
PHYSICAL REVIEW D 66, 116010 ~2002!
QCD based quark description ofp-p scattering up to the s and r regions
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We study forward and backwardp-p scattering within a QCD model based on the Dyson-Schwinger,
Bethe-Salpeter equations truncated to the rainbow-ladder level. Our microscopic relativistic quark formulation
preserves chiral symmetry and reproduces the observed scattering lengths for total isospin zero, one and two.
At higher energies both scalar and vector meson resonances naturally occur in the scattering amplitudes. We
also report a comparative study with phenomenological meson-exchange models and find such approaches are
reasonable especially nearp-p resonances.
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I. INTRODUCTION

As the lightest hadron, the Goldstone boson of sponta
ous chiral symmetry breaking and the dominant particle g
erning the nucleon-nucleon interaction, the pion occupie
special position in hadronic physics. Accordingly,p-p scat-
tering has attracted considerable interest even though
cross section is not directly measurable. In particular, a
riety of theories have been utilized to make scattering p
dictions: at low energies, current algebra or PCAC~partial
conservation of axial vector current! @1#, chiral perturbation
theory @2–5# and bosonization models with pion fields@6#;
quantum hadrodynamic~QHD! meson exchange models an
unitarized relativistic coupled channels@7# for intermediate
energies; Regge theory at moderately higher energies; pe
bative QCD at very high energies. These in turn have b
confronted by experimental phase shift analyses@8–11#
yielding reasonable agreement. However, there have b
very few nonperturbative, relativistic covariant quark pred
tions which is the thrust of this paper.

This work applies the quark Dyson-Schwinger~DSE! and
meson Bethe-Salpeter~BSE! equations @12–14#, in the
rainbow-ladder approximation, top-p scattering and ex-
tends our previous threshold analysis@15# which reproduced
Weinberg’s low energy theorem@1# and the Adler zero. The
approach is QCD based, renormalizable, relativistic, rig
ously covariant, embodies crossing and chiral symmetry,
contains only two predetermined parameters that provid
realistic, comprehensive description of the light meson sp
tra and decays@16–20#. Our key finding is that the mode
correctly predicts all three isospin amplitudes measured
low energies and also reproduces the observeds andr reso-
nances at higher energies. Our framework can thus as
phenomenological meson exchange models which req
resonances as input and we find such models are quite
sonable.

This paper is organized into four sections. Section II f
mulates the scattering problem and addresses the main
proximation: the rainbow truncation of the DSE for the qua
propagator and the ladder truncation of the BSE for the p
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as a quark-antiquark bound state. This section also details
quark annihilation and exchange diagrams and relates
amplitudes for these processes to the various isospin sca
ing amplitudes for totalp-p isospin zero, one and two. Sec
tion III presents large scale, supercomputer calculations
forward and backward scattering and compares results t
effective meson exchange model where the coupling c
stants and pole masses are a prerequisite. Finally, con
sions are summarized in Sec. IV and supporting mathem
cal details are provided in the Appendix.

II. MESON SCATTERING IN THE DYSON-SCHWINGER
APPROACH

A. Dyson-Schwinger equations

The DSE for the renormalized quark propagator hav
four momentap in Euclidean space is

S~p!215 iZ2 p”1Z4mq~m!

1Z1E
q

L

g2Dmn~k!
la

2
gmS~q!Gn

a~q,p!, ~1!

whereDmn(k) is the dressed-gluon propagator,Gn
a(q,p) the

dressed-quark-gluon vertex with color indexa51...8, and
k5p2q. The notation*q

L represents*q
L@d4k/(2p)4#. The

most general propagator solution of Eq.~1! has the form
S(p)215 ip”A(p2)1B(p2) and is renormalized at spacelik
m2 according toA(m2)51 andB(m2)5mq(m), with mq(m)
being the current quark mass. We use the Euclidean me
where $gm ,gn%52dmn , gm

† 5gm and a•b5aibi

[( i 51
4 aibi .

Mesons are described by the Bethe-Salpeter amplit
~BSA!, GH , which is a solution of the homogeneous BSE f
qaq̄b bound states given by

GH
ab̄~p1 ,p2!5E

q

L

K~p,q;P!Sa~q1!GH
ab̄~q1 ,q2!Sb~q2!,

~2!

where a and b are flavor indices,p15p1hP and p25p
2(12h)P are the outgoing and incoming quark momen
respectively, andq6 is defined similarly. The kernelK is the
©2002 The American Physical Society10-1
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renormalized, amputatedqq̄ scattering kernel that is irreduc
ible with respect to a pair ofqq̄ lines. This equation has
solutions at discrete values ofP252mH

2 , wheremH is the
meson mass. By then imposing the canonical normaliza
condition for qq̄ bound states,GH is uniquely determined
Mesons with different spin, parity andC parity, such as
pseudo-scalar, vector, etc., are characterized by diffe
Dirac structures. The most general decomposition for ps
doscalar bound states is@16#

GPS~q1 ,q2!5g5@ iE~q2,q•P;h!1P” F~q2,q•P;h!

1q”G~q2,q•P;h!

1smnPmqnH~q2,q•P;h!#, ~3!

where the invariant amplitudesE, F, G and H are Lorentz
scalar functions ofq2 andq•P. For eigenstates ofC parity,
these amplitudes are appropriately odd or even in theC odd
variableq•P. In the case of the 021 pion, for example, the
amplitudeG is odd in q•P, the others are even. Note als
that these amplitudes explicitly depend on the momen
partitioning parameterh. However, provided Poincare´ in-
variance is preserved, the resulting physical observables
h independent@16,17,19#.

B. Rainbow-ladder truncation

We use the rainbow-ladder truncation for the system
Dyson-Schwinger and Bethe-Salpeter equations~DSBS!. In
particular, the rainbow truncation of the quark DSE, Eq.~1!,
is

Z1g2Dmn~k!Gn
a~q,p!→G~k2!Dmn

free~k!gn

la

2
, ~4!

whereDmn
free(k5p2q) is the free gluon propagator in Landa

gauge, andG(k2) is an effectiveq̄q interaction that reduce
to the perturbative QCD running coupling in the ultravio
region. The corresponding ladder truncation of the BSE,
~2!, is

K~p,q;P!→2G~k2!Dmn
free~k!

la

2
gm

la

2
gn , ~5!

wherek5p2q. The two truncations combine to consisten
produce vector and axial-vector vertices satisfying the
spective Ward-Takahashi identities. In the axial case, this
sures that in the chiral limit the ground state pseudosc
mesons are the massless Goldstone bosons associated
chiral symmetry breaking@16,21#. For vector mesons i
yields a conserved electromagnetic current if the impulse
proximation is used to calculate the electromagnetic fo
factor@19#. Furthermore, this truncation was found to be p
ticularly suitable for the flavor octet pseudoscalar and vec
mesons since the next-order corrections in a quark-gl
skeleton graph expansion significantly cancel@22#.
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C. p-p scattering

There are different types of diagrams that contribute
p-p scattering, or more general, meson-meson scatter
such as quark annihilation or quark exchange diagrams.
convenient to first discuss these different types of contri
tions in the impulse approximation, even though the impu
approximation is known to be insufficient@15#. The more
correct treatment is given in the next section.

Figure 1 depicts the entire class of diagrams that con
tute the impulse approximation for the scattering amplitu
Each diagram can be associated with a specific amplit
that is a function of the Mandelstam variabless5(P1
1P2)2, t5(P12P3)2, and u5(P12P4)2, where P1 , P2
(P3 ,P4) are the incoming~outgoing! pion momenta. The
external pions are on-shell, yieldingPi

252mp
2 in the Euclid-

ean metric. At thresholds524mp
2 , t5u50, and the physi-

cal region hass,24mp
2 . Momentum conservation require

s1t1u524mp
2 , so that the amplitudes, which we chose

express as a functions ofs, t, and u, only depend on two
independent variables. Alternatively the amplitudes could
represented as function of the pion center-of-moment
~c.m.! energy v5A2s/2 and the c.m. scattering angleu
with cos(u)5(u2t)/(u1t). Then forward~backward! scatter-
ing, u50 (u5180), corresponds tot50 (u50).

Because there are only two distinct microscopic scatter
mechanisms, quark annihilation and quark exchange, th
are actually only two distinct amplitudes,D and E, respec-
tively. Thus, all six diagrams in Fig. 1 can be represented
these two

diagram I: D~s,t,u! ~6!

diagram II: E~s,t,u! ~7!

diagram III: D~s,u,t ! ~8!

diagram IV: D~s,t,u! ~9!

diagram V: E~s,u,t ! ~10!

diagram VI: D~s,u,t !. ~11!

FIG. 1. The six diagrams contributing to the impulse amplitu
for p-p scattering; the incoming pions are labeled 1 and 2, and
outgoing pions are 3 and 4.
0-2
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QCD BASED QUARK DESCRIPTION OF . . . PHYSICAL REVIEW D 66, 116010 ~2002!
These amplitudes can be calculated from integrals involv
the quark propagators and pion BSAs, e.g.

D~s,t,u!52NcE
q

L

Tr@S~k1P1!Gp~k1P1 ,k!S~k!

3Gp~k,k2P2!S~k2P2!Ḡp~k2P2 ,k1P12P3!

3S~k1P12P3!Ḡp~k1P12P3 ,k1P1!#. ~12!

Note that forp-p scattering,E is symmetric under inter-
change ofu and t ~indicated hereafter by a semicolon!,
E(s;u,t)5E(s;t,u), whereasD is symmetric ins and t,
D(s,t;u)5D(t,s;u). Furthermore, one can relateE to D:
E(s;t,u)5D(u,t;s). However, we find it more convenien
to retain and calculate bothD andE independently since this
affords a sensitive numerical check on our computer cod

The three isospin amplitudes,TI , for p-p scattering are
specific combinations of these amplitudes~see the Appendix
for further details!,

T0~s,t,u!53@D~s,t;u!1D~s,u;t !#2
1

2
@E~s;t,u!

1E~s;u,t !#, ~13!

T1~s,t,u!52@D~s,t;u!2D~s,u;t !#, ~14!

T2~s,t,u!5E~s;u,t !1E~s;t,u!. ~15!

Crossing symmetry and Bose statistics requires the e
isospin amplitudes to be symmetric in exchange ofu and t
and only contain even partial waves. Similarly the isos
one amplitude must be antisymmetric in interchange ofu and
t and have only odd partial waves. Hence at thresh
T1(24mp

2 ,0,0)50 but the isospin zero and two amplitud
T0 andT2 are nonzero.

D. Beyond the impulse approximation

As documented in Ref.@15#, the impulse approximation
combined with the rainbow-ladder truncation is insufficie
to describep-p scattering and it is necessary to include t
ladder kernel as indicated in Fig. 2. Thus, for amplitudeD
we need to calculate and add an infinite series ofs-channel
ladder diagrams as well as an infinite series oft-channel
ladder diagrams to the impulse term. Similarly for amplitu
E, we must add and compute an infinite series oft-channel
and u-channel ladder diagrams. These infinite set of lad
diagrams can be calculated by solving an inhomogene
BSE in ladder truncation

FIG. 2. Diagrams needed to correctly describep-p scattering in
the DSBS approach in rainbow-ladder truncation.
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F~p,Pi ,Pj !5F0~p,Pi ,Pj !1E
q

L

G~k2!Dmn
free~k!

3
la

2
gmS~q1!F~q,Pi ,Pj !S~q2!

la

2
gn

~16!

where nowq65q6(Pi1Pj ) for i , j 51,2 (s-channel lad-
ders! or q65q6(Pi2Pj ) for i 51,2 and j 53,4 (t- and
u-channel ladders!. Here,F0(p,Pi ,Pj ) is an inhomogeneous
term of the typeGpSGp ; e.g. for thes-channel ladder con-
tribution to configurationD we havei 51, j 52 and

F0~p,P1 ,P2!5Gp~p1Q1 ,p2Q2!S~p2Q2!

3Gp~p2Q2 ,p2Q1! ~17!

whereQ65(P16P2)/2. This is similar to solving the inho-
mogeneous BSE for the quark-photon vertex, as done
Refs. @18,19#. The Dirac structure is indeed of equal com
plexity, in both cases there are eight independent ter
Thus,F can be written as

F~p,Pi ,Pj !5(
n

Onf n~p2,p•Pi ,p•Pj ! ~18!

with

O1~p,Pi ,Pj !51 ~19!

O2~p,Pi ,Pj !5g•p ~20!

O3~p,Pi ,Pj !5g•Pi ~21!

O4~p,Pi ,Pj !5g•Pj ~22!

O5~p,Pi ,Pj !5g•pg•Pi ~23!

O6~p,Pi ,Pj !5g•pg•Pj ~24!

O7~p,Pi ,Pj !5g•Pig•Pj ~25!

O8~p,Pi ,Pj !5g•pg•Pig•Pj . ~26!

Note that thef n are functions ofthreeindependent variables
p2, p•Pi and p•Pj , in contrast to the quark-photon verte
which has only two independent variables.

III. NUMERICAL RESULTS

We consider only forward and backward scattering wh
simplifies the numerical analysis compared to scattering
arbitrary angles. However, sinceF is a function ofthree in-
dependent variables for any givenP1 and P2, there is a
significant increase in the numerical effort to solve Eq.~16!
when compared to the inhomogeneous BSE for the qu
photon vertex. We discretize the three independent varia
on a three-dimensional grid and solve by iteration, start
with F0. If there are no singularities, the number of iteratio
for convergence is about 20 to 30. The actual calculations
0-3
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S. R. COTANCH AND P. MARIS PHYSICAL REVIEW D66, 116010 ~2002!
done on a parallel processor supercomputer~IBM SP! and
scale reasonably well, typically 2 to 3 CPU minutes on
processors per externalPi ,Pj . Since there are two sets o
ladder diagrams for both configurationsD and E, about 5
CPU hours per external momentum variable is required.
iterative procedure is significantly less efficient near a sin
larity, yet the entire parallel calculation still scales reasona
well.

A. Model truncation

We adopt the model framework and parameters that h
been recently developed@17# which provide a good descrip
tion of the masses and decay constants of the light pse
scalar and vector mesons. The Ansatz for the effectiveq̄q
interaction is

G~k2!

k2
5

4p2Dk2

v6
e2k2/v2

1
4p2gmF~k2!

1

2
ln@t1~11k2/LQCD

2 !2#

,

~27!

wheregm512/(3322Nf) andF(s)5@12exp(2s/4mt
2)#/s.

The ultraviolet behavior is chosen to be the QCD runn
coupling a(k2); the ladder-rainbow truncation then gene

TABLE I. Calculated and measured meson masses and d
constant, adapted from Ref.@17#.

Experiment@25#
~estimates! Calculated

mm51 GeV
u5d 5–10 MeV 5.5 MeV

2^q̄q&m
0 (0.236 GeV)3 (0.241a)3

mp 0.1385 GeV 0.138a GeV
f p 0.924 GeV 0.925a GeV
mr 0.770 GeV 0.742 GeV
f r 0.153 GeV 0.146 GeV

aFitted.
11601
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ates the correct perturbative QCD structure for the DS
system of equations. The first term implements the infra
strength in the region 0,k2,1 GeV2 where the chiral con-
densate is fit@23#. We usemt50.5 GeV, t5e221, Nf54,
LQCD50.234 GeV, and a renormalization scalem
519 GeV which is in the perturbative domain@16,17#. The
remaining parameters,v50.4 GeV,D50.93 GeV2 and the
u/d degenerate quark mass, are determined by fitting
chiral condensate,mp and f p . The predictedr meson mass
and electroweak decay constant are also in good agree
with observation@17#, as can be seen from Table I. Furthe
without parameter readjustment, the model agrees rem
ably well with the most recent Jlab data@24# for the pion
charge form factorFp(Q2) and the strong decayr→pp
@20#.

B. Results for isospin amplitudes near threshold

We first elucidate the importance of the ladder contrib
tions, reaffirming that the impulse approximation is insuf
cient to describep-p scattering. In Fig. 3 the impulse ap
proximation~dotted curve! is compared to the contribution
from the entires-channel andt-channel ladder diagrams fo
amplitudeD(s,t;u) at extreme forward and backward sca
tering angles. The total amplitude~solid curve! is noticeably
different than the impulse amplitude, clearly indicating t
ladder exchange diagrams are crucial. Also note t
D(s,t;0) is indeed symmetric ins and t as anticipated;
within our numerical accuracy we also found thatE(s;0,u)
5E(s;u,0)5D(s,0;u).

Not only is the deficiency of the impulse approximatio
clear, it is also essential that thefull ladder of gluon ex-
changes be included, especially for kinematics nearp-p
resonances. This is displayed in more detail in Fig. 4 wh
the effects from one, two, three, nine, and ‘‘infinitely many
s-channel gluon exchanges are compared. To reach effec
convergence requires up to about 20 gluon exchanges a
from the resonance region. However, near intermed
bound state poles (r and s) convergence at the 1% leve
requires several hundred gluon exchanges.

ay
ibu-

FIG. 3. Numerical results forD(s,t50;u) ~top! and for D(s,t;u50) ~bottom!, using impulse approximation only~dotted!, ladder

contributions~dashed and dot-dashed!, and total~solid!, which is the sum of the impulse contribution and the two sets of ladder contr
tions.
0-4
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Combining the amplitudesD and E with Eqs. ~13!–~15!
provides the different isospin scattering amplitudes wh
are displayed in Fig. 5. For comparison we also plot
amplitudes from leading-order chiral perturbation theory@5#
which are given in partial wave form

TI532p(
L

~2L11!TI
L~s!PL~cosu!. ~28!

For low energies theS andP waves dominate and are give
by

T0
0~s!5

22s2mp
2

32p f p
2

~29!

T2
0~s!5

s12mp
2

32p f p
2

~30!

FIG. 4. Numerical results for contributions toD(s,t50;u)
coming from thes-channel one gluon exchange diagram~dotted!,
one and two gluon exchange diagrams~dashed!, one, two, and three
gluon exchange diagrams~dot-dashed!, up to nine gluon exchange
diagrams~dot-dot-dashed!, and a complete set of ladder diagram
~solid!.

FIG. 5. The lines correspond to leading-order chiral perturba
theory for isospin zero~dashed!, one ~dot-dash!, and two ~solid!
amplitudes near threshold. The symbols represent the DSBS am
tudes.
11601
h
e

T1
1~s!5

2s24mp
2

96p f p
2

. ~31!

Again recall that in the Euclidean metrics524mp
2 5

20.076 GeV2 at threshold.
Note the excellent agreement between tree-level ch

perturbation theory and our calculations at low energies. T
deviation at higher energies represents contributions fr
p-p resonances~scalar and vector meson bound state!.
These important physical effects are automatically includ
in the present approach and are discussed further in the
section.

Finally, we have calculated the dimensionlessS and P
wave scattering lengthsaI

L in all three isospin channels

aI
05TI

0~s524mp
2 ! ~32!

a1
15

4mp
2

2s24mp
2

T1
1~s→24mp

2 !. ~33!

We finda0
050.17, a1

150.036, anda0
2520.045. This agrees

well with Weinberg’s theorem which is embodied in the tre
level chiral perturbation results

a0
05

7mp
2

32p f p
2

50.156 ~34!

a1
15

mp
2

24p f p
2

50.030 ~35!

a2
05

22mp
2

32p f p
2

520.044. ~36!

A recent analysis@26# of the experimental data@27# utilizes
both two-loop chiral perturbation theory and a phenome
logical description involving the Roy equations@28# and ob-
tains a0

050.22060.005, a1
150.037960.0005, and a2

0

50.044460.0010. Chiral perturbation theory is able to pr
vide more accurate scattering lengths because they inc
higher order contributions from pion loops which is esp
cially important for the isospin zero channel: one-loop chi
perturbation theory@4# gives a0

050.200, compared toa0
0

50.156 at leading order. In our present quark-based calc
tion pion loops are not included. However, they are clea
necessary for an accurate description of the data, in partic
in the isospin-zero channel.

C. Comparison with meson-exchange models

It is enlightening to compare the DSBS approach to
QHD formalism which has an established phenomenolog
legacy. For example, one could formulate a meson-excha
model with both scalar and vector mesons starting from
effective Lagrangian

L5Lp1Ls1Lr1Lint ~37!

n

li-
0-5
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Lint5g4p~fW p•fW p!21gsppfsfW p•fW p1grppfW r
m
•fW p

3¹mfW p . ~38!

It entails meson masses and coupling constants which
quire phenomenological determination; it also requires a
tain amount of fine-tuning in order to satisfy chiral co
straints. The leading Feynman diagrams forp-p scattering
in such an approach are displayed in Fig. 6.

In a meson-exchange model using both scalar and ve
mesons, the amplitudeD(s,t;u) corresponds to a contac
term plus meson exchange contributions in thes and t chan-
nels; the amplitudeE(s;t,u) corresponds to the same conta
term plus meson exchange contributions in thet andu chan-
nels. In order to calculate these meson exchange contr
tions, let us first specify the meson coupling constantsgspp

andgrpp , which in impulse approximation are given by

gspp54NcE
q

L

Tr@S~k1P1!Gp~k1P1 ,k!S~k!

3Gp~k,k2P2!S~k2P2!Gs~k2P2 ,k1P1!# ~39!

grpp~P12P2!m54NcE
q

L

Tr@S~k1P1!Gp~k1P1 ,k!S~k!

3Gp~k,k2P2!S~k2P2!

3Gr
m~k2P2 ,k1P1!# ~40!

for on-shell scalar and vector mesons, (P11P2)252ms
2 ,

2mr
2 , respectively.

Within the present model, we havems
250.449 GeV2,

gspp52.06 GeV, mr
250.549 GeV2, and grpp55.14 @20#.

The corresponding width for the decayr0→p1p2 is

Grpp5
grpp

2

48p

~mr
224mp

2 !3/2

mr
2

~41!

5104 MeV ~42!

FIG. 6. Leading meson-exchange diagrams forp-p scattering:
~a! contact term,~b! s-channel,~c! t-channel, and~d! u-channels
andr exchange.
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which is in reasonable agreement with the experimentar
width 151 MeV; the difference could very well be explaine
by pion loops which are not included in the present a
proach. The decay width for thes→pp is

Gspp5
3

2

gspp
2

16p

Ams
224mp

2

ms
2

~43!

5172 MeV ~44!

which is also quite reasonable for a broads resonance~the
factor 3

2 comes from summing over the charged and neu
pions!. However, it is known that the scalar BSE receiv
significant corrections beyond ladder truncation@22#, which
could change this calculated decay width. In addition, p
loops should be incorporated self-consistently in the B
approach for a more realistic calculation of thes and r
widths.

Next, consider for example the contribution ofs-channel
ladder diagrams toD(s,t;u): scalar mesons contribute

gspp
2 /4

s1ms
2

~45!

whereas vector mesons contribute

grpp
2 ~u2t !/4

s1mr
2

~46!

near the bound state poles, and similarly for thet- and
u-channel ladder diagrams. The momentum-dependent fa
in the numerator of the vector meson exchange contributi
comes from (P12P2)•(P32P4)5u2t.

A detailed, consistent evaluation of these diagrams ge
ates the effective meson-exchange scattering amplitude
the tree level:

T0~s,t,u!55C4p1
1

2
gspp

2 S 3

s1ms
2

1
1

t1ms
2

1
1

u1ms
2 D

1grpp
2 S u2s

t1mr
2

1
t2s

u1mr
2D ~47!

T1~s,t,u!5
1

2
grpp

2 S 2~u2t !

s1mr
2

1
u2s

t1mr
2

2
t2s

u1mr
2D

1
1

2
gspp

2 S 1

t1ms
2

2
1

u1ms
2 D ~48!

T2~s,t,u!52C4p1
1

2
gspp

2 S 1

t1ms
2

1
1

u1ms
2 D

2
1

2
grpp

2 S u2s

t1mr
2

1
t2s

u1mr
2D . ~49!
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We can now evaluate the accuracy of the meson excha
model by comparison with the full DSBS amplitude. A co
sistent assessment requires that the meson parameter~i.e.
the coupling constants and meson masses! must be provided
by the DSBS model. The only free parameter in the me
exchange model isC4p , which can be fitted such that th
meson exchange model agrees with the microscopic calc
tion away from the resonances. A value ofC4p'24.8 pro-
vides reasonable agreement for both the isospin zero and
results over a large kinematic region. To reproduce We
berg’s results for the scattering lengthsa0

0 anda2
0 requires a

fine tuning between the meson masses and coupling
stants in the meson exchange model. The meson exch
model with calculatedmr , ms , grpp , and gspp from the
DSBS model cannot reproduce the Weinberg limit:a0

0

50.156 requiresC4p525.2, whereasa0
0520.044 requires

C4p524.0. In contrast, the DSBS approach does reprod
the Weinberg limits correctly, while at the same time pro
erly generating poles from intermediateqq̄ bound states such
asr ands mesons.

Figure 7 summarizes our comparative study for all th
isospin amplitudes at forward scattering. The gray band
dicates the sensitivity onC4p for 24.0,C4p,25.2. Notice
that thes resonance naturally appears in the DSBSS wave,
isospin zero amplitude and agrees with the meson excha
amplitude quite accurately near thes mass region. Similarly
the DSBSP wave, isospin one amplitude is reasonably w
reproduced by the meson exchange result, although we
not numerically quite reach ther pole. In between the
threshold and resonant regions the two approaches
some quantitative differences; however, we conclude that
tree-level meson exchange approach is reasonable for si
predictions.

IV. CONCLUSION

Summarizing, we have performed a consistent relativi
quark formulation of p-p scattering using the Dyson

FIG. 7. Isospin zero, one, and twop-p amplitudes. The sym-
bols are the DSBS calculations. The lines are meson excha
model results, using calculated meson masses and couplings
the DSBS approach.
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Schwinger, Bethe-Salpeter framework. The DSBS appro
provides contact with QCD and naturally includes the imp
tant features of gauge and Poincare´ invariance as well as
both crossing and chiral symmetry. We have obtained
merical results which are in good agreement with the
served isospin scattering lengths and reproduce Weinbe
theorem at threshold. Perhaps even more significant is
emergence of thes and r resonances at the proper ener
which reaffirms the QCD structure elements in the mod
The latter permits a rigorous assessment of QHD meson
change models which simply insert resonances phenom
logically. As we documented in detail, a simple QHD trea
ment appears reasonable, especially near resonances. F
work will confront data at higher energies and also addr
other flavored systems such asp-K scattering.
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APPENDIX: ISOSPIN DECOMPOSITION

In terms of theu,d flavor components, the single pio
states are

up1&5u1,1&52uud̄& ~A1!

up0&5u1,0&5u~uū2dd̄!/A2& ~A2!

up2&5u1,21&5udū&. ~A3!

The two-pion states then have isospin decomposition

up6p6&5u2,62& ~A4!

up6p0&5
1

A2
~ u2,61&6u2,61&) ~A5!

up6p7&5
1

A6
u2,0&6

1

A2
u1,0&1

1

A3
u0,0& ~A6!

up0p0&5
2

A3
u2,0&2

1

A3
u0,0&. ~A7!

Using the latter equations, the physicalp-p scattering am-
plitudes can be related to the three isospin amplitudes b

^p6p6uSup6p6&5T2 ~A8!

^p6p7uSup6p7&5
1

6
T21

1

2
T11

1

3
T0 ~A9!

^p6p0uSup6p0&5
1

2
T21

1

2
T1 ~A10!
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^p6p7uSup0p0&5
1

3
T22

1

3
T0 ~A11!

^p0p0uSup0p0&5
2

3
T21

1

3
T0 . ~A12!

Not all six diagrams in Fig. 1 contribute to eachp-p
scattering amplitude. In terms of the physical pion scatter
amplitudes, we have

^p6p6uSup6p6&5E~s,t,u!1E~s,u,t ! ~A13!

^p6p7uSup6p7&52D~s,t,u! ~A14!

^p6p0uSup6p0&5D~s,t,u!2D~s,u,t !

1
1

2
@E~s,t,u!1E~s,u,t !# ~A15!

^p6p7uSup0p0&52D~s,t,u!2D~s,u,t !

1
1

2
@E~s,t,u!1E~s,u,t !# ~A16!

^p0p0uSup0p0&5D~s,t,u!1D~s,u,t !

1
1

2
@E~s,t,u!1E~s,u,t !#. ~A17!

Thus we find for the isospin amplitudes

T0~s,t,u!53@D~s,t,u!1D~s,u,t !#

2
1

2
@E~s,t,u!1E~s,u,t !# ~A18!

T1~s,t,u!52@D~s,t,u!2D~s,u,t !# ~A19!

T2~s,t,u!5E~s,t,u!1E~s,u,t !. ~A20!

The quark exchange diagram,E(s;t,u), is symmetric in the
last two arguments,t and u, whereas the quark annihilatio
diagram,D(s,t;u), is symmetric in the first two arguments,s
and t. Furthermore, the quark exchange and quark annih
tion diagram are related to each other via

E~s;t,u!5D~u,t;s!. ~A21!

Thus, there is actually only one independent amplitude,
D(s,t;u), where the symbol ‘‘;’’ denotes the amplitude
symmetric in the first two arguments. In terms of this sing
amplitude, we have
11601
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T0~s,t,u!53D~s,t;u!13D~s,u;t !2D~u,t;s!
~A22!

T1~s,t,u!52D~s,t;u!22D~s,u;t ! ~A23!

T2~s,t,u!52D~u,t;s!. ~A24!

Finally, we recall the more conventional Weinberg amp
tudesA, B, andC defined by the standard scattering amp
tude relation

^pgpduSupapb&5A~s,t,u!dabdgd1B~s,t,u!dagdbd

1C~s,t,u!daddbg . ~A25!

Here the indicesa,b,g andd refer to the Cartesian isospi
projections (x,y,z) for the pion, which are related to th
physical charge states by

up6&57~ upx&6 i upy&)/A2 ~A26!

up0&5upz&. ~A27!

An elementary isospin calculation immediately yields

T0~s,t,u!53A~s,t,u!1B~s,t,u!1C~s,t,u! ~A28!

T1~s,t,u!5B~s,t,u!2C~s,t,u! ~A29!

T2~s,t,u!5B~s,t,u!1C~s,t,u!. ~A30!

Then comparing with Eqs.~A22!–~A24! we can relate the
three Weinberg amplitudes to the DSBS amplitudeD

A~s,t,u!5D~s,t;u!1D~s,u;t !2D~ t,u;s! ~A31!

B~s,t,u!5D~s,t;u!2D~s,u;t !1D~ t,u;s! ~A32!

C~s,t,u!52D~s,t;u!1D~s,u;t !1D~ t,u;s!. ~A33!

Since the Weinberg amplitudes satisfy

B~s,t,u!5A~ t,s,u! ~A34!

C~s,t,u!5A~u,t,s! ~A35!

we can also use Eq.~A31! to again deriveB andC

B~s,t,u!5D~s,t;u!1D~ t,u;s!2D~s,u;t ! ~A36!

C~s,t,u!5D~u,t;s!1D~s,u;t !2D~s,t;u! ~A37!

as an independent check.
ys.
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