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We study forward and backward-7 scattering within a QCD model based on the Dyson-Schwinger,
Bethe-Salpeter equations truncated to the rainbow-ladder level. Our microscopic relativistic quark formulation
preserves chiral symmetry and reproduces the observed scattering lengths for total isospin zero, one and two.
At higher energies both scalar and vector meson resonances naturally occur in the scattering amplitudes. We
also report a comparative study with phenomenological meson-exchange models and find such approaches are
reasonable especially neafm resonances.
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[. INTRODUCTION as a quark-antiquark bound state. This section also details the
quark annihilation and exchange diagrams and relates the
As the lightest hadron, the Goldstone boson of spontaneamplitudes for these processes to the various isospin scatter-
ous chiral symmetry breaking and the dominant particle goving amplitudes for totadr-7 isospin zero, one and two. Sec-
erning the nucleon-nucleon interaction, the pion occupies &on Il presents large scale, supercomputer calculations for
special position in hadronic physics. Accordingty;,7 scat-  forward and backward scattering and compares results to an
tering has attracted considerable interest even though tieffective meson exchange model where the coupling con-
cross section is not directly measurable. In particular, a vastants and pole masses are a prerequisite. Finally, conclu-
riety of theories have been utilized to make scattering presions are summarized in Sec. IV and supporting mathemati-
dictions: at low energies, current algebra or PCAfrtial ~ cal details are provided in the Appendix.
conservation of axial vector currgrtl], chiral perturbation

theory [2—5] and bosonization models with pion fieI@@]; II. MESON SCATTERING IN THE DYSON-SCHWINGER
quantum hadrodynami@HD) meson exchange models and APPROACH

unitarized relativistic coupled channdlg] for intermediate _ _

energies; Regge theory at moderately higher energies; pertur- A. Dyson-Schwinger equations

bative QCD at very high energies. These in turn have been The DSE for the renormalized quark propagator having
confronted by experimental phase shift analy$8s-1l]  four momentap in Euclidean space is

yielding reasonable agreement. However, there have been

very few nonperturbative, relativistic covariant quark predic- S(p) =iz, p+ Zymg(pe)
tions which is the thrust of this paper. N X

This work applies the quark Dyson-SchwindB®XSE) and +7 J 2D (K) — re 1
meson Bethe-SalpetefBSE) equations[12—14, in the tlq 9D lk) 2 vuS@ri(a.p). @)

rainbow-ladder approximation, ter-w scattering and ex-

tends our previous threshold analygl$| which reproduced whereD ,,(k) is the dressed-gluon propagatbf;(q,p) the
Weinberg's low energy theorefil] and the Adler zero. The dressed-quark-gluon vertex with color index=1...8, and
approach is QCD based, renormalizable, relativistic, rigork=p—gq. The notationqu representsfé‘[d“k/(zw)“]. The
ously covariant, embodies crossing and chiral symmetry, anghost general propagator solution of Ed) has the form

contains only two predetermined parameters that provide 3(p) 1=ipA(p?) +B(p?) and is renormalized at spacelike

realistic, comprehensive description of the light meson spechz according toA(u2) =1 andB(,uz)qu(,u), with mg( )

tra and decay$16-20. Our key finding is that the model hoing the current quark mass. We use the Euclidean metric

correctly predicts all three isospin amplitudes measured — T hea.h
low energies and also reproduces the obsemveaidp reso- "’}ih;re a.é.yw%} 20wy Vu=yu and a-b=ab
nances at higher energies. Our framework can thus assess I\}Izeéolné.are described by the Bethe-Salpeter amplitude
phenomenological meson exchange models which requir SA). Ty, , which isasolutio)rq of the homo errieous BSFIJE for
resonances as input and we find such models are quite re ) H ) 9
sonable. g°g”° bound states given by

This paper is organized into four sections. Section Il for- R
mulates the scattering problem and addresses the main appab, _ . a ab, b
proximation: the rainbow truncation of the DSE for the quark ~ ™ (P+.p-)= fq K(p.a:P)S*(a.)Ti(a..q-)S(a-),

propagator and the ladder truncation of the BSE for the pion (2
wherea and b are flavor indicesp,=p+ P andp_=p

*Email address: cotanch@ncsu.edu —(1— n)P are the outgoing and incoming quark momenta
"Email address: pmaris@unity.ncsu.edu respectively, and)-. is defined similarly. The kerné&{ is the
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renormalized, amputateqﬂscattering kernel that is irreduc- 1 3
ible with respect to a pair ofiq lines. This equation has
solutions at discrete values 8= —m?, wherem, is the
meson mass. By then imposing the canonical normalization
q 2 m o \*

pseudo-scalar, vector, etc., are characterized by different 1\ 1 3
Dirac structures. The most general decomposition for pseu-
doscalar bound states[i%6]

Ted(q.,q-)=ys[iE(92,q-P; )+ PF(q%.q- P;7) 2/ o\

2 .
+4G(9%9-P;7) FIG. 1. The six diagrams contributing to the impulse amplitude
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condition forqq bound statesl’,, is uniquely determined.
Mesons with different spin, parity an@ parity, such as
+ P q.H(g%q-P: , 3 for -7 scattering; the incoming pions are labeled 1 and 2, and the
7P uAH(a%.G- P @ outgoing pions are 3 and 4.

where the invariant amplitudds, F, G andH are Lorentz C. - scattering
scalar functions of> andq- P. For eigenstates of parity,
these amplitudes are appropriately odd or even inGlozld
variableq- P. In the case of the 0" pion, for example, the
amplitudeG is odd inq- P, the others are even. Note also
that these amplitudes explicitly depend on the momentu

There are different types of diagrams that contribute to
7r-7r Scattering, or more general, meson-meson scattering,
such as quark annihilation or quark exchange diagrams. It is

pgonvenient to first discuss these different types of contribu-

partitioning parameter;. However, provided Poincari- tions in the impulse approximation, even though the impulse

variance is preserved, the resulting physical observables afPproximation is I_<n0\_/vn to be msufﬂuevﬁ]_LS]. The more
» independenf16,17,19. correct treatment is given in the next section.

Figure 1 depicts the entire class of diagrams that consti-
tute the impulse approximation for the scattering amplitude.

B. Rainbow-ladder truncation Each diagram can be associated with a specific amplitude
We use the rainbow-ladder truncation for the system oith""t is a function 2°f the Mandelstan; variables= (P,
Dyson-Schwinger and Bethe-Salpeter equatitidSBS. In P2)?, t=(P1—P3)? andu=(P,;—P,)? whereP, P,
particular, the rainbow truncation of the quark DSE, Eq, (Ps’P4) are the 'ncom'nqoqtgqmg pion_momenta. The
is external pions are on-shell, yieldiitf = —m? in the Euclid-

ean metric. At threshold= —4me, t=u=0, and the physi-
cal region has< —4me. Momentum conservation requires
s+t+u=—4m?, so that the amplitudes, which we chose to
express as a functions af t, and u, only depend on two
independent variables. Alternatively the amplitudes could be
represented as function of the pion center-of-momentum

a

2 2\ free A
219°D,,(KI(a,p) = G(k) Dy, (K) 7,7 4

WhereDfre (k=p—q) is the free gluon propagator in Landau

2
gauge, andj(k ) is an effectweqq interaction that reduces (c.m) energy w=1+—s/2 and the c.m. scattering angt

to the perturbative QCD running coupling in the ultraviolet
with cos@@)=(u—t)/(u+t). Then forward(backward scatter-
region. The corresponding ladder truncation of the BSE, Eqmg 6=0 (6=180), corresponds =0 (u=0).
(2), is . .
Because there are only two distinct microscopic scattering
mechanisms, quark annihilation and quark exchange, there
AT N are actually only two distinct amplitudeB, and E, respec-
2 free - d )
K(p.a;P) = =G(k)D ., (K% vu 5 7o, () tively. Thus, all six diagrams in Fig. 1 can be represented by
these two

wherek=p—q. The two truncations combine to consistently diagram I:  D(st,u) (6)
produce vector and axial-vector vertices satisfying the re-

spective Ward-Takahashi identities. In the axial case, this en- diagram II: E(s,t,u) @
sures that in the chiral limit the ground state pseudoscalar "
mesons are the massless Goldstone bosons associated with

chiral symmetry breakind16,21]. For vector mesons it diagram IIl: - D(s,u,t) (8)
yields a conserved electromagnetic current if the impulse ap- ,

proximation is used to calculate the electromagnetic form diagram IV: D(s,t,u) ©
factor[19]. Furthermore, this truncation was found to be par- )

ticularly suitable for the flavor octet pseudoscalar and vector diagram V: E(s,u,t) (10
mesons since the next-order corrections in a quark-gluon

skeleton graph expansion significantly can@d]. diagram VI:  D(s,u,t). (11
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A
F(p,P;,P})=Fo(p,P; ,Pj)+Jq G(k?)De(k)

FIG. 2. Diagrams needed to correctly describer scattering in ><7 Y. S(a4)F(q,P; ,PJ-)S(q,)7 Vv,
the DSBS approach in rainbow-ladder truncation.
(16)
These amplitudes can be calculated from integrals involving .
the quark propagators and pion BSAs, e.g. where nowq.=q=*(P;+P;) for i,j=1,2 (s-channel lad-
derg or q.=q=*(P;—P;) for i=1,2 andj=3,4 (t- and
A u-channel laddejs Here,Fo(p,P; ,P;) is an inhomogeneous
D(s,t,u)=2ch T S(k+Py)T .(k+P4,k)S(k) term of the typel’ .SI" ;; e.g. for thes-channel ladder con-
q tribution to configuratiorD we havei=1, j=2 and

XTI, (K,k—P)S(k—P)I .(k—P,,k+P;—Pj) Fo(p,P1,Po)=T_(p+Q.,p—Q_)S(p—Q_)
X S(k+Py—Pg)l,(k+Py—P3,k+Py]. (12 XTI (p—Q_.,p—Q.) (17)

whereQ. = (P,*=P,)/2. This is similar to solving the inho-
mogeneous BSE for the quark-photon vertex, as done in
Refs.[18,19. The Dirac structure is indeed of equal com-
plexity, in both cases there are eight independent terms.
Thus, F can be written as

Note that for -7 scattering,E is symmetric under inter-
change ofu and t (indicated hereafter by a semico)on
E(s;u,t)=E(s;t,u), whereasD is symmetric ins and t,
D(s,t;u)=D(t,s;u). Furthermore, one can relate to D:
E(s;t,u)=D(u,t;s). However, we find it more convenient
to retain and calculate bofh andE independently since this
affords a sensitive numerical check on our computer codes. F(p,P; ,Pj)=z O,f.(p?p-Pi,p- P;) (18
The three isospin amplitudes, , for 7~ scattering are .
specific combinations of these amplitudese the Appendix

for further details, with
. O4(p,P;i,Pj)=1 (19
To(s,t,u)=3[D(s,;u) +D(s,u;)] - F[E(sit,u) 0,(p,P; ,P))=7-p (20)
+E(s;u,t)], 13 Os(p,Pi,Pj)=1v-P; (21
Ti(s,t,u)=2[D(s,t;u)—D(s,u;t)], (14 O4(p,P;,Pj)=1vy-P; (22)
Os(p,P;,P)=7v-py-P; 23
To(s,t,u)=E(s;u,t) + E(s;t,u). (15 s(P.PiPY=7-py Py @3
) - ) Os(p,Pi,Pj))=v-py-P; (24)
Crossing symmetry and Bose statistics requires the even
isospin amplitudes to be symmetric in exchangeuaindt O7(p,P; ,P))=y-Piy-P; (25)
and only contain even partial waves. Similarly the isospin
one amplitude must be antisymmetric in interchange afd Og(p,P; ,Pj))=y-py-Piy-P;. (26)

t and have only odd partial waves. Hence at threshold

T.(—4m2,0,0)=0 but the isospin zero and two amplitudes Note that thef, are functions othreeindependent variables:

Ty andT, are nonzero. p?, p-P; andp- P;, in contrast to the quark-photon vertex,
which has only two independent variables.

D. Beyond the impulse approximation

. . . . I1l. NUMERICAL RESULTS
As documented in Ref15], the impulse approximation

combined with the rainbow-ladder truncation is insufficient We consider only forward and backward scattering which
to describerr-7 scattering and it is necessary to include thesimplifies the numerical analysis compared to scattering for
ladder kernel as indicated in Fig. 2. Thus, for ampliti@le arbitrary angles. However, sinéeis a function ofthreein-

we need to calculate and add an infinite series-ofiannel  dependent variables for any givé®, and P,, there is a
ladder diagrams as well as an infinite seriest-@hannel significant increase in the numerical effort to solve ELf)
ladder diagrams to the impulse term. Similarly for amplitudewhen compared to the inhomogeneous BSE for the quark-
E, we must add and compute an infinite serieg-ohannel photon vertex. We discretize the three independent variables
and u-channel ladder diagrams. These infinite set of laddeon a three-dimensional grid and solve by iteration, starting
diagrams can be calculated by solving an inhomogeneousith F. If there are no singularities, the number of iterations
BSE in ladder truncation for convergence is about 20 to 30. The actual calculations are
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TABLE I. Calculated and measured meson masses and decagtes the correct perturbative QCD structure for the DSBS

constant, adapted from RéfL7]. system of equations. The first term implements the infrared
strength in the region @k?<1 Ge\? where the chiral con-
Experiment 25] densate is fif23]. We usem,=0.5 GeV, r=€’—1, N;=4,
(estimates Calculated Aocp=0.234 GeV, and a renormalization scalg
M= ey 5-10 MeV 5.5 MeV =19 va which is in the perturbative domeﬁm(\iilﬂ. The
_<aq>2 (0.236 GeV§ (0.241)° remaining parametergy=0.4 GeV,D=0.93 GeV and the

u/d degenerate quark mass, are determined by fitting the

;n” %19328455%/ g'égg gex chiral condensatan,. andf .. The predicte¢h meson mass

4 '77 ev ' 242 € v and electroweak decay constant are also in good agreement
m, 0.770 Ge 0.742 Ge with observatior{17], as can be seen from Table I. Further,

f 0.153 GeV 0.146 GeV

©

without parameter readjustment, the model agrees remark-
aCitted. ably well with the most recent Jlab dafa4] for the pion
charge form factofF (Q?) and the strong decay—

done on a parallel processor supercomputBM SP) and [20].

scale reasonably well, typically 2 to 3 CPU minutes on 32 _ _ _

processors per extern,P;. Since there are two sets of B. Results for isospin amplitudes near threshold

ladder diagrams for both configuratiois and E, about 5 We first elucidate the importance of the ladder contribu-

CPU hours per external momentum variable is required. Théions, reaffirming that the impulse approximation is insuffi-

iterative procedure is significantly less efficient near a singucient to describer-7 scattering. In Fig. 3 the impulse ap-

larity, yet the entire parallel calculation still scales reasonablgyroximation(dotted curvgis compared to the contributions

well. from the entires-channel and-channel ladder diagrams for
amplitudeD(s,t;u) at extreme forward and backward scat-

A. Model truncation tering angles. The total amplitudsolid curve is noticeably

We adopt the model framework and parameters that havgifferent than the impulse amplitude, cI_earIy indicating the
been recently developdd?] which provide a good descrip- adder exchange diagrams are crucial. Also note that

tion of the masses and decay constants of the light pseud«?—.(s’.t;o) IS mde_ed symmetric irs and t as anﬂmpated;
— within our numerical accuracy we also found tlits; 0,u)
scalar and vector mesons. The Ansatz for the effeatige =E(s:u,0)=D(s,0:u).

interaction is

Not only is the deficiency of the impulse approximation
clear, it is also essential that tHall ladder of gluon ex-
changes be included, especially for kinematics neadr
resonances. This is displayed in more detail in Fig. 4 where
the effects from one, two, three, nine, and “infinitely many”
(270 s-channel gluon exchanges are compared. To reach effective

convergence requires up to about 20 gluon exchanges away
where y,,=12/(33-2N;) and F(s)=[1—exp(-s4m?)]/s.  from the resonance region. However, near intermediate
The ultraviolet behavior is chosen to be the QCD runningbound state polesp(and o) convergence at the 1% level
coupling a(k?); the ladder-rainbow truncation then gener- requires several hundred gluon exchanges.

G(k*) 4m°DK?

k2 ®

n—kz/w2+ 47727m-7:(k2)

< 1

SIn[7+(1+ k2 Adcp)?]

u [GeVH)
0.:?24 — 0.l|24 — '-0.(')76' . ’-0.|276' ] ] 0.l|24 — .'0'?76.
------ impulse contr. -
—-- s-ladder contr. ] s
-=-=+ t-ladder contr, - 20
— total amplitude + B - T
T |
1 2
................... 29 ]
- impulse contr. |
\ 1 [ === s-ladder contr. |
o . t-ladder contr,
] 220k —— total amplitude
........................................ 0|2 1 | -0|4 —0'2 L 6 N 0|2
- “s [GeV] ’

FIG. 3. Numerical results fob(s,t=0;u) (top) and for D(s,t;u=0) (bottom), using impulse approximation onlidotted, ladder
contributions(dashed and dot-dashe@nd total(solid), which is the sum of the impulse contribution and the two sets of ladder contribu-
tions.
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601 I e I a0 o —5—4m?
L one mnd two gluom enchange | Ti(s)= —— . (31)
----- - one, two, and three gluon exchange 967 f p
----= up to nine gluon exchange
_ 4ot ~— complete set of Indder diagrams Again recall that in the Euclidean metris=—4m?2=
= —0.076 GeV at threshold.
a4 Note the excellent agreement between tree-level chiral
A 20'_ e perturbation theory and our calculations at low energies. The
deviation at higher energies represents contributions from
-1 resonanceqscalar and vector meson bound states
: These important physical effects are automatically included
0 =7 02 0 ) - in the present approach and are discussed further in the next
s [GeV)] section.

Finally, we have calculated the dimensionl&ssand P

F_IG. 4. Numerical results for contributions tb(s,t=0;u) wave scattering Iengtm‘# in all three isospin channels
coming from thes-channel one gluon exchange diagrédotted,

one and two gluon exchange diagrafdasheg, one, two, and three aOZTO(SZ _ 4m2) (32)
: : | | T
gluon exchange diagrantdot-dashel up to nine gluon exchange
diagrams(dot-dot-dashed and a complete set of ladder diagrams 9
(SO”d). 1_ 4m7T 1 2
a;= ————— li(s——4m7). (33
—s—4m;.

Combining the amplitude® and E with Egs. (13)—(15)
provides the different isospin scattering amplitudes whichwe find a8=0.17, a}=0.036, anda§=—0.045. This agrees
are displayed in Fig. 5. For comparison we also plot thewell with Weinberg's theorem which is embodied in the tree-
amplitudes from leading-order chiral perturbation thel@}y  level chiral perturbation results

which are given in partial wave form
2

m
0 m
ag= =0.156 34
T,=32ﬂ-; (2L+1)TH(s)P_(cos#). (28) O 327f2 (34
2
For low energies th& andP waves dominate and are given a}: ”2 =0.030 (35
by 247t
2 o_ mi
T9(s)= —2s—m; 29 a,= 3om(? =—0.044. (36)
- __ 5 ar
0 32mf2 g
A recent analysi$26] of the experimental datg27] utilizes
9 both two-loop chiral perturbation theory and a phenomeno-
TY(s) = s+amy (30) logical description involving the Roy equatiof8] and ob-
2 3272 tains a3=0.220+0.005, a}=0.0379-0.0005, and a5
=0.0444+0.0010. Chiral perturbation theory is able to pro-
— : , : vide more accurate scattering lengths because they include
30; =" 32”0:’(8) ] higher order contributions from pion loops which is espe-
. 96”.0(5) cially important for the isospin zero channel: one-loop chiral
F L ] perturbation theonf4] gives a3=0.200, compared t@J
" x T:)(s,O,u) 1 =0.156 at leading order. In our present quark-based calcula-
1ol 5 o T60m o 1 tion pion loops are not included. However, they are clearly
2 L « "'\.\ ° ] necessary for an accurate description of the data, in particular
‘ﬁ; L Tl « ] in the isospin-zero channel.
L c. po—y e 1
\""x:?:,\\ C. Comparison with meson-exchange models
-op 2 . . . . \:?;)f'~? It is enlightening to compare the DSBS approach to the
0.2 01 [GeV) 0 0.1 QHD formalism which has an established phenomenological

legacy. For example, one could formulate a meson-exchange
FIG. 5. The lines correspond to leading-order chiral perturbationmnodel with both scalar and vector mesons starting from the
theory for isospin zerddashed, one (dot-dash, and two (solid) effective Lagrangian

amplitudes near threshold. The symbols represent the DSBS ampli-
tudes. L=Lo+ Lo+ Ly+ Lin (37)
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FIG. 6. Leading meson-exchange diagrams#oe#r scattering:
(a) contact term(b) s-channel,(c) t-channel, andd) u-channelo
andp exchange.

'Cint: g471'( (571" (Zﬂ')z_'— gO'7T1T¢0'(7_b)1T' q-§7r+ gpﬂ'ﬂ'(z)g ' (577
XV, (38)

It entails meson masses and coupling constants which re-
quire phenomenological determination; it also requires a cer-
tain amount of fine-tuning in order to satisfy chiral con-
straints. The leading Feynman diagrams forr scattering

in such an approach are displayed in Fig. 6.

In a meson-exchange model using both scalar and vector
mesons, the amplitud®(s,t;u) corresponds to a contact

term plus meson exchange contributions in stendt chan-

PHYSICAL REVIEW D66, 116010 (2002

which is in reasonable agreement with the experimeptal
width 151 MeV; the difference could very well be explained
by pion loops which are not included in the present ap-
proach. The decay width for the— 77 is

_ 3 Q5 Mg —4my

T2 16w m2

(43

=172 MeV (44)
which is also quite reasonable for a broadesonancdthe
factor 2 comes from summing over the charged and neutral
pions. However, it is known that the scalar BSE receives
significant corrections beyond ladder truncat{@z2], which
could change this calculated decay width. In addition, pion
loops should be incorporated self-consistently in the BSE
approach for a more realistic calculation of theand p
widths.

Next, consider for example the contribution ®€hannel
ladder diagrams t®(s,t;u): scalar mesons contribute

2
gO'7T7T/4
a (45
s+m:
whereas vector mesons contribute
92, (u—1)/4
—_— (46)

2
s+mp

nels; the amplitud&(s;t,u) corresponds to the same contact near the bound state poles, and similarly for theand

term plus meson exchange contributions in tlaadu chan-

u-channel ladder diagrams. The momentum-dependent factor

nels. In order to calculate these meson exchange contribyn the numerator of the vector meson exchange contributions

tions, let us first specify the meson coupling constants,
andg,,,, which in impulse approximation are given by

ggm=4chqATr[S(k+ PI -(k+Py,k)S(k)

XTI (K,k=P5)S(k—=P)I' (k= P, ,k+P1)] (39

Gpmal(P1— Pz)“=4chqATr[S(k+ P 7 (k+Pyq,k)S(k)

XT (K,k—P5)S(k—P5)

XTH(k=Py,k+Py)] (40
for on-shell scalar and vector meson®, ¢ P,)?= —mi,
—m?, respectively.

Within the present model, we have?=0.449 Ge,
Jyrr=2.06 GeV, m2=0.549 GeV, andg,,,=5.14[20].

The corresponding width for the deca— =" 7~ is

2 2 a4 2\32
_ Yo (M, 4M%)
T 48w

P

r

(41)

=104 MeV (42

comes from P;—P,)-(P3—P,)=u—t.

A detailed, consistent evaluation of these diagrams gener-
ates the effective meson-exchange scattering amplitudes at
the tree level:

T(t)sc+12 S, !
S' ’u = w 2) omTT
° 4t 29 s+m2 t+m> u+m?
, [u-s t-s
95 5+ 5 (47)
t+m?  u+m?
1, 2(u—t) u-s t—s
Tl(sit1u):§gpﬂﬂ 2 2 2
stms  t+mS u+m;
+1 2 ! ! (48
2% 2 urm2
To(s,t,u)=2C +1 2 ! + !
S’ 7u = w B) omTT
2 2% 2 w2
1, u—sJr t—s (49)
29mm t+me  u+m?/)
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change models which simply insert resonances phenomeno-
XX ] logically. As we documented in detail, a simple QHD treat-

" . 1 ment appears reasonable, especially near resonances. Future
y work will confront data at higher energies and also address
other flavored systems such asK scattering.

u [GeV) Schwinger, Bethe-Salpeter framework. The DSBS approach
0324 0124 0076 0276 provides contact with QCD and naturally includes the impor-
150R --- meson exchange T, ] tant features of gauge and Poincaneariance as well as
' ---- meson exchange T, ] both crossing and chiral symmetry. We have obtained nu-
_‘-‘ -—— meson exchange T, ] merical results which are in good agreement with the ob-
1001 '\.\ o T(s,t=0u) y served isospin scattering lengths and reproduce Weinberg'’s
% x  T(st=O0u) 1 theorem at threshold. Perhaps even more significant is the
sof e o Tyst=0u) ] emergence of the and p resonances at the proper energy
Tt ; which reaffirms the QCD structure elements in the model.
é’» The latter permits a rigorous assessment of QHD meson ex-
2
=

F

04 02 _ _,0 02
s [GeV']

ACKNOWLEDGMENTS
FIG. 7. Isospin zero, one, and twe-7 amplitudes. The sym- )
bols are the DSBS calculations. The lines are meson exchange This work was supported by the Department of Energy
model results, using calculated meson masses and couplings fronnder — Grants DE-FG02-96ER40947 and DE-FG02-
the DSBS approach. 97ER41048. Calculations were performed with resources
provided by the National Energy Research Scientific Com-

We can now evaluate the accuracy of the meson exchangg ting Center and the North Carolina Supercomputer Center.
model by comparison with the full DSBS amplitude. A con-

sistent assessment requires that the meson paranieeers
the coupling constants and meson magsasst be provided
by the DSBS model. The only free parameter in the meson |n terms of theu,d flavor components, the single pion
exchange model i€,,, which can be fitted such that the states are

meson exchange model agrees with the microscopic calcula-

APPENDIX: ISOSPIN DECOMPOSITION

tion away from the resonances. A value©f .~ —4.8 pro- |7mH)y=]1,1)= —|u€> (A1)

vides reasonable agreement for both the isospin zero and two

results over a large kinematic region. To reproduce Wein- |7°)=1,00=|(uu—dd)/2) (A2)

berg’s results for the scattering Iengm% and ag requires a

fine tuning between the meson masses and coupling con- |7 )=]1,~ 1)=|dU). (A3)

stants in the meson exchange model. The meson exchange

model with calculatedn,, m;, g,,,, andg,,, from the The two-pion states then have isospin decomposition
DSBS model cannot reproduce the Weinberg IirTEiig ..

=0.156 requireC,,,= — 5.2, whereamg= — 0.044 requires |m= ) =12,22) (Ad)

C4,=—4.0. In contrast, the DSBS approach does reproduce

the Welnber.g limits correcFIy, Whlle'at_the same time prop- | %)= i(|2,i 1)+ [2,+1)) (A5)
erly generating poles from intermediatg bound states such J2
asp and o mesons.
Figure 7 summarizes our comparative study for all three 1 1 1
isospin amplitudes at forward scattering. The gray band in- |77 y=—]2,00=—|1,00+—=]0,0) (AB)
dicates the sensitivity 06, for —4.0<C,,<—5.2. Notice V6 V2 V3
that theo resonance naturally appears in the DSB®ave, ) L
isospin zero amplitude and agrees with the meson exchange
amplitude quite accurately near themass region. Similarly |770770>:ﬁ|2’0>_ﬁ|0’0>' (A7)

the DSBSP wave, isospin one amplitude is reasonably well

reproduced by the meson exchange result, although we catsing the latter equations, the physicalw scattering am-
not numerically quite reach the pole. In between the plitudes can be related to the three isospin amplitudes by
threshold and resonant regions the two approaches have

some quantitative differences; however, we conclude that the (= a™|S|m 7 T)=T, (A8)
tree-level meson exchange approach is reasonable for simple
redictions. . - L, -1 1 1
P (77*7T+|S|7T*17+)=€T2+ §T1+ §TO (A9)
IV. CONCLUSION
Summanzmg, we have performgd a co.n5|stent relativistic (m* 7TO|S| ot 7To>:_-|—ZJr o7, (A10)
qguark formulation of -7 scattering using the Dyson- 2 2
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.- 1 1 To(s,t,u)=3D(s,t;u) +3D(s,u;t)—D(u,t;s)
(m= 7|9 7TO7TO>=§T2— §T0 (A11) (A22)
2 1 Ti(s,t,u)=2D(s,t;u)—2D(s,u;t) (A23)
(w0709 7070y =-T,+ = T,. (A12)
37 3 T,(s,t,u)=2D(u,t;s). (A24)

Not all six diagrams in Fig. 1 contribute to eaehtm  ginay we recall the more conventional Weinberg ampli-

scattering amplitude. In terms of the physical pion scatteringudesA’ B, andC defined by the standard scattering ampli-
amplitudes, we have tude relation

<7T”7T’|S|7T’7T*>:E(S,t,u)+E(S,U,t) (A13) <7Ty7Tﬁ|S|7Ta7T'B>=A(S,t,U)5aﬁ575+ B(S,t,U)ﬁay(SB(s
(m* 77 |9 m 7w )y=2D(s,t,u) (A14) +C(8,t,U) 8,504, - (A25)
(7= 70§ 7 7% =D(s,t,u)—D(s,u,t) Here the indicesy, 8,y and & refer to the Cartesian isospin

1 projections &,y,z) for the pion, which are related to the
+ E[E(s,t,u)+E(s,u,t)] (A15) physical charge states by
e e o |75) =% (| =il )12 (A26)
(w7 |§ 7 7°)=—D(s,t,u)—D(s,u,t)
| 7% =|7?%). (A27)

1
* E[E(S’t’UHE(S’u’t)] (A16) An elementary isospin calculation immediately yields

(779 w070 =D(s,t,u)+D(s,u,t) To(s,t,u)=3A(s,t,u) +B(s,t,u) +C(s,t,u) (A28)
+%[E(s,t,u)+E(s,u,t)]. (AL7) Ty(s,t,u)=B(s,t,u)— C(s,t,u) (A29)
Ty(s,t,u)=B(s,t,u)+C(s,t,u). (A30)

Thus we find for the isospin amplitudes
Then comparing with EqsA22)—(A24) we can relate the

To(s,t,u)=3[D(s,t,u) +D(s,u,t)] three Weinberg amplitudes to the DSBS amplitiie
—%[E(S,t,U)-FE(S,U,t)] (A18) A(s,t,u)=D(s,t;u)+D(s,u;t)—D(t,u;s) (A31)
B(s,t,u)=D(s,t;u)—D(s,u;t)+D(t,u;s) (A32)
T.(s,t,u)=2[D(s,t,u)—D(s,u,t)] (A19)

C(s,t,u)=—D(s,t;u)+D(s,u;t)+D(t,u;s). (A33)
To(s,t,u)=E(s,t,u)+E(s,u,t). (A20)
Since the Weinberg amplitudes satisfy
The quark exchange diagrafa(s;t,u), is symmetric in the

last two argumentg, and u, whereas the quark annihilation B(s,t,u)=A(t,s,u) (A34)
diagram,D(s,t;u), is symmetric in the first two arguments,
andt. Furthermore, the quark exchange and quark annihila- C(s,t,u)=A(u,t,s) (A35)

tion diagram are related to each other via
we can also use E¢A31) to again deriveB andC
E(s;t,u)=D(u,t;s). (A21)
B(s,t,u)=D(s,t;u)+D(t,u;s)—D(s,u;t) (A36)
Thus, there is actually only one independent amplitude, say

D(s,t;u), where the symbol “;” denotes the amplitude is C(s,t,u)=D(u,t;s)+D(s,u;t)—D(s,t;u) (A37)
symmetric in the first two arguments. In terms of this single
amplitude, we have as an independent check.
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