine the density contrast. It is

dr

r
5

C

2np)
S M

m4
D 2 f

m4
S m

f D 2F12S M

m4
D nG3/2

. ~2.42!

From the COBE normalizationdr/ru50;531025 we can
derive an estimate of the scale of inflation. While there
some sensitivity to the initial condition, we findM
;431022n1/2(n22)1/4m4 , or

H;few31014nAn22 GeV. ~2.43!

But in light of the boundH,731013 GeV on the Hubble
scale of inflation@28#, we see that the modular inflation mod
els with n.2 are excluded already, and we can ignore th
henceforth.

In some cases, most of the late inflationary expansion
occur during the final approach of the inflaton to the mi
mum of the potential; this is the scenario of chaotic inflati
@29#. In these cases, the potential is

V5
l

n
fn, ~2.44!

whereV is the dimensionful quantityV5M4V. In the slow-
roll approximation, the field equations reduce to

H5A l

3n

fn/2

m4
,

~2.45!

ḟ52Anl

3
m4fn/221.

The slow-roll solution is

a5afinale
2N,

~2.46!

N.
1

2n S f

m4
D 2

.

The density contrast is
12351
s

n
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dr

r
.

Al

2p)n3/2

fn/211

m4
3 , ~2.47!

and using the COBE normalization we can straightforwar
determineH during inflation. It is

H.4p31026Anm4 , ~2.48!

which is a factor ofAn/2 higher than the correspondin
value in the case of quadratic~sub!leading potential. It is
straightforward to determine the spectral index for scalar p
turbations. It is

nS512
n12

2N . ~2.49!

Hence, in general, chaotic inflationary models driven
higher polynomial terms tend to yield a higher value ofH
during inflation, but they also give steeper potentials a
therefore will yield larger values of the spectral index. T
slow-roll parameters for chaotic inflation are

h.2
n~n22!

2

m4
2

f2 ,

~2.50!

e.
n2

2

m4
2

f2 ;h.

The ratio of tensor to scalar perturbation power obeys
~2.22!, R525e, by virtue of Eqs.~2.20!, ~2.21!, and~2.50!.
For low powersn, the parametere now determines the dura
tion of inflation, which therefore means that the ratioR is
only weakly sensitive to the specifics of the potential, givi
similar tensor power for different forms ofV.

III. IMPRINT OF HEAVY STATES

We now turn to the heart of our work—finding the imprin
of new, heavy physics on the fluctuations discussed in
previous section. We will assume that the scale of inflationH
is much smaller than the Planck mass,H!m4 , so that a
field-theoretic treatment of gravity is appropriate. Further,
will assume that the mass scale of new physicsM is much
larger thanH, M@H, and then assume that we can repres
the effects of this new physics at the scaleH by ‘‘integrating
it out’’ and writing an effective field theory for the inflaton
field. These assumptions—which rely on low-energy loca
and renormalization-group ideas—are obviously correct i
field-theoretic context, are obviously correct within strin
perturbation theory around supersymmetric vacua, and
correct in the known nonperturbative definitions of stri
and M theory in supersymmetric backgrounds. The endur
mystery of the cosmological constant, and the associa
mysteries of string theory in de Sitter space, make these
sumptions plausible, but not ironclad, in the present cont
We make them anyway.2

2For an example of a speculation on how locality might bre
down in de Sitter space string theory, see@30#.
0-8
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We can then encode all the new physics by writing
effective field theory forf at the scaleH. The scaleH is
appropriate since, as we see in Eq.~2.9!, that is where we
evaluate inflaton correlation functions to compute the size
dr/r.

Instead of writing a fully covariant effective action forf,
let us just note that the curvature of de Sitter space is p
portional toH2, and so we use this as an additional dime
sionful parameter in constructing terms. The interactions
the inflaton must always be very weak to give phenome
logically acceptable values ofdr/r. This is usually enforced
in specific models by some combination of fine-tuning, d
namics, and supersymmetry~broken at scaleH!. So we will
ignore inflaton interactions. Given these considerations,
most general Euclidean local action one can write down is
the form ~we have assumedp@H and used flat-space nota
tion for simplicity!

Seff@f#5E d4p f~p!f~2p!$p2/21H2/21c0H2~H2/M2!

1c1p2~H2/M2!1c2p4/M21c3p4/M2~H2/M2!

1c4p6/M41¯%. ~3.1!

This structure follows from the fact that only even powe
of momenta are allowed, and that the curvature is;H2.
Therefore, no odd powers ofM can appear.

Information about new physics is contained in the coe
cients ci and in the scaleM. From Eq. ~2.9! we see that
measurements ofdr/r help determine the value o
^f(p)f(2p)& at p5H. From Eq.~3.1!, it follows that

^f~p!f~2p!&up5H5H21c0H2~H2/M2!1c1H2~H2/M2!

1c2H4/M21c3H2~H2/M2!2

1c4H2~H2/M2!21¯ . ~3.2!

The largeM corrections tô f(p)f(2p)&up5H organize
themselves into a power series in the dimensionless ratr
5H2/M2. We have assumed that this ratio is small, so
only terms that are potentially observable are the ones w
coefficientsc1 andc2 . The term with coefficientc0 is just a
renormalization of the potential, which we can ignore.

On very general grounds the effect of new physi
whether field-theoretic, string-theoretic, M-theoretic, etc.
proportional tor 5H2/M2. The coefficientsci must be com-
puted, however, and can be much smaller than 1, giving
fects much smaller than the naive expectation.

Several groups@8–12# have previously analyzed a speci
case of this situation. They have added an irrelevant oper
to Einstein gravity and directly computed its effect on infl
tionary fluctuations by solving the linearized wave equatio
This requires specifying new boundary conditions at h
momentum on the higher-order differential equation. Th
boundary conditions are not determined by the model its
The authors in@10# impose the constraint that the solutio
rapidly relax to the ‘‘adiabatic’’ vacuum shortly after they a
created. They find imprints of sizer;H2/M2, consistent
with our general result. In@11,12#, the authors study the gen
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eral boundary condition and then focus on a spec
different3 boundary condition that results in effects of si
;(r )n, n.0.5. This effect is inconsistent with our effectiv
action result and so presumably this boundary condition v
lates locality in some way. We should also note that an eff
of this functional form would imply a nonanalytic depen
dence ongs

2 and ona8, which would signal the breakdown
of perturbation theory at weak coupling. All in all it seem
likely to us that the special boundary condition chosen
@11,12# is unphysical. The subtleties mentioned at the beg
ning of this section make it impossible to definitively ru
out such a result, however.

The above illustrates the virtue of the effective action a
proach we are using here. Equation~2.9! shows that the rel-
evant momentum scale for these processes isH, not m4 . If
there is a large hierarchy between these scales—which is
situation we are envisioning—then there should be no rea
to consider Planckian dynamics at all, e.g., short dista
boundary conditions, in studying the fluctuation proble
One simply encapsulates all the unknown short dista
physics in an effective action. All the subtlety of choice
the boundary condition is buried in the assumption of
existence of a local effective action. Given that our wo
appears to be local, this seems an excellent assumption

Perhaps we should phrase things in a more optimi
way. If experiments detect imprints in the CMBR of streng
r 0.5 as predicted in@11,12#, it would imply a breakdown of
locality in low-energy string theory, which might be a cruci
clue in solving the cosmological constant problem. Altern
tively, such results could also indicate that physics other t
inflation may be responsible for the origin of structure in t
universe.

We now turn to the evaluation of the parameters in
effective action~3.1! in some specific physical situations
First imagine a heavy fermion fieldc coupled to the inflaton
via a Yukawa interactionlfc̄c. A one-loop graph in de
Sitter space ofc particles clearly induces interactions of th
form in Eq. ~3.1!. These produce effects in the propaga
~3.2! of size ;l2H2/M2 with M5mc the fermion mass.
Typically mc;l^f&;lm4 . ~We ignore slow-roll param-
eters here.! So these effects are;H2/m4

2;10211 and hence
unobservable. This result is quite general. A particle ren
malizably coupled to the inflaton willgenerically have a
mass;^f&;m4 and so the virtual effects of this particl
will be of orderH2/m4

2, unobservably small.4 Exceptions to
this result can occur if counterterms are fine-tuned to m
the particle masses unnaturally small. Then the virtual effe
can be very large and certainly observable. An extreme c
of this limit has been studied in@7# where a fermion become
massless for a certain value of the inflaton field VEV. Wh
this VEV is reached during the slow roll, fermions are pr
duced copiously, sharply reducingḟ and so, by Eq.~2.18!,

3The authors in@10# speculated that this boundary condition w
the same as their adiabatic condition. The results of@12# show this
is not the case.

4We thank S. Thomas for pointing this out to us.
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creating a sharp increase indr/r for a short time. This trans
lates into a sharp peak in momentum space in the fluctua
spectrum.

These phenomena require an additional level of fi
tuning on top of any fine-tuning required to make the inflat
potential well behaved.

Next we turn to weakly coupled heterotic string theo
models of the ‘‘traditional’’ type: gs

2;0.1, ms;m4

;1019 GeV. The Calabi-Yau~CY! compactification radii are
hence also of order 1/ms . It will be useful to be able to vary
this scale independently, so we will denote it 1/mCY . We do
not understand inflation in string theory, or string theory
de Sitter space. If we assume the existence of an effec
action in these environments, though, we can compute
evaluating terms in the effective action from the string the
S matrix in flat space (H50).

These models have four real supercharges and hence
no constraints on the kinetic term in the four-dimensio
effective action. On the other hand, 16 or more supercha
would require no renormalization of the kinetic term. So
mCY→0 and flat ten-dimensional space is recovered,
higher-derivative terms in the effective action must vani
So we expect effects in the propagator~3.2! of size
mCY

2 H2/ms
4. For mCY;ms this becomesH2/ms

2;10211.
This is unobservable.

To find effects closer to the threshold of detectability, w
must enter the realm of strongly coupled string theory, wh
the fundamental mass scale can be much less thanm4 .

IV. LARGE EFFECTS IN STRING AND M THEORY

We have shown that new physics at a scaleM leads to the
following expression for quantum fluctuations of the infl
ton:

^df2&5
H2

4p2 S 11X H2

M2 1¯ D . ~4.1!

The second term in the parentheses is the leading corre
to the standard, free-field expression used in inflationary c
mology. X is a model-dependent, dimensionless number
lated to the coefficients in the effective action~3.1!. It may
get contributions from phase-space factors in loop integr
sums over heavy particles coupling to the inflaton, and so

As we will argue in the next section, this correction
potentially observable as a correction to a well-known c
sistency condition on the tensor and scalar fluctuations of
CMBR. We believe such an effect is measurable in princi
if

X H2

M2 ;0.1– 1. ~4.2!

It is hard to be more precise with this number, as it depe
on the measurability of theB-mode polarization, which is no
yet well understood.

The Hubble constantH2 can be calculated, or hopefull
measured in polarization experiments. The current up
bound from COBE, current degree-scale anisotropy exp
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ments, and large-scale structure data isH5731013 GeV
@28#. In 4D grand unified theory~GUT! models,M5m4 ,
X!1, and the correction is unobservable.5 However, in most
phenomenologically viable string and M-theory models, t
fundamental scaleM f—either the higher-dimensional Planc
scale or the string scale—is lower than the 4D Planck sc
m4 by up to two orders of magnitude@13,31,32#. If we com-
pactify a d-dimensional theory with Planck scaleM f on a
(d24)-dimensional manifoldXd24 with volumeVd24 , then
m4

25M f
d22Vd24 . The high scalem4 is not a dynamical

scale, but rather an artifact of the large volume of the co
pactification manifold.

In these models we might expectM5M f . However, as
long as the Hubble scale is lower than the compactificat
scale, 4D effective field theory still applies. The effect on E
~4.1! of integrating out a given four-dimensional field st
givesM5m4 , X,1.

But higher-dimensional models have several new featu
which can significantly enhance the corrections to Eq.~4.1!.
First, the corrections in Eq.~4.1! arise from nonrenormaliz-
able gravitational couplings which become large at high
ergies. Thus high-scale physics—in particular the large nu
bers of particles above the Kaluza-Klein threshold
contributes significantly in loops. Secondly, the existence
tensor fields in 10- and 11-dimensional models leads t
large factorX from summing over polarizations of thes
fields.

In almost all of the models we are interested in, the dom
nant effects arise from supergravity modes. The loop in
grals appear highly divergent, but for the effects we are c
culating they are cut off by either the restoration of maxim
supersymmetry~to 16 or 32 unbroken supercharges!, or by
the soft ultraviolet behavior of the fundamental theory. T
result is highly model-dependent, and the numbers we ar
at by no means constitute a precise prediction. Nonethe
we can estimate whether the correction in Eq.~4.1! is ob-
servable. To that end, we will begin this section by estim
ing XH2/M2 as a function of the compactification radii an
the cutoff. We will then analyze a variety of supersymmet
N51,d54 models in string and M theory and estimate t
size of the one-loop contribution to Eq.~4.1! in each. Read-
ers who are less theoretically inclined~or simply impatient!
will find the results of this section in the paragraphs follo
ing Sec. IV A 1; they may then skip to Sec. V, where t
experimental consequences are discussed.

Summary of results

Our strategy will be as follows. The first two models w
analyze—M theory onX75X63S1/Z2 @33#, also known as
Hořava-Witten theory, and M theory on a manifold ofG2
holonomy—can be made consistent with the unification p
diction of @34#, by keeping all scales including the 11

5Models for which the particle coupling to the inflaton becom
light somef5f0 during the inflationary epoch@7# lead to an ob-
servable effect at a particular angular scale on the sky; this wil
observationally distinct from the effects we discuss here.
0-10
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dimensional Planck scale to within an order of magnitude
the unification scale,MGUT5231016 GeV. In this case we
will find that XH2/M2;1027, which is unobservably small

However, if we give up perturbative unification, we ca
increase the volume of the compactification manifold a
decrease the fundamental Planck scale. We examine
models under three constraints. First, the inflationary dyn
ics must remain four-dimensional. This puts an upper lim
on the size of the compactification manifold, on the order
1/H. Secondly, if we assume that the energy density dur
inflation is constant ind dimensions, then it must be lowe
than md

d , wheremd is the d-dimensional~reduced! Planck
scale. We will find that this also places an upper limit on t
compactification volume.

Finally, the four-dimensional gauge coupling must rem
a; 1

25 in order that the standard model couplings are roug
correct at a TeV. The origin of gauge dynamics in a giv
model, combined with the constraint ona, affects how many
dimensions can be made large. In M- and F-theory mod
gauge dynamics arises on singularities or on branes, bo
finite codimension in the compactification manifold. If th
singularity or brane lies on ak-dimensional submanifold
S,X, a5VSM f

k and VS is fixed. The number of dimen
sions which may be made large is then the codimensiod
2k of the brane or singularity, so the models with the gre
est chance of giving rise to observable corrections in
~4.1! are those with the highestd2k.

In M theory onX63S1/Z2 , the gauge dynamics occurs o
the boundaries ofS1/Z2 which have codimension 1. The vo
ume ofX6 is constrained, and we cannot decrease the siz
the intervalS1/Z2 low enough to make the correction term
Eq. ~4.1! observable. Manifolds withG2 holonomy are in
much better shape. The gauge dynamics lies on singular
of codimension 4@15#. We can increase the volume of th
transverse manifold such that the 11-dimensional Pla
scale ism11;H.

We then move to ten-dimensional type I models. In t
simplest such models the gauge degrees of freedom pr
gate in ten dimensions. The compactification manifold c
be made large consistently witha5 1

25 by adjusting the string
coupling. But this coupling is weak, so that ten-dimensio
physics is controlled by very soft string physics and the c
rection in Eq.~4.1! is unobservable.

One may also study models for which the gauge degr
of freedom propagate on branes. Two such models consis
with N51 supersymmetry in four dimensions are Horˇava-
Witten models with the gauge dynamics arising on M
branes wrapped on Riemann surfaces, and F-theory mo
with the gauge dynamics arising on D3-branes. For both
these models, the strongest constraint is that imposed by
Planckian energy densities. Up to the model-dependent
tor X, the constraints on the corrections in Eq.~4.1! lead to
estimates forXH2/M2 that are within a factor of a few of the
estimate for manifolds ofG2 holonomy, so we will not dis-
cuss these other models further.

All of these estimates are model-dependent and imprec
In particular, we will argue below that the loop expansion
starting to break down as the corrections in Eq.~4.1! start to
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become observable. It is easy to imagine these effects ch
ing our estimates by an order of magnitude in more prec
calculations. For this reason we parametrize our results
terms ofH2/M2 andX separately.

1. Notation

First we specify our notation: the dimensionful gravit
tional couplingkd is the coefficient of the Einstein term,

L5
1

2kd
2 E

Xd

ddxAgR. ~4.3!

We define two versions of the Planck mass~differing by a
numerical factor!,

2kd
25~2p!8,d

95 ,̃d
9, Md51/,d , md51/,̃d . ~4.4!

When we compactify on a manifoldXd24 with volume
Vd24 , the four-dimensional Planck scale is

m4
252md

d22Vd24 . ~4.5!

In ten-dimensional string theories, the gravitational co
pling can be written via the string scale as

2k10
2 5gs

2a845
gs

2

ms
8 5gs

2~2p!7,s
85gs

2 ~2p!7

Ms
8 . ~4.6!

The string tension isT51/2pa8 and a string oscillator mode
carriers energy 1/Aa8.

2. Corrections to the propagator in higher-dimensional theories

Ideally we could choose a string model and simply calc
late the one-loop corrections to Eq.~4.1! in perturbative
string theory. However, string theory in approximately
Sitter backgrounds is poorly understood. Furthermore,
will find that the effects of high-scale physics are closest
observability in M- and F-theory models.

However, supergravity remains a good approximation
the calculations we are interested in. We will begin by simp
studying a scalar field coupled to ad-dimensional graviton
on a (d24)-dimensional torus. This may seem nonsensi
as the loop integrals will be badly divergent. However, t
corrections to thep2 andp4 terms in the propagator vanish i
supersymmetric theories when 16 or 32 supercharges are
broken, at energies above the compactification scale. Th
fore, supersymmetry cuts off the otherwise highly diverge
amplitudes without our needing to appeal to the ultravio
physics of M or F theory. The scale of the cutoff will be s
by the scale at which the full supersymmetry of the under
ing theory is restored.6

Because the loop integrals are dominated by energies
the cutoff, well above the compactification scale, we c
ignore the effects of the curvature and topology ofXd . We

6Of course, supersymmetry is also broken by the vacuum ene
However, it is restored for momentak.H. The corrections we will
discuss will arise from momenta much larger thanH.
0-11
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will therefore estimate the correction in Eq.~4.1! by coupling
the inflation to thed-dimensional graviton on a rectangul
(d24)-dimensional torus. For our purposes, the effects
the actual geometry can be summarized in terms of
model dependence ofX in Eq. ~4.1!.

The Lagrangian for a massive scalar minimally coupled
the d-dimensional graviton is

S5
1

2E ddxAg~gab]af]bf1m2f2!. ~4.7!

The metricg can be written in terms of the background me
ric h ~which we take to be flat! and a small fluctuation,

gab5hab1hab . ~4.8!

S can be expanded in powers ofh using the formulas

dAg5 1
2 Aggabdgab ,

~4.9!
dgab52gacgbddgbd .

This will lead to nonrenormalizable couplings of the for
h(]f)2 andh2(]f)2,

dS5 1
2 E ddx~T3

ab,mnhab]mf]nf

1T4
abcd,mnhabhcd]mf]nf1M3

abhabf
2

1M4
abcdhabhcdf

2!, ~4.10!

where

T3
ab,mn5 1

2 habhmn2hmahnb,

T4
abcd,mn52 1

2 habhmchnd1 1
8 habhcdhmn

2 1
4 hachbdhmn1 1

2 hmchadhnb

1 1
2 hmahnchbd, ~4.11!

M3
ab5 1

2 m2hab,

M4
abcd5 1

8 m2habhcd2 1
4 m2hachbd.

The propagator forh is, in the de Donder gauge,

^habhcd&5
1

m4
2k2 S hachbd1hadhbc2

2

d22
habhcdD .

~4.12!

The two one-loop diagrams are shown in Fig. 2. The diagr
on the left will contribute both wave-function renormaliz

FIG. 2. Two one-loop diagrams important for the computatio
12351
f
e

o

m

tion terms andp4/L2 corrections to the propagator, while th
right-hand diagram will give further wave-function reno
malization corrections.

We are interested in the divergent part of the loops w
loop momenta of orderk@H. Therefore, we can approxi
mate theH dependence of the propagators at tree level
the first two terms in Eq.~3.1!, which amounts to shifting all
of the masses bym2→m222H2. At the end we will take the
leading correction inH2/L2.

The left-hand diagram leads to the correction

D1~p!

5
1

m4
2 (

n
E d4k

~2p!4

p2~p2kn!21p•~p2kn!m21m4

~kn
21m222H2!@~p2kn!222H2#

,

~4.13!

and the right-hand diagram leads to the correction

D2~p!52 1
4 ~d21d28!

1

m4
2

3(
n
E d4k

~2p!4

~p21m2!

kn
222H2 . ~4.14!

The sum overn is over Kaluza-Klein momenta, andkn de-
notes the full 11-dimensional momentum of the intern
graviton propagator.

The four-dimensional integrals in Eqs.~4.13! and ~4.14!
are already quadratically divergent, and the Kaluza-Kl
sum only increases the degree of divergence. So long as
cutoff is more than a few times the Kaluza-Klein scale, w
can approximate this sum by an integral,

(
n

5
Vd24

~2p!d24 E dd24k, ~4.15!

whereVd24 is the radius of theTd24. The 11-dimensional
momentum integrals are highly divergent and dominated
the uv end of the integral, near the cutoffL@H. We can
therefore expand the integrand in powers ofH2/k2. After
subtracting theH-independent wave-function renormaliz
tion correction, the most divergent terms in this expans
are

D~p!52
ndVd24H2~p21m2!

m4
2 E ddk

~2p!d

1

k4

1
Vd24p4

m4
2 E ddk

~2p!d

1

k4 . ~4.16!

The first term leads to anH-dependent wave-function reno
malization, and the second to ap4 term in the propagator
The factornd arises from the sum over graviton polariz
tions. Since the de Donder gauge is not complete, we m
subtract off the ghosts. The result should be the numbe
physical graviton polarizations, (d21)(d22)/221. In theo-
ries with 32 unbroken supercharges before compactificat
the graviton supermultiplet contains additional scalars, ga

.

0-12
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SIGNATURES OF SHORT DISTANCE PHYSICS IN THE . . . PHYSICAL REVIEW D 66, 123510 ~2002!
fields, and tensors, so that when we include all of the boso
degrees of freedom we will findnd5128.

The size of Eq.~4.16! depends strongly on the cutof
Naively one expects this cutoff to beM f . If M f5md , then

Vd24md
d245

m4
2

Md
2 ~4.17!

and so we can writeM5md in Eq. ~4.1!. However, the rela-
tion betweenL and M f is model-dependent, and may in
volve factors of 2p and other dimensionless numbers. B
cause these factors are raised to high powers, they can
a significant effect on the size of the correction in Eq.~4.1!.
For now we will set

L5cmd , ~4.18!

with c;O(1) parametrizing the model dependence.
After performing the momentum integrals in Eq.~4.16!,

we find

D~p!52
2ndpd/2cd24

~d24!~2p!dGS d

2D
H2

M f
2 ~p21m2!

1
2pd/2cd24

~d24!~2p!dGS d

2D
p4

md
2 . ~4.19!

Sincend;100, the wave-function renormalization term w
dominate, and we will find that the coefficientX in Eq. ~4.1!
will take the value

X5
2ndpd/2cd24

~d24!~2p!dGS d

2D , ~4.20!

while M5M f .
These estimates are hardly precise. In addition to

model dependence we have discussed, the loop expan
will begin to break down in models where the corrections
Eq. ~4.1! are close to observability. For these modelsc>1 in
Eq. ~4.18!. If the fundamental scale isM f5md , wheremd is
the d-dimensional Planck scale, then the dimensionl
gravitational coupling governing loop corrections will be

ggrav
2 5S L

md
D d22

. ~4.21!

OnceL;md , ggrav
2 ;1. Nonetheless, we will assume that t

one-loop answer gives a rough estimate of the size of
corrections in Eq.~4.1!.

We will still try to be careful about numerical factors
This may seem perverse given the above discussion. H
ever, these factors are often raised to high powers, so
they contribute appreciably to our order-of-magnitude e
mates.
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The remainder of this section will amount to estimates
the magnitude of Eq.~4.1! in a variety of string and
M-theory models, with these caveats firmly in mind.

3. Physical constraints on compactifications

In the minimal supersymmetric standard model, the ru
ning strong, weak, and electromagnetic couplings unify a

aGUT5
g2

4p
;

1

25
~4.22!

at a scale of orderMGUT;231016 GeV @34#. This is strong
evidence for grand unification at that scale. Nonetheles
still indicates a small hierarchy betweenMGUT andm4 .

In traditional string phenomenology, one starts with te
dimensional type I or heterotic string theories, which have
unbroken supercharges. One then chooses a six-dimens
Calabi-Yau manifoldX with volumeVX;MGUT

26 , which pre-
servesN51 supersymmetry~SUSY! at the compactification
scale.MGUT, aGUT, and m4 are computable functions o
VX , the string scalems , and the string couplinggs , and one
may adjust the compactification parameters in order to ma
the unification predictions of@34#.

For type I models, the measured values ofaGUT, MGUT,
and m4 can be achieved in models with weak string co
pling. For heterotic models, the observed couplings a
scales are incompatible with weak string coupling@13#. One
may try to work at strong heterotic coupling, but it is n
clear that the expressions for the gauge couplings are cor

Instead we can appeal to string duality@13#. The strong
coupling limit of the SO~32! string is weakly coupled type
string theory@35#. The strong-coupling limit of theE83E8
heterotic string compactified onX is M theory on
X3S1/Z2 @33#. In this latter limit, gauge coupling unification
is compatible with a background well described by 1
dimensional supergravity@13#.

We will also study M theory on a manifold ofG2 ho-
lonomy, and weakly coupled type I string models. We w
find that Hořava-Witten theory~with the standard model as
subgroup ofE83E8) and weakly coupled type I models d
not give rise to observable corrections in Eq.~4.1!, in any
reasonable regimes of parameter space. It appears tha
such corrections to be observable, the dynamics mus
strongly coupled and the standard model should live o
brane or singularity with high codimension.

In the remainder of this section, we will discuss a varie
of models which have low-energy gauge dynamics an
fundamental scale lower thanm4 , and estimate the size o
corrections to Eq.~4.1!. We will spend the most time on
Hořava-Witten models. We will then discuss M theory o
manifolds ofG2 holonomy and Horˇava-Witten theory type I
models.

In models consistent with coupling unification, the corre
tion to Eq.~4.1! will turn out to be too small to be observed
We will therefore examine a wider class of models under
following constraints. First, the four-dimensional Plan
scale must be that given by experiment. Second, although
have given up coupling unification, the gauge coupling
0-13
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KALOPER, KLEBAN, LAWRENCE, AND SHENKER PHYSICAL REVIEW D66, 123510 ~2002!
the fundamental scale must be on the order ofa5 1
25 to get

roughly the correct standard model couplings at a TeV. Th
we will demand that inflationary dynamics be truly fou
dimensional. The upper limit on the compactification volum
is set by demanding that the Kaluza-Klein momenta be lar
than the de Sitter temperature,TdS5H/2p, so that the dy-
namics of quantum inflaton fluctuations remains fo
dimensional. If we imagine compactification on a circle w
circumferenceL, this condition means thatL,(2p)2/H. For
a manifoldXk with volumeVk , we take this to mean that

Vk<
~2p!2k

Hk . ~4.23!

Finally, we demand that thed-dimensional energy densit
be sub-Planckian. Let us assume that the energy densit
sponsible for inflation is constant over the compactificat
manifold Xd24 . Denoting thek-dimensional energy densit
by E(k)

k ,

E~4!
4 53H2m4

25E~d!
d Vd24 , ~4.24!

which implies

S H

md
D 2

5
1

3 S E~d!

md
D d

. ~4.25!

Therefore, we demand7

S H

md
D 2

<1. ~4.26!

Sincem4 is fixed, Eq.~4.5! ties a lower limit onmd to an
upper limit onVd24 . Depending on the model at hand, th
bound may be more or less stringent than Eq.~4.23!.

In our study of perturbative type I models, we will als
demand that the energy densityE(10)

10 <ms
10. At higher-

energy densities, stringy physics is not understood.
We will find that for models which give measureable co

rection terms in Eq.~4.1!, the fundamental scalemd;H
;731013 GeV. With such a low scale we have to wor
again about proton decay. In GUT models, dimension-6
erators suppressed by 1/MGUT

2 lead to proton lifetimes close
to the experimental lower bound, close enough to mod
dependent factors to rule out models. Dimension-6 opera
suppressed by 1/H2 will lead to proton decay which is 10 o
11 orders of magnitude more rapid than if they were s
pressed by 1/MGUT

2 . If one is able to forbid operators below
dimension 7, then higher-dimensional operators suppre
by powers of 1/H will lead to phenomenologically accep
able lifetimes. One could achieve this, for example, if so
discrete subgroup of the U~1! baryon number symmetry wa
gauged, along the lines of@36,37#. Since we are not studying
our models in detail, we will leave this issue aside.

7We ignore the factor of13; it disappears if we allow, e.g.,E(d)

51.2md , which we cannot rule out at this crude level.
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4. The Hořava-Witten model

Compactifications of M theory onX115X103S1/Z2 were
the first known M-theory models with chiral gauge dynam
@33#. These models can be described relatively explicitly,
we will spend the greatest amount of time on them. In ad
tion, in models which realizeN51 supersymmetry, the ex
plicit pattern of supersymmetry breaking means that mod
of the compactification manifold are good inflaton candida
@38,39#, as we will review below.

If X105R43X6 and X6 is the Calabi-Yau space, th
theory has four unbroken supercharges in four dimensio
One E8 gauge multiplet is localized on each end of the
terval. The gauge couplings are

(
i 51

2
1

8p~4pk11
2 !2/3E

M10,i

AgFi
2, ~4.27!

where the sum is over the two boundary components. U
compactification onX, anomaly cancellation will require
gauge field configurations which break this gauge group
ther; generally one breaks one of theE8 groups to the GUT
group and then to the standard model gauge group, while
otherE8 is the gauge symmetry of a hidden sector.

Without going into great detail, we can see that the
models can match the predicted coupling unification in
regime where all scales, including the fundamental scale,
close toMGUT and supergravity is valid.

The GUT group is broken to the standard model gau
group by visible sector gauge field configurations onX; cf.
@40# for a discussion. Therefore, we letLCY5VX

1/65MGUT
21 .

Newton’s constantGN and the GUT couplingaGUT can be
written as@13#

1

8pGN
5

VXL11

k11
2 ,

~4.28!

aGUT5
gGUT

2

4p
5

~4pk11
2 !2/3

2VX
.

With the above values ofaGUT andMGUT, we find

m11;2MGUT,

M11;10MGUT, ~4.29!

1

L11
;0.01MGUT.

Therefore, although the heterotic coupling is strong, t
compactification is well described by 11D supergravity. No
that we do not have to postulate large hierarchies betw
the GUT and fundamental scales. The largest hierarch
betweenM11 and 1/L11. If we take the ratio betweenM11
and the mass gap of the Kaluza-Klein~KK ! excitations with
momentum alongS1/Z2 ,

m11/mKK5m11L11/p;60, ~4.30!
0-14
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so the Kaluza-Klein scale is about an order of magnitude
from the GUT scale.

The expansion parameter in these models is (2k11
2 )2/3/VX .

The assumption that the geometry is a simple prod
X3S1/Z2 holds only at lowest order. To next order in o
expansion parameter the product is warped;VX depends on
the coordinatex11 alongS1/Z2 @13#. A natural size forL11 is
that for which the volume vanishes at the end of the inter
where the hidden sector gauge group resides. One can
imagine strong-coupling effects leading to supersymme
breaking and the stabilization of moduli@13,41#. L11 deter-
mined this way depends on the topology of theE83E8
gauge field configurations onX and on the Ka¨hler moduli of
X. For reasonable choices of both,L11 is consistent with Eq.
~4.29!.

In this model, maximal supersymmetry is broken toN
51 in ten dimensions at the fixed points ofS1/Z2 , and then
to N51 in d54 by the compactification onX6 . The cutoff
in Eq. ~4.15! should be roughlyVX

21/6, so we might expect
the cutoff to be on the order of 1/VX

1/6;MGUT. Again, the
precise value ofL is highly model-dependent. In a suffi
ciently anisotropic Calabi-Yau space we can raise this sc
We will take it to be the fundamental uv cutoff that quantu
mechanical M theory is expected to provide.

This cutoff can be estimated by studying four-gravit
scattering at one loop@42#; since the amplitude is protecte
by supersymmetry, it can be calculated in string theory a
extrapolated to strong coupling. The computation is cuto
dependent in supergravity. If we define the cutoffL11 by
matching the supergravity result to the finite M-theory res
then @42#

L11524/9p11/9m11;5m11. ~4.31!

a. Inflaton dynamics in the Horˇava-Witten model. In the
Hořava-Witten models, the moduli ofX6 are natural inflaton
candidates. A simple argument due to Banks@38,39#8 shows
that the pattern of supersymmetry breaking in Horˇava-Witten
models can lead to an inflaton potential with the right pro
erties. M theory compactified on a Calabi-Yau threefoldX
has eight supercharges, and the moduli ofX are exactly flat
directions, protected by supersymmetry. Upon further co
pactification onS1/Z2 , supersymmetry is broken toN51 in
four dimensionsat the boundaries of the interval. Superpo-
tentials for the moduli ofX can arise only on the boundarie

Let f̃A be the~complex! moduli of X in M theory, de-
scribing sizes of various cycles ofX in units of M11. In four
dimensions, the kinetic term is

Lkin5
1

2k11
2 VXL11E d4x GAB̄~f̃ !]f̃A]fD B̄, ~4.32!

whereGAB is the dimensionless metric on the moduli spa
of X. The factor in front of the integral also multiplies th
four-dimensional Einstein term, which is expected since

8With many caveats, extensively discussed in@39#.
12351
ff

ct

l
en
y

le.
-

d
-

t,

-

-

e

e

moduli are simply components of the metric inX. This is just
the ‘‘reduced’’ 4D Planck massm4 .

The canonically normalized scalar fields in four dime
sions are

fA5m4f̃A. ~4.33!

In N51 language,G is the derivative of the Ka¨hler potential,

GAB̄5]A] B̄K, ~4.34!

where the derivatives are with respect to the canonically n
malized fields. The fact thatG is dimensionless and of orde
1 means that we can writeK in terms of a dimensionles
order-1 potentialK̃,

K5m4
2K̃, ~4.35!

so that

GAB̄5 ]̃A]̃BK̃, ~4.36!

where]̃ is a derivative with respect tof̃.
N52 SUSY is broken toN51 by the boundaries o

S1/Z2 . Fundamental physics on these boundaries is still c
trolled by m11, so that the superpotential will have the for

Lsuper5m11
3 E d2u d4x w~f̃ !1H.c. ~4.37!

The bosonic potential inN51 supergravity arising from this
superpotential is

V~f!5eK̃
m11

6

m4
2 ~GAB̄D̃AwD̃B̄w̄23uwu2!

5
m11

6

m4
2 VS f

m4
D[M4V, ~4.38!

where

D̃Aw5 ]̃Aw1 ]̃AK̃w.

For a successful model of inflation,f must roll slowly for
approximately 60e-foldings, and the fluctuations inf must
generate the density perturbations measured by CO
dr/r;531025. We can use this requirement to computeM
@18#. We will choose our coordinates so that a single coor
natef̃ parametrizes the trajectory in the moduli space tr
eled during the inflationary epoch.

We rewrite Eq.~2.27! in the present context,

Ne5
1

2m4
2 E

fe

f V

]fV
;60, ~4.39!

using the slow-roll expression

H25
V

3m4
2 .
0-15
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Herefe is the VEV of the inflaton at the end of inflation, an
f the VEV 60e-foldings prior to that. AssumingV does not
change much during inflation, we can approximate Eq.~4.39!
by

f2fe

m4
2

V
]fV;60. ~4.40!

If we let (f2fe);m4 and solve forV/]fV, we can use Eq
~2.18! to solve forM andM11,

M;331023m45731015 GeV,
~4.41!

m11;531016 GeV.

M is close to the unification scaleMGUT, and the value of
m11 predicted here is close to that in Eq.~4.29!. Within our
crude set of approximations, we can take this as an estim
of m11 independent of Eq.~4.29!.

Since these numbers are rough estimates, we will use
experimentally determined upper boundH in our estimates
of H2/M2.

b. Corrections to the inflaton propagator.Equation
~4.31! implies thatc524/9p11/9 in Eq. ~4.20!. The correction
in Eq. ~4.1! is determined by~hered511, nb5128)

M2;m11
2 , X;0.1. ~4.42!

Using the experimental upper bound onH andm11 as given
in Eq. ~4.29!,

H2

M2 ;1026. ~4.43!

While this is better than the result expected from fo
dimensional GUT models, it is not close to observable. If
were willing to give up unification atMGUT and require only
that the gauge couplings satisfya;1/25 and that the infla-
tionary dynamics be four-dimensional, we can have a sma
value ofm11 and the corrections in Eq.~4.1! will be larger.
~If we push these constraints to their limits, the 1
dimensional energy density is still sub-Planckian.! Note that
for such models, the arguments in@38,39# will cease to gen-
erate inflaton potentials withM;MGUT, as we must push
m11,MGUT for corrections in Eq.~4.1! to be observable. We
will have to assume that such potentials are generated
four-dimensional gauge theory effects.

The correct four-dimensional Planck scale

m4
25a21~4p!2/3L11m11

3 . ~4.44!

The constraint that the inflaton fluctuations remain fo
dimensional is

L11,
1

gh
, g.

1

~2p!2 , ~4.45!

while a; 1
25 constrains the Calabi-Yau volume. Then
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H2

m11
2 5

~25!2/3~4p!4/9

g2/3 S H

m4
D 4/3

. ~4.46!

Assuming alsog51/(2p)2 and H5731013 GeV, we find
that

m11;631015 GeV, 1/L11;1012 GeV, ~4.47!

so that

H2

M2 ;1024, X;0.1. ~4.48!

This is a considerable improvement, but it is still unobse
able. We will find below that if the gauge dynamics are r
stricted to a lower-dimensional brane, more directions tra
verse to the brane may be made large, and the fundame
scale can be lowered further still, while keeping the fo
dimensional Planck scale fixed.

5. G2 manifolds

M theory compactified on seven manifolds withG2 ho-
lonomy also providesd54, N51 vacua. Few compact ex
amples are known but one may appeal to heterotic–M the
duality in seven dimensions to make some arguments a
their structure@14,15#. For another related construction, s
@43#.

Calabi-Yau threefolds with geometric mirror partners a
believed to beT3 fibrations over anS3 base@44#. Now het-
erotic string theory onT3 is dual to M theory onK3 , so if the
base is large and we stay away from the singular fibers,
can claim that the heterotic string on a Calabi-Yau threef
is dual to M theory on someK3-fibered manifold with anS3

base, and hope that the story continues when the singulaT3

fibers are included@14,15#. Indeed, noncompact example
which realize gauge theory with chiral matter take the fo
of an asymptotically Locally Euclideur~ALE! space~a non-
compactK3) fibered overS3 or over S3/Zn @15#. We will
assume that sensible compactG2’s exist which areK3 fibra-
tions overS3/Zn .

Begin with M theory on a singularK3 surface with vol-
ume VK3

. The GUT group in such models arises from t

singularities in theK3 fiber, and so one begins with a seve
dimensional gauge theory with dimensionful gauge coupl
g25,11

3 . If we fiber this overS3 /Zp with volumeVS3, then
discrete Wilson lines can break the GUT group to the st
dard model at the scaleMGUT5VS3

21/3.
The four-dimensional GUT coupling is

aGUT5
1

25
5

1

4pVS3
m11

3 , ~4.49!

while the four-dimensional Planck mass is

m4
25

VK3
VS3

2k11
2 . ~4.50!
0-16
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Again we can use these to fix the 11-dimensional Pla
mass and the volume of theK3 fiber,

m11;MGUT,

M11;6MGUT, ~4.51!

VK3

21/4;0.1MGUT;
1
7 MGUT.

The 11-dimensional Planck scale and the compactifica
scales are within an order of magnitude of each other.

These compactifications look like ‘‘brane world’’ model
the gauge dynamics are localized on singularities with co
mension 4. One can have several singular regions in theK3

fibers separate by a length of orderVK3

1/4.1/MGUT, 1/M11.

The singularities give rise to 7D gauge dynamics and
different gauge sectors will be ‘‘hidden’’ from each othe
communicating via 11D gravity. Furthermore, the chiral m
ter also resides on singularities which are points onS3 @15#.
In the K3 directions, maximal supersymmetry will be mo
strongly broken at the singularities on which the gauge
namics reside. One can imagine an argument similar to
in @38,39# for the existence of inflation candidates. We lea
this for future work.

a. Corrections to the propagator.For G2 manifolds, the
correction in Eq.~4.1! is still given by Eq.~4.42!. Using the
value ofm11 given by Eq.~4.51!, the effect is only slightly
larger, roughly by a factor of 2. Again, we can ask wh
happens if we give up grand unification. Here the constra
on m11 is simply

m11
6 5

m4
2

50pVK3

. ~4.52!

The volume of theS3/Zn base is restricted bya; 1
25 . The

constraint

VK3
;

~2p!8

H4 , ~4.53!

and the constraint that the 11-dimensional energy densit
sub-Planckian, lead to the same lower limit onm11 to within
a factor of 2

3. Using the~tighter! constraint~4.53!, we find,
usingH5731013 GeV,

M;m11;831013 GeV,

1

VK3

1/4;231012 GeV, ~4.54!

H2

M2 ;1, x;0.1.

M theory in this limit could have an observable effect
CMBR anisotropies, via the corrections in Eq.~4.1!. We em-
phasize again the imprecision of our estimate ofx; it is easy
to imagine gaining or losing an order of magnitude in
explicit model.
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6. Type I models

In type I models, supersymmetric coupling unification
consistent with weak string coupling. As discussed in S
III, the corrections in Eq.~4.1! should be computable via
string perturbation theory. These corrections are unobs
able as long as string theory is in a computable regime.
see this, we will estimate the maximum size of the tree le
and one-loop contributions to Eq.~4.1! regardless of unifica-
tion constraints.

A four-dimensionalN51 supersymmetric model arises
type I string theory from compactification on a six
dimensional Calabi-Yau manifoldX. Tree-level corrections
to c1,2 in Eq. ~3.1! are the result of compactification. No suc
terms exist in theories with 16 supercharges. Howev
higher-derivative terms such asR4 terms do exist, suppresse
by powers of a8. Upon compactification, such highe
derivative terms will lead to

c1,2;
mCY

2

ms
2 1OS mCY

4

ms
4 D , M;ms ~4.55!

in Eq. ~3.1!, wheremCY;VX
21/6 is the radius of curvature o

X. These terms lead to corrections in Eq.~4.1! with M5ms

andx a function ofmCY
2 /ms

2.
The scales and couplings are constrained by

a5
gs

4pms
6V6

,

~4.56!

m4
25

2ms
8V6

gs
2 .

Combined, these imply

ms
25

gsm4
2

8pa
,

~4.57!

gs54paS ms

mCY
D 6

.

If the ten-dimensional coupling is weak, thenmCY@ms and
the a8 expansion breaks down@31#. If the a8 expansion is
good, the ten-dimensional string coupling is strong and
~4.57! implies ms>m4 . In the scenario which is closest t
computable,mCY;ms;m4 . The correction terms in Eq
~4.1! will appear as

M;ms;m4 ,
H2

M2 ;331028, ~4.58!

which is unobservable; a largex in Eq. ~4.1! would be un-
natural. For some type I compactifications withmCY;ms ,
such as orbifolds or Gepner models, or marginal pertur
tions of them, there is hope of doing a controllable calcu
tion; indeed, ifmCY52ms , gs;1022. However, unless such
models deliver an extremely large value ofx, which seems
0-17
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unlikely, the constraints in Eq.~4.57! requiremCY to be an
order of magnitude larger thanms beforexH2/ms

2 is observ-
able.

We conclude that for corrections in Eq.~4.1! to be observ-
able in a string model, either the 2Ds model coupling orgs

must be large.

7. Models with TeV scale gravity

We can take the Horˇava-Witten philosophy regarding th
four-dimensional Planck scale to a more extreme conclus
If we assume fewer extra dimensions, with the stand
model particles still confined to a (311)-dimensional sub-
manifold, we may substantially reduce the fundamental sc
of quantum gravity, as low asm* 51 TeV, while keeping the
four-dimensional Planck scale at its known value@36#. In
particular, if there are two extra dimensions, the compac
cation volume could be as large as~1 mm!2.

In this class of models, the vacuum energy cannot exc
the fundamental scalem* . Hence after the extra dimension
are stabilized, and the effective 4D Planck scale is given
its low-energy valuem4.231018 GeV, if the vacuum en-
ergy is localized to the branes the Hubble scaleH
5m

*
2 /3mpl,4 is incredibly small@45#, and the mass of the

inflation must be tiny@45,46#, 16 orders of magnitude below
m* . In addition the effect, which is a correction on the ord
of H2/m

*
2 ;m

*
2 /mPl,4

2 to the inflation fluctuationdf, is unob-
servable. However, it is inconsistent to search for inflat
after such large extra dimensions are stabilized, becau
the fundamental scale is low, inflationary dynamics after
stabilization of extra dimensions fails to solve the age pr
lem and does not reproduce the spectrum of primordial fl
tuations@46#.

These problems are ameliorated if the extra dimensi
play an active dynamical role in the early universe. Spec
cally, if the compactification volume was much smaller at t
time of inflation @47#, the instantaneous Planck scale at t
time of inflation was much smaller than its later value af
the stabilization, implying that inflation at times before t
extra dimensions are stabilized can address both the age
the fluctuation problems. The details of the prestabilizat
inflationary dynamics are given in@47#. The simplest realiza-
tion of the scenario proposed in@47# is if the modulus pa-
rametrizing the size of the extra dimensions itself is the
flation. In that case the slow-roll condition can be restated
a bound on the ratio of the expansion rate of the dimens
transverse to the brane~extra dimensions! to the expansion
rate of the dimensions longitudinal to the brane~macroscopic
dimensions!. Representing the former by a scale factorb and
the latter bya, it is convenient to quantify the slow-roll con
dition Hb /Ha!1 ~whereHa5ȧ/a, etc.! by the parameters
S, T, defined byHb /Ha.S1T(b/bT21)21¯ . HerebI is
the initial size of extra dimensions. Then the slow-roll co
ditions ~i.e., the requirement to get a sufficient number
e-foldings >70! and the scale invariance of the spectrum
fluctuations requireT!S,0.002 @47#. Since the Planck
scale at the time of inflation ism4,early

2 .m
*
n12bT

n , the Hubble
rate can be expressed as
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Ha
2.

V

3bI
nm

*
n12 , ~4.59!

wheren is the number of extra dimensions andV the infla-
tionary potential. The COBE normalization of the dens
contrast at 50e-folds before the end of inflation requires

b1
nm

*
n .

103

S

AV

m
*
2 ~4.60!

and we find after simple algebra

H2

m
*
2 .

S

3000

AV

m
*
2 ~4.61!

independently of the number of extra dimensions. The p
cise value ofV and S is clearly model-dependent; in prin
ciple, V, which is supported by the branes, can be as high
m

*
4 andS,0.02. Thus the maximal value of the imprint o

large extra dimensions in the sky is

H2

m
*
2 <6.631026. ~4.62!

This is several orders of magnitude too small to be dete
able. We should stress that this formula is quite general,
cause it does not depend on the number of extra dimens
nor the details of the potential, but holds merely as a con
quence of a very basic slow-roll requirement. The only
sumption which this is based on is that the radius modulu
the inflaton. In those cases, rapid asymmetric inflation era
any short distance physics imprints on the sky very e
ciently. These conclusions might be altered by the constr
tion of more complex scenarios where the inflaton is diff
ent from a radius modulus, or where the potential
distributed throughout the bulk. However, in the case of T
gravity models, direct searches for signatures of the n
physics in colliders would be much more promising than
surveys of the sky anyway.

V. MODIFICATION OF INFLATIONARY CONSISTENCY

A useful test of inflationary dynamics is the so-calle
‘‘consistency condition,’’ which relates the ratio of ampl
tudes of the tensor and scalar modes to the tensor tilt~for a
review of potential reconstruction and the consistency c
dition, see@4#!. In standard inflation models~assuming Ein-
stein gravity!, the spectrum of scalar fluctuationsAS deter-
mines the inflaton potential, and one can then, in princip
use the potential reconstructed from these data to predic
tensor spectrumAT . In practice, if one expands ln(AS) and
ln(AT) in a power series in the momentum ln(k), one can only
determine the first few coefficients in the series. Howev
these are enough to provide at least a lowest-order~in the
slow-roll parameters! check of consistency. As we will dem
onstrate, if the effects of high-scale physics are included,
usual relations for inflation in Einstein gravity will not b
satisfied.
0-18
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A. Consistency in standard inflation

We define the~unmodified by high-scale physics! scalar
and tensor spectra~2.20! and ~2.21!

AS0
~k![

H2

10pm4
2H8

~5.1!

and

AT0
~k![

H

A20pm4

. ~5.2!

Recall that thek dependence is implicit inH. Then

~AT0
/AS0

!252m4
2 H82

H2 [e0 . ~5.3!

The tensor tilt is

nT0
[

]~ ln AT0

2 !

]~ ln k!

52
]f

]~ ln k!

]H

]f
52

4m4
2H82

H2 522e0 , ~5.4!

to lowest order ine0 . Hence the lowest-order prediction o
inflationary consistency is

nT0
12~AT0

/AS0
!250. ~5.5!

B. High-scale modifications to consistency

When we include the effects of high-scale physics,
observed scalar and tensor spectra will be modified,

AS5AS0
~11xSH2/M2!,

~5.6!
AT5AT0

~11xTH2/M2!,

where xS and xT are numerical constants in the effectiv
action, andM is the scale of the new physics. The ratio of t
observed tensor and scalar power spectra is

~AT /AS!2>e0@112~xT2xS!H2/M2#[e. ~5.7!

However, the tensor tiltnT is now

]~ ln AT
2!/]~ ln k!522e0~112xTH2/M2!, ~5.8!

and therefore

nT12~AT /AS!2522e0xSH2/M2Þ0. ~5.9!

Hence we can parametrize the predicted effect of the h
scale physics in a way that is independent of the modifica
to the graviton kinetic term.

Of course, in standard inflationary models the consiste
relation ~5.5! is modified at higher order in the slow-ro
parameters,
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nT0
12

AT0

2

AS0

2 52
AT0

2

AS0

2 S AT0

2

AS0

2 2~12nS0
!D

522e0~2h013e0!, ~5.10!

whereh was defined in Eq.~2.3! andnS0
is the unmodified

scalar tilt. As is manifest, this correction is determined by
slow-roll parameters, which in turn can be determined
the measured scalar and tensor power and tilt.

It will therefore be possible to observe the violation of t
consistency condition due to high-scale physics if the m
surements of the scalar and tensor power and tilts are pre
enough. This accuracy is limited by cosmic variance, inst
mental noise, and backgrounds. Since the tensor fluctuat
have not yet been detected, it is not known what the ba
grounds will be, and therefore how many independent d
points will ultimately be available.

Let us assume optimistically that in a region where t
signal is within a factor of 3 of the maximum, we will b
able to measure theB mode of the CMB polarization to an
accuracy limited only by cosmic variance. This gives a ba
line in the spherical harmonicl from, say,l 550 to 150~see,
e.g.,@48#!. Given that the cosmic variance error in each po
is ;Al;10, and we have;100 points, we expect a prec
sion of ;61%. We should emphasize again that this es
mate is close to a best-case scenario. Many other fac
could stand in the way of making cosmic variance limit
measurements of this quantity, which we must bear in m
has not even been detected yet.

Assuming 1% precision, we can continue our discuss
of observability. The violation of the consistency condition
2e0xSH2/M2 @Eq. ~5.9!#. If we assume e0; 1

15 and
xSH2/M2;0.1, the effect will be on the edge of observab
ity. Note that this value ofe0 is about the largest allowed b
current experiment. From the standpoint of chaotic inflat
models, it requires that the potential near the minimum
controlled by a fairly high-order monomialfn, which re-
quires significant fine-tuning. A large discrete symme
group at the minimum would be required to make this te
nically natural.

While the corrections in Eq.~4.1! lead to violations of Eq.
~5.10!, they are not the only possible source of such an
fect. In particular, they are possible in theories with multip
scalar fields in addition to the inflaton@49,50#. Upon exam-
ining these models, we find that appreciable effects req
fine-tuning of the scalar potential and the initial conditio
for the scalar fields. In general, these additional effects
probably unobservable even with our generous estimate
the accuracy of future experiments.

VI. CONCLUSIONS

Let us summarize the main points we have made.
reviewed the basics of slow-roll inflation, emphasizing
particular that the size of CMB fluctuations is determined
inflaton fluctuations at momentum scales;H. The experi-
mentally important regime isH!m4 . It is very plausible,
then, that one can express the inflaton dynamics at scaleH in
0-19
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an effective local field-theoretic action where all unknow
short-distance physics will be encapsulated in the coe
cients of irrelevant operators. There are just two leading
relevant operators@see Eq.~3.1!# which produce corrections
to dr/r of size xH2/M2, whereM is the mass scale of th
short distance physics andx is a numerical constant that i
calculable if the short distance physics is under calculatio
control. This is one of the major results of our work.

We then turn to evaluating the size of these correction
various contexts. For all renormalizable field theories, th
corrections are generically of sizeH2/m4

2;10211, too small
to observe ~although fine-tuning can make them mu
larger!. Weakly coupled string theories of conventional ty
display corrections of similar size. Regions of parame
space that display larger corrections clearly must invo
smaller fundamental mass scales. Horˇava-Witten theory
compactified with scales appropriate to grand unificat
@13# has a fundamental mass scale—the 11-dimensio
Planck mass—that is smaller,m11;531016 GeV. Nonethe-
less for this theoryxH2/M2<1027, still far too small to be
observed.

If we allow ourselves to give up precision grand unific
tion, we found in Sec. IV that by studyingG2 compactifica-
tions of M theory with largeK3 fiber we could lowerm11
until it was almost comparable toH, giving effects of order 1
that are potentially observable. We must stress again
these models are not particularly attractive phenomenol
cally. Precision grand unification must be abandoned,
though a reasonably large desert~up to ;1013 GeV) can be
maintained. To maintain the height of the inflationary pote
tial at 1016 GeV asm11 is lowered, we must abandonm11 on
the branes as the source ofV @38# and invoke a more recon
dite four-dimensional mechanism that is invariant under
creases in compactification scale. To avoid large proton
cay rates, we must invoke additional discrete symmetrie

Nonetheless, we believe that there are a set of viable
-
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theoretic models that produce potentially observable sign
The comments in Sec. V indicate that we will need cosm
variance limited observations of tensor fluctuations—a v
challenging, long-term experimental goal—to see such s
nals. However, there may be other ways to probe these
fects in the future. Direct detection of relic gravitation
waves@by more sensitive successors to the Laser Interfero
eter Space Antenna~LISA!, for example# would probe short
wavelengths and so would not be limited by cosmic varian
~see, e.g.,@51#!. Millisecond pulsar timing measuremen
would have the same advantage@52#.9

Perhaps the most important lesson we have drawn f
our work is a qualitative one: the idea of probing short d
tance physics using cosmological observations looks
sible, possibly even at energies as high as 1013– 1014 GeV.
The challenge now is to open the window wider.
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